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Abstract 

 

The MIPS-to-Verilog (M2V) compiler and the Basic 

Block Tools (BBTools) can automatically generate a 

hardware accelerator for selected blocks of machine code 

in an application. The compiler translates blocks of MIPS 

machine code into a hardware design captured in Verilog 

(an "Extension"). The BBTools patch the application 

binary by inserting the extension instruction that triggers 

the accelerator. The original code is preserved, so that 

execution can fall back to software when necessary. 

This work extends the M2V compiler with support for 

memory load and store instructions, and for interrupts. 

We use a transactional model to handle interrupts and/or 

traps due to TLB misses in the Extension. We implemented 

and tested the interrupt support mechanism using a 64-bit 

division basic block, with added instructions for memory 

loads off the stack pointer. 

We also added the feature of allowing the BBTools to 

automatically create the best encoding for an extension 

instruction. The tool now evaluates which pair of roots in 

the dependency graph leads to the shortest execution 

cycle time for the Extension. With this addition, the 

process of creating Extensions for the eMIPS processor 

can now be fully automated and applied to practical 

applications, where loads and stores inside the Extension 

are of paramount importance. 

1 Introduction 
 

Extensible processors have a simple RISC pipeline 

and the ability to augment the Instruction Set Architecture 

(ISA) with custom instructions.  The ISA can be 

augmented statically, at tape-out, or it can be augmented 

dynamically when applications are loaded.  Extensible 

processors differ from other accelerators in their tight 

integration with the basic data path, which leads to 

minimal latencies and therefore greater flexibility. 

Examples of dynamically extensible processors include 

eMIPS [6] and Stretch [13]. Tensilica’s Xtensa [14] is an 

example of a statically extensible processor. 

Extensible processors take advantage of the fact that a 

small amount of code takes the majority of execution time 

in a typical program.  The code that executes most often is 

a candidate for hardware acceleration.  The code is 

identified by a special instruction that will initiate the 

accelerator.   
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Figure 1: The eMIPS Tool Chain to automate the 

generation of hardware accelerators. 

Selection of the best code to accelerate is an active 

area of research.  The eMIPS tool-chain, shown in Figure 

1, restricts the code selection problem to the set of basic 

blocks in the application.  Using the strict definition in [1], 

the basic block is a directed acyclic graph (DAG).  A 

DAG is a set of machine instructions that do not contain 

branches and are branched-to only for the very first 

instruction. The best candidate blocks are currently 

selected by executing the application using the Giano full-

system simulator [21], in concert with the data obtained 

via static analysis of the application binary. The BBTools 

select the basic blocks to accelerate and patch the binary 

image with the special instructions for the accelerator.  

The M2V compiler [16] automatically generates the 

design for the hardware accelerator, which is then 

synthesized using the Xilinx tools for the ML40x boards. 

The accelerator can be statically loaded when eMIPS 

is reset or it can be dynamically loaded when an 

application is loaded using partial reconfiguration of the 

FPGA. By dynamically loading and unloading 

accelerators, the area of the programmable hardware can 

be used more efficiently. 

In previous versions of eMIPS, the accelerator blocks 

could be specified and given to a hardware designer to 

hand design the accelerator.  While this can lead to an 

efficient implementation, manual designs do not scale well 
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as dynamically extensible processors are more widely 

used and the hardware becomes more complex. To 

effectively utilize dynamically extensible processors, 

different parts of an application can be accelerated using 

different Extensions, which can be loaded at appropriate 

times. The use of the tool chain along with M2V can 

expand the use of hardware acceleration and completely 

automate the process of generating hardware accelerators 

for a variety of basic blocks in an application. 

The work described herein addresses three limitations 

in the tool chain that prevented the M2V tool chain from 

being usable in but a few practical cases. The first 

limitation was the lack of support for load and store 

operations, and more generally for variable-cost 

operations. M2V was previously only able to cope with 

MIPS instructions that took zero or one cycle. We added 

support for all the instructions that took a fixed number of 

cycles, accounting for the cost in the generation of the 

schedule. Then we added support for the instructions that 

have variable costs, prime and foremost loads and stores. 

We were able to find a way to preserve the overall 

structure of the compiler, while dealing with the variable 

costs. The dependency graph still leads to a state machine 

that controls the overall execution. The transitions are now 

defined not only by the clock, but also by the signals that 

indicate completion of the variable-cost operations. 

The second limitation concerns the inability of the 

M2V compiler to generate logic for handling interrupts 

within an Extension. External interrupts could only 

happen before or after the extension instruction, never 

inside it. This assumption is invalid in the presence of 

TLB misses due to loads and stores. Furthermore, the 

previous tool required that an Extension never encounter 

errors, such as arithmetic overflows or unaligned 

addresses. For a real-time system, it is important to 

respond to interrupts in a timely and predictable manner. 

Even in a general-purpose OS it is unacceptable to allow a 

user process to ignore interrupts and lock the machine. To 

address the interrupt limitation, we used the concept of 

transactions in dealing with the write-backs to the register 

file and the stores to memory. The overall execution of the 

Extension is subdivided in sets that execute “atomically”. 

Interruptions of any sort are accepted at the transaction 

boundaries. On interruption, the write-back machine 

cancels all write-backs from future transactions, completes 

the write-backs for the current one, and then relinquishes 

control back to the data-path in a limited amount of time. 

The restart-address is set to the point in the original basic 

block that corresponds to the current write-back state. It is 

therefore mandatory that extension instructions are simply 

inserted in the original image, and that they do not replace 

the original basic block. 

The third limitation addresses the task of 

automatically choosing an instruction encoding for the 

new extension instruction. We observed that the selection 

of which registers or constants to encode in the instruction 

can have an effect on the overall execution time. These 

values are available early in the execution pipeline. It is 

therefore important to select those that allow the most 

work to proceed before stalling on a dependency. Our 

algorithm uses two parameters in deciding which two 

register numbers to encode – fan-out and depth of the root 

register read nodes. It selects the pair of registers with the 

maximum combined fan-out and depth. 

The remainder of this document is structured as 

follows. Section 2 discusses related work. Section 3 gives 

an overview of the eMIPS hardware platform. Section 4 

discusses the automatic encoding of the extension 

instruction by the BBTools.  Section 5 defines the support 

for memory operations in the M2V compiler.  Section 6 

discusses the model and implementation for handling 

interrupts in the Extension. Section 7 explains the M2V 

generated hardware in more detail.  Section 8 compares 

the synthesis reports obtained for Extensions generated 

with and without the transactional model enabled. Section 

9 discusses the experimental results, and Section 10 

concludes the report. Appendix I contains the BBW file 

for the example basic block. Appendix II contains 

synthesis reports for the Extension generated by the M2V 

compiler. Appendix III contains the Verilog output from 

M2V, with the transactional model enabled and interrupt 

support.  Appendix IV shows an automated visualization 

of the dependency graphs from M2V. 

2 Related Work 
 

Work on extensible processors can be divided in 

several ways.  One avenue of exploration is to define the 

underlying hardware.  Chimaera [7] and GARP [8] are 

two examples of extensible hardware from the late 1990’s.  

Commercial FPGA manufacturers today all provide 

examples of soft-cores, microprocessor designs that the 

customer can modify and extend for their application [15, 

3, 13].  M2V uses the eMIPS processor [6] as its 

underlying hardware platform. eMIPS is the first design 

that is secure for general purpose multi-user loads, and the 

set of potential applications is therefore more open-ended 

than those found in the typical embedded system alone.  

A common approach to generate code for an 

extensible processor is to modify an existing C compiler. 

Tensilica [14] automatically regenerates a full GNU 

compilation system given the RTL of the new instruction. 

Ienne et al. [4] use the SUIF compiler. M2V accepts as 

input binary machine code rather than source code. There 

are trade-offs between accelerating from source code in a 
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high-level language or from binaries.  One of the major 

advantages when accelerating from binaries is that any 

application can be accelerated, even applications where 

the source code is controlled by an outside party and not 

available to the system developer. A disadvantage is that 

some of the information that has been discarded must be 

reconstructed, and there are limits to this reversal process. 

The FREEDOM compiler [17, 18] is similar to M2V; 

the compiler accepts binary machine code as input and 

maps it to an FPGA. The Extensions generated by the 

M2V compiler are meant for a general-purpose 

environment and therefore execute in coordination with 

the main processor data path, whereas FREEDOM maps 

the entire program to the bare FPGA. M2V generates 

Extensions that are explicitly interrupt-aware, whereas 

there is no mention of handling interrupts in the 

FREEDOM compiler. Additionally, the Extensions 

generated by the M2V compiler for the eMIPS have 

secure access to the memory subsystem via the Memory 

Management Unit (MMU), which is not a requirement for 

the DSP-like programs handled by the FREEDOM 

compiler. FREEDOM is a more mature product and can 

handle a larger body of codes than what M2V currently 

does. 

Another avenue of research in extensible processors 

is the identification of the Instruction Set Extensions (ISE) 

that most benefit a given program, see for instance [5] for 

a recent overview. Bonzini [5] advocates generating the 

ISE from within the compiler, Tensilica [14] from 

profiling data. M2V currently follows the application 

profiling approach; it uses the BBTools and dynamic full-

system simulation with Giano to select the candidate basic 

blocks. The current approach can extend to handling 

chains of blocks e.g. in frequently executed loops that are 

automatically recognized via full-system simulation [19]. 

A possible addition to our work is to use M2V in concert 

with a high-level compiler. Once the ISE is identified 

from within the compiler, the Extension’s definition could 

be output in the form of a BBW file. 

A related area is the generation of HDL code from C, 

the so-called C-to-gates design flows [11, 12]. The 

common target is the automated generation of HDL code 

from sequential programs. The main difference with M2V 

is that the input is binary code. Using binary code supports 

all programming languages, included dynamically 

generated (jitted) code. It is the only viable option in case 

the high level source code is not available, e.g. for third-

party code and libraries. The drawback is that makes the 

problem harder. The binary code has already been 

optimized (register allocation, loop unrolling, etc) during 

its compilation hence identifying parallelism is more 

difficult. The BBTools framework tries to account for 

some of these optimizations by using a canonical form of 

the basic block, so that it can identify repeating basic 

blocks in the binary. 

3 eMIPS Hardware Overview 
 

The extensible MIPS (eMIPS) processor [6] has been 

developed at Microsoft Research as an example of a RISC 

processor integrated with programmable logic.  The 

programmable logic has many uses, such as: extensible 

on-line peripherals, zero overhead online verification of 

software, hardware acceleration of general-purpose 

applications, and in-process software debugging [2].  This 

document is concerned with automatically generating 

hardware accelerators within the context of the eMIPS 

extensible processor. 

The instruction set for the eMIPS processor is the 

instruction set for the R4000 MIPS processor [10].  The 

R4000 is an example of a classic RISC architecture.  The 

eMIPS pipeline follows the classic RISC pipeline [9] 

consisting of five stages: instruction fetch (IF), instruction 

decode (ID), execute (EX), memory access (MA), and 

register write-back (WB).   

 

 

The eMIPS processor departs from a standard RISC 

processor by adding an interface to programmable logic.  

The programmable logic is tightly integrated with the 

RISC pipeline, it can synchronize with it and it can access 

the same resources as the RISC pipeline.  Figure 2 shows 

a logical block diagram for the eMIPS processor. The 

tight coupling of the pipeline and programmable logic 

creates a very low latency interface between the 

accelerator and the RISC pipeline. 

Figure 3 illustrates the pipelining of instructions 

through eMIPS.  The decode logic in the extension logic 

is always an observer of the main pipeline and is trying to 

Ex. 

(ALU) MA WB 
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IF ID 

Hard Fabric: 

TISA 

Inter Pipeline Traffic 

CP0 

(Exception 

Handler) 

Memory 

(MMU, Cache) Registers 

Peripheral Ext. 2 

Execution 

Blocks Ext. 1 
Ext. 1    

ID 

Ext. 2    

ID Extensions 

Figure 2. eMIPS block diagram. The Soft Fabric can 

be reconfigured at run time to extend the ISA. 

kk 



 

 - 6 - 

decode the instruction in the instruction decode (ID) phase 

of the pipeline.  When the instruction is not an extension 

instruction, the Extension fails to decode it and the 

instruction is executed in the main pipeline.  If instead the 

extension logic successfully decodes the instruction, the 

extension becomes active and hardware acceleration takes 

over execution.  Instructions flowing through the main 

RISC pipeline prior to the extension instruction complete 

normally.  Instructions following the extension instruction 

are stalled until the Extension is near completion, in the 

EXn-1 cycle.  

The RISC pipeline imposes micro-architectural 

constraints on the extension logic, for instance in the 

arbitration for access to the register file and other 

resources.  The extension logic needs to read and write the 

register file and access the memory management unit 

(MMU).  M2V automatically schedules all resource 

accesses in the extension logic to avoid conflicts with the 

primary RISC pipeline. 

 

IF ID EX MA

EX1

WB

IF ID EX MA WB

IF ID EX2 MA WBEXn-1Exn-2 EXn...

IF ID EX MA WB

IF ID EX MA WB

Instruction m-2

Instruction m-1

Extension Instruction m

Instruction j

Instruction j+1

Cycle Number 0 1 2 3 4 5 n+2 n+3 n+4 n+5 n+6 n+7 n+8...

IFInstruction m+1

 

Figure 3: Instruction flow through the eMIPS pipeline. 

The primary RISC pipeline uses two read ports on the 

register file when an instruction is in the ID stage, one 

MMU port when in the MA stage, and one write port on 

the register file when in the WB stage.  The eMIPS 

register file has four ports which are multiplexed between 

four read ports and two write ports.  The extension logic 

has the potential to use all of the eMIPS register file ports, 

but it must not conflict with the primary RISC pipeline.  

Thus, register writes must be delayed by the Extension 

until previous instructions are retired and register reads 

must be finished a couple of cycles before trailing 

instructions get to the ID stage. As a specific example, 

consider the case in Figure 3 when the extension 

instruction is in the EX1 cycle of execution, instruction m-

1 is in the MA pipeline stage and so instruction m-1 has 

access to the MMU.  Instruction m-2 is in the WB pipeline 

stage and it has control of the register file write ports.  The 

extension instruction does not have control of all the 

resources until stage EX3 when the previous instructions 

have been retired.  

The eMIPS processor has been implemented on 

Xilinx Virtex 4 FPGAs using the ML401 and ML402 

evaluation boards.  The partial reconfiguration capabilities 

of this FPGA model allow software to load dynamically 

the hardware for the instruction extensions.   

4 Extension Instruction Encoding 
 

An extension instruction is an instruction that is not 

part of the base ISA of the eMIPS processor. It is inserted 

in the instruction stream for the specific purpose of 

triggering an Extension. If the Extension is present and 

active, it recognizes the instruction and takes over 

execution, effectively replacing the block of instructions 

that (would) follow. Otherwise the instruction is treated as 

a NOP and execution continues with the original basic 

block. There is a large degree of freedom in encoding an 

extension instruction; the only real practical restriction is 

that the top six bits must not match a valid opcode. It is 

also clearly impossible to encode all of the information 

contained in an arbitrarily large block of instructions into 

a single one. The implementation of the eMIPS decoder 

presents an opportunity for optimization. By default, the 

decoder expects "I” format instructions and fetches the 

corresponding rs and rt registers in advance. 

Consequently, the current revision of M2V generates 

Extensions that decode their extension instruction 

assuming the MIPS “I” format. The format is illustrated in 

Figure 4 below. 

Opcode_name rt, rs, immediate 

31:26 25:21 20:16 15:0

opcode rs rt immediate

 

Figure 4: The MIPS “I” format encoding. 

The M2V compiler uses the block descriptions in the 

so-called BBW file to generate synthesizable Verilog code 

for the Extension hardware of the eMIPS processor. The 

BBW file describes a list of basic blocks; each description 

consists of the following main sections: machine name, 

extension instruction encoding, canonical register and 

value relationships, code size and the basic block of MIPS 

instructions. BBMatch.exe is a program, part of the 

BBTools framework, used for creating the BBW source 

file automatically, from a MIPS executable file. The BBW 

file is therefore the core interface between BBTools and 

M2V compiler. The current version of BBMatch creates 

the BBW file automatically, but leaves the encoding 

section empty. If we could also generate the encoding 

section automatically the whole process of creating 

Extensions could be automated, from ELF image all the 

way to a working Extension. 

The encoding of the registers in the extension 

instruction plays an important part in the schedule that 

M2V will generate for the Extension. In the eMIPS 

architecture, the Extension is tightly coupled with the 
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standard MIPS pipeline. This gives us the advantage of 

having the two registers rs & rt, encoded in the extension 

instruction, available directly from the decode stage of the 

MIPS pipeline. This feature can be used to reduce the 

execution time of the Extension by appropriately selecting 

the registers to encode in the extension instruction. This is 

illustrated by the simple example basic block shown 

below in Figure 5.  The cost of the “OR” and the “SLL” 

instructions in the basic block are 1 and 0 cycles 

respectively. We shall consider two cases to illustrate the 

importance of encoding the correct registers. 

 

[0] ext0 rx, ry, offset 

[4] or r5, r1, r2 

[8] sll r6, r3, r4 

Figure 5: The choice of rx and ry in this basic block 

affects the performance of the generated Extension. 

The circuit graph generated by M2V is shown in 

Figure 6 for two different encodings of the extension 

instruction. In the graphs, the clock cycle when the 

respective node completes is depicted next to the node.  
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Case (i): Extension instruction encoded with R1, R2 
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Case (ii): Extension instruction encoded with R1, R3 

Figure 6: Circuit graphs for the block in Figure 2, 

using different encoding schemes. 

The graphs show that though the number of states in 

the Extension remains the same, the number of clock 

cycles taken by the Extension to execute the set of 

instructions differs based on the encoding of the registers. 

Considering the first case, registers R1 and R2 are 

encoded, thus making them available directly from the 

decode phase of the pipeline in stage 2 of the extension 

state machine. The “OR” instruction can be executed 

immediately, and will complete in cycle 1 since the 

Extension has all the registers available and no unmet 

dependencies. However, the “SLL” instruction requires 

both source registers to be read from the register file, 

which takes 4 clock cycles. This causes the SLL 

instruction to complete in cycle 4. A pipeline stage is 

inserted by the extension state machine after execution of 

the instructions at cycle 4. The two register write-backs 

are performed after the pipeline stage, in cycle 5 (R5) and 

cycle 6 (R6). Thus, the Extension requires 6 cycles to 

complete execution with this encoding. 

Considering the second case, registers R1 and R3 are 

encoded. In this case, none of the instructions can be 

executed directly as both have unmet dependencies and 

require register reads from the register file. Assuming 

there are at least two read ports in the register file, the OR 

instruction completes after 5 cycles, 4 cycles for reading 

register R2 and 1 cycle for execution. Similarly, the SLL 

instruction completes execution in cycle 4. Again, a 

pipeline stage is inserted after execution of the 

instructions in cycle 5. The register write-backs are 

performed in cycle 6 (R6) and cycle 7(R5). Thus the 

Extension requires 7 cycles to complete execution with 

this encoding. 

In this minimal example, a two instruction basic block 

shows a difference of 1 execution cycle depending on the 

selected encoding. The encoding scheme will have a 

greater impact on the execution time when there are long 

latency paths in the basic block. Thus, it is of prime 

importance to create an optimal encoding of the 

Extension’s registers to reduce Extension latency. 

4.1 Register Selection Algorithm 
 

In the new version of “bbmatch.exe”, the encoding 

algorithm uses two main parameters in selecting the rs & 

rt registers – fan-out and depth of the root register read 

nodes. Fan-out is the number of instructions dependent on 

the root register read node. Depth is a count of the register 

nodes and the cost of the instruction nodes till a 

dependency is met in the graph. 

Using the circuit graphs in Figure 6, all the register 

read nodes, R1, R2, R3 and R4 have a fan-out of 1. For 
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the depth calculation, all the registers have a dependency 

at the instruction nodes, with the only differentiating 

factor being the cost of the “OR” instruction node 

compared to the “SLL” instruction node. This gives the 

depth of registers R1 & R2 as 2 and R3 & R4 as 1. 

The algorithm takes the sum of the fan-out and depth 

of the register nodes and encodes the nodes with the 

maximum value. In the mentioned example, the nodes 

encoded by the algorithm would be R1 and R2, which is 

the best encoding scheme as seen from the circuit graphs 

in Figure 6. 

Other algorithms are possible. The total number of 

general-purpose registers is limited even in the case of 

MIPS where they are abundant, and the calling convention 

further restricts the number of maximum potential roots in 

any practical dependency graph. It is therefore 

conceivable to perform a brute-force search of all possible 

selections to find the one with the optimal cycle count. 

The worst-case number of alternatives for a processor with 

N usable registers is N*(N-1)/2, or 465 for MIPS. We will 

try this alternative when the compiler has full code 

coverage. 

4.2 Immediate Value Encoding 
 

The encoded extension instruction can be used to 

match more than one basic block in the binary executable. 

The description of a block is in the form of a code pattern, 

parameterized by the register assignments and the 

constants in the immediate fields. The encoding of the 

instruction defines constraints on the register assignments 

and constants. Any block with a compatible register and 

constants assignment will match the pattern. For example, 

if two basic blocks differs only in the destination of a 

jump, then encoding the extension instruction with the 

branch offset would make the Extension work in both 

cases.  

In the new version of BBMatch, the immediate value 

encoded in the Extension is determined by user options. 

The program simplistically allows for encoding either the 

first encountered load instruction offset or the branch 

instruction offset. By default, the program encodes the 

branch offset.  

4.3 Implementation 
 

We assume the reader is familiar with the internals of 

the M2V compiler implementation, as described in [16]. 

From the top level, the main functions involved in the 

decision making are part of the “ext_encode.cpp” file – 

RegEncodingCond & ValEncodingCond, which are the 

functions for encoding the canonical register relationships 

and values, and the value relationships respectively. 

The BBTools must generate the circuit graph in order 

to decide which registers should be encoded as rs & rt, 

just like M2V does. RegEncodingCond first creates the 

circuit graph by using the Circuit class from M2V. 

RegEncodingCond then calls getEncRegs, which we have 

added to the Circuit class to determine rs & rt. The rest of 

the RegEncodingCond function determines the canonical 

register relationships once rs & rt are determined. 

The getEncRegs function calculates the fan-out and 

depth of each root register read node of the circuit graph. 

The root register read nodes are stored in the regRdVec 

queue data structure in M2V. rs & rt are determined based 

on the additive maximum of fan-out and depth. 

ValEncodingCond encodes the value based on the 

specified user option. “mips_dissect.c” contains records 

for each instruction based on its disassembly with 

information such as the number of reads/writes required, 

cost of the instruction, etc. A flag indicating a branch/load 

instruction is added to this record to help in identifying the 

value to be encoded. 

4.4 Tool interface changes 
 

The Makefile provided with the BBTools is used to 

compile both the BBTools and M2V. The command 

“nmake bbmatch.exe” compiles just the BBMatch 

program. The usage information can be obtained by 

invoking a tool without arguments. The command line for 

bbmatch.exe is: 

bbmatch [-v] [-c [-l] [-b]] PatternFile BBSFile 

The “-l” or “-b” options are used along with the “-c” 

option for creating the BBW file from the basic block 

symbols (BBS) file. The new “-l” option encodes the load 

instruction offset while the new “-b” option encodes the 

branch instruction offset. 

The command line for m2v.exe is: 

m2v [-v] [-t] [-g] bbwFileName [VerilogFileName] 

The “-v” option generates more verbose output. The new 

option “-t” enables the transactional model. The “-g” 

option creates a graphic representation of the circuit 

graph, in the “DOT” file format usable with the MSAGL 

tool for Automatic Graph Layout[20]. Appendix IV shows 

the visualization of the Circuit graph for the basic block in 

Figure 10, using the DOT file generated by M2V and 

rendered by the MSAGL tool. 
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5 Memory access support in M2V 
 

This section describes our additions to the M2V 

compiler to support memory accesses. It is well known in 

the literature that the lack of load and store operations 

leads to limited speedups from hardware acceleration. The 

operations are not only important for performance, but in 

our experience they are almost always present in the most-

frequently executed basic blocks of an application, 

precisely the blocks that M2V wants to speed up. 

M2V is a three-pass compiler which automatically 

generates eMIPS Extensions from a BBW source file. The 

first pass processes the BBW file and consists of three 

major steps: map the encoding for the extension 

instruction to the basic block, analyze the MIPS 

instructions, and build a circuit graph.  The second pass 

schedules the operations that are represented in the graph.  

The third pass emits the Verilog that will be synthesized 

and placed in the eMIPS FPGA. 

The eMIPS architecture allows for Extensions to 

access memory through the MMU just like the main MIPS 

processor data path. The MMU is part of the Trusted ISA 

portion of the eMIPS processor; The MMU is the only 

path to memory available to general, untrusted Extensions. 

The Extension is tightly coupled with the main MIPS 

pipeline. The Extension has access to the memory 

interface only after a few cycles it received control. This 

restriction is taken care of in the scheduling pass of the 

M2V compiler. To ensure correct execution of the 

memory instructions, the Extension must obey the 

protocols shown below in Figure 7 and Figure 8. The 

M2V compiler generates this logic using the scheduling of 

memory instructions and the states of the extension state 

machine. The protocols for the memory read and write 

requests are shown in Figure 7 and 8 respectively. 

 

Figure 7: Memory Read Protocol. 

In both protocols, the MDATA_VLD signal serves as 

an indicator that the memory request is acknowledged by 

the controller. The signal indicates when the data is 

available from, or to be written to memory. 

 

Figure 8: Memory Write Protocol. 

The M2V compiler implements the above protocols 

in Verilog, in the form of a memory state machine. The 

memory state machine is then integrated into the existing 

extension state machine. The memory state machine is 

currently boilerplate (invariant) code.  

5.1 Memory State Machine 
 

The memory state machine shown in Figure 9 is a 

simple implementation of the memory protocols. M2V 

maintains an array of memory operations in a particular 

state that is integrated into the extension state machine. 

Once the Extension transitions from one state to a state 

with a memory operation, the memory state machine is 

activated. 

Idle

In READ 

state

In WRITE 

state

Initiate Memory read

Request Acknowledged,

MOE_OUT lowered
Request Acknowledged,

MWE_OUT lowered

Memory op complete

Initiate Memory write

 

 

Figure 9: Extension Memory State machine. 

On the rising edge of the Pipeline CLK (PCLK), the 

address is latched onto MADDR signal and the Memory 

Output Enable (MOE) signal is raised in case of a read or 

the Memory Write Enable (MWE) is raised in case of a 

write. MDATA_VLD then falls down once the memory 

request is acknowledged, and the memory state machine 
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moves onto the next state, waiting for the MDATA_VLD 

to go high, indicating the availability of the data in 

MDATA_IN for a read or completion of the write for a 

write operation. 

When a state involves a memory access, the main 

extension state machine waits on the completion of the 

memory state machine and transitions to the next state 

when all other operations (ex: register reads, register 

writes) for that state are completed. 

5.2 Implementation 
 

The set of memory instructions in the basic block are 

stored in a separate queue called mmuInstVec in the 

Circuit class. mmuInstVec is used to generate the memory 

address and memory data for the particular memory 

transaction. M2V schedules the memory operations just 

like other normal instructions. The register encoding 

algorithm described earlier takes care of the necessity to 

schedule loads as early as possible in the basic block. The 

encoding plays an important part in selecting two critical 

paths (of high depth). This will ensure that operations are 

executing in parallel to the load instruction, thereby hiding 

the latency of the load instruction. 

Scheduling of memory operations by M2V is limited 

by the number of memory ports available to the Extension. 

In the current version, there is a single port available to 

the Extension, limiting the number of memory operations 

in a state of the Extension to one. 

During the scheduling pass, when M2V encounters a 

memory instruction it first checks if the memory port has 

already been used. In the event that the port has already 

been used, the function returns with a RET_FAIL_RSRC 

error, indicating resource constraints. The register node 

supplying the base address is pipelined to allow access in 

the next state of the Extension. 

If the memory port is available in the current state, the 

compiler proceeds to checking if the required register 

reads are already available. Once all the dependencies are 

met, the compiler marks the node with the cycle to be 

scheduled and updates the counter to reflect the usage of 

the memory port in the current state of the Extension. 

M2V ensures that the ADDR_OUT/IN and 

DATA_OUT/IN pins are correctly MUX’d based on the 

instruction stream in the basic block. The M2V compiler 

generates a logic block to handle this requirement. If a 

basic block consists of more than one memory instruction, 

the ADDR_OUT pins must reflect the correct address for 

each of the instructions. As mentioned previously, only 

one memory operation is allowed in each state of the 

extension. Thus the ADDR_OUT/IN and DATA_OUT/IN 

pins are determined and MUX’d based on the current state 

of the extension. 

M2V pipelines the destination register of the memory 

instruction to account for the variable latency of the load 

instruction node. 

6 Interrupt Support 
 

We have modified the M2V compiler to generate 

Verilog code with the ability to handle interruptions while 

the processor is executing in the Extension. Interruptions 

can be due to three different sources, but we will use the 

single term “interrupt” to indicate any and all of them. Our 

approach handles all cases in the same manner. The first 

cause of interrupts is address translation misses and errors 

in the MMU while the Extension is trying to access 

memory. A second cause is actual interrupts from 

peripherals such as timers and I/O devices. A third cause 

of interrupts is the case of errors inside the Extension, 

such as unaligned addresses and overflows. We use a 

transaction model based approach to handle all interrupts 

in the Extension.  

The basic block to be accelerated is analyzed and 

divided into “transactions”. A transaction is a set of 

instructions that terminate just before a memory 

instruction. Even in the event the basic block has no 

memory operations, there is still a maximum number of 

cycles allowed before interrupts are permitted. The 

maximum number of operations in a particular transaction 

is currently fixed at 7. Future work might include taking 

into account the actual latency/cost of the instructions 

rather than an arbitrary fixed number.  

The Extension must correctly indicate to the TISA 

what is the re-start address for execution, e.g. after the 

software interrupt handler returns. This address is termed 

the Virtual PC (VIRPC), as the Extension is keeping track 

of the PC as seen by the MIPS pipeline, even though the 

Extension has no concept of instruction fetch or 

instruction ordering mechanisms. The VIRPC address 

simply corresponds to the start of each transaction in the 

original basic block. 

We illustrate the subdivision of a basic block in 

transactions with an example in Figure 10. Transaction 1 

terminates once the load instruction ([c]) is encountered. 

Transaction 2 is terminated at the end of the maximum 

allowed 7 instructions in the transaction. The remaining 

instructions are part of transaction 3. The basic idea 

behind the transactions scheme is to preserve the original 

program order, while at the same time allowing for more 

optimistic and more parallel execution inside the 

Extension. The Extension will recognize an interrupt at 

the next transaction boundary should an interrupt occur 
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during the Extension’s execution. Any write-backs that are 

due to a subsequent transaction are aborted. 

[0] sll r1,r1,1

[4] sll r7,r1,2

[8] addu r7,r7,r8

[c] lw r7,0(r7)

[10] srl r3,r2,31

[14] or r1,r1,r3

[18] sll r2,r2,1

[1c] srl r3,r4,31

[20] or r2,r2,r3

[24] sll r4,r4,1

[28] srl r3,r5,31

[2c] or r4,r4,r3

[30] sltu r3,r1,r6

[34] beq r0,r3,4c

[38] sll r5,r5,1

Transaction 1

Transaction 2

Transaction 3

 

Figure 10: Example basic block illustrating the 

concept of transactions. 

The transaction model is used to perform write backs 

in-order, but from the abstracted viewpoint of a 

transaction, that is, the write backs in transaction 1 must 

complete prior to any write backs in transaction 2. 

However, the write backs inside a particular transaction 

can be performed out of order. This limits the parallelism 

generated by the circuit graph to some extent by imposing 

the restriction of performing certain write backs in order. 

We perceive this to not be a huge problem as the eMIPS 

TISA interface allows for two register writes every cycle, 

thus decreasing the possibility of bottlenecks at the 

register file. 

[0] sll r1,r1,1

[4] sll r7,r1,2

[8] addu r7,r7,r8

[c] lw r7,0(r7)

[10] srl r3,r2,31

[14] or r1,r1,r3

[18] sll r2,r2,1

[1c] srl r3,r4,31

[20] or r2,r2,r3

[24] sll r4,r4,1

[28] srl r3,r5,31

[2c] or r4,r4,r3

[30] sltu r3,r1,r6

[34] beq r0,r3,4c

[38] sll r5,r5,1

[0] sll r1,r1,1

[4] sll r7,r1,2

[8] addu r7,r7,r8

[c] lw r7,0(r7)

[10] srl r3,r2,31

[14] or r1,r1,r3

[18] sll r2,r2,1

[1c] srl r3,r4,31

[20] or r2,r2,r3

[24] sll r4,r4,1

[28] srl r3,r5,31

[2c] or r4,r4,r3

[30] sltu r3,r1,r6

[34] beq r0,r3,4c

[38] sll r5,r5,1

T1

T2

T3

9 Writebacks to the RF 6 Writebacks to the RF

Transactional Model No interrupt handling

 

Figure 11: Overhead of handling interrupts.  

Figure 11 illustrates the overhead in terms of register 

write-backs. In the case of generating hardware without 

the support of interrupts only 6 write-backs are necessary 

to the register file. It can be clearly seen that further 

optimizations can be applied to this basic transaction 

model. By just terminating Transaction 2 an instruction 

before or after would have reduced the number of write-

backs by 2. This would have ensured only one extra write-

back in the transactional model approach. 

M2V adds transactions registers to the Extension to 

keep track of the current transaction being written back for 

a particular state of the Extension. When the Extension 

encounters an interrupt, the extension state machine 

checks to see if the current state of the Extension is an end 

of a transaction or not. If it is an end of a transaction, the 

VIRPC is updated to reflect the address of the start of the 

next transaction and the extension state machine is stalled 

in that state. The Extension then waits for the resources to 

be taken away by the pipeline arbiter and the Enable and 

Grant signal to go low. Once the enable goes low, the 

Extension lowers the ACK signal to signal the end of the 

Extension at that transaction. The program then re-starts 

execution from the VIRPC address on the main MIPS 

processor, with the registers and other structures in the 

correct state. 

6.1 Implementation 
 

We added a Transactions class to the M2V. The 

Transactions class records the write-backs in a particular 

transaction, and the start and end states of the write-backs 

for a particular transaction. 

Prior to the scheduling pass, M2V determines the 

registers that must be written back to the Register File 

(RF). If the transaction model is enabled by the M2V user 

option, then the Transactions class is populated at this 

point with the registers that need to be written back to the 

RF. This information is stored in a queue data structure 

named writeBacks, as part of the Transactions class. The 

start address for each transaction, used as VIRPC, is also 

populated at this point. 

There is no change in the scheduling of operations in 

the transaction model, the only difference being the write-

backs to the RF. For a given state, the compiler first 

determines which transaction is currently being written 

back. The compiler then iterates through its write-back 

queue, regWrVec, to check if there are any pending write 

backs for the current transaction, issuing the write-backs 

in case of a match. This ensures that write-backs within a 

transaction are performed as soon as the values are 

available, potentially out-of-order. As part of this 

scheduling, the starting state and ending state for write-

backs of a particular transaction are populated in the 

Transactions class. This is later used in the Verilog 

generating pass of the compiler as part of the extension 

state machine. 
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In the hardware implementation pass, we use a 

register array in the Extension to maintain the transaction 

information for a particular state of the Extension. This is 

generated from the start and end states of the write-backs 

as populated in the scheduling pass. 

The extension state machine performs in the same 

way without interrupts. In the event of an interrupt, the 

state machine transitions states only till the end of the 

current transaction. Once the end of the transaction is 

identified, the extension state machine stalls and does not 

perform any more operations/write-backs. This ensures 

that the registers and memory are in the correct state to 

resume execution at the next transaction PC address. 

7 Hardware Implementation Details 
 

Appendix III lists the complete Verilog code that 

M2V generates for the basic block in Appendix I. There 

are four contributions to the final Verilog file: the eMIPS 

invariant code, the BBW dependent code, the circuit 

graph dependent code, and the cycle dependent code. 

Lines 1-580 of the Appendix are the first lines of 

eMIPS invariant code in the accelerator definition.  Lines 

1-340 define the Extension’s top-level module, lines 341-

465 define the bus macros for the execution-to-write-back 

interface, and lines 466-580 define the bus macros for the 

instruction-decode-to-execution interface.  Lines 1-340 

are simply copied from m2v_mod_bp.v at runtime. 

The Extension’s top-level module defines the 

interface signals between the Extension and the rest of the 

eMIPS design.  It contains multiplexor logic for the shared 

data busses to the register file and the program counter 

update logic.  It also instantiates four modules that make 

up the core of the Extension: the instruction decode logic, 

the execution logic, and the two bus macro modules. 

The bus macros provide connectivity between the 

extension logic and the primary eMIPS logic.  They 

represent physical routing locations and are required for 

partial reconfiguration. 

The instruction decode logic defined in lines 581-640 

is BBW dependent code.  This logic decodes the 

instruction in parallel with the primary RISC pipeline.  If 

the opcode of the instruction matches the opcode of the 

Extension, the logic will assert the RI signal so that the 

extension logic can take control from the RISC pipeline.  

The fall-through address for the basic block is sent to the 

program counter.  The fields within the instruction are 

decoded and sent to the execution logic.  This version of 

M2V hardcodes the extension instruction to the MIPS “I” 

format.  The Circuit.emit_decode method generates this 

code. 

The extension execution logic is defined in lines 641-

1311. The execution logic is composed of invariant code, 

BBW dependent code, circuit graph dependent code, and 

cycle dependent code.   

Lines 641-722 define the interface signals between 

the execution logic and the rest of eMIPS.  The signals are 

invariant for every Extension and are copied from 

m2v_ex_bp.v at runtime.   

Lines 722-767 define the Verilog registers that are 

used later in the execution logic.  This code is circuit 

graph and cycle dependent.  The registers for the register 

node values follow a convention to create an identifiable 

mapping between the generated logic and the circuit 

graph.  The format is rX_Y[_r], where X is the actual 

MIPS register, Y is the sequence number of the register 

node,  “_r” indicates that the value comes directly from a 

register, and the absence of “_r” indicates that the value 

comes from combinatorial logic.  Thus, r9_3 is a 

combinatorial value for MIPS register 9 that corresponds 

to the register node with sequence number 3.  The 

Circuit.emitVarDecl method generates this code. 

The last part of the above Verilog block, from 761-

767 is dependent on the transactional model and are 

present only if the transactional model is enabled. 

Lines 770-1077 define the state machines that 

interface with the register file, the program counter logic 

and the Memory Management Unit (MMU).  This code is 

invariant and is copied from m2v_state_mc.v at runtime.  

These state machines are eMIPS-specific. 

Lines 1113-1176 define the register file, program 

counter and memory port usage for each cycle in the 

Extension.  Additionally, if the transactional model is 

enabled, it contains information regarding the progress of 

transactions with respect to the cycles in the Extension. 

This information is used by the state machines defined in 

lines 770-1077. Lines 800-900 define the memory state 

machine part of the Extension, as shown in Figure 9. This 

code is generated by the Circuit.emitCycState method.  

Lines 1080 – 1113 define the transactional model 

logic and the state machine used for the transactional 

model. Methods Circuit.emitTransactionStateMachine 

and Circuit.emitTransactionLogic generate this code. 

Lines 1176-1216 define the register file interface 

logic.  Since there are limited ports on the register file, the 

read and write addresses are scheduled onto the register 

file address lines.  Likewise, read data from the register 

file must be routed to the correct register node, and write 

data to the register file must come from the correct 

calculation.  The Circuit.emitRFLogic method generates 

this code.  
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Lines 1220-1240 define the pipeline registers needed 

by the extension logic.  When a calculation must be 

pipelined, it is latched at the end of the calculation cycle 

and held for the remainder of the Extension’s execution.  

The Circuit.emitPipeReg method generates this code. 

Lines 1240-1250 define the logic for generating the 

address and data out to the memory for the memory 

instruction in the basic block, if any. The 

Circuit.emitMemLogic method generates this code. 

Lines 1250-1290 define the combinatorial logic for 

the instruction nodes.  The Circuit.emitInstLogic method 

generates this code. 

Lines 1290-1311 define the primary extension state 

machine.  The state machine is 1-hot encoded with one 

state representing one cycle in the schedule so the states 

can be directly used as control signals.  The machine is 

idle until an Extension is successfully decoded and it steps 

through each state in the Extension.  The Circuit.emitESM 

method generates this code. 

8 Synthesis Reports 
 

Appendix II contains the synthesis reports for three 

different versions of the Extension hardware generated for 

the same example basic block from Appendix I. 

Figure A-1 is the synthesis report for the hardware 

generated by M2V without the support for memory 

instructions and interrupt handling. This report was 

generated on an earlier version of eMIPS, with a different 

data path and a different version of the Xilinx ISE tools. It 

represents the state of the M2V compiler at the start of the 

work described herein. 

Figure A-2 is the synthesis report for the design 

generated by the current M2V, with the support for 

memory instructions but without the interrupt handling 

capability. The addition to the design is mainly the 

memory state machine logic. The reports show the effects 

of the changes in the interfaces to the base data path that 

have occurred since the initial release of eMIPS. There is 

an approximate 1% reduction in area utilization due 

mainly to the simplification of the memory interface. On 

the other hand, the interface has grown considerably in 

number of signals, as indicated by the number of IOs 

parameter. 

Figure A-3 is for the hardware generated with the 

support for both memory operations and interrupts. It can 

be seen from the statistics that there are extra registers 

used in the case when the transactional model is enabled. 

In addition, the percentage of total slices used increases 

from 3% to 4%. 

Overall, the added complexity from interrupts causes 

a penalty in area utilization. This extra cost is balanced 

almost exactly by the improvements garnered by the new 

data path interfaces. A second improvement is shown in 

the maximum frequency of the design, grown from about 

170 MHz to about 210 MHz This is also due to the 

interface changes.  

9 Experimental Results 
 

We tested the changes to the compiler with the 

example basic block shown in Figure 6. The basic block is 

a 64-bit division block seen in Doom with an extra 

memory instruction (load from the stack pointer) inserted 

to illustrate the working of memory access through the 

instruction. To test interrupt handling, we generated timer 

interrupts at short random intervals. The Extension was 

simulated using ModelSim and the test program 

simulation was run in Giano. The test program checked 

over 500 test vectors for the 64-bit division and the test 

passed successfully in all cases. The Extension always 

reported the correct Virtual PC (VIRPC) address and the 

transactional state machine worked as designed. There 

was no time left in the internship to test on the actual 

boards. 

To test for code coverage, we ran the BBMatch and 

the M2V compiler on 325 executable files from the code 

base of the MMLite RTOS [21].  BBMatch extracted and 

encoded about 150,000 blocks from these files. We then 

ran the compiler on all the extracted blocks. The results 

are shown in Table 1. 

Table 1: M2V code coverage test results 

No. files 325  

No. blocks 146,057 Percent Total 

Compiled ok 25,029 17.1% 

Warnings 44,800 30.7% 

Failure 76,228 52.2% 

The large number of failures is actually due in large part 

to a small number of unsupported instructions, especially 

JAL, BLTZ, BGEZ, MULT, DIV, SLLV, and SRLV. 

10 Conclusions 
 

We have modified the eMIPS tool chain to remove 

the last remaining obstacles for a fully-automated 

generation of hardware accelerators. By supporting load 

and stores, interrupts, and the automatic encoding of 

extended instructions the compiler can now attack all of 

the single-block cases of practical applications. Code 
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coverage is currently 50% of the blocks in more than 300 

executable files, with only a few unsupported instructions 

responsible for most of the failures. The addition of 

interrupt support to the M2V compiler is especially 

relevant because there is now no limit to the span of an 

accelerator, even in a general-purpose environment. An 

arbitrarily long sequence of instructions can be 

accelerated, without concerns for security or real-time 

responsiveness. 

Support for interrupts in the compiler causes the loss 

of a little amount of parallelism, because of the in-order 

write-backs requirement. Using a transactional model 

mitigates this effect. The ability to perform two write-

backs to the register file in every cycle of the Extension 

further mitigates this effect. The overhead of transactions 

would be minimal in the case of large basic blocks with a 

large number of extension states. 

In future revisions of M2V, optimization algorithms 

can be implemented to combine certain transactions to 

minimize the amount of write-backs and reduce the 

pressure on the register file. 

Support for branches will have to be tested in the next 

revision of M2V. The framework used for supporting 

branches should be the same framework used for 

interrupts. A (conditional) branch can be considered as 

simply terminating a transaction. 
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Appendix I – BBW File for Example Basic Block 
 

[bbname __ull_div] 

MIPSBE 

[encoding] 

[r1=r2+1;r3=r0+11;r5=r4+1;r6=r5+1]b26.6:c011110;b21.5:r4;b16.5:r2;b0.16:v0; 

[code 48] 

40080100 

c21f0200 

25082300 

40100200 

c21f0400 

25104300 

40200400 

c21f0500 

25208300 

2b182600 

5000310 

40280500 

[disasm] 

sll r1,r1,1 

srl r3,r2,31 

or r1,r1,r3 

sll r2,r2,1 

srl r3,r4,31 

or r2,r2,r3 

sll r4,r4,1 

srl r3,r5,31 

or r4,r4,r3 

sltu r3,r1,r6 

beq r0,r3,40 

sll r5,r5,1 

[registers 7] 

0,9,8,11,4,5,6 

[valuess 1] 

{40,11,5} 
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Appendix II - Synthesis reports for the Generated Extension hardware 
 

 
Figure A-1. Synthesis report for the Verilog code generated from version 1 of M2V 

Macro Statistics

# Registers                                            : 489

 Flip-Flops                                            : 489

Device utilization summary:

---------------------------

Selected Device : 4vlx25ff668-10 

 Number of Slices:                     366  out of  10752     3%  

 Number of Slice Flip Flops: 489  out of  21504     2%  

 Number of 4 input LUTs: 653  out of  21504     3%  

 Number of IOs: 558

 Number of bonded IOBs: 0  out of    448     0%  

Timing Summary:

---------------

Speed Grade: -10

   Minimum period: 4.864ns (Maximum Frequency: 205.579MHz)

   Minimum input arrival time before clock: 4.189ns

   Maximum output required time after clock: 6.486ns

   Maximum combinational path delay: 5.811ns

 
Figure A-2. Synthesis report for the Verilog code generated from M2V with the memory state machine 
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Macro Statistics

# Registers                                            : 496

 Flip-Flops                                            : 496

Device utilization summary:

---------------------------

Selected Device : 4vlx25ff668-10 

 Number of Slices:                     450  out of  10752     4%  

 Number of Slice Flip Flops:       496  out of  21504     2%  

 Number of 4 input LUTs:             796  out of  21504     3%  

 Number of IOs:                       558

 Number of bonded IOBs: 0  out of    448     0%  

Timing Summary:

---------------

Speed Grade: -10

Minimum period: 4.739ns (Maximum Frequency: 211.006MHz)

Minimum input arrival time before clock: 4.064ns

Maximum output required time after clock: 7.037ns

Maximum combinational path delay: 6.362ns

 
Figure A-3. Synthesis report for the Verilog code generated from M2V with the Transactional model for interrupt 

support enabled
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Appendix III – Verilog Output for the Example Basic Block 1 

 2 
// a.v 3 
// auto-generated by m2v revision 1 on Fri Aug 15 15:46:50 2008 4 
// 5 
// INFO: reading from m2v_mod_bp.v 6 
// 7 
// m2v_mod_bp.v 8 
// 8/15/07 9 
// Karl Meier, Neil Pittman 10 
// 11 
// MIPS to Verilog (m2v) module (_mod) boilerplate (_bp) 12 
// 13 
// Copyright (c) Microsoft Corporation. All rights reserved. 14 
 15 
`timescale 1ns / 1ps 16 
 17 
module mmlite_div64 ( 18 
/*****Ports****************************************************************/ 19 
 /* INPUT PORTS */ 20 
 input    CLK,     /* System Clock 50 - 100 MHZ */ 21 
 input    EN,     /* Enable */ 22 
 input    EXCEXT,    /* Exception Flush */ 23 
 input    EXTNOP_MA,   /* Extension Bubble in Memory Access Phase */ 24 
 input    GR,     /* Grant Pipeline Resources */ 25 
 input [31:0] INSTR,    /* Current Instruction */ 26 
 input [31:0] PC,     /* Current PC External */ 27 
 input    PCLK,     /* Pipeline Clock */ 28 
 input [31:0] RDREG1DATA,   /* Register Read Port 1 Register Data */ 29 
 input [31:0] RDREG2DATA,   /* Register Read Port 2 Register Data */ 30 
 input [31:0] RDREG3DATA,   /* Register Read Port 3 Register Data */ 31 
 input [31:0] RDREG4DATA,   /* Register Read Port 4 Register Data */ 32 
 input    REGEMPTY,   /* Register Write Buffer Empty */ 33 
 input    REGFULL,    /* Register Write Buffer Full */ 34 
 input    REGRDY,    /* Register Write Buffer Ready */ 35 
 input    RESET,    /* System Reset */ 36 
 input [31:0] MDATA_IN,  /* Memory Data In */ 37 
           /* Multiplexed: */ 38 
           /*  Memory Data In */ 39 
           /*  Peripheral Memory Data In */ 40 
           /*  Memory Data Monitor */ 41 
 input    MDATA_VLD_IN, /* Memory Data Valid */ 42 
  43 
 /* OUTPUT PORTS */ 44 
 output    ACK,     /* Enable Acknowledged */ 45 
 output [31:0] EXTADD,    /* Extension Address */ 46 
            /* Multiplexed: */ 47 
            /*  Next PC */ 48 
            /*  Exception Address */ 49 
            /*  PC Memory Access Phase */ 50 
 output    PCNEXT,    /* Conditional PC Update */ 51 
 output [4:0] RDREG1,    /* Register Read Port 1 Register Number */ 52 
            /* Multiplexed: */ 53 
            /*  Register Read Port 1 Register Number */ 54 
            /*  Register Write Port 1 Register Number */ 55 
            /*  Write Register Memory Access Phase */ 56 
 output [4:0] RDREG2,    /* Register Read Port 2 Register Number */ 57 
            /* Multiplexed: */ 58 
            /*  Register Read Port 2 Register Number */ 59 
            /*  Register Write Port 2 Register Number */ 60 
            /*  <0> Register Write Enable Memory Access Phase */ 61 
            /*  <1> Memory to Register Memory Acess Phase */ 62 
 output [4:0] RDREG3,    /* Register Read Port 3 Register Number */ 63 
            /* Multiplexed: */ 64 
            /*  Register Read Port 3 Register Number */ 65 
 output [4:0] RDREG4,    /* Register Read Port 4 Register Number Internal */ 66 
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            /* Multiplexed: */ 67 
            /*  Register Read Port 4 Register Number */ 68 
            /*  <1:0> Data Address [1:0] Memory Access Phase */ 69 
            /*  <2> Right/Left Unaligned Load/Store Memory Access Phase */ 70 
            /*  <3> Byte/Halfword Load/Store Memory Acess Phase */ 71 
 output    REGWRITE1,   /* Register Write Port 1 Write Enable */ 72 
 output    REGWRITE2,   /* Register Write Port 2 Write Enable */ 73 
 output    REWB,     /* Re-enter at Writeback */ 74 
 output    RI,     /* Reserved/Recognized Instruction */ 75 
 output [31:0] WRDATA1,    /* Register Write Port 1 Data Internal */ 76 
            /* Multiplexed: */ 77 
            /*  Register Write Port 1 Data */ 78 
            /*  ALU Result Memory Access Phase */ 79 
 output [31:0] WRDATA2,    /* Register Write Port 2 Data Internal */ 80 
            /* Multiplexed: */ 81 
            /*  Register Write Port 2 Data */ 82 
            /*  Memory Data Out Memory Access Phase */ 83 
 output   BLS_OUT,   /* Byte Load/Store */ 84 
 output   HLS_OUT,   /* Halfword Load/Store */ 85 
 output   RNL_OUT,   /* Memory Right/Left Unaligned Load/Store */ 86 
 output [31:0] MADDR_OUT,  /* Memory Address */ 87 
 output [31:0] MDATA_OUT,  /* Memory Data Out */ 88 
           /* Multiplexed: */ 89 
           /*  Memory Data Out */ 90 
           /*  Peripheral Memory Data Out */ 91 
 output   MOE_OUT,   /* Memory Output Enable */ 92 
 output   MWE_OUT   /* Memory Write Enable */ 93 
 ); 94 
  95 
/*****Signals****************************************************************/ 96 
 97 
 wire [31:0] ALURESULT_WB;  /* ALU Result to Writeback Phase */ 98 
 wire    BHLS_WB;    /* Byte/Halfword Load/Store to Writeback Phase */ 99 
 wire [31:0] CJMPADD;    /* Conditional Jump address to offset from Current PC */ 100 
 wire [15:0] DIMM_EX;    /* Data Immediate Execute Phase */ 101 
 wire [15:0] DIMM_ID;    /* Data Immediate Instruction Decode Phase */ 102 
 wire [1:0] DMADD_WB;   /* Least Significant Bits of Data Address to Writeback Phase */ 103 
 wire [31:0] DMDATAOUT_WB;  /* Memory Data Out to Writeback Phase */ 104 
 wire    DNE;     /* Execution Done */ 105 
 wire    EN_EX;    /* Enable Execute Phase */ 106 
 wire [31:0] JMPADD;    /* Jump address to end of basic block */ 107 
 wire    MEMTOREG_WB;  /* Memory to Register to Writeback Phase */ 108 
 wire [31:0] PC_EX;    /* PC Execute Phase */ 109 
 wire [31:0] PC_WB;    /* PC to Writeback Phase */ 110 
 wire [4:0] RD_EX;    /* Destination Register Execution Phase */ 111 
 wire [4:0] RDREG1_EX;   /* Register Read Port 1 Register Number Execute Phase */ 112 
 wire [31:0] RDREG1DATA_EX;  /* Register Read Port 1 Register Data Execute Phase */ 113 
 wire [4:0] RDREG2_EX;   /* Register Read Port 2 Register Number Execute Phase */ 114 
 wire [31:0] RDREG2DATA_EX;  /* Register Read Port 2 Register Data Execute Phase */ 115 
 wire [4:0] RDREG3_EX;   /* Register Read Port 3 Register Number Execute Phase */ 116 
 wire [4:0] RDREG4_EX;   /* Register Read Port 4 Register Number Execute Phase */ 117 
 wire   REGWRITE_EX;  /* Register Write Execute Phase */ 118 
 wire   REGWRITE_ID;  /* Register Write Instruction Decode Phase */ 119 
 wire   REGWRITE_WB;  /* Register Write to Writeback Phase */ 120 
 wire   RESET_EX;   /* Reset Execute Phase */ 121 
 wire [31:0] RESULT_EX;   /* Result Execution Phase */ 122 
 wire   RNL_WB;    /* Right/Left Unaligned Load/Store to Writeback Phase */ 123 
 wire [4:0] RS_EX;    /* Operand Register 1 Execute Phase */ 124 
 wire [4:0] RS_ID;    /* Operand Register 1 Instruction Decode Phase */ 125 
 wire [4:0] RT_EX;    /* Operand Register 2 Execute Phase */ 126 
 wire [4:0] RT_ID;    /* Operand Register 2 Instruction Decode Phase */ 127 
 wire    SLL128_EX;   /* Shift Left Logical 128 bits Execute Phase */ 128 
 wire    SLL128_ID;   /* Shift Left Logical 128 bits Instruction Decode Phase */ 129 
 wire [31:0] WRDATA1_EX;   /* Register Write Port 1 Data Execute Phase */ 130 
 wire [31:0] WRDATA2_EX;   /* Register Write Port 2 Data Execute Phase */ 131 
 wire [4:0] WRREG_WB;   /* Write Register Number to Writeback Phase */ 132 
 wire [4:0] WRREG1_EX;   /* Register Write Port 1 Register Number Execute Phase */ 133 
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 wire [4:0] WRREG2_EX;   /* Register Write Port 2 Register Number Execute Phase */ 134 
 wire [31:0] VIRPC; 135 
 136 
/*****Registers****************************************************************/ 137 
 138 
 reg en_reg; /* Enable */ 139 
 reg gr_reg; /* Grant Pipeline Resources */ 140 
 141 
/*****Initialization****************************************************************/ 142 
/* 143 
 initial 144 
 begin 145 
  en_reg = 1'b0; 146 
  gr_reg = 1'b0; 147 
 end 148 
*/ 149 
  150 
/*********************************************************************/ 151 
 152 
 assign EXTADD = (EXCEXT)?     VIRPC: 153 
       (en_reg)?     JMPADD: 154 
       (PCNEXT)?     CJMPADD: 155 
       (REWB)?      PC_WB: 156 
               32'hffffffff; 157 
   /* 158 
    * The rest cannot be zero'ed out as the extension state machine 159 
    * might still have to be completed till a particular transaction ends 160 
    */ 161 
 assign RDREG1 = (gr_reg & REGWRITE1)? WRREG1_EX: 162 
           //(EXCEXT)?     5'b0: 163 
       (REWB & gr_reg)?   WRREG_WB: 164 
       (gr_reg)?     RDREG1_EX: 165 
                5'b11111;  166 
 assign RDREG2 = (gr_reg & REGWRITE2)? WRREG2_EX: 167 
           //(EXCEXT)?     5'b0: 168 
       (REWB & gr_reg)?   {3'b0,MEMTOREG_WB,REGWRITE_WB}: 169 
       (gr_reg)?     RDREG2_EX: 170 
                5'b11111; 171 
 assign RDREG3 = (REWB & gr_reg)?   5'b0: 172 
           //(EXCEXT)?     5'b0: 173 
       (gr_reg)?     RDREG3_EX: 174 
                5'b11111; 175 
 assign RDREG4 = (REWB & gr_reg)?   {1'b0,BHLS_WB,RNL_WB,DMADD_WB}: 176 
           //(EXCEXT)?     5'b0: 177 
       (gr_reg)?     RDREG4_EX: 178 
                5'b11111; 179 
 assign WRDATA1 = (gr_reg & REGWRITE1)? WRDATA1_EX: 180 
            //(EXCEXT)?     32'b0: 181 
        (REWB)?      ALURESULT_WB: 182 
                            32'hffffffff; 183 
 assign WRDATA2 = (gr_reg & REGWRITE2)? WRDATA2_EX: 184 
            //(EXCEXT)?     32'b0: 185 
        (REWB)?      DMDATAOUT_WB: 186 
                      32'hffffffff; 187 
 188 
 189 
   // 190 
   // instantiate the instruction decode module for the extension instruction 191 
   //   - the instruction decode module is auto generated and appended to the 192 
   //     end of the verilog file (a.v unless redefined) 193 
   // 194 
 195 
 ext_id id ( 196 
  .CLK(CLK), 197 
  .DIMM(DIMM_ID), 198 
  .EN(EN), 199 
  .JMPADD(JMPADD), 200 
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  .INSTR(INSTR), 201 
  .PC(PC), 202 
  .REGWRITE(REGWRITE_ID), 203 
  .RESET(RESET), 204 
  .RI(RI), 205 
  .RS(RS_ID), 206 
  .RT(RT_ID), 207 
  .SLL128(SLL128_ID) 208 
  ); 209 
 210 
/*****Instruction Decode -> Execute****************************************************************/ 211 
 212 
 mmldiv64_toex to_ex( 213 
  .ACK(ACK), 214 
  .CLK(CLK), 215 
  .DIMM_EX(DIMM_EX),   216 
  .DIMM_ID(DIMM_ID), 217 
  .EN_EX(EN_EX), 218 
  .EN_ID(EN), 219 
  .EXCEXT(EXCEXT), 220 
  .PC_EX(PC_EX), 221 
  .PC_ID(PC), 222 
  .PCLK(PCLK), 223 
  .RDREG1DATA_EX(RDREG1DATA_EX), 224 
  .RDREG1DATA_ID(RDREG1DATA), 225 
  .RDREG2DATA_EX(RDREG2DATA_EX), 226 
  .RDREG2DATA_ID(RDREG2DATA), 227 
  .REGWRITE_EX(REGWRITE_EX), 228 
  .REGWRITE_ID(REGWRITE_ID), 229 
  .RESET(RESET), 230 
  .RESET_EX(RESET_EX), 231 
  .RS_EX(RS_EX), 232 
  .RS_ID(RS_ID), 233 
  .RT_EX(RT_EX), 234 
  .RT_ID(RT_ID), 235 
  .SLL128_ID(SLL128_ID), 236 
  .SLL128_EX(SLL128_EX) 237 
  ); 238 
 239 
   240 
   // 241 
   // instantiate the execution module for the extension instruction 242 
   //   - the execution module is auto generated and appended to the 243 
   //     end of the verilog file (a.v unless redefined) 244 
   // 245 
 246 
 ext_ex ex( 247 
  .ACK(ACK), 248 
  .DIMM(DIMM_EX), 249 
  .DNE(DNE), 250 
  .CLK(CLK), 251 
  .CJMPADD(CJMPADD), 252 
  .EN(EN_EX), 253 
  .EXTNOP_MA(EXTNOP_MA), 254 
  .GR(GR), 255 
  .PC(PC_EX), 256 
  .PCLK(PCLK), 257 
  .PCNEXT(PCNEXT), 258 
  .RD(RD_EX), 259 
  .RDREG1(RDREG1_EX), 260 
  .RDREG1DATA(RDREG1DATA), 261 
  .RDREG1DATA_ID(RDREG1DATA_EX), 262 
  .RDREG2(RDREG2_EX), 263 
  .RDREG2DATA(RDREG2DATA), 264 
  .RDREG2DATA_ID(RDREG2DATA_EX), 265 
  .RDREG3(RDREG3_EX), 266 
  .RDREG3DATA(RDREG3DATA), 267 
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  .RDREG4(RDREG4_EX), 268 
  .RDREG4DATA(RDREG4DATA), 269 
  .REGEMPTY(REGEMPTY), 270 
  .REGFULL(REGFULL), 271 
  .REGRDY(REGRDY), 272 
  .REGWRITE1(REGWRITE1), 273 
  .REGWRITE2(REGWRITE2), 274 
  .RESET(RESET_EX), 275 
  .RESULT(RESULT_EX), 276 
  .RS(RS_EX), 277 
  .RT(RT_EX), 278 
  .SLL128(SLL128_EX), 279 
  .WRDATA1(WRDATA1_EX), 280 
  .WRDATA2(WRDATA2_EX), 281 
  .WRREG1(WRREG1_EX), 282 
  .WRREG2(WRREG2_EX), 283 
  .MDATA_IN(MDATA_IN), 284 
  .MDATA_VLD_IN(MDATA_VLD_IN), 285 
  .BLS_OUT(BLS_OUT), 286 
  .HLS_OUT(HLS_OUT), 287 
  .RNL_OUT(RNL_OUT), 288 
  .MOE_OUT(MOE_OUT), 289 
  .MWE_OUT(MWE_OUT), 290 
  .MADDR_OUT(MADDR_OUT), 291 
  .MDATA_OUT(MDATA_OUT), 292 
  .EXCEXT(EXCEXT), 293 
  .VIRPC(VIRPC) 294 
  ); 295 
 296 
/*****Execute -> to Writeback****************************************************************/ 297 
 298 
 mmldiv64_topipe_wb to_wb( 299 
  .ACK(ACK), 300 
  .ALURESULT_WB(ALURESULT_WB), 301 
  .BHLS_WB(BHLS_WB), 302 
  .CLK(CLK), 303 
  .DMADD_WB(DMADD_WB), 304 
  .DMDATAOUT_WB(DMDATAOUT_WB), 305 
  .DNE(DNE), 306 
  .EN_EX(EN_EX), 307 
  .EXCEXT(EXCEXT), 308 
  .EXTNOP_MA(EXTNOP_MA), 309 
  .PC_EX(PC_EX), 310 
  .PC_WB(PC_WB), 311 
  .PCLK(PCLK), 312 
  .MEMTOREG_WB(MEMTOREG_WB), 313 
  .RD_EX(RD_EX), 314 
  .REGWRITE_EX(REGWRITE_EX), 315 
  .REGWRITE_WB(REGWRITE_WB), 316 
  .RESET(RESET), 317 
  .RESULT_EX(RESULT_EX), 318 
  .REWB(REWB), 319 
  .RNL_WB(RNL_WB), 320 
  .WRREG_WB(WRREG_WB) 321 
  ); 322 
 323 
/*********************************************************************/ 324 
 325 
 always@(posedge CLK) 326 
 begin 327 
  if (RESET == 1'b0) 328 
  begin 329 
   en_reg <= 1'b0; 330 
   gr_reg <= 1'b0; 331 
  end 332 
  else 333 
  begin 334 
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   en_reg <= EN; 335 
   gr_reg <= GR; 336 
  end 337 
 end 338 
 339 
endmodule 340 
 341 
 342 
 343 
/*****Execute -> to Writeback****************************************************************/ 344 
 345 
module mmldiv64_topipe_wb( 346 
/*****Ports****************************************************************/ 347 
 /* INPUT PORTS */ 348 
 input    ACK,    /* Enable Acknowledged */ 349 
 input    CLK,    /* System Clock 50 - 100 MHZ */ 350 
 input    DNE,    /* Execution Done */ 351 
 input    EN_EX,   /* Enable Execute Phase */ 352 
 input    EXCEXT,   /* Exception Flush */ 353 
 input    EXTNOP_MA,  /* Extension Bubble in Memory Access Phase */ 354 
 input [31:0] PC_EX,   /* Current PC Execute Phase */ 355 
 input    PCLK,    /* Pipeline Clock */ 356 
 input [4:0]  RD_EX,   /* Destination Register Execution Phase */ 357 
 input    REGWRITE_EX, /* Register Write Execute Phase */ 358 
 input    RESET,   /* System Reset */ 359 
 input [31:0] RESULT_EX,  /* Result Execution Phase */ 360 
 /* OUTPUT PORTS */ 361 
 output [31:0] ALURESULT_WB, /* ALU Result to Writeback Phase */ 362 
 output    BHLS_WB,   /* Byte/Halfword Load/Store to Writeback Phase */ 363 
 output [1:0] DMADD_WB,  /* Least Significant Bits of Data Address to Writeback Phase */ 364 
 output [31:0] DMDATAOUT_WB, /* Memory Data Out to Writeback Phase */ 365 
 output    MEMTOREG_WB, /* Memory to Register to Writeback Phase */ 366 
 output [31:0] PC_WB,   /* Current PC to Writeback Phase */ 367 
 output    REGWRITE_WB, /* Register Write to Writeback Phase */ 368 
 output    REWB,    /* Re-enter at Writeback */ 369 
 output    RNL_WB,   /* Right/Left Unaligned Load/Store to Writeback Phase */ 370 
 output [4:0] WRREG_WB   /* Write Register Number to Writeback Phase */ 371 
 ); 372 
  373 
/*****Signals****************************************************************/ 374 
 375 
 wire EN_WB;  /* Enable to Writeback Phase */ 376 
 wire RESET_WB; /* Reset to Writeback Phase */ 377 
 378 
/*****Registers****************************************************************/ 379 
 380 
 reg [70:0] ex_wb;  /* Execute -> to Writeback Pipeline Register */ 381 
 reg [1:0] pclkcnt; /* Pipeline Clock edge detection */ 382 
 reg reset_reg;   /* Reset to Writeback Phase */ 383 
 reg rewb_reg;   /* Re-enter at Writeback */ 384 
 385 
/*****Initialization****************************************************************/ 386 
/* 387 
 initial 388 
 begin 389 
  ex_wb = 71'b0; 390 
  pclkcnt = 2'b0; 391 
  rewb_reg = 1'b0; 392 
  reset_reg = 1'b0; 393 
 end 394 
*/ 395 
/*********************************************************************/ 396 
 397 
 assign RESET_WB  = reset_reg; 398 
 assign REWB    =  rewb_reg & EN_WB; 399 
 assign EN_WB    = ex_wb[70];  //EN_EX; 400 
 assign REGWRITE_WB  = ex_wb[69];  //REGWRITE_EX; 401 
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 assign MEMTOREG_WB  = 1'b0; 402 
 assign RNL_WB    = 1'b0; 403 
 assign BHLS_WB   = 1'b0; 404 
 assign DMADD_WB   = 2'b0; 405 
 assign WRREG_WB   = ex_wb[68:64]; //RD_EX; 406 
 assign ALURESULT_WB = ex_wb[63:32]; //RESULT_EX; 407 
 assign DMDATAOUT_WB  = 32'b0; 408 
 assign PC_WB   = ex_wb[31:0]; //PC_EX; 409 
 410 
/*********************************************************************/ 411 
 412 
 always@(posedge CLK) 413 
 begin 414 
  /* Pipeline Clock edge detection */ 415 
  pclkcnt = {pclkcnt[0],PCLK};   // karl, 9/19, change to non-blocking to 416 
                                     // match Neil 417 
 end 418 
 419 
 always@(posedge CLK) 420 
 begin 421 
  case(pclkcnt) 422 
   2'b01  : begin 423 
        /* Synchronize Reset to Pipeline Clock */ 424 
        reset_reg <= RESET; 425 
       end 426 
   default : begin 427 
       end 428 
  endcase 429 
 end 430 
 431 
 always@(posedge CLK) 432 
 begin 433 
  /* Execute -> to Memory Access Pipeline Register */ 434 
  casex({pclkcnt,RESET_WB,EXTNOP_MA,rewb_reg,ACK,DNE,EXCEXT}) 435 
   8'bxx0xxxxx : begin 436 
         /* Reset */ 437 
         rewb_reg <= 1'b0; 438 
         ex_wb <= 71'b0; 439 
        end 440 
   8'b011xxxx1 : begin 441 
         /* Exception in Pipeline, Flush */ 442 
         rewb_reg <= 1'b0; 443 
         ex_wb <= 71'b0; 444 
        end 445 
   8'bxx1x0110 : begin 446 
         /* Latch Data and Control after Execution Finishes */ 447 
         ex_wb <= {EN_EX,REGWRITE_EX,RD_EX,RESULT_EX,PC_EX}; 448 
        end 449 
   8'b101100x0 : begin 450 
         /* Raise REWB at next Negedge of PCLK after ACK Lowers */ 451 
         rewb_reg <= 1'b1; 452 
        end 453 
   8'b011x1xx0 : begin 454 
         /* Lower REWB at next Posedge and reset register */ 455 
         rewb_reg <= 1'b0; 456 
         ex_wb <= 71'b0; 457 
        end 458 
   default :  begin 459 
         /* NOP */ 460 
        end 461 
  endcase 462 
 end 463 
endmodule 464 
 465 
 466 
/*****Instruction Decode -> Execute****************************************************************/ 467 
 468 
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module mmldiv64_toex( 469 
/*****Ports****************************************************************/ 470 
 /* INPUT PORTS */ 471 
 input    ACK,    /* Enable Acknowledged */ 472 
 input    CLK,    /* System Clock 50 - 100 MHZ */ 473 
 input [15:0] DIMM_ID,   /* Data Immediate Instruction Decode Phase */ 474 
 input    EN_ID,   /* Enable Instruction Decode Phase */ 475 
 input    EXCEXT,   /* Exception Flush */ 476 
 input [31:0] PC_ID,   /* Current PC Decode Phase */ 477 
 input    PCLK,    /* Pipeline Clock */ 478 
 input [31:0] RDREG1DATA_ID, /* Register Read Port 1 Register Data Instruction Decode Phase */ 479 
 input [31:0] RDREG2DATA_ID, /* Register Read Port 2 Register Data Instruction Decode Phase */ 480 
 input    REGWRITE_ID, /* Register Write Instruction Decode Phase*/ 481 
 input    RESET,   /* System Reset */ 482 
 input [4:0]  RS_ID,   /* Operand Register 1 Instruction Decode Phase */ 483 
 input [4:0]  RT_ID,   /* Operand Register 2 Instruction Decode Phase */ 484 
 input    SLL128_ID,  /* Shift Left Logical 128 bits Instruction Decode Phase */ 485 
 /* OUTPUT PORTS */ 486 
 output [15:0] DIMM_EX,   /* Data Immediate Execute Phase */ 487 
 output    EN_EX,   /* Enable Execute Phase */ 488 
 output [31:0] PC_EX,   /* Current PC Instruction Decode Phase */ 489 
 output [31:0] RDREG1DATA_EX, /* Register Read Port 1 Register Data Execute Phase */ 490 
 output [31:0] RDREG2DATA_EX, /* Register Read Port 2 Register Data Execute Phase */ 491 
 output    REGWRITE_EX, /* Register Write Execute Phase*/ 492 
 output    RESET_EX,  /* Reset Execute Phase */ 493 
 output [4:0] RS_EX,   /* Operand Register 1 Execute Phase */ 494 
 output [4:0] RT_EX,   /* Operand Register 2 Execute Phase */ 495 
 output    SLL128_EX  /* Shift Left Logical 128 bits Execute Phase */ 496 
 ); 497 
  498 
/*****Registers****************************************************************/ 499 
 500 
 reg [124:0] id_ex;  /* Instruction Decode -> Execute Pipeline Register */ 501 
 reg [1:0] pclkcnt;  /* Pipeline Clock edge detection */ 502 
 reg   reset_reg; /* Reset Execute Phase */ 503 
 504 
/*****Initialization****************************************************************/ 505 
 506 
/* 507 
 initial 508 
 begin 509 
  id_ex = 125'b0; 510 
  pclkcnt = 2'b0; 511 
  reset_reg = 1'b0; 512 
 end 513 
*/ 514 
 515 
/*********************************************************************/ 516 
 517 
 assign RESET_EX  = reset_reg; 518 
 assign EN_EX   = id_ex[124];   //EN_ID; 519 
 assign SLL128_EX  = id_ex[123];   //SLL128_ID; 520 
 assign REGWRITE_EX = id_ex[122];   //REGWRITE_ID; 521 
 assign RS_EX    = id_ex[121:117]; //RS_ID; 522 
 assign RT_EX    = id_ex[116:112]; //RT_ID; 523 
 assign DIMM_EX   = id_ex[111:96];  //DIMM_ID; 524 
 assign PC_EX   = id_ex[95:64];  //PC_ID; 525 
 assign RDREG1DATA_EX = id_ex[63:32];  //RDREG1DATA_ID; 526 
 assign RDREG2DATA_EX = id_ex[31:0];  //RDREG2DATA_ID 527 
 528 
/*********************************************************************/ 529 
 530 
 always@(posedge CLK) 531 
 begin 532 
  /* Pipeline Clock edge detection */ 533 
  pclkcnt = {pclkcnt[0],PCLK};   // karl, 9/19, change to non-blocking to 534 
                                     // match Neil 535 
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 end 536 
 537 
 always@(posedge CLK) 538 
 begin 539 
  case(pclkcnt) 540 
   2'b01  : begin 541 
        /* Synchronize Reset to Pipeline Clock */ 542 
        reset_reg <= RESET; 543 
       end 544 
   default : begin 545 
       end 546 
  endcase 547 
 end 548 
 549 
 always@(posedge CLK) 550 
 begin 551 
  /* Instruction Decode -> Execute Pipeline Register */ 552 
  casex({pclkcnt,RESET_EX,ACK,EXCEXT}) 553 
   5'bxx0xx : begin 554 
        /* Reset */ 555 
        id_ex <= 109'b0; 556 
       end 557 
   5'b011x1 : begin 558 
        /* Exception in Pipeline, Flush */ 559 
        id_ex <= 109'b0; 560 
       end 561 
   5'bxx110 : begin 562 
        /* Hold state during Execute Phase */ 563 
       end 564 
   5'b01100 : begin 565 
        /* Clocking the Pipeline */ 566 
        id_ex <= {EN_ID,SLL128_ID,REGWRITE_ID,RS_ID,RT_ID,DIMM_ID,PC_ID,RDREG1DATA_ID,RDREG2DATA_ID}; 567 
       end 568 
   default : begin 569 
        /* NOP */ 570 
       end 571 
  endcase 572 
 end 573 
endmodule 574 
 575 
 576 
// 577 
// INFO: finished reading from m2v_mod_bp.v 578 
// 579 
 580 
// 581 
// extension instruction decode 582 
// 583 
module ext_id( 584 
   input         CLK, 585 
   input         EN, 586 
   input [31:0]  INSTR, 587 
   input [31:0]  PC, 588 
   input         RESET, 589 
 590 
   output reg [15:0] DIMM, 591 
   output reg [31:0] JMPADD, 592 
   output reg        REGWRITE, 593 
   output reg        RI, 594 
   output reg [4:0]  RS, 595 
   output reg [4:0]  RT, 596 
   output reg        SLL128 597 
   ); 598 
 599 
   reg [31:0] jmpadd_c; 600 
   reg en_r; 601 
   reg [5:0] op_r; 602 
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   reg [31:0] pc_r; 603 
   reg opcode_match; 604 
 605 
   // combinatorial logic for instruction decode 606 
   always @ (*) begin 607 
      jmpadd_c = pc_r + 48 + 4; 608 
      opcode_match = (op_r == 30); 609 
   end 610 
 611 
   // sequential logic for instruction decode 612 
   always @ (posedge CLK) begin 613 
      if (!RESET) begin 614 
         DIMM     <= 16'h0; 615 
         op_r     <= 6'h0; 616 
         RS       <= 5'h0; 617 
         RT       <= 5'h0; 618 
         en_r     <= 1'h0; 619 
         pc_r     <= 32'h0; 620 
         JMPADD   <= 32'h0; 621 
         RI       <= 1'h1; 622 
         SLL128   <= 1'h0; 623 
         REGWRITE <= 1'h0; 624 
      end else begin 625 
         DIMM     <= INSTR[15:0]; 626 
         op_r     <= INSTR[31:26]; 627 
         RS       <= INSTR[25:21]; 628 
         RT       <= INSTR[20:16]; 629 
         en_r     <= EN; 630 
         pc_r     <= PC; 631 
         JMPADD   <= jmpadd_c; 632 
         RI       <= ~opcode_match; 633 
         SLL128   <= en_r & opcode_match; 634 
         REGWRITE <= en_r & opcode_match; 635 
      end 636 
   end 637 
endmodule 638 
 639 
// 640 
// INFO: reading from m2v_ex_bp.v 641 
// 642 
// m2v_ex_bp.v 643 
// 8/15/07 644 
// Karl Meier, Neil Pittman 645 
// 646 
// MIPS to Verilog (m2v) execution (_ex) boilerplate (_bp) 647 
// 648 
// Copyright (c) Microsoft Corporation. All rights reserved. 649 
// 650 
 651 
module ext_ex ( 652 
/*****Ports****************************************************************/ 653 
 /* INPUT PORTS */ 654 
 input    CLK,     /* System Clock 50 - 100 MHZ */ 655 
 input [15:0] DIMM,     /* Data Immediate */ 656 
 input    EN,     /* Enable  */ 657 
 input    EXTNOP_MA,   /* Extension Bubble in Memory Access Phase */ 658 
 input    GR,     /* Grant Pipeline Resources */ 659 
 input [31:0] PC,     /* Current PC */ 660 
 input    PCLK,     /* Pipeline Clock */ 661 
 input [31:0] RDREG1DATA,   /* Register Read Port 1 Register Data */ 662 
 input [31:0] RDREG1DATA_ID,  /* Register Read Port 1 Register Data Instruction Decode Phase */ 663 
 input [31:0] RDREG2DATA,   /* Register Read Port 2 Register Data */ 664 
 input [31:0] RDREG2DATA_ID,  /* Register Read Port 2 Register Data Instruction Decode Phase */ 665 
 input [31:0] RDREG3DATA,   /* Register Read Port 3 Register Data */ 666 
 input [31:0] RDREG4DATA,   /* Register Read Port 4 Register Data */ 667 
 input    REGEMPTY,   /* Register Write Buffer Empty */ 668 
 input    REGFULL,    /* Register Write Buffer Full */ 669 
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 input    REGRDY,    /* Register Write Buffer Ready */ 670 
 input    RESET,    /* System Reset */ 671 
 input [4:0]  RS,     /* Operand Register 1 */ 672 
 input [4:0]  RT,     /* Operand Register 2 */ 673 
 input    SLL128,    /* Shift Left Logical 128 bits */ 674 
 input [31:0] MDATA_IN,  /* Memory Data In */ 675 
           /* Multiplexed: */ 676 
           /*  Memory Data In */ 677 
           /*  Peripheral Memory Data In */ 678 
           /*  Memory Data Monitor */ 679 
 input    MDATA_VLD_IN, /* Memory Data Valid */ 680 
 input    EXCEXT,       /* Exception Signal */ 681 
  682 
 /* OUTPUT PORTS */ 683 
 output reg    ACK,    /* Enable Acknowledged */ 684 
 output reg [31:0] CJMPADD,   /* Conditional Jump address to offset from Current PC */ 685 
 output reg    DNE,    /* Execution Done */ 686 
 output reg    PCNEXT,   /* Conditional PC Update */ 687 
 output reg [4:0]  RD,    /* Destination Register */ 688 
 output reg    REGWRITE1,  /* Register Write Port 1 Write Enable */ 689 
 output reg    REGWRITE2,  /* Register Write Port 2 Write Enable */ 690 
 output reg [4:0]  RDREG1,   /* Register Read Port 1 Register Number */ 691 
 output reg [4:0]  RDREG2,   /* Register Read Port 2 Register Number */ 692 
 output reg [4:0]  RDREG3,   /* Register Read Port 3 Register Number */ 693 
 output reg [4:0]  RDREG4,   /* Register Read Port 4 Register Number */ 694 
 output reg [31:0] RESULT,   /* Result */ 695 
 output reg [31:0] WRDATA1,   /* Register Write Port 1 Data */ 696 
 output reg [31:0] WRDATA2,   /* Register Write Port 2 Data */ 697 
 output reg [4:0]  WRREG1,   /* Register Write Port 1 Register Number */ 698 
 output reg [4:0]  WRREG2,   /* Register Write Port 2 Register Number */ 699 
 output reg BLS_OUT,   /* Byte Load/Store */ 700 
 output reg HLS_OUT,   /* Halfword Load/Store */ 701 
 output reg RNL_OUT,   /* Memory Right/Left Unaligned Load/Store */ 702 
 output reg [31:0] MADDR_OUT,  /* Memory Address */ 703 
 output reg [31:0] MDATA_OUT,  /* Memory Data Out */ 704 
           /* Multiplexed: */ 705 
           /*  Memory Data Out */ 706 
           /*  Peripheral Memory Data Out */ 707 
 output reg MOE_OUT,   /* Memory Output Enable */ 708 
 output reg MWE_OUT,   /* Memory Write Enable */ 709 
 output reg [31:0] VIRPC   /* Virtual PC for interrupt support */ 710 
 ); 711 
 712 
   // tie off outputs that are not used in the automated accelerator 713 
   always @ (posedge CLK) begin 714 
      RD <= 0; 715 
      RESULT <= 0; 716 
   end 717 
 718 
/*********************************************************************/ 719 
 720 
// 721 
// INFO: finished reading from m2v_ex_bp.v 722 
// 723 
 724 
   // parameters for extension execution block 725 
   parameter MAX_STATE = 8; 726 
   parameter REG_READ_WAIT_STATES = 5; 727 
 728 
   // declarations for extension state machine 729 
   reg[MAX_STATE:1] state_r; 730 
   reg[7:1] branch_state_r; 731 
   reg[7:1] write_state_r; 732 
   reg[7:1] read_state_r; 733 
 734 
   // declarations for the extension memory state machine 735 
   reg[7:1] mem_write_state_r; 736 
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   reg[7:1] mem_read_state_r; 737 
 738 
   // declarations for memory data in variable 739 
   reg[31:0] mdata_in; 740 
 741 
   // declarations for register read variables 742 
   reg[31:0] r9_1; 743 
   reg[31:0] r8_4, r8_4_r; 744 
   reg[31:0] r4_11, r4_11_r; 745 
   reg[31:0] r5_18; 746 
   reg[31:0] r6_23; 747 
   // declarations for register temp variables 748 
   reg[31:0] r9_3; 749 
   reg[31:0] r11_6; 750 
   reg[31:0] r9_8, r9_8_r; 751 
   reg[31:0] r8_10; 752 
   reg[31:0] r11_13, r11_13_r; 753 
   reg[31:0] r8_15, r8_15_r; 754 
   reg[31:0] r4_17, r4_17_r; 755 
   reg[31:0] r11_20; 756 
   reg[31:0] r4_22, r4_22_r; 757 
   reg[31:0] r11_25, r11_25_r; 758 
   reg[31:0] r5_29, r5_29_r; 759 
   // declarations for memory address temp variables 760 
 761 
   // declarations for transaction model support 762 
   reg tran_state_done; 763 
   reg [31:0] virpc_tr0, virpc_tr1, virpc_tr2; 764 
   reg [7:1] tran_end_state_r; 765 
   reg transaction_end_this_state; 766 
 767 
// 768 
// INFO: reading from m2v_state_mc.v 769 
// 770 
   // m2v_state_mc.v 771 
   // 772 
   // Karl Meier 773 
   // 8/15/07 774 
   // 775 
   // invariant state machine logic for the read, write, and branch state 776 
   // machines 777 
   // 778 
 779 
   reg [1:0] pclk_del_r; 780 
   reg pclk_rise, pclk_fall; 781 
   reg en_r, sll128_r, gr_r, regrdy_r, regfull_r, regempty_r, extnop_ma_r; 782 
   reg clr_dne, DNE_c, ACK_c; 783 
   reg done_state, done_state_r; 784 
   reg wsm_idle, wsm_idle_r, wsm_pulse, wsm_pulse_r, wsm_wait, wsm_wait_r; 785 
   reg write_this_state, wsm_done; 786 
   reg rsm_idle, rsm_idle_r, rsm_latch, rsm_latch_r;  787 
   reg rsm_wait, rsm_wait_r, rsm_wait2, rsm_wait2_r; 788 
   reg [3:0] rsm_count, rsm_count_r; 789 
   reg read_this_state, rsm_done; 790 
   reg bsm_idle, bsm_idle_r, bsm_calc, bsm_calc_r;  791 
   reg bsm_wait, bsm_wait_r, bsm_waitpf, bsm_waitpf_r; 792 
   reg bsm_waitpr, bsm_waitpr_r; 793 
   reg branch_this_state, bsm_done; 794 
   reg fsm_idle, fsm_idle_r, fsm_wait2, fsm_wait2_r, fsm_wait, fsm_wait_r; 795 
   reg final_state, fsm_done; 796 
   reg take_branch, take_branch_r; 797 
    798 
   reg [1:0] mdata_vld_r; 799 
   reg mdata_vld_rise, mdata_vld_fall; 800 
   reg mem_read_this_state, mrs_done; 801 
   reg mem_write_this_state, mws_done; 802 
   reg [1:0] mem_this_state, mdne, mdne_c; 803 
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 804 
 // State machine logic for MMU access instructions 805 
 // memory access control for the extension 806 
 always @ (*) begin 807 
       mdata_vld_rise = (mdata_vld_r == 2'b01); 808 
       mdata_vld_fall = (mdata_vld_r == 2'b10); 809 
      810 
     // Place memory read/write request on rising edge of PCLK 811 
     casex ({RESET, mem_this_state}) 812 
         3'b0xx : begin 813 
                      // Reset stage 814 
                        RNL_OUT <= 1'b0; 815 
                        BLS_OUT <= 1'b0; 816 
                        HLS_OUT <= 1'b0; 817 
                        MOE_OUT <= 1'b0; 818 
                        MWE_OUT <= 1'b0; 819 
                         820 
                        mdata_in <= 32'b0; 821 
                        mem_this_state <= 2'b00; 822 
                        mdne_c <= 0; 823 
                  end 824 
         3'b100 : begin 825 
                     casex ({mem_read_this_state, mem_write_this_state}) 826 
                          2'b10 : begin 827 
                                    if (pclk_del_r == 2'b01) begin 828 
                                        /* Memory read state */ 829 
                                        RNL_OUT <= 1'b0; 830 
                                        BLS_OUT <= 1'b0; 831 
                                        HLS_OUT <= 1'b0; 832 
                                        MOE_OUT <= 1'b1; 833 
                                        MWE_OUT <= 1'b0; 834 
                                         835 
                                        mem_this_state <= 2'b01;   // next state for read operation 836 
                                    end 837 
                                  end 838 
                               839 
                           2'b01 : begin 840 
                                     if (pclk_del_r == 2'b01) begin 841 
                                         /* Memory write state */ 842 
                                         RNL_OUT <= 1'b0; 843 
                                         BLS_OUT <= 1'b0; 844 
                                         HLS_OUT <= 1'b0; 845 
                                         MOE_OUT <= 1'b0; 846 
                                         MWE_OUT <= 1'b1; 847 
                                          848 
                                         mem_this_state <= 2'b10; 849 
                                     end 850 
                                   end 851 
                               852 
                           default : begin 853 
                                            /* No memory access this state */ 854 
                                            RNL_OUT <= 1'b0; 855 
                                            BLS_OUT <= 1'b0; 856 
                                            HLS_OUT <= 1'b0; 857 
                                            MOE_OUT <= 1'b0; 858 
                                            MWE_OUT <= 1'b0; 859 
                                             860 
                                            mdata_in <= 32'b0; 861 
                                            mem_this_state <= 2'b00; 862 
                                     end 863 
                       endcase 864 
                    end 865 
           3'b101 : begin 866 
                        // Remove memory read request after the falling edge of MDATA_VLD_IN 867 
                        if (mdata_vld_fall) begin 868 
                   MOE_OUT <= 1'b0; 869 
                end 870 
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                if(~MOE_OUT & mdata_vld_rise) begin // Look for MDATA_VLD_IN signal only after initiating 871 
the request  872 
                    // and after the falling edge of PCLK 873 
              mdata_in <= MDATA_IN;  // Assign the input data to the result register 874 
               875 
              // Latch the memory done signal (MDATA_VLD_IN) 876 
                              mdne_c <= 1; 877 
          mem_this_state <= 2'b00; 878 
        end 879 
                    end 880 
           3'b110 : begin 881 
                        // Remove memory write request after the falling edge of MDATA_VLD_IN 882 
                        if (mdata_vld_fall) begin 883 
                   MWE_OUT <= 1'b0; 884 
                end 885 
                if(~MWE_OUT & mdata_vld_rise) begin // Look for MDATA_VLD_IN signal only after initiating 886 
the request  887 
                    // and after the falling edge of PCLK 888 
               889 
              // Latch the memory done signal (MDATA_VLD_IN) 890 
              mdne_c <= 1; 891 
          mem_this_state <= 2'b00; 892 
        end 893 
                    end 894 
           default : begin 895 
                     end 896 
     endcase 897 
 end 898 
  899 
   // state machine logic for compiled extension 900 
   always @ (*) begin 901 
      pclk_rise = (pclk_del_r == 2'b01); 902 
      pclk_fall = (pclk_del_r == 2'b10); 903 
 904 
      // start the extension instruction 905 
      clr_dne = state_r[1] & en_r & sll128_r; 906 
 907 
      // state machine for read logic 908 
      read_this_state = (| (state_r & read_state_r)); 909 
      rsm_wait = read_this_state &  910 
                 (rsm_idle_r & gr_r) | 911 
                 (rsm_wait_r & (rsm_count_r != REG_READ_WAIT_STATES)); 912 
      rsm_latch = rsm_wait_r & (rsm_count_r == REG_READ_WAIT_STATES); 913 
      rsm_wait2 = (rsm_wait2_r | rsm_latch_r) & ~done_state; 914 
      rsm_idle = ~rsm_wait & ~rsm_wait2 & ~rsm_latch; 915 
      rsm_count = rsm_idle_r ? 4'h0 : (rsm_count_r + 1); 916 
      rsm_done = ~read_this_state |  917 
                 (read_this_state & (rsm_latch_r | rsm_wait2_r)); 918 
                 919 
      // state machine for write logic 920 
      write_this_state = (| (state_r & write_state_r)); 921 
      wsm_pulse = wsm_idle_r & write_this_state & gr_r & regrdy_r & ~regfull_r; 922 
      wsm_wait = (wsm_pulse_r & ~done_state) | 923 
                 (wsm_wait_r  & ~done_state); 924 
      wsm_idle = ~wsm_pulse & ~wsm_wait; 925 
      wsm_done = ~write_this_state |  926 
                 (write_this_state & (wsm_pulse_r | wsm_wait_r)); 927 
 928 
      // state machine for Memory read logic 929 
      mem_read_this_state = (| (state_r & mem_read_state_r)) & ~mdne; 930 
      mrs_done = ~mem_read_this_state | 931 
                      (mem_read_this_state & mdne); 932 
       933 
      // state machine for Memory write logic 934 
      mem_write_this_state = (| (state_r & mem_write_state_r)) & ~mdne; 935 
      mws_done = ~mem_write_this_state | 936 
                       (mem_write_this_state & mdne); 937 
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     938 
      // state machine for branch logic 939 
      branch_this_state = (| (state_r & branch_state_r)); 940 
      bsm_calc = bsm_idle_r & branch_this_state; 941 
      bsm_waitpf = (bsm_calc_r & take_branch_r) | 942 
                   (bsm_waitpf_r & ~pclk_fall); 943 
      bsm_waitpr = (bsm_waitpf_r & pclk_fall) | 944 
                   (bsm_waitpr_r & ~pclk_rise); 945 
      bsm_wait = (bsm_calc_r & ~take_branch_r & ~done_state) | 946 
                 (bsm_waitpr_r & pclk_rise & ~done_state) | 947 
                 (bsm_wait_r & ~done_state); 948 
      bsm_idle = ~bsm_calc & ~bsm_wait & ~bsm_waitpr & ~bsm_waitpf; 949 
      bsm_done = ~branch_this_state |  950 
                 (branch_this_state &  951 
                    ((bsm_calc_r & ~take_branch_r) | 952 
                     (bsm_waitpr_r & pclk_rise) | 953 
                      bsm_wait_r)); 954 
 955 
      // state machine to finish up the extension instruction 956 
      final_state = state_r[MAX_STATE]; 957 
      fsm_wait = final_state & rsm_idle_r | 958 
                 (fsm_wait_r & ~(gr_r & regempty_r & extnop_ma_r)); 959 
      fsm_wait2 = (fsm_wait_r & gr_r & regempty_r & extnop_ma_r) | 960 
                  (fsm_wait2_r & ~en_r); 961 
      fsm_idle = ~fsm_wait & ~fsm_wait2; 962 
      fsm_done = final_state & fsm_wait2_r & ~en_r; 963 
 964 
      // clear DNE as the extension instruction is entered 965 
      // set DNE as the extension instruction is exited 966 
      DNE_c = (DNE | (fsm_wait_r & gr_r & regempty_r & extnop_ma_r)) & ~clr_dne; 967 
      ACK_c = (ACK | (~DNE & ~ACK)) & ~(ACK & DNE & pclk_rise) & EN; 968 
      // & EN -> to bring down ACK when it loses control/resources in case of an interrupt 969 
   end 970 
                 971 
   always @ (*) begin 972 
      // true when all conditions for a state have been satisfied 973 
      done_state = clr_dne | 974 
                   (~state_r[1] & bsm_done & rsm_done & wsm_done & mrs_done & mws_done & tran_state_done); 975 
   end 976 
 977 
 978 
   // state to determine rising and falling edges of pclk 979 
   always @ (posedge CLK) begin 980 
      pclk_del_r <= {pclk_del_r[0], PCLK}; 981 
      // rise and falling edge of MDATA_VLD_IN 982 
      mdata_vld_r <= {mdata_vld_r[0], MDATA_VLD_IN}; 983 
   end 984 
 985 
   // buffer signals that may be heavily loaded or come from a distance 986 
   //   - is this needed?  this is present to maintain compatibility with Neil 987 
   always @ (posedge CLK) begin 988 
      if (!RESET) begin 989 
         en_r <= 1'h0; 990 
         sll128_r <= 1'h0; 991 
         gr_r <= 1'h0; 992 
         regrdy_r <= 1'h0; 993 
         regfull_r <= 1'h0; 994 
         regempty_r <= 1'h0; 995 
         extnop_ma_r <= 1'h0; 996 
      end else begin 997 
         en_r <= EN; 998 
         sll128_r <= SLL128; 999 
         gr_r <= GR; 1000 
         regrdy_r <= REGRDY; 1001 
         regfull_r <= REGFULL; 1002 
         regempty_r <= REGEMPTY; 1003 
         extnop_ma_r <= EXTNOP_MA; 1004 
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      end 1005 
   end 1006 
 1007 
   // misc control for the extension 1008 
   always @ (posedge CLK) begin 1009 
      if (!RESET) begin 1010 
         ACK <= 1'h0; 1011 
         DNE <= 1'h1; 1012 
         done_state_r <= 1'b0; 1013 
 1014 
         wsm_idle_r <= 1'b1; 1015 
         wsm_pulse_r <= 1'b0; 1016 
         wsm_wait_r <= 1'b0; 1017 
 1018 
         rsm_idle_r <= 1'b1; 1019 
         rsm_latch_r <= 1'b0; 1020 
         rsm_wait_r <= 1'b0; 1021 
         rsm_wait2_r <= 1'b0; 1022 
         rsm_count_r <= 4'b0; 1023 
 1024 
         bsm_idle_r <= 1'b1; 1025 
         bsm_calc_r <= 1'b0; 1026 
         bsm_wait_r <= 1'b0; 1027 
         bsm_waitpr_r <= 1'b0; 1028 
         bsm_waitpf_r <= 1'b0; 1029 
         take_branch_r <= 1'h0; 1030 
 1031 
         fsm_idle_r <= 1'b1; 1032 
         fsm_wait_r <= 1'b0; 1033 
         fsm_wait2_r <= 1'b0; 1034 
 1035 
      end else begin 1036 
         /* 1037 
         // clear ack 1038 
         if (ACK & DNE & pclk_rise) 1039 
            ACK <= 1'h0; 1040 
         // set ack 1041 
         else if (~DNE & ~ACK) 1042 
            ACK <= 1'h1; 1043 
         */ 1044 
 1045 
         ACK <= ACK_c; 1046 
         DNE <= DNE_c; 1047 
         done_state_r <= done_state; 1048 
 1049 
         wsm_idle_r <= wsm_idle; 1050 
         wsm_pulse_r <= wsm_pulse; 1051 
         wsm_wait_r <= wsm_wait; 1052 
 1053 
         rsm_idle_r <= rsm_idle; 1054 
         rsm_latch_r <= rsm_latch; 1055 
         rsm_wait_r <= rsm_wait; 1056 
         rsm_wait2_r <= rsm_wait2; 1057 
         rsm_count_r <= rsm_count; 1058 
 1059 
         bsm_idle_r <= bsm_idle; 1060 
         bsm_calc_r <= bsm_calc; 1061 
         bsm_wait_r <= bsm_wait; 1062 
         bsm_waitpr_r <= bsm_waitpr; 1063 
         bsm_waitpf_r <= bsm_waitpf; 1064 
         // if take_branch_r is ever used outside of the branch state machine, 1065 
         // it may need to be cleared at the end of the branch operation 1066 
         take_branch_r <= bsm_calc ? take_branch : take_branch_r; 1067 
 1068 
         fsm_idle_r <= fsm_idle; 1069 
         fsm_wait_r <= fsm_wait; 1070 
         fsm_wait2_r <= fsm_wait2; 1071 



 

 - 34 - 

      end 1072 
   end 1073 
    1074 
// 1075 
// INFO: finished reading from m2v_state_mc.v 1076 
// 1077 
 1078 
   // state machine for transaction model 1079 
   always @ (*) begin 1080 
      transaction_end_this_state = (| (state_r & tran_end_state_r)); 1081 
 1082 
      virpc_tr0 = PC; 1083 
      virpc_tr1 = PC + 28; 1084 
      virpc_tr2 = CJMPADD; 1085 
 1086 
      VIRPC =  ({32{state_r[1]}} & virpc_tr0) 1087 
             | ({32{state_r[2]}} & virpc_tr0) 1088 
             | ({32{state_r[3]}} & virpc_tr1) 1089 
             | ({32{state_r[4]}} & virpc_tr1) 1090 
             | ({32{state_r[5]}} & virpc_tr1) 1091 
             | ({32{state_r[6]}} & virpc_tr2) 1092 
             | ({32{state_r[7]}} & virpc_tr2); 1093 
   end 1094 
 1095 
   // transaction model control for the extension 1096 
   always @ (posedge CLK) begin 1097 
      if (!RESET) begin 1098 
         tran_state_done <= 1; 1099 
      end else begin 1100 
         if (EXCEXT & EN) begin 1101 
            if (transaction_end_this_state) begin 1102 
               tran_state_done <= 0; 1103 
            end 1104 
         end else begin 1105 
            if (~EN) begin 1106 
               tran_state_done <= 1; 1107 
            end 1108 
         end 1109 
      end 1110 
   end 1111 
 1112 
 1113 
   // registers that contain state about this cycle 1114 
   always @ (posedge CLK) begin 1115 
      if (~RESET) begin 1116 
         branch_state_r[1] <= 1'b0; 1117 
         write_state_r[1]  <= 1'b0; 1118 
         read_state_r[1]   <= 1'b1; 1119 
         mem_write_state_r[1]  <= 1'b0; 1120 
         mem_read_state_r[1]   <= 1'b0; 1121 
         tran_end_state_r[1]   <= 1'b1; 1122 
 1123 
         branch_state_r[2] <= 1'b0; 1124 
         write_state_r[2]  <= 1'b0; 1125 
         read_state_r[2]   <= 1'b1; 1126 
         mem_write_state_r[2]  <= 1'b0; 1127 
         mem_read_state_r[2]   <= 1'b0; 1128 
         tran_end_state_r[2]   <= 1'b1; 1129 
 1130 
         branch_state_r[3] <= 1'b1; 1131 
         write_state_r[3]  <= 1'b1; 1132 
         read_state_r[3]   <= 1'b1; 1133 
         mem_write_state_r[3]  <= 1'b0; 1134 
         mem_read_state_r[3]   <= 1'b0; 1135 
         tran_end_state_r[3]   <= 1'b0; 1136 
 1137 
         branch_state_r[4] <= 1'b0; 1138 
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         write_state_r[4]  <= 1'b1; 1139 
         read_state_r[4]   <= 1'b0; 1140 
         mem_write_state_r[4]  <= 1'b0; 1141 
         mem_read_state_r[4]   <= 1'b0; 1142 
         tran_end_state_r[4]   <= 1'b0; 1143 
 1144 
         branch_state_r[5] <= 1'b0; 1145 
         write_state_r[5]  <= 1'b1; 1146 
         read_state_r[5]   <= 1'b0; 1147 
         mem_write_state_r[5]  <= 1'b0; 1148 
         mem_read_state_r[5]   <= 1'b0; 1149 
         tran_end_state_r[5]   <= 1'b1; 1150 
 1151 
         branch_state_r[6] <= 1'b0; 1152 
         write_state_r[6]  <= 1'b1; 1153 
         read_state_r[6]   <= 1'b0; 1154 
         mem_write_state_r[6]  <= 1'b0; 1155 
         mem_read_state_r[6]   <= 1'b0; 1156 
         tran_end_state_r[6]   <= 1'b0; 1157 
 1158 
         branch_state_r[7] <= 1'b0; 1159 
         write_state_r[7]  <= 1'b1; 1160 
         read_state_r[7]   <= 1'b0; 1161 
         mem_write_state_r[7]  <= 1'b0; 1162 
         mem_read_state_r[7]   <= 1'b0; 1163 
         tran_end_state_r[7]   <= 1'b1; 1164 
 1165 
      end else begin 1166 
         branch_state_r <= branch_state_r; 1167 
         write_state_r  <= write_state_r; 1168 
         read_state_r   <= read_state_r; 1169 
         mem_write_state_r  <= mem_write_state_r; 1170 
         mem_read_state_r   <= mem_read_state_r; 1171 
         tran_end_state_r   <= tran_end_state_r; 1172 
      end 1173 
   end 1174 
 1175 
 1176 
   // combinatorial logic to/from the register file 1177 
   always @ (*) begin 1178 
      // combinatorial logic for register reads 1179 
      // use read ports 3 & 4 to prevent write conflicts 1180 
      RDREG1 = 0; 1181 
      RDREG2 = 0; 1182 
      r9_1 =  RDREG3DATA; 1183 
      r8_4 =  RDREG2DATA_ID; 1184 
      r4_11 =  RDREG1DATA_ID; 1185 
      r5_18 =  RDREG4DATA; 1186 
      r6_23 =  RDREG3DATA; 1187 
      RDREG3 =  ({5{state_r[2]}} & (RT + 1)) 1188 
              | ({5{state_r[1]}} & RT) 1189 
              | ({5{state_r[3]}} & (RS + 2)); 1190 
      RDREG4 =  ({5{state_r[1]}} & RS) 1191 
              | ({5{state_r[2]}} & (RS + 1)); 1192 
 1193 
      // combinatorial logic for register writes 1194 
      WRREG1 =  ({5{state_r[3]}} & 11) 1195 
              | ({5{state_r[4]}} & RT) 1196 
              | ({5{state_r[5]}} & (RT + 1)) 1197 
              | ({5{state_r[6]}} & RS) 1198 
              | ({5{state_r[7]}} & 11); 1199 
      WRDATA1 = ({32{state_r[3]}} & r11_13_r) 1200 
              | ({32{state_r[4]}} & r8_15_r) 1201 
              | ({32{state_r[5]}} & r9_8_r) 1202 
              | ({32{state_r[6]}} & r4_22_r) 1203 
              | ({32{state_r[7]}} & r11_25_r); 1204 
      REGWRITE1 = wsm_pulse_r & (state_r[3] 1205 
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              | state_r[4] 1206 
              | state_r[5] 1207 
              | state_r[6] 1208 
              | state_r[7]); 1209 
      WRREG2 =  ({5{state_r[4]}} & RS) 1210 
              | ({5{state_r[6]}} & (RS + 1)); 1211 
      WRDATA2 = ({32{state_r[4]}} & r4_17_r) 1212 
              | ({32{state_r[6]}} & r5_29_r); 1213 
      REGWRITE2 = wsm_pulse_r & (state_r[4] 1214 
              | state_r[6]); 1215 
   end 1216 
 1217 
   // internal pipeline logic 1218 
   always @ (posedge CLK) begin 1219 
      if (~RESET) begin 1220 
         r8_4_r <= 32'h0; 1221 
         r4_11_r <= 32'h0; 1222 
         r9_8_r <= 32'h0; 1223 
         r11_13_r <= 32'h0; 1224 
         r8_15_r <= 32'h0; 1225 
         r4_17_r <= 32'h0; 1226 
         r4_22_r <= 32'h0; 1227 
         r11_25_r <= 32'h0; 1228 
         r5_29_r <= 32'h0; 1229 
      end else begin 1230 
         r8_4_r <=  state_r[1] ? r8_4 : r8_4_r; 1231 
         r4_11_r <=  state_r[1] ? r4_11 : r4_11_r; 1232 
         r9_8_r <=  state_r[2] ? r9_8 : r9_8_r; 1233 
         r11_13_r <=  state_r[2] ? r11_13 : r11_13_r; 1234 
         r8_15_r <=  state_r[2] ? r8_15 : r8_15_r; 1235 
         r4_17_r <=  state_r[2] ? r4_17 : r4_17_r; 1236 
         r4_22_r <=  state_r[2] ? r4_22 : r4_22_r; 1237 
         r11_25_r <=  state_r[3] ? r11_25 : r11_25_r; 1238 
         r5_29_r <=  state_r[2] ? r5_29 : r5_29_r; 1239 
      end 1240 
   end 1241 
 1242 
 1243 
   // logic for the Memory address and data out 1244 
   always @ (posedge CLK) begin 1245 
      MADDR_OUT <=  (32'h0); 1246 
  MDATA_OUT <= (32'h0); 1247 
   end 1248 
 1249 
   // combinatorial logic for the instruction nodes 1250 
   always @ (*) begin 1251 
      // [0x0] 0x10840 sll r9, r9, 1 1252 
      r9_3 = r9_1 << 1; 1253 
 1254 
      // [0x4] 0x21fc2 srl r11, r8, 31 1255 
      r11_6 = r8_4_r >> 31; 1256 
 1257 
      // [0x8] 0x230825 or r9, r9, r11 1258 
      r9_8 = r9_3 | r11_6; 1259 
 1260 
      // [0xc] 0x21040 sll r8, r8, 1 1261 
      r8_10 = r8_4_r << 1; 1262 
 1263 
      // [0x10] 0x41fc2 srl r11, r4, 31 1264 
      r11_13 = r4_11_r >> 31; 1265 
 1266 
      // [0x14] 0x431025 or r8, r8, r11 1267 
      r8_15 = r8_10 | r11_13; 1268 
 1269 
      // [0x18] 0x42040 sll r4, r4, 1 1270 
      r4_17 = r4_11_r << 1; 1271 
 1272 
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      // [0x1c] 0x51fc2 srl r11, r5, 31 1273 
      r11_20 = r5_18 >> 31; 1274 
 1275 
      // [0x20] 0x832025 or r4, r4, r11 1276 
      r4_22 = r4_17 | r11_20; 1277 
 1278 
      // [0x24] 0x26182b sltu r11, r9, r6 1279 
      r11_25 = ({1'b0, r9_8_r} < {1'b0, r6_23}) ? 1 : 0; 1280 
 1281 
      // [0x28] 0x10030005 beq r0, r11, 20 1282 
      take_branch = (32'h0 == r11_25); 1283 
      CJMPADD = take_branch ? (PC + 4 + {{16{DIMM[15]}},DIMM}) : PC; 1284 
      PCNEXT = state_r[3] & bsm_waitpr & take_branch; 1285 
 1286 
      // [0x2c] 0x52840 sll r5, r5, 1 1287 
      r5_29 = r5_18 << 1; 1288 
 1289 
   end 1290 
 1291 
   // primary extension state machine 1292 
   always @ (posedge CLK) begin 1293 
      if (~RESET) begin 1294 
         state_r <= 1; 1295 
         mdne <= 0; 1296 
      end else begin 1297 
         mdne <= mdne_c; 1298 
         if (en_r) begin 1299 
            if (done_state) begin 1300 
               state_r <= {state_r[MAX_STATE-1:1], 1'b0}; 1301 
               mdne <= 0; 1302 
            end 1303 
         end 1304 
         else begin 1305 
            state_r <= 1; 1306 
         end 1307 
      end 1308 
   end 1309 
 1310 
endmodule1311 
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Appendix IV – Circuit Graph Visualization 
 

 

 

Figure A-4: Visualization of the Circuit graph using the DOT file generated  

by the M2V compiler, for the example basic block from Figure 10. 

 


