

Automatic Generation of Interrupt-Aware Hardware

Accelerators with the M2V Compiler

Abilash Sekar, Alessandro Forin

Microsoft Research

August 2008

Technical Report

MSR-TR-2008-110

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

 - 2 -

 - 3 -

Automatic Generation of Interrupt-Aware Hardware

Accelerators with the M2V Compiler

Abilash Sekar, Alessandro Forin

Microsoft Research

Abstract

The MIPS-to-Verilog (M2V) compiler and the Basic

Block Tools (BBTools) can automatically generate a

hardware accelerator for selected blocks of machine code

in an application. The compiler translates blocks of MIPS

machine code into a hardware design captured in Verilog

(an "Extension"). The BBTools patch the application

binary by inserting the extension instruction that triggers

the accelerator. The original code is preserved, so that

execution can fall back to software when necessary.

This work extends the M2V compiler with support for

memory load and store instructions, and for interrupts.

We use a transactional model to handle interrupts and/or

traps due to TLB misses in the Extension. We implemented

and tested the interrupt support mechanism using a 64-bit

division basic block, with added instructions for memory

loads off the stack pointer.

We also added the feature of allowing the BBTools to

automatically create the best encoding for an extension

instruction. The tool now evaluates which pair of roots in

the dependency graph leads to the shortest execution

cycle time for the Extension. With this addition, the

process of creating Extensions for the eMIPS processor

can now be fully automated and applied to practical

applications, where loads and stores inside the Extension

are of paramount importance.

1 Introduction

Extensible processors have a simple RISC pipeline

and the ability to augment the Instruction Set Architecture

(ISA) with custom instructions. The ISA can be

augmented statically, at tape-out, or it can be augmented

dynamically when applications are loaded. Extensible

processors differ from other accelerators in their tight

integration with the basic data path, which leads to

minimal latencies and therefore greater flexibility.

Examples of dynamically extensible processors include

eMIPS [6] and Stretch [13]. Tensilica’s Xtensa [14] is an

example of a statically extensible processor.

Extensible processors take advantage of the fact that a

small amount of code takes the majority of execution time

in a typical program. The code that executes most often is

a candidate for hardware acceleration. The code is

identified by a special instruction that will initiate the

accelerator.

*.EXE

Compiled

Binary

Executable

BB Tools

GIANO

Simulator
*.EXE

Patched Binary

*.BBW

Extension

Basic Block File

M2V

(MIPS to

Verilog

Compiler)

*.V

Synthesizable

Verilog

Figure 1: The eMIPS Tool Chain to automate the

generation of hardware accelerators.

Selection of the best code to accelerate is an active

area of research. The eMIPS tool-chain, shown in Figure

1, restricts the code selection problem to the set of basic

blocks in the application. Using the strict definition in [1],

the basic block is a directed acyclic graph (DAG). A

DAG is a set of machine instructions that do not contain

branches and are branched-to only for the very first

instruction. The best candidate blocks are currently

selected by executing the application using the Giano full-

system simulator [21], in concert with the data obtained

via static analysis of the application binary. The BBTools

select the basic blocks to accelerate and patch the binary

image with the special instructions for the accelerator.

The M2V compiler [16] automatically generates the

design for the hardware accelerator, which is then

synthesized using the Xilinx tools for the ML40x boards.

The accelerator can be statically loaded when eMIPS

is reset or it can be dynamically loaded when an

application is loaded using partial reconfiguration of the

FPGA. By dynamically loading and unloading

accelerators, the area of the programmable hardware can

be used more efficiently.

In previous versions of eMIPS, the accelerator blocks

could be specified and given to a hardware designer to

hand design the accelerator. While this can lead to an

efficient implementation, manual designs do not scale well

 - 4 -

as dynamically extensible processors are more widely

used and the hardware becomes more complex. To

effectively utilize dynamically extensible processors,

different parts of an application can be accelerated using

different Extensions, which can be loaded at appropriate

times. The use of the tool chain along with M2V can

expand the use of hardware acceleration and completely

automate the process of generating hardware accelerators

for a variety of basic blocks in an application.

The work described herein addresses three limitations

in the tool chain that prevented the M2V tool chain from

being usable in but a few practical cases. The first

limitation was the lack of support for load and store

operations, and more generally for variable-cost

operations. M2V was previously only able to cope with

MIPS instructions that took zero or one cycle. We added

support for all the instructions that took a fixed number of

cycles, accounting for the cost in the generation of the

schedule. Then we added support for the instructions that

have variable costs, prime and foremost loads and stores.

We were able to find a way to preserve the overall

structure of the compiler, while dealing with the variable

costs. The dependency graph still leads to a state machine

that controls the overall execution. The transitions are now

defined not only by the clock, but also by the signals that

indicate completion of the variable-cost operations.

The second limitation concerns the inability of the

M2V compiler to generate logic for handling interrupts

within an Extension. External interrupts could only

happen before or after the extension instruction, never

inside it. This assumption is invalid in the presence of

TLB misses due to loads and stores. Furthermore, the

previous tool required that an Extension never encounter

errors, such as arithmetic overflows or unaligned

addresses. For a real-time system, it is important to

respond to interrupts in a timely and predictable manner.

Even in a general-purpose OS it is unacceptable to allow a

user process to ignore interrupts and lock the machine. To

address the interrupt limitation, we used the concept of

transactions in dealing with the write-backs to the register

file and the stores to memory. The overall execution of the

Extension is subdivided in sets that execute “atomically”.

Interruptions of any sort are accepted at the transaction

boundaries. On interruption, the write-back machine

cancels all write-backs from future transactions, completes

the write-backs for the current one, and then relinquishes

control back to the data-path in a limited amount of time.

The restart-address is set to the point in the original basic

block that corresponds to the current write-back state. It is

therefore mandatory that extension instructions are simply

inserted in the original image, and that they do not replace

the original basic block.

The third limitation addresses the task of

automatically choosing an instruction encoding for the

new extension instruction. We observed that the selection

of which registers or constants to encode in the instruction

can have an effect on the overall execution time. These

values are available early in the execution pipeline. It is

therefore important to select those that allow the most

work to proceed before stalling on a dependency. Our

algorithm uses two parameters in deciding which two

register numbers to encode – fan-out and depth of the root

register read nodes. It selects the pair of registers with the

maximum combined fan-out and depth.

The remainder of this document is structured as

follows. Section 2 discusses related work. Section 3 gives

an overview of the eMIPS hardware platform. Section 4

discusses the automatic encoding of the extension

instruction by the BBTools. Section 5 defines the support

for memory operations in the M2V compiler. Section 6

discusses the model and implementation for handling

interrupts in the Extension. Section 7 explains the M2V

generated hardware in more detail. Section 8 compares

the synthesis reports obtained for Extensions generated

with and without the transactional model enabled. Section

9 discusses the experimental results, and Section 10

concludes the report. Appendix I contains the BBW file

for the example basic block. Appendix II contains

synthesis reports for the Extension generated by the M2V

compiler. Appendix III contains the Verilog output from

M2V, with the transactional model enabled and interrupt

support. Appendix IV shows an automated visualization

of the dependency graphs from M2V.

2 Related Work

Work on extensible processors can be divided in

several ways. One avenue of exploration is to define the

underlying hardware. Chimaera [7] and GARP [8] are

two examples of extensible hardware from the late 1990’s.

Commercial FPGA manufacturers today all provide

examples of soft-cores, microprocessor designs that the

customer can modify and extend for their application [15,

3, 13]. M2V uses the eMIPS processor [6] as its

underlying hardware platform. eMIPS is the first design

that is secure for general purpose multi-user loads, and the

set of potential applications is therefore more open-ended

than those found in the typical embedded system alone.

A common approach to generate code for an

extensible processor is to modify an existing C compiler.

Tensilica [14] automatically regenerates a full GNU

compilation system given the RTL of the new instruction.

Ienne et al. [4] use the SUIF compiler. M2V accepts as

input binary machine code rather than source code. There

are trade-offs between accelerating from source code in a

 - 5 -

high-level language or from binaries. One of the major

advantages when accelerating from binaries is that any

application can be accelerated, even applications where

the source code is controlled by an outside party and not

available to the system developer. A disadvantage is that

some of the information that has been discarded must be

reconstructed, and there are limits to this reversal process.

The FREEDOM compiler [17, 18] is similar to M2V;

the compiler accepts binary machine code as input and

maps it to an FPGA. The Extensions generated by the

M2V compiler are meant for a general-purpose

environment and therefore execute in coordination with

the main processor data path, whereas FREEDOM maps

the entire program to the bare FPGA. M2V generates

Extensions that are explicitly interrupt-aware, whereas

there is no mention of handling interrupts in the

FREEDOM compiler. Additionally, the Extensions

generated by the M2V compiler for the eMIPS have

secure access to the memory subsystem via the Memory

Management Unit (MMU), which is not a requirement for

the DSP-like programs handled by the FREEDOM

compiler. FREEDOM is a more mature product and can

handle a larger body of codes than what M2V currently

does.

Another avenue of research in extensible processors

is the identification of the Instruction Set Extensions (ISE)

that most benefit a given program, see for instance [5] for

a recent overview. Bonzini [5] advocates generating the

ISE from within the compiler, Tensilica [14] from

profiling data. M2V currently follows the application

profiling approach; it uses the BBTools and dynamic full-

system simulation with Giano to select the candidate basic

blocks. The current approach can extend to handling

chains of blocks e.g. in frequently executed loops that are

automatically recognized via full-system simulation [19].

A possible addition to our work is to use M2V in concert

with a high-level compiler. Once the ISE is identified

from within the compiler, the Extension’s definition could

be output in the form of a BBW file.

A related area is the generation of HDL code from C,

the so-called C-to-gates design flows [11, 12]. The

common target is the automated generation of HDL code

from sequential programs. The main difference with M2V

is that the input is binary code. Using binary code supports

all programming languages, included dynamically

generated (jitted) code. It is the only viable option in case

the high level source code is not available, e.g. for third-

party code and libraries. The drawback is that makes the

problem harder. The binary code has already been

optimized (register allocation, loop unrolling, etc) during

its compilation hence identifying parallelism is more

difficult. The BBTools framework tries to account for

some of these optimizations by using a canonical form of

the basic block, so that it can identify repeating basic

blocks in the binary.

3 eMIPS Hardware Overview

The extensible MIPS (eMIPS) processor [6] has been

developed at Microsoft Research as an example of a RISC

processor integrated with programmable logic. The

programmable logic has many uses, such as: extensible

on-line peripherals, zero overhead online verification of

software, hardware acceleration of general-purpose

applications, and in-process software debugging [2]. This

document is concerned with automatically generating

hardware accelerators within the context of the eMIPS

extensible processor.

The instruction set for the eMIPS processor is the

instruction set for the R4000 MIPS processor [10]. The

R4000 is an example of a classic RISC architecture. The

eMIPS pipeline follows the classic RISC pipeline [9]

consisting of five stages: instruction fetch (IF), instruction

decode (ID), execute (EX), memory access (MA), and

register write-back (WB).

The eMIPS processor departs from a standard RISC

processor by adding an interface to programmable logic.

The programmable logic is tightly integrated with the

RISC pipeline, it can synchronize with it and it can access

the same resources as the RISC pipeline. Figure 2 shows

a logical block diagram for the eMIPS processor. The

tight coupling of the pipeline and programmable logic

creates a very low latency interface between the

accelerator and the RISC pipeline.

Figure 3 illustrates the pipelining of instructions

through eMIPS. The decode logic in the extension logic

is always an observer of the main pipeline and is trying to

Ex.

(ALU) MA WB

Soft

Fabric

IF ID

Hard Fabric:

TISA

Inter Pipeline Traffic

CP0

(Exception

Handler)

Memory

(MMU, Cache) Registers

Peripheral Ext. 2

Execution

Blocks Ext. 1
Ext. 1

ID

Ext. 2

ID Extensions

Figure 2. eMIPS block diagram. The Soft Fabric can

be reconfigured at run time to extend the ISA.

kk

 - 6 -

decode the instruction in the instruction decode (ID) phase

of the pipeline. When the instruction is not an extension

instruction, the Extension fails to decode it and the

instruction is executed in the main pipeline. If instead the

extension logic successfully decodes the instruction, the

extension becomes active and hardware acceleration takes

over execution. Instructions flowing through the main

RISC pipeline prior to the extension instruction complete

normally. Instructions following the extension instruction

are stalled until the Extension is near completion, in the

EXn-1 cycle.

The RISC pipeline imposes micro-architectural

constraints on the extension logic, for instance in the

arbitration for access to the register file and other

resources. The extension logic needs to read and write the

register file and access the memory management unit

(MMU). M2V automatically schedules all resource

accesses in the extension logic to avoid conflicts with the

primary RISC pipeline.

IF ID EX MA

EX1

WB

IF ID EX MA WB

IF ID EX2 MA WBEXn-1Exn-2 EXn...

IF ID EX MA WB

IF ID EX MA WB

Instruction m-2

Instruction m-1

Extension Instruction m

Instruction j

Instruction j+1

Cycle Number 0 1 2 3 4 5 n+2 n+3 n+4 n+5 n+6 n+7 n+8...

IFInstruction m+1

Figure 3: Instruction flow through the eMIPS pipeline.

The primary RISC pipeline uses two read ports on the

register file when an instruction is in the ID stage, one

MMU port when in the MA stage, and one write port on

the register file when in the WB stage. The eMIPS

register file has four ports which are multiplexed between

four read ports and two write ports. The extension logic

has the potential to use all of the eMIPS register file ports,

but it must not conflict with the primary RISC pipeline.

Thus, register writes must be delayed by the Extension

until previous instructions are retired and register reads

must be finished a couple of cycles before trailing

instructions get to the ID stage. As a specific example,

consider the case in Figure 3 when the extension

instruction is in the EX1 cycle of execution, instruction m-

1 is in the MA pipeline stage and so instruction m-1 has

access to the MMU. Instruction m-2 is in the WB pipeline

stage and it has control of the register file write ports. The

extension instruction does not have control of all the

resources until stage EX3 when the previous instructions

have been retired.

The eMIPS processor has been implemented on

Xilinx Virtex 4 FPGAs using the ML401 and ML402

evaluation boards. The partial reconfiguration capabilities

of this FPGA model allow software to load dynamically

the hardware for the instruction extensions.

4 Extension Instruction Encoding

An extension instruction is an instruction that is not

part of the base ISA of the eMIPS processor. It is inserted

in the instruction stream for the specific purpose of

triggering an Extension. If the Extension is present and

active, it recognizes the instruction and takes over

execution, effectively replacing the block of instructions

that (would) follow. Otherwise the instruction is treated as

a NOP and execution continues with the original basic

block. There is a large degree of freedom in encoding an

extension instruction; the only real practical restriction is

that the top six bits must not match a valid opcode. It is

also clearly impossible to encode all of the information

contained in an arbitrarily large block of instructions into

a single one. The implementation of the eMIPS decoder

presents an opportunity for optimization. By default, the

decoder expects "I” format instructions and fetches the

corresponding rs and rt registers in advance.

Consequently, the current revision of M2V generates

Extensions that decode their extension instruction

assuming the MIPS “I” format. The format is illustrated in

Figure 4 below.

Opcode_name rt, rs, immediate

31:26 25:21 20:16 15:0

opcode rs rt immediate

Figure 4: The MIPS “I” format encoding.

The M2V compiler uses the block descriptions in the

so-called BBW file to generate synthesizable Verilog code

for the Extension hardware of the eMIPS processor. The

BBW file describes a list of basic blocks; each description

consists of the following main sections: machine name,

extension instruction encoding, canonical register and

value relationships, code size and the basic block of MIPS

instructions. BBMatch.exe is a program, part of the

BBTools framework, used for creating the BBW source

file automatically, from a MIPS executable file. The BBW

file is therefore the core interface between BBTools and

M2V compiler. The current version of BBMatch creates

the BBW file automatically, but leaves the encoding

section empty. If we could also generate the encoding

section automatically the whole process of creating

Extensions could be automated, from ELF image all the

way to a working Extension.

The encoding of the registers in the extension

instruction plays an important part in the schedule that

M2V will generate for the Extension. In the eMIPS

architecture, the Extension is tightly coupled with the

 - 7 -

standard MIPS pipeline. This gives us the advantage of

having the two registers rs & rt, encoded in the extension

instruction, available directly from the decode stage of the

MIPS pipeline. This feature can be used to reduce the

execution time of the Extension by appropriately selecting

the registers to encode in the extension instruction. This is

illustrated by the simple example basic block shown

below in Figure 5. The cost of the “OR” and the “SLL”

instructions in the basic block are 1 and 0 cycles

respectively. We shall consider two cases to illustrate the

importance of encoding the correct registers.

[0] ext0 rx, ry, offset

[4] or r5, r1, r2

[8] sll r6, r3, r4

Figure 5: The choice of rx and ry in this basic block

affects the performance of the generated Extension.

The circuit graph generated by M2V is shown in

Figure 6 for two different encodings of the extension

instruction. In the graphs, the clock cycle when the

respective node completes is depicted next to the node.

RF

Read

R1

RF

Read

R2

RF

Read

R3

RF

Read

R4

SLLOR

RF

Write

R5

RF

Write

R6

cyc 1

cyc 4cyc 4

cyc 4

cyc 5 cyc 6

Case (i): Extension instruction encoded with R1, R2

Key:

State 3

State 2

State 1

State 4

RF

Read

R1

RF

Read

R4

SLLOR

RF

Write

R5

RF

Write

R6

RF

Read

R3

RF

Read

R2

cyc 4 cyc 4

cyc 4cyc 5

cyc 6cyc 7

Case (ii): Extension instruction encoded with R1, R3

Figure 6: Circuit graphs for the block in Figure 2,

using different encoding schemes.

The graphs show that though the number of states in

the Extension remains the same, the number of clock

cycles taken by the Extension to execute the set of

instructions differs based on the encoding of the registers.

Considering the first case, registers R1 and R2 are

encoded, thus making them available directly from the

decode phase of the pipeline in stage 2 of the extension

state machine. The “OR” instruction can be executed

immediately, and will complete in cycle 1 since the

Extension has all the registers available and no unmet

dependencies. However, the “SLL” instruction requires

both source registers to be read from the register file,

which takes 4 clock cycles. This causes the SLL

instruction to complete in cycle 4. A pipeline stage is

inserted by the extension state machine after execution of

the instructions at cycle 4. The two register write-backs

are performed after the pipeline stage, in cycle 5 (R5) and

cycle 6 (R6). Thus, the Extension requires 6 cycles to

complete execution with this encoding.

Considering the second case, registers R1 and R3 are

encoded. In this case, none of the instructions can be

executed directly as both have unmet dependencies and

require register reads from the register file. Assuming

there are at least two read ports in the register file, the OR

instruction completes after 5 cycles, 4 cycles for reading

register R2 and 1 cycle for execution. Similarly, the SLL

instruction completes execution in cycle 4. Again, a

pipeline stage is inserted after execution of the

instructions in cycle 5. The register write-backs are

performed in cycle 6 (R6) and cycle 7(R5). Thus the

Extension requires 7 cycles to complete execution with

this encoding.

In this minimal example, a two instruction basic block

shows a difference of 1 execution cycle depending on the

selected encoding. The encoding scheme will have a

greater impact on the execution time when there are long

latency paths in the basic block. Thus, it is of prime

importance to create an optimal encoding of the

Extension’s registers to reduce Extension latency.

4.1 Register Selection Algorithm

In the new version of “bbmatch.exe”, the encoding

algorithm uses two main parameters in selecting the rs &

rt registers – fan-out and depth of the root register read

nodes. Fan-out is the number of instructions dependent on

the root register read node. Depth is a count of the register

nodes and the cost of the instruction nodes till a

dependency is met in the graph.

Using the circuit graphs in Figure 6, all the register

read nodes, R1, R2, R3 and R4 have a fan-out of 1. For

 - 8 -

the depth calculation, all the registers have a dependency

at the instruction nodes, with the only differentiating

factor being the cost of the “OR” instruction node

compared to the “SLL” instruction node. This gives the

depth of registers R1 & R2 as 2 and R3 & R4 as 1.

The algorithm takes the sum of the fan-out and depth

of the register nodes and encodes the nodes with the

maximum value. In the mentioned example, the nodes

encoded by the algorithm would be R1 and R2, which is

the best encoding scheme as seen from the circuit graphs

in Figure 6.

Other algorithms are possible. The total number of

general-purpose registers is limited even in the case of

MIPS where they are abundant, and the calling convention

further restricts the number of maximum potential roots in

any practical dependency graph. It is therefore

conceivable to perform a brute-force search of all possible

selections to find the one with the optimal cycle count.

The worst-case number of alternatives for a processor with

N usable registers is N*(N-1)/2, or 465 for MIPS. We will

try this alternative when the compiler has full code

coverage.

4.2 Immediate Value Encoding

The encoded extension instruction can be used to

match more than one basic block in the binary executable.

The description of a block is in the form of a code pattern,

parameterized by the register assignments and the

constants in the immediate fields. The encoding of the

instruction defines constraints on the register assignments

and constants. Any block with a compatible register and

constants assignment will match the pattern. For example,

if two basic blocks differs only in the destination of a

jump, then encoding the extension instruction with the

branch offset would make the Extension work in both

cases.

In the new version of BBMatch, the immediate value

encoded in the Extension is determined by user options.

The program simplistically allows for encoding either the

first encountered load instruction offset or the branch

instruction offset. By default, the program encodes the

branch offset.

4.3 Implementation

We assume the reader is familiar with the internals of

the M2V compiler implementation, as described in [16].

From the top level, the main functions involved in the

decision making are part of the “ext_encode.cpp” file –

RegEncodingCond & ValEncodingCond, which are the

functions for encoding the canonical register relationships

and values, and the value relationships respectively.

The BBTools must generate the circuit graph in order

to decide which registers should be encoded as rs & rt,

just like M2V does. RegEncodingCond first creates the

circuit graph by using the Circuit class from M2V.

RegEncodingCond then calls getEncRegs, which we have

added to the Circuit class to determine rs & rt. The rest of

the RegEncodingCond function determines the canonical

register relationships once rs & rt are determined.

The getEncRegs function calculates the fan-out and

depth of each root register read node of the circuit graph.

The root register read nodes are stored in the regRdVec

queue data structure in M2V. rs & rt are determined based

on the additive maximum of fan-out and depth.

ValEncodingCond encodes the value based on the

specified user option. “mips_dissect.c” contains records

for each instruction based on its disassembly with

information such as the number of reads/writes required,

cost of the instruction, etc. A flag indicating a branch/load

instruction is added to this record to help in identifying the

value to be encoded.

4.4 Tool interface changes

The Makefile provided with the BBTools is used to

compile both the BBTools and M2V. The command

“nmake bbmatch.exe” compiles just the BBMatch

program. The usage information can be obtained by

invoking a tool without arguments. The command line for

bbmatch.exe is:

bbmatch [-v] [-c [-l] [-b]] PatternFile BBSFile

The “-l” or “-b” options are used along with the “-c”

option for creating the BBW file from the basic block

symbols (BBS) file. The new “-l” option encodes the load

instruction offset while the new “-b” option encodes the

branch instruction offset.

The command line for m2v.exe is:

m2v [-v] [-t] [-g] bbwFileName [VerilogFileName]

The “-v” option generates more verbose output. The new

option “-t” enables the transactional model. The “-g”

option creates a graphic representation of the circuit

graph, in the “DOT” file format usable with the MSAGL

tool for Automatic Graph Layout[20]. Appendix IV shows

the visualization of the Circuit graph for the basic block in

Figure 10, using the DOT file generated by M2V and

rendered by the MSAGL tool.

 - 9 -

5 Memory access support in M2V

This section describes our additions to the M2V

compiler to support memory accesses. It is well known in

the literature that the lack of load and store operations

leads to limited speedups from hardware acceleration. The

operations are not only important for performance, but in

our experience they are almost always present in the most-

frequently executed basic blocks of an application,

precisely the blocks that M2V wants to speed up.

M2V is a three-pass compiler which automatically

generates eMIPS Extensions from a BBW source file. The

first pass processes the BBW file and consists of three

major steps: map the encoding for the extension

instruction to the basic block, analyze the MIPS

instructions, and build a circuit graph. The second pass

schedules the operations that are represented in the graph.

The third pass emits the Verilog that will be synthesized

and placed in the eMIPS FPGA.

The eMIPS architecture allows for Extensions to

access memory through the MMU just like the main MIPS

processor data path. The MMU is part of the Trusted ISA

portion of the eMIPS processor; The MMU is the only

path to memory available to general, untrusted Extensions.

The Extension is tightly coupled with the main MIPS

pipeline. The Extension has access to the memory

interface only after a few cycles it received control. This

restriction is taken care of in the scheduling pass of the

M2V compiler. To ensure correct execution of the

memory instructions, the Extension must obey the

protocols shown below in Figure 7 and Figure 8. The

M2V compiler generates this logic using the scheduling of

memory instructions and the states of the extension state

machine. The protocols for the memory read and write

requests are shown in Figure 7 and 8 respectively.

Figure 7: Memory Read Protocol.

In both protocols, the MDATA_VLD signal serves as

an indicator that the memory request is acknowledged by

the controller. The signal indicates when the data is

available from, or to be written to memory.

Figure 8: Memory Write Protocol.

The M2V compiler implements the above protocols

in Verilog, in the form of a memory state machine. The

memory state machine is then integrated into the existing

extension state machine. The memory state machine is

currently boilerplate (invariant) code.

5.1 Memory State Machine

The memory state machine shown in Figure 9 is a

simple implementation of the memory protocols. M2V

maintains an array of memory operations in a particular

state that is integrated into the extension state machine.

Once the Extension transitions from one state to a state

with a memory operation, the memory state machine is

activated.

Idle

In READ

state

In WRITE

state

Initiate Memory read

Request Acknowledged,

MOE_OUT lowered
Request Acknowledged,

MWE_OUT lowered

Memory op complete

Initiate Memory write

Figure 9: Extension Memory State machine.

On the rising edge of the Pipeline CLK (PCLK), the

address is latched onto MADDR signal and the Memory

Output Enable (MOE) signal is raised in case of a read or

the Memory Write Enable (MWE) is raised in case of a

write. MDATA_VLD then falls down once the memory

request is acknowledged, and the memory state machine

 - 10 -

moves onto the next state, waiting for the MDATA_VLD

to go high, indicating the availability of the data in

MDATA_IN for a read or completion of the write for a

write operation.

When a state involves a memory access, the main

extension state machine waits on the completion of the

memory state machine and transitions to the next state

when all other operations (ex: register reads, register

writes) for that state are completed.

5.2 Implementation

The set of memory instructions in the basic block are

stored in a separate queue called mmuInstVec in the

Circuit class. mmuInstVec is used to generate the memory

address and memory data for the particular memory

transaction. M2V schedules the memory operations just

like other normal instructions. The register encoding

algorithm described earlier takes care of the necessity to

schedule loads as early as possible in the basic block. The

encoding plays an important part in selecting two critical

paths (of high depth). This will ensure that operations are

executing in parallel to the load instruction, thereby hiding

the latency of the load instruction.

Scheduling of memory operations by M2V is limited

by the number of memory ports available to the Extension.

In the current version, there is a single port available to

the Extension, limiting the number of memory operations

in a state of the Extension to one.

During the scheduling pass, when M2V encounters a

memory instruction it first checks if the memory port has

already been used. In the event that the port has already

been used, the function returns with a RET_FAIL_RSRC

error, indicating resource constraints. The register node

supplying the base address is pipelined to allow access in

the next state of the Extension.

If the memory port is available in the current state, the

compiler proceeds to checking if the required register

reads are already available. Once all the dependencies are

met, the compiler marks the node with the cycle to be

scheduled and updates the counter to reflect the usage of

the memory port in the current state of the Extension.

M2V ensures that the ADDR_OUT/IN and

DATA_OUT/IN pins are correctly MUX’d based on the

instruction stream in the basic block. The M2V compiler

generates a logic block to handle this requirement. If a

basic block consists of more than one memory instruction,

the ADDR_OUT pins must reflect the correct address for

each of the instructions. As mentioned previously, only

one memory operation is allowed in each state of the

extension. Thus the ADDR_OUT/IN and DATA_OUT/IN

pins are determined and MUX’d based on the current state

of the extension.

M2V pipelines the destination register of the memory

instruction to account for the variable latency of the load

instruction node.

6 Interrupt Support

We have modified the M2V compiler to generate

Verilog code with the ability to handle interruptions while

the processor is executing in the Extension. Interruptions

can be due to three different sources, but we will use the

single term “interrupt” to indicate any and all of them. Our

approach handles all cases in the same manner. The first

cause of interrupts is address translation misses and errors

in the MMU while the Extension is trying to access

memory. A second cause is actual interrupts from

peripherals such as timers and I/O devices. A third cause

of interrupts is the case of errors inside the Extension,

such as unaligned addresses and overflows. We use a

transaction model based approach to handle all interrupts

in the Extension.

The basic block to be accelerated is analyzed and

divided into “transactions”. A transaction is a set of

instructions that terminate just before a memory

instruction. Even in the event the basic block has no

memory operations, there is still a maximum number of

cycles allowed before interrupts are permitted. The

maximum number of operations in a particular transaction

is currently fixed at 7. Future work might include taking

into account the actual latency/cost of the instructions

rather than an arbitrary fixed number.

The Extension must correctly indicate to the TISA

what is the re-start address for execution, e.g. after the

software interrupt handler returns. This address is termed

the Virtual PC (VIRPC), as the Extension is keeping track

of the PC as seen by the MIPS pipeline, even though the

Extension has no concept of instruction fetch or

instruction ordering mechanisms. The VIRPC address

simply corresponds to the start of each transaction in the

original basic block.

We illustrate the subdivision of a basic block in

transactions with an example in Figure 10. Transaction 1

terminates once the load instruction ([c]) is encountered.

Transaction 2 is terminated at the end of the maximum

allowed 7 instructions in the transaction. The remaining

instructions are part of transaction 3. The basic idea

behind the transactions scheme is to preserve the original

program order, while at the same time allowing for more

optimistic and more parallel execution inside the

Extension. The Extension will recognize an interrupt at

the next transaction boundary should an interrupt occur

 - 11 -

during the Extension’s execution. Any write-backs that are

due to a subsequent transaction are aborted.

[0] sll r1,r1,1

[4] sll r7,r1,2

[8] addu r7,r7,r8

[c] lw r7,0(r7)

[10] srl r3,r2,31

[14] or r1,r1,r3

[18] sll r2,r2,1

[1c] srl r3,r4,31

[20] or r2,r2,r3

[24] sll r4,r4,1

[28] srl r3,r5,31

[2c] or r4,r4,r3

[30] sltu r3,r1,r6

[34] beq r0,r3,4c

[38] sll r5,r5,1

Transaction 1

Transaction 2

Transaction 3

Figure 10: Example basic block illustrating the

concept of transactions.

The transaction model is used to perform write backs

in-order, but from the abstracted viewpoint of a

transaction, that is, the write backs in transaction 1 must

complete prior to any write backs in transaction 2.

However, the write backs inside a particular transaction

can be performed out of order. This limits the parallelism

generated by the circuit graph to some extent by imposing

the restriction of performing certain write backs in order.

We perceive this to not be a huge problem as the eMIPS

TISA interface allows for two register writes every cycle,

thus decreasing the possibility of bottlenecks at the

register file.

[0] sll r1,r1,1

[4] sll r7,r1,2

[8] addu r7,r7,r8

[c] lw r7,0(r7)

[10] srl r3,r2,31

[14] or r1,r1,r3

[18] sll r2,r2,1

[1c] srl r3,r4,31

[20] or r2,r2,r3

[24] sll r4,r4,1

[28] srl r3,r5,31

[2c] or r4,r4,r3

[30] sltu r3,r1,r6

[34] beq r0,r3,4c

[38] sll r5,r5,1

[0] sll r1,r1,1

[4] sll r7,r1,2

[8] addu r7,r7,r8

[c] lw r7,0(r7)

[10] srl r3,r2,31

[14] or r1,r1,r3

[18] sll r2,r2,1

[1c] srl r3,r4,31

[20] or r2,r2,r3

[24] sll r4,r4,1

[28] srl r3,r5,31

[2c] or r4,r4,r3

[30] sltu r3,r1,r6

[34] beq r0,r3,4c

[38] sll r5,r5,1

T1

T2

T3

9 Writebacks to the RF 6 Writebacks to the RF

Transactional Model No interrupt handling

Figure 11: Overhead of handling interrupts.

Figure 11 illustrates the overhead in terms of register

write-backs. In the case of generating hardware without

the support of interrupts only 6 write-backs are necessary

to the register file. It can be clearly seen that further

optimizations can be applied to this basic transaction

model. By just terminating Transaction 2 an instruction

before or after would have reduced the number of write-

backs by 2. This would have ensured only one extra write-

back in the transactional model approach.

M2V adds transactions registers to the Extension to

keep track of the current transaction being written back for

a particular state of the Extension. When the Extension

encounters an interrupt, the extension state machine

checks to see if the current state of the Extension is an end

of a transaction or not. If it is an end of a transaction, the

VIRPC is updated to reflect the address of the start of the

next transaction and the extension state machine is stalled

in that state. The Extension then waits for the resources to

be taken away by the pipeline arbiter and the Enable and

Grant signal to go low. Once the enable goes low, the

Extension lowers the ACK signal to signal the end of the

Extension at that transaction. The program then re-starts

execution from the VIRPC address on the main MIPS

processor, with the registers and other structures in the

correct state.

6.1 Implementation

We added a Transactions class to the M2V. The

Transactions class records the write-backs in a particular

transaction, and the start and end states of the write-backs

for a particular transaction.

Prior to the scheduling pass, M2V determines the

registers that must be written back to the Register File

(RF). If the transaction model is enabled by the M2V user

option, then the Transactions class is populated at this

point with the registers that need to be written back to the

RF. This information is stored in a queue data structure

named writeBacks, as part of the Transactions class. The

start address for each transaction, used as VIRPC, is also

populated at this point.

There is no change in the scheduling of operations in

the transaction model, the only difference being the write-

backs to the RF. For a given state, the compiler first

determines which transaction is currently being written

back. The compiler then iterates through its write-back

queue, regWrVec, to check if there are any pending write

backs for the current transaction, issuing the write-backs

in case of a match. This ensures that write-backs within a

transaction are performed as soon as the values are

available, potentially out-of-order. As part of this

scheduling, the starting state and ending state for write-

backs of a particular transaction are populated in the

Transactions class. This is later used in the Verilog

generating pass of the compiler as part of the extension

state machine.

 - 12 -

In the hardware implementation pass, we use a

register array in the Extension to maintain the transaction

information for a particular state of the Extension. This is

generated from the start and end states of the write-backs

as populated in the scheduling pass.

The extension state machine performs in the same

way without interrupts. In the event of an interrupt, the

state machine transitions states only till the end of the

current transaction. Once the end of the transaction is

identified, the extension state machine stalls and does not

perform any more operations/write-backs. This ensures

that the registers and memory are in the correct state to

resume execution at the next transaction PC address.

7 Hardware Implementation Details

Appendix III lists the complete Verilog code that

M2V generates for the basic block in Appendix I. There

are four contributions to the final Verilog file: the eMIPS

invariant code, the BBW dependent code, the circuit

graph dependent code, and the cycle dependent code.

Lines 1-580 of the Appendix are the first lines of

eMIPS invariant code in the accelerator definition. Lines

1-340 define the Extension’s top-level module, lines 341-

465 define the bus macros for the execution-to-write-back

interface, and lines 466-580 define the bus macros for the

instruction-decode-to-execution interface. Lines 1-340

are simply copied from m2v_mod_bp.v at runtime.

The Extension’s top-level module defines the

interface signals between the Extension and the rest of the

eMIPS design. It contains multiplexor logic for the shared

data busses to the register file and the program counter

update logic. It also instantiates four modules that make

up the core of the Extension: the instruction decode logic,

the execution logic, and the two bus macro modules.

The bus macros provide connectivity between the

extension logic and the primary eMIPS logic. They

represent physical routing locations and are required for

partial reconfiguration.

The instruction decode logic defined in lines 581-640

is BBW dependent code. This logic decodes the

instruction in parallel with the primary RISC pipeline. If

the opcode of the instruction matches the opcode of the

Extension, the logic will assert the RI signal so that the

extension logic can take control from the RISC pipeline.

The fall-through address for the basic block is sent to the

program counter. The fields within the instruction are

decoded and sent to the execution logic. This version of

M2V hardcodes the extension instruction to the MIPS “I”

format. The Circuit.emit_decode method generates this

code.

The extension execution logic is defined in lines 641-

1311. The execution logic is composed of invariant code,

BBW dependent code, circuit graph dependent code, and

cycle dependent code.

Lines 641-722 define the interface signals between

the execution logic and the rest of eMIPS. The signals are

invariant for every Extension and are copied from

m2v_ex_bp.v at runtime.

Lines 722-767 define the Verilog registers that are

used later in the execution logic. This code is circuit

graph and cycle dependent. The registers for the register

node values follow a convention to create an identifiable

mapping between the generated logic and the circuit

graph. The format is rX_Y[_r], where X is the actual

MIPS register, Y is the sequence number of the register

node, “_r” indicates that the value comes directly from a

register, and the absence of “_r” indicates that the value

comes from combinatorial logic. Thus, r9_3 is a

combinatorial value for MIPS register 9 that corresponds

to the register node with sequence number 3. The

Circuit.emitVarDecl method generates this code.

The last part of the above Verilog block, from 761-

767 is dependent on the transactional model and are

present only if the transactional model is enabled.

Lines 770-1077 define the state machines that

interface with the register file, the program counter logic

and the Memory Management Unit (MMU). This code is

invariant and is copied from m2v_state_mc.v at runtime.

These state machines are eMIPS-specific.

Lines 1113-1176 define the register file, program

counter and memory port usage for each cycle in the

Extension. Additionally, if the transactional model is

enabled, it contains information regarding the progress of

transactions with respect to the cycles in the Extension.

This information is used by the state machines defined in

lines 770-1077. Lines 800-900 define the memory state

machine part of the Extension, as shown in Figure 9. This

code is generated by the Circuit.emitCycState method.

Lines 1080 – 1113 define the transactional model

logic and the state machine used for the transactional

model. Methods Circuit.emitTransactionStateMachine

and Circuit.emitTransactionLogic generate this code.

Lines 1176-1216 define the register file interface

logic. Since there are limited ports on the register file, the

read and write addresses are scheduled onto the register

file address lines. Likewise, read data from the register

file must be routed to the correct register node, and write

data to the register file must come from the correct

calculation. The Circuit.emitRFLogic method generates

this code.

 - 13 -

Lines 1220-1240 define the pipeline registers needed

by the extension logic. When a calculation must be

pipelined, it is latched at the end of the calculation cycle

and held for the remainder of the Extension’s execution.

The Circuit.emitPipeReg method generates this code.

Lines 1240-1250 define the logic for generating the

address and data out to the memory for the memory

instruction in the basic block, if any. The

Circuit.emitMemLogic method generates this code.

Lines 1250-1290 define the combinatorial logic for

the instruction nodes. The Circuit.emitInstLogic method

generates this code.

Lines 1290-1311 define the primary extension state

machine. The state machine is 1-hot encoded with one

state representing one cycle in the schedule so the states

can be directly used as control signals. The machine is

idle until an Extension is successfully decoded and it steps

through each state in the Extension. The Circuit.emitESM

method generates this code.

8 Synthesis Reports

Appendix II contains the synthesis reports for three

different versions of the Extension hardware generated for

the same example basic block from Appendix I.

Figure A-1 is the synthesis report for the hardware

generated by M2V without the support for memory

instructions and interrupt handling. This report was

generated on an earlier version of eMIPS, with a different

data path and a different version of the Xilinx ISE tools. It

represents the state of the M2V compiler at the start of the

work described herein.

Figure A-2 is the synthesis report for the design

generated by the current M2V, with the support for

memory instructions but without the interrupt handling

capability. The addition to the design is mainly the

memory state machine logic. The reports show the effects

of the changes in the interfaces to the base data path that

have occurred since the initial release of eMIPS. There is

an approximate 1% reduction in area utilization due

mainly to the simplification of the memory interface. On

the other hand, the interface has grown considerably in

number of signals, as indicated by the number of IOs

parameter.

Figure A-3 is for the hardware generated with the

support for both memory operations and interrupts. It can

be seen from the statistics that there are extra registers

used in the case when the transactional model is enabled.

In addition, the percentage of total slices used increases

from 3% to 4%.

Overall, the added complexity from interrupts causes

a penalty in area utilization. This extra cost is balanced

almost exactly by the improvements garnered by the new

data path interfaces. A second improvement is shown in

the maximum frequency of the design, grown from about

170 MHz to about 210 MHz This is also due to the

interface changes.

9 Experimental Results

We tested the changes to the compiler with the

example basic block shown in Figure 6. The basic block is

a 64-bit division block seen in Doom with an extra

memory instruction (load from the stack pointer) inserted

to illustrate the working of memory access through the

instruction. To test interrupt handling, we generated timer

interrupts at short random intervals. The Extension was

simulated using ModelSim and the test program

simulation was run in Giano. The test program checked

over 500 test vectors for the 64-bit division and the test

passed successfully in all cases. The Extension always

reported the correct Virtual PC (VIRPC) address and the

transactional state machine worked as designed. There

was no time left in the internship to test on the actual

boards.

To test for code coverage, we ran the BBMatch and

the M2V compiler on 325 executable files from the code

base of the MMLite RTOS [21]. BBMatch extracted and

encoded about 150,000 blocks from these files. We then

ran the compiler on all the extracted blocks. The results

are shown in Table 1.

Table 1: M2V code coverage test results

No. files 325

No. blocks 146,057 Percent Total

Compiled ok 25,029 17.1%

Warnings 44,800 30.7%

Failure 76,228 52.2%

The large number of failures is actually due in large part

to a small number of unsupported instructions, especially

JAL, BLTZ, BGEZ, MULT, DIV, SLLV, and SRLV.

10 Conclusions

We have modified the eMIPS tool chain to remove

the last remaining obstacles for a fully-automated

generation of hardware accelerators. By supporting load

and stores, interrupts, and the automatic encoding of

extended instructions the compiler can now attack all of

the single-block cases of practical applications. Code

 - 14 -

coverage is currently 50% of the blocks in more than 300

executable files, with only a few unsupported instructions

responsible for most of the failures. The addition of

interrupt support to the M2V compiler is especially

relevant because there is now no limit to the span of an

accelerator, even in a general-purpose environment. An

arbitrarily long sequence of instructions can be

accelerated, without concerns for security or real-time

responsiveness.

Support for interrupts in the compiler causes the loss

of a little amount of parallelism, because of the in-order

write-backs requirement. Using a transactional model

mitigates this effect. The ability to perform two write-

backs to the register file in every cycle of the Extension

further mitigates this effect. The overhead of transactions

would be minimal in the case of large basic blocks with a

large number of extension states.

In future revisions of M2V, optimization algorithms

can be implemented to combine certain transactions to

minimize the amount of write-backs and reduce the

pressure on the register file.

Support for branches will have to be tested in the next

revision of M2V. The framework used for supporting

branches should be the same framework used for

interrupts. A (conditional) branch can be considered as

simply terminating a transaction.

References

[1] Aho, A. V.., Lam, M. S., Sethi, R., Ullman, J. D.

Compilers: Principles, Techniques, and Tools.

Addison Wesley Publishers, Boston, MA. 2007.

[2] Almeida, O., et al. Embedded Systems Research at

DemoFest’07. Microsoft Research Technical Report

MSR-TR-2007-94, July 2007.

[3] Altera Corp. Excalibur Embedded Processor

Solutions, 2005.
 .http://www.altera.com/products/devices/excalibur/excindex.html,

[4] Biswas, P., Banerjee, S., Dutt, N., Ienne, P., Pozzi, L.

Performance and Energy Benefits of Instruction Set

Extensions in an FPGA Soft Core VLSID’06, pag.

651-656

[5] Bonzini, P., Pozzi, L. Code Transformation

Strategies for Extensible Embedded Processors

CASES’06, pagg. 242-252.

[6] Forin, A., Lynch, N., L., Pittman, R. N. eMIPS,A

Dynamically Extensible Processor. Microsoft

Research Technical Report MSR-TR-2006-143,

October 2006.

 [7] Hauck, S. et al. The Chimaera Reconfigurable

Functional Unit. IEEE VLSI, 2004.

 [8] Hauser, J. R., Wawrzynek, J. Garp: A MIPS

Processor with a Reconfigurable Coprocessor.

FCCM’97 pagg 12-21, April 1997.

[9] Hennessy, J. L., Patterson, D.A. Computer

Organization and Design: The Hardware/Software

Interface. Morgan Kaufmann Publishers, San

Francisco, CA. 1998.

[10] Kane, G., Heinrich, J. MIPS RISC Architecture.

Prentice Hall, Upper Saddle River, NJ. 1992.

[11] Kastner, R., Kaplan, A., Ogrenci Memik, S.

Bozorgzadeh, E. Instruction generation for hybrid

reconfigurable systems TODAES vol. 7, no. 4, pagg.

605-632, October 2002.

[12] Lau, D., Pritchard, O., Molson, P. Automated

Generation of Hardware Accelerators with Direct

Memory Access from ANSI/ISO Standard C

Functions. FCCM’06, pagg. 45-54, April 2006.

[13] Stretch, Inc. http://www.stretchinc.com 2006.

[14] Tensilica, Inc. http://www.tensilica.com, 2006.

[15] Xilinx Inc. Virtex 4 Family Overview. Xilinx Inc.,

June 2005. Available at

http://direct.xilinx.com/bvdocs/publications/ds112.pdf
[16] Meier, K., Forin, A. MIPS-to-Verilog, Hardware

Compilation for the eMIPS Processor, MSR-TR-

2007-128, Microsoft Research, WA, September 2007.

[17] Mittal, G., Zaretsky, D.C., Xiaoyong Tang,

Banerjee, P. Automatic translation of software

binaries onto FPGAs Design Automation Conference,

2004. Proceedings. 41
st

[18] Mittal, G., Zaretsky, D.C., Xiaoyong Tang,

Banerjee, P. An overview of a compiler for mapping

software binaries to hardware IEEE VLSI, 2007.

[19] Chandrasekhar, V., Forin, A. Mining Sequential

Programs for Coarse-grained Parallelism using

Virtualization, MSR-TR-2008-113, Microsoft

Research, WA, August 2008.

[20] Available at

http://research.microsoft.com/research/msagl/

[21] Available at http://research.microsoft.com/invisible/

[22] Available at

http://research.microsoft.com/research/EmbeddedSyst

ems/Giano/giano.aspx

http://www.altera.com/products/devices/excalibur/excindex.html
http://www.stretchinc.com/
http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://research.microsoft.com/research/msagl/
http://research.microsoft.com/invisible/
http://research.microsoft.com/research/EmbeddedSystems/Giano/giano.aspx
http://research.microsoft.com/research/EmbeddedSystems/Giano/giano.aspx

 - 15 -

Appendix I – BBW File for Example Basic Block

[bbname __ull_div]

MIPSBE

[encoding]

[r1=r2+1;r3=r0+11;r5=r4+1;r6=r5+1]b26.6:c011110;b21.5:r4;b16.5:r2;b0.16:v0;

[code 48]

40080100

c21f0200

25082300

40100200

c21f0400

25104300

40200400

c21f0500

25208300

2b182600

5000310

40280500

[disasm]

sll r1,r1,1

srl r3,r2,31

or r1,r1,r3

sll r2,r2,1

srl r3,r4,31

or r2,r2,r3

sll r4,r4,1

srl r3,r5,31

or r4,r4,r3

sltu r3,r1,r6

beq r0,r3,40

sll r5,r5,1

[registers 7]

0,9,8,11,4,5,6

[valuess 1]

{40,11,5}

 - 16 -

Appendix II - Synthesis reports for the Generated Extension hardware

Figure A-1. Synthesis report for the Verilog code generated from version 1 of M2V

Macro Statistics

Registers : 489

 Flip-Flops : 489

Device utilization summary:

Selected Device : 4vlx25ff668-10

 Number of Slices: 366 out of 10752 3%

 Number of Slice Flip Flops: 489 out of 21504 2%

 Number of 4 input LUTs: 653 out of 21504 3%

 Number of IOs: 558

 Number of bonded IOBs: 0 out of 448 0%

Timing Summary:

Speed Grade: -10

 Minimum period: 4.864ns (Maximum Frequency: 205.579MHz)

 Minimum input arrival time before clock: 4.189ns

 Maximum output required time after clock: 6.486ns

 Maximum combinational path delay: 5.811ns

Figure A-2. Synthesis report for the Verilog code generated from M2V with the memory state machine

 - 17 -

Macro Statistics

Registers : 496

 Flip-Flops : 496

Device utilization summary:

Selected Device : 4vlx25ff668-10

 Number of Slices: 450 out of 10752 4%

 Number of Slice Flip Flops: 496 out of 21504 2%

 Number of 4 input LUTs: 796 out of 21504 3%

 Number of IOs: 558

 Number of bonded IOBs: 0 out of 448 0%

Timing Summary:

Speed Grade: -10

Minimum period: 4.739ns (Maximum Frequency: 211.006MHz)

Minimum input arrival time before clock: 4.064ns

Maximum output required time after clock: 7.037ns

Maximum combinational path delay: 6.362ns

Figure A-3. Synthesis report for the Verilog code generated from M2V with the Transactional model for interrupt

support enabled

 - 18 -

Appendix III – Verilog Output for the Example Basic Block 1

 2
// a.v 3
// auto-generated by m2v revision 1 on Fri Aug 15 15:46:50 2008 4
// 5
// INFO: reading from m2v_mod_bp.v 6
// 7
// m2v_mod_bp.v 8
// 8/15/07 9
// Karl Meier, Neil Pittman 10
// 11
// MIPS to Verilog (m2v) module (_mod) boilerplate (_bp) 12
// 13
// Copyright (c) Microsoft Corporation. All rights reserved. 14
 15
`timescale 1ns / 1ps 16
 17
module mmlite_div64 (18
/*****Ports**/ 19
 /* INPUT PORTS */ 20
 input CLK, /* System Clock 50 - 100 MHZ */ 21
 input EN, /* Enable */ 22
 input EXCEXT, /* Exception Flush */ 23
 input EXTNOP_MA, /* Extension Bubble in Memory Access Phase */ 24
 input GR, /* Grant Pipeline Resources */ 25
 input [31:0] INSTR, /* Current Instruction */ 26
 input [31:0] PC, /* Current PC External */ 27
 input PCLK, /* Pipeline Clock */ 28
 input [31:0] RDREG1DATA, /* Register Read Port 1 Register Data */ 29
 input [31:0] RDREG2DATA, /* Register Read Port 2 Register Data */ 30
 input [31:0] RDREG3DATA, /* Register Read Port 3 Register Data */ 31
 input [31:0] RDREG4DATA, /* Register Read Port 4 Register Data */ 32
 input REGEMPTY, /* Register Write Buffer Empty */ 33
 input REGFULL, /* Register Write Buffer Full */ 34
 input REGRDY, /* Register Write Buffer Ready */ 35
 input RESET, /* System Reset */ 36
 input [31:0] MDATA_IN, /* Memory Data In */ 37
 /* Multiplexed: */ 38
 /* Memory Data In */ 39
 /* Peripheral Memory Data In */ 40
 /* Memory Data Monitor */ 41
 input MDATA_VLD_IN, /* Memory Data Valid */ 42
 43
 /* OUTPUT PORTS */ 44
 output ACK, /* Enable Acknowledged */ 45
 output [31:0] EXTADD, /* Extension Address */ 46
 /* Multiplexed: */ 47
 /* Next PC */ 48
 /* Exception Address */ 49
 /* PC Memory Access Phase */ 50
 output PCNEXT, /* Conditional PC Update */ 51
 output [4:0] RDREG1, /* Register Read Port 1 Register Number */ 52
 /* Multiplexed: */ 53
 /* Register Read Port 1 Register Number */ 54
 /* Register Write Port 1 Register Number */ 55
 /* Write Register Memory Access Phase */ 56
 output [4:0] RDREG2, /* Register Read Port 2 Register Number */ 57
 /* Multiplexed: */ 58
 /* Register Read Port 2 Register Number */ 59
 /* Register Write Port 2 Register Number */ 60
 /* <0> Register Write Enable Memory Access Phase */ 61
 /* <1> Memory to Register Memory Acess Phase */ 62
 output [4:0] RDREG3, /* Register Read Port 3 Register Number */ 63
 /* Multiplexed: */ 64
 /* Register Read Port 3 Register Number */ 65
 output [4:0] RDREG4, /* Register Read Port 4 Register Number Internal */ 66

 - 19 -

 /* Multiplexed: */ 67
 /* Register Read Port 4 Register Number */ 68
 /* <1:0> Data Address [1:0] Memory Access Phase */ 69
 /* <2> Right/Left Unaligned Load/Store Memory Access Phase */ 70
 /* <3> Byte/Halfword Load/Store Memory Acess Phase */ 71
 output REGWRITE1, /* Register Write Port 1 Write Enable */ 72
 output REGWRITE2, /* Register Write Port 2 Write Enable */ 73
 output REWB, /* Re-enter at Writeback */ 74
 output RI, /* Reserved/Recognized Instruction */ 75
 output [31:0] WRDATA1, /* Register Write Port 1 Data Internal */ 76
 /* Multiplexed: */ 77
 /* Register Write Port 1 Data */ 78
 /* ALU Result Memory Access Phase */ 79
 output [31:0] WRDATA2, /* Register Write Port 2 Data Internal */ 80
 /* Multiplexed: */ 81
 /* Register Write Port 2 Data */ 82
 /* Memory Data Out Memory Access Phase */ 83
 output BLS_OUT, /* Byte Load/Store */ 84
 output HLS_OUT, /* Halfword Load/Store */ 85
 output RNL_OUT, /* Memory Right/Left Unaligned Load/Store */ 86
 output [31:0] MADDR_OUT, /* Memory Address */ 87
 output [31:0] MDATA_OUT, /* Memory Data Out */ 88
 /* Multiplexed: */ 89
 /* Memory Data Out */ 90
 /* Peripheral Memory Data Out */ 91
 output MOE_OUT, /* Memory Output Enable */ 92
 output MWE_OUT /* Memory Write Enable */ 93
); 94
 95
/*****Signals**/ 96
 97
 wire [31:0] ALURESULT_WB; /* ALU Result to Writeback Phase */ 98
 wire BHLS_WB; /* Byte/Halfword Load/Store to Writeback Phase */ 99
 wire [31:0] CJMPADD; /* Conditional Jump address to offset from Current PC */ 100
 wire [15:0] DIMM_EX; /* Data Immediate Execute Phase */ 101
 wire [15:0] DIMM_ID; /* Data Immediate Instruction Decode Phase */ 102
 wire [1:0] DMADD_WB; /* Least Significant Bits of Data Address to Writeback Phase */ 103
 wire [31:0] DMDATAOUT_WB; /* Memory Data Out to Writeback Phase */ 104
 wire DNE; /* Execution Done */ 105
 wire EN_EX; /* Enable Execute Phase */ 106
 wire [31:0] JMPADD; /* Jump address to end of basic block */ 107
 wire MEMTOREG_WB; /* Memory to Register to Writeback Phase */ 108
 wire [31:0] PC_EX; /* PC Execute Phase */ 109
 wire [31:0] PC_WB; /* PC to Writeback Phase */ 110
 wire [4:0] RD_EX; /* Destination Register Execution Phase */ 111
 wire [4:0] RDREG1_EX; /* Register Read Port 1 Register Number Execute Phase */ 112
 wire [31:0] RDREG1DATA_EX; /* Register Read Port 1 Register Data Execute Phase */ 113
 wire [4:0] RDREG2_EX; /* Register Read Port 2 Register Number Execute Phase */ 114
 wire [31:0] RDREG2DATA_EX; /* Register Read Port 2 Register Data Execute Phase */ 115
 wire [4:0] RDREG3_EX; /* Register Read Port 3 Register Number Execute Phase */ 116
 wire [4:0] RDREG4_EX; /* Register Read Port 4 Register Number Execute Phase */ 117
 wire REGWRITE_EX; /* Register Write Execute Phase */ 118
 wire REGWRITE_ID; /* Register Write Instruction Decode Phase */ 119
 wire REGWRITE_WB; /* Register Write to Writeback Phase */ 120
 wire RESET_EX; /* Reset Execute Phase */ 121
 wire [31:0] RESULT_EX; /* Result Execution Phase */ 122
 wire RNL_WB; /* Right/Left Unaligned Load/Store to Writeback Phase */ 123
 wire [4:0] RS_EX; /* Operand Register 1 Execute Phase */ 124
 wire [4:0] RS_ID; /* Operand Register 1 Instruction Decode Phase */ 125
 wire [4:0] RT_EX; /* Operand Register 2 Execute Phase */ 126
 wire [4:0] RT_ID; /* Operand Register 2 Instruction Decode Phase */ 127
 wire SLL128_EX; /* Shift Left Logical 128 bits Execute Phase */ 128
 wire SLL128_ID; /* Shift Left Logical 128 bits Instruction Decode Phase */ 129
 wire [31:0] WRDATA1_EX; /* Register Write Port 1 Data Execute Phase */ 130
 wire [31:0] WRDATA2_EX; /* Register Write Port 2 Data Execute Phase */ 131
 wire [4:0] WRREG_WB; /* Write Register Number to Writeback Phase */ 132
 wire [4:0] WRREG1_EX; /* Register Write Port 1 Register Number Execute Phase */ 133

 - 20 -

 wire [4:0] WRREG2_EX; /* Register Write Port 2 Register Number Execute Phase */ 134
 wire [31:0] VIRPC; 135
 136
/*****Registers**/ 137
 138
 reg en_reg; /* Enable */ 139
 reg gr_reg; /* Grant Pipeline Resources */ 140
 141
/*****Initialization**/ 142
/* 143
 initial 144
 begin 145
 en_reg = 1'b0; 146
 gr_reg = 1'b0; 147
 end 148
*/ 149
 150
/***/ 151
 152
 assign EXTADD = (EXCEXT)? VIRPC: 153
 (en_reg)? JMPADD: 154
 (PCNEXT)? CJMPADD: 155
 (REWB)? PC_WB: 156
 32'hffffffff; 157
 /* 158
 * The rest cannot be zero'ed out as the extension state machine 159
 * might still have to be completed till a particular transaction ends 160
 */ 161
 assign RDREG1 = (gr_reg & REGWRITE1)? WRREG1_EX: 162
 //(EXCEXT)? 5'b0: 163
 (REWB & gr_reg)? WRREG_WB: 164
 (gr_reg)? RDREG1_EX: 165
 5'b11111; 166
 assign RDREG2 = (gr_reg & REGWRITE2)? WRREG2_EX: 167
 //(EXCEXT)? 5'b0: 168
 (REWB & gr_reg)? {3'b0,MEMTOREG_WB,REGWRITE_WB}: 169
 (gr_reg)? RDREG2_EX: 170
 5'b11111; 171
 assign RDREG3 = (REWB & gr_reg)? 5'b0: 172
 //(EXCEXT)? 5'b0: 173
 (gr_reg)? RDREG3_EX: 174
 5'b11111; 175
 assign RDREG4 = (REWB & gr_reg)? {1'b0,BHLS_WB,RNL_WB,DMADD_WB}: 176
 //(EXCEXT)? 5'b0: 177
 (gr_reg)? RDREG4_EX: 178
 5'b11111; 179
 assign WRDATA1 = (gr_reg & REGWRITE1)? WRDATA1_EX: 180
 //(EXCEXT)? 32'b0: 181
 (REWB)? ALURESULT_WB: 182
 32'hffffffff; 183
 assign WRDATA2 = (gr_reg & REGWRITE2)? WRDATA2_EX: 184
 //(EXCEXT)? 32'b0: 185
 (REWB)? DMDATAOUT_WB: 186
 32'hffffffff; 187
 188
 189
 // 190
 // instantiate the instruction decode module for the extension instruction 191
 // - the instruction decode module is auto generated and appended to the 192
 // end of the verilog file (a.v unless redefined) 193
 // 194
 195
 ext_id id (196
 .CLK(CLK), 197
 .DIMM(DIMM_ID), 198
 .EN(EN), 199
 .JMPADD(JMPADD), 200

 - 21 -

 .INSTR(INSTR), 201
 .PC(PC), 202
 .REGWRITE(REGWRITE_ID), 203
 .RESET(RESET), 204
 .RI(RI), 205
 .RS(RS_ID), 206
 .RT(RT_ID), 207
 .SLL128(SLL128_ID) 208
); 209
 210
/*****Instruction Decode -> Execute**/ 211
 212
 mmldiv64_toex to_ex(213
 .ACK(ACK), 214
 .CLK(CLK), 215
 .DIMM_EX(DIMM_EX), 216
 .DIMM_ID(DIMM_ID), 217
 .EN_EX(EN_EX), 218
 .EN_ID(EN), 219
 .EXCEXT(EXCEXT), 220
 .PC_EX(PC_EX), 221
 .PC_ID(PC), 222
 .PCLK(PCLK), 223
 .RDREG1DATA_EX(RDREG1DATA_EX), 224
 .RDREG1DATA_ID(RDREG1DATA), 225
 .RDREG2DATA_EX(RDREG2DATA_EX), 226
 .RDREG2DATA_ID(RDREG2DATA), 227
 .REGWRITE_EX(REGWRITE_EX), 228
 .REGWRITE_ID(REGWRITE_ID), 229
 .RESET(RESET), 230
 .RESET_EX(RESET_EX), 231
 .RS_EX(RS_EX), 232
 .RS_ID(RS_ID), 233
 .RT_EX(RT_EX), 234
 .RT_ID(RT_ID), 235
 .SLL128_ID(SLL128_ID), 236
 .SLL128_EX(SLL128_EX) 237
); 238
 239
 240
 // 241
 // instantiate the execution module for the extension instruction 242
 // - the execution module is auto generated and appended to the 243
 // end of the verilog file (a.v unless redefined) 244
 // 245
 246
 ext_ex ex(247
 .ACK(ACK), 248
 .DIMM(DIMM_EX), 249
 .DNE(DNE), 250
 .CLK(CLK), 251
 .CJMPADD(CJMPADD), 252
 .EN(EN_EX), 253
 .EXTNOP_MA(EXTNOP_MA), 254
 .GR(GR), 255
 .PC(PC_EX), 256
 .PCLK(PCLK), 257
 .PCNEXT(PCNEXT), 258
 .RD(RD_EX), 259
 .RDREG1(RDREG1_EX), 260
 .RDREG1DATA(RDREG1DATA), 261
 .RDREG1DATA_ID(RDREG1DATA_EX), 262
 .RDREG2(RDREG2_EX), 263
 .RDREG2DATA(RDREG2DATA), 264
 .RDREG2DATA_ID(RDREG2DATA_EX), 265
 .RDREG3(RDREG3_EX), 266
 .RDREG3DATA(RDREG3DATA), 267

 - 22 -

 .RDREG4(RDREG4_EX), 268
 .RDREG4DATA(RDREG4DATA), 269
 .REGEMPTY(REGEMPTY), 270
 .REGFULL(REGFULL), 271
 .REGRDY(REGRDY), 272
 .REGWRITE1(REGWRITE1), 273
 .REGWRITE2(REGWRITE2), 274
 .RESET(RESET_EX), 275
 .RESULT(RESULT_EX), 276
 .RS(RS_EX), 277
 .RT(RT_EX), 278
 .SLL128(SLL128_EX), 279
 .WRDATA1(WRDATA1_EX), 280
 .WRDATA2(WRDATA2_EX), 281
 .WRREG1(WRREG1_EX), 282
 .WRREG2(WRREG2_EX), 283
 .MDATA_IN(MDATA_IN), 284
 .MDATA_VLD_IN(MDATA_VLD_IN), 285
 .BLS_OUT(BLS_OUT), 286
 .HLS_OUT(HLS_OUT), 287
 .RNL_OUT(RNL_OUT), 288
 .MOE_OUT(MOE_OUT), 289
 .MWE_OUT(MWE_OUT), 290
 .MADDR_OUT(MADDR_OUT), 291
 .MDATA_OUT(MDATA_OUT), 292
 .EXCEXT(EXCEXT), 293
 .VIRPC(VIRPC) 294
); 295
 296
/*****Execute -> to Writeback**/ 297
 298
 mmldiv64_topipe_wb to_wb(299
 .ACK(ACK), 300
 .ALURESULT_WB(ALURESULT_WB), 301
 .BHLS_WB(BHLS_WB), 302
 .CLK(CLK), 303
 .DMADD_WB(DMADD_WB), 304
 .DMDATAOUT_WB(DMDATAOUT_WB), 305
 .DNE(DNE), 306
 .EN_EX(EN_EX), 307
 .EXCEXT(EXCEXT), 308
 .EXTNOP_MA(EXTNOP_MA), 309
 .PC_EX(PC_EX), 310
 .PC_WB(PC_WB), 311
 .PCLK(PCLK), 312
 .MEMTOREG_WB(MEMTOREG_WB), 313
 .RD_EX(RD_EX), 314
 .REGWRITE_EX(REGWRITE_EX), 315
 .REGWRITE_WB(REGWRITE_WB), 316
 .RESET(RESET), 317
 .RESULT_EX(RESULT_EX), 318
 .REWB(REWB), 319
 .RNL_WB(RNL_WB), 320
 .WRREG_WB(WRREG_WB) 321
); 322
 323
/***/ 324
 325
 always@(posedge CLK) 326
 begin 327
 if (RESET == 1'b0) 328
 begin 329
 en_reg <= 1'b0; 330
 gr_reg <= 1'b0; 331
 end 332
 else 333
 begin 334

 - 23 -

 en_reg <= EN; 335
 gr_reg <= GR; 336
 end 337
 end 338
 339
endmodule 340
 341
 342
 343
/*****Execute -> to Writeback**/ 344
 345
module mmldiv64_topipe_wb(346
/*****Ports**/ 347
 /* INPUT PORTS */ 348
 input ACK, /* Enable Acknowledged */ 349
 input CLK, /* System Clock 50 - 100 MHZ */ 350
 input DNE, /* Execution Done */ 351
 input EN_EX, /* Enable Execute Phase */ 352
 input EXCEXT, /* Exception Flush */ 353
 input EXTNOP_MA, /* Extension Bubble in Memory Access Phase */ 354
 input [31:0] PC_EX, /* Current PC Execute Phase */ 355
 input PCLK, /* Pipeline Clock */ 356
 input [4:0] RD_EX, /* Destination Register Execution Phase */ 357
 input REGWRITE_EX, /* Register Write Execute Phase */ 358
 input RESET, /* System Reset */ 359
 input [31:0] RESULT_EX, /* Result Execution Phase */ 360
 /* OUTPUT PORTS */ 361
 output [31:0] ALURESULT_WB, /* ALU Result to Writeback Phase */ 362
 output BHLS_WB, /* Byte/Halfword Load/Store to Writeback Phase */ 363
 output [1:0] DMADD_WB, /* Least Significant Bits of Data Address to Writeback Phase */ 364
 output [31:0] DMDATAOUT_WB, /* Memory Data Out to Writeback Phase */ 365
 output MEMTOREG_WB, /* Memory to Register to Writeback Phase */ 366
 output [31:0] PC_WB, /* Current PC to Writeback Phase */ 367
 output REGWRITE_WB, /* Register Write to Writeback Phase */ 368
 output REWB, /* Re-enter at Writeback */ 369
 output RNL_WB, /* Right/Left Unaligned Load/Store to Writeback Phase */ 370
 output [4:0] WRREG_WB /* Write Register Number to Writeback Phase */ 371
); 372
 373
/*****Signals**/ 374
 375
 wire EN_WB; /* Enable to Writeback Phase */ 376
 wire RESET_WB; /* Reset to Writeback Phase */ 377
 378
/*****Registers**/ 379
 380
 reg [70:0] ex_wb; /* Execute -> to Writeback Pipeline Register */ 381
 reg [1:0] pclkcnt; /* Pipeline Clock edge detection */ 382
 reg reset_reg; /* Reset to Writeback Phase */ 383
 reg rewb_reg; /* Re-enter at Writeback */ 384
 385
/*****Initialization**/ 386
/* 387
 initial 388
 begin 389
 ex_wb = 71'b0; 390
 pclkcnt = 2'b0; 391
 rewb_reg = 1'b0; 392
 reset_reg = 1'b0; 393
 end 394
*/ 395
/***/ 396
 397
 assign RESET_WB = reset_reg; 398
 assign REWB = rewb_reg & EN_WB; 399
 assign EN_WB = ex_wb[70]; //EN_EX; 400
 assign REGWRITE_WB = ex_wb[69]; //REGWRITE_EX; 401

 - 24 -

 assign MEMTOREG_WB = 1'b0; 402
 assign RNL_WB = 1'b0; 403
 assign BHLS_WB = 1'b0; 404
 assign DMADD_WB = 2'b0; 405
 assign WRREG_WB = ex_wb[68:64]; //RD_EX; 406
 assign ALURESULT_WB = ex_wb[63:32]; //RESULT_EX; 407
 assign DMDATAOUT_WB = 32'b0; 408
 assign PC_WB = ex_wb[31:0]; //PC_EX; 409
 410
/***/ 411
 412
 always@(posedge CLK) 413
 begin 414
 /* Pipeline Clock edge detection */ 415
 pclkcnt = {pclkcnt[0],PCLK}; // karl, 9/19, change to non-blocking to 416
 // match Neil 417
 end 418
 419
 always@(posedge CLK) 420
 begin 421
 case(pclkcnt) 422
 2'b01 : begin 423
 /* Synchronize Reset to Pipeline Clock */ 424
 reset_reg <= RESET; 425
 end 426
 default : begin 427
 end 428
 endcase 429
 end 430
 431
 always@(posedge CLK) 432
 begin 433
 /* Execute -> to Memory Access Pipeline Register */ 434
 casex({pclkcnt,RESET_WB,EXTNOP_MA,rewb_reg,ACK,DNE,EXCEXT}) 435
 8'bxx0xxxxx : begin 436
 /* Reset */ 437
 rewb_reg <= 1'b0; 438
 ex_wb <= 71'b0; 439
 end 440
 8'b011xxxx1 : begin 441
 /* Exception in Pipeline, Flush */ 442
 rewb_reg <= 1'b0; 443
 ex_wb <= 71'b0; 444
 end 445
 8'bxx1x0110 : begin 446
 /* Latch Data and Control after Execution Finishes */ 447
 ex_wb <= {EN_EX,REGWRITE_EX,RD_EX,RESULT_EX,PC_EX}; 448
 end 449
 8'b101100x0 : begin 450
 /* Raise REWB at next Negedge of PCLK after ACK Lowers */ 451
 rewb_reg <= 1'b1; 452
 end 453
 8'b011x1xx0 : begin 454
 /* Lower REWB at next Posedge and reset register */ 455
 rewb_reg <= 1'b0; 456
 ex_wb <= 71'b0; 457
 end 458
 default : begin 459
 /* NOP */ 460
 end 461
 endcase 462
 end 463
endmodule 464
 465
 466
/*****Instruction Decode -> Execute**/ 467
 468

 - 25 -

module mmldiv64_toex(469
/*****Ports**/ 470
 /* INPUT PORTS */ 471
 input ACK, /* Enable Acknowledged */ 472
 input CLK, /* System Clock 50 - 100 MHZ */ 473
 input [15:0] DIMM_ID, /* Data Immediate Instruction Decode Phase */ 474
 input EN_ID, /* Enable Instruction Decode Phase */ 475
 input EXCEXT, /* Exception Flush */ 476
 input [31:0] PC_ID, /* Current PC Decode Phase */ 477
 input PCLK, /* Pipeline Clock */ 478
 input [31:0] RDREG1DATA_ID, /* Register Read Port 1 Register Data Instruction Decode Phase */ 479
 input [31:0] RDREG2DATA_ID, /* Register Read Port 2 Register Data Instruction Decode Phase */ 480
 input REGWRITE_ID, /* Register Write Instruction Decode Phase*/ 481
 input RESET, /* System Reset */ 482
 input [4:0] RS_ID, /* Operand Register 1 Instruction Decode Phase */ 483
 input [4:0] RT_ID, /* Operand Register 2 Instruction Decode Phase */ 484
 input SLL128_ID, /* Shift Left Logical 128 bits Instruction Decode Phase */ 485
 /* OUTPUT PORTS */ 486
 output [15:0] DIMM_EX, /* Data Immediate Execute Phase */ 487
 output EN_EX, /* Enable Execute Phase */ 488
 output [31:0] PC_EX, /* Current PC Instruction Decode Phase */ 489
 output [31:0] RDREG1DATA_EX, /* Register Read Port 1 Register Data Execute Phase */ 490
 output [31:0] RDREG2DATA_EX, /* Register Read Port 2 Register Data Execute Phase */ 491
 output REGWRITE_EX, /* Register Write Execute Phase*/ 492
 output RESET_EX, /* Reset Execute Phase */ 493
 output [4:0] RS_EX, /* Operand Register 1 Execute Phase */ 494
 output [4:0] RT_EX, /* Operand Register 2 Execute Phase */ 495
 output SLL128_EX /* Shift Left Logical 128 bits Execute Phase */ 496
); 497
 498
/*****Registers**/ 499
 500
 reg [124:0] id_ex; /* Instruction Decode -> Execute Pipeline Register */ 501
 reg [1:0] pclkcnt; /* Pipeline Clock edge detection */ 502
 reg reset_reg; /* Reset Execute Phase */ 503
 504
/*****Initialization**/ 505
 506
/* 507
 initial 508
 begin 509
 id_ex = 125'b0; 510
 pclkcnt = 2'b0; 511
 reset_reg = 1'b0; 512
 end 513
*/ 514
 515
/***/ 516
 517
 assign RESET_EX = reset_reg; 518
 assign EN_EX = id_ex[124]; //EN_ID; 519
 assign SLL128_EX = id_ex[123]; //SLL128_ID; 520
 assign REGWRITE_EX = id_ex[122]; //REGWRITE_ID; 521
 assign RS_EX = id_ex[121:117]; //RS_ID; 522
 assign RT_EX = id_ex[116:112]; //RT_ID; 523
 assign DIMM_EX = id_ex[111:96]; //DIMM_ID; 524
 assign PC_EX = id_ex[95:64]; //PC_ID; 525
 assign RDREG1DATA_EX = id_ex[63:32]; //RDREG1DATA_ID; 526
 assign RDREG2DATA_EX = id_ex[31:0]; //RDREG2DATA_ID 527
 528
/***/ 529
 530
 always@(posedge CLK) 531
 begin 532
 /* Pipeline Clock edge detection */ 533
 pclkcnt = {pclkcnt[0],PCLK}; // karl, 9/19, change to non-blocking to 534
 // match Neil 535

 - 26 -

 end 536
 537
 always@(posedge CLK) 538
 begin 539
 case(pclkcnt) 540
 2'b01 : begin 541
 /* Synchronize Reset to Pipeline Clock */ 542
 reset_reg <= RESET; 543
 end 544
 default : begin 545
 end 546
 endcase 547
 end 548
 549
 always@(posedge CLK) 550
 begin 551
 /* Instruction Decode -> Execute Pipeline Register */ 552
 casex({pclkcnt,RESET_EX,ACK,EXCEXT}) 553
 5'bxx0xx : begin 554
 /* Reset */ 555
 id_ex <= 109'b0; 556
 end 557
 5'b011x1 : begin 558
 /* Exception in Pipeline, Flush */ 559
 id_ex <= 109'b0; 560
 end 561
 5'bxx110 : begin 562
 /* Hold state during Execute Phase */ 563
 end 564
 5'b01100 : begin 565
 /* Clocking the Pipeline */ 566
 id_ex <= {EN_ID,SLL128_ID,REGWRITE_ID,RS_ID,RT_ID,DIMM_ID,PC_ID,RDREG1DATA_ID,RDREG2DATA_ID}; 567
 end 568
 default : begin 569
 /* NOP */ 570
 end 571
 endcase 572
 end 573
endmodule 574
 575
 576
// 577
// INFO: finished reading from m2v_mod_bp.v 578
// 579
 580
// 581
// extension instruction decode 582
// 583
module ext_id(584
 input CLK, 585
 input EN, 586
 input [31:0] INSTR, 587
 input [31:0] PC, 588
 input RESET, 589
 590
 output reg [15:0] DIMM, 591
 output reg [31:0] JMPADD, 592
 output reg REGWRITE, 593
 output reg RI, 594
 output reg [4:0] RS, 595
 output reg [4:0] RT, 596
 output reg SLL128 597
); 598
 599
 reg [31:0] jmpadd_c; 600
 reg en_r; 601
 reg [5:0] op_r; 602

 - 27 -

 reg [31:0] pc_r; 603
 reg opcode_match; 604
 605
 // combinatorial logic for instruction decode 606
 always @ (*) begin 607
 jmpadd_c = pc_r + 48 + 4; 608
 opcode_match = (op_r == 30); 609
 end 610
 611
 // sequential logic for instruction decode 612
 always @ (posedge CLK) begin 613
 if (!RESET) begin 614
 DIMM <= 16'h0; 615
 op_r <= 6'h0; 616
 RS <= 5'h0; 617
 RT <= 5'h0; 618
 en_r <= 1'h0; 619
 pc_r <= 32'h0; 620
 JMPADD <= 32'h0; 621
 RI <= 1'h1; 622
 SLL128 <= 1'h0; 623
 REGWRITE <= 1'h0; 624
 end else begin 625
 DIMM <= INSTR[15:0]; 626
 op_r <= INSTR[31:26]; 627
 RS <= INSTR[25:21]; 628
 RT <= INSTR[20:16]; 629
 en_r <= EN; 630
 pc_r <= PC; 631
 JMPADD <= jmpadd_c; 632
 RI <= ~opcode_match; 633
 SLL128 <= en_r & opcode_match; 634
 REGWRITE <= en_r & opcode_match; 635
 end 636
 end 637
endmodule 638
 639
// 640
// INFO: reading from m2v_ex_bp.v 641
// 642
// m2v_ex_bp.v 643
// 8/15/07 644
// Karl Meier, Neil Pittman 645
// 646
// MIPS to Verilog (m2v) execution (_ex) boilerplate (_bp) 647
// 648
// Copyright (c) Microsoft Corporation. All rights reserved. 649
// 650
 651
module ext_ex (652
/*****Ports**/ 653
 /* INPUT PORTS */ 654
 input CLK, /* System Clock 50 - 100 MHZ */ 655
 input [15:0] DIMM, /* Data Immediate */ 656
 input EN, /* Enable */ 657
 input EXTNOP_MA, /* Extension Bubble in Memory Access Phase */ 658
 input GR, /* Grant Pipeline Resources */ 659
 input [31:0] PC, /* Current PC */ 660
 input PCLK, /* Pipeline Clock */ 661
 input [31:0] RDREG1DATA, /* Register Read Port 1 Register Data */ 662
 input [31:0] RDREG1DATA_ID, /* Register Read Port 1 Register Data Instruction Decode Phase */ 663
 input [31:0] RDREG2DATA, /* Register Read Port 2 Register Data */ 664
 input [31:0] RDREG2DATA_ID, /* Register Read Port 2 Register Data Instruction Decode Phase */ 665
 input [31:0] RDREG3DATA, /* Register Read Port 3 Register Data */ 666
 input [31:0] RDREG4DATA, /* Register Read Port 4 Register Data */ 667
 input REGEMPTY, /* Register Write Buffer Empty */ 668
 input REGFULL, /* Register Write Buffer Full */ 669

 - 28 -

 input REGRDY, /* Register Write Buffer Ready */ 670
 input RESET, /* System Reset */ 671
 input [4:0] RS, /* Operand Register 1 */ 672
 input [4:0] RT, /* Operand Register 2 */ 673
 input SLL128, /* Shift Left Logical 128 bits */ 674
 input [31:0] MDATA_IN, /* Memory Data In */ 675
 /* Multiplexed: */ 676
 /* Memory Data In */ 677
 /* Peripheral Memory Data In */ 678
 /* Memory Data Monitor */ 679
 input MDATA_VLD_IN, /* Memory Data Valid */ 680
 input EXCEXT, /* Exception Signal */ 681
 682
 /* OUTPUT PORTS */ 683
 output reg ACK, /* Enable Acknowledged */ 684
 output reg [31:0] CJMPADD, /* Conditional Jump address to offset from Current PC */ 685
 output reg DNE, /* Execution Done */ 686
 output reg PCNEXT, /* Conditional PC Update */ 687
 output reg [4:0] RD, /* Destination Register */ 688
 output reg REGWRITE1, /* Register Write Port 1 Write Enable */ 689
 output reg REGWRITE2, /* Register Write Port 2 Write Enable */ 690
 output reg [4:0] RDREG1, /* Register Read Port 1 Register Number */ 691
 output reg [4:0] RDREG2, /* Register Read Port 2 Register Number */ 692
 output reg [4:0] RDREG3, /* Register Read Port 3 Register Number */ 693
 output reg [4:0] RDREG4, /* Register Read Port 4 Register Number */ 694
 output reg [31:0] RESULT, /* Result */ 695
 output reg [31:0] WRDATA1, /* Register Write Port 1 Data */ 696
 output reg [31:0] WRDATA2, /* Register Write Port 2 Data */ 697
 output reg [4:0] WRREG1, /* Register Write Port 1 Register Number */ 698
 output reg [4:0] WRREG2, /* Register Write Port 2 Register Number */ 699
 output reg BLS_OUT, /* Byte Load/Store */ 700
 output reg HLS_OUT, /* Halfword Load/Store */ 701
 output reg RNL_OUT, /* Memory Right/Left Unaligned Load/Store */ 702
 output reg [31:0] MADDR_OUT, /* Memory Address */ 703
 output reg [31:0] MDATA_OUT, /* Memory Data Out */ 704
 /* Multiplexed: */ 705
 /* Memory Data Out */ 706
 /* Peripheral Memory Data Out */ 707
 output reg MOE_OUT, /* Memory Output Enable */ 708
 output reg MWE_OUT, /* Memory Write Enable */ 709
 output reg [31:0] VIRPC /* Virtual PC for interrupt support */ 710
); 711
 712
 // tie off outputs that are not used in the automated accelerator 713
 always @ (posedge CLK) begin 714
 RD <= 0; 715
 RESULT <= 0; 716
 end 717
 718
/***/ 719
 720
// 721
// INFO: finished reading from m2v_ex_bp.v 722
// 723
 724
 // parameters for extension execution block 725
 parameter MAX_STATE = 8; 726
 parameter REG_READ_WAIT_STATES = 5; 727
 728
 // declarations for extension state machine 729
 reg[MAX_STATE:1] state_r; 730
 reg[7:1] branch_state_r; 731
 reg[7:1] write_state_r; 732
 reg[7:1] read_state_r; 733
 734
 // declarations for the extension memory state machine 735
 reg[7:1] mem_write_state_r; 736

 - 29 -

 reg[7:1] mem_read_state_r; 737
 738
 // declarations for memory data in variable 739
 reg[31:0] mdata_in; 740
 741
 // declarations for register read variables 742
 reg[31:0] r9_1; 743
 reg[31:0] r8_4, r8_4_r; 744
 reg[31:0] r4_11, r4_11_r; 745
 reg[31:0] r5_18; 746
 reg[31:0] r6_23; 747
 // declarations for register temp variables 748
 reg[31:0] r9_3; 749
 reg[31:0] r11_6; 750
 reg[31:0] r9_8, r9_8_r; 751
 reg[31:0] r8_10; 752
 reg[31:0] r11_13, r11_13_r; 753
 reg[31:0] r8_15, r8_15_r; 754
 reg[31:0] r4_17, r4_17_r; 755
 reg[31:0] r11_20; 756
 reg[31:0] r4_22, r4_22_r; 757
 reg[31:0] r11_25, r11_25_r; 758
 reg[31:0] r5_29, r5_29_r; 759
 // declarations for memory address temp variables 760
 761
 // declarations for transaction model support 762
 reg tran_state_done; 763
 reg [31:0] virpc_tr0, virpc_tr1, virpc_tr2; 764
 reg [7:1] tran_end_state_r; 765
 reg transaction_end_this_state; 766
 767
// 768
// INFO: reading from m2v_state_mc.v 769
// 770
 // m2v_state_mc.v 771
 // 772
 // Karl Meier 773
 // 8/15/07 774
 // 775
 // invariant state machine logic for the read, write, and branch state 776
 // machines 777
 // 778
 779
 reg [1:0] pclk_del_r; 780
 reg pclk_rise, pclk_fall; 781
 reg en_r, sll128_r, gr_r, regrdy_r, regfull_r, regempty_r, extnop_ma_r; 782
 reg clr_dne, DNE_c, ACK_c; 783
 reg done_state, done_state_r; 784
 reg wsm_idle, wsm_idle_r, wsm_pulse, wsm_pulse_r, wsm_wait, wsm_wait_r; 785
 reg write_this_state, wsm_done; 786
 reg rsm_idle, rsm_idle_r, rsm_latch, rsm_latch_r; 787
 reg rsm_wait, rsm_wait_r, rsm_wait2, rsm_wait2_r; 788
 reg [3:0] rsm_count, rsm_count_r; 789
 reg read_this_state, rsm_done; 790
 reg bsm_idle, bsm_idle_r, bsm_calc, bsm_calc_r; 791
 reg bsm_wait, bsm_wait_r, bsm_waitpf, bsm_waitpf_r; 792
 reg bsm_waitpr, bsm_waitpr_r; 793
 reg branch_this_state, bsm_done; 794
 reg fsm_idle, fsm_idle_r, fsm_wait2, fsm_wait2_r, fsm_wait, fsm_wait_r; 795
 reg final_state, fsm_done; 796
 reg take_branch, take_branch_r; 797
 798
 reg [1:0] mdata_vld_r; 799
 reg mdata_vld_rise, mdata_vld_fall; 800
 reg mem_read_this_state, mrs_done; 801
 reg mem_write_this_state, mws_done; 802
 reg [1:0] mem_this_state, mdne, mdne_c; 803

 - 30 -

 804
 // State machine logic for MMU access instructions 805
 // memory access control for the extension 806
 always @ (*) begin 807
 mdata_vld_rise = (mdata_vld_r == 2'b01); 808
 mdata_vld_fall = (mdata_vld_r == 2'b10); 809
 810
 // Place memory read/write request on rising edge of PCLK 811
 casex ({RESET, mem_this_state}) 812
 3'b0xx : begin 813
 // Reset stage 814
 RNL_OUT <= 1'b0; 815
 BLS_OUT <= 1'b0; 816
 HLS_OUT <= 1'b0; 817
 MOE_OUT <= 1'b0; 818
 MWE_OUT <= 1'b0; 819
 820
 mdata_in <= 32'b0; 821
 mem_this_state <= 2'b00; 822
 mdne_c <= 0; 823
 end 824
 3'b100 : begin 825
 casex ({mem_read_this_state, mem_write_this_state}) 826
 2'b10 : begin 827
 if (pclk_del_r == 2'b01) begin 828
 /* Memory read state */ 829
 RNL_OUT <= 1'b0; 830
 BLS_OUT <= 1'b0; 831
 HLS_OUT <= 1'b0; 832
 MOE_OUT <= 1'b1; 833
 MWE_OUT <= 1'b0; 834
 835
 mem_this_state <= 2'b01; // next state for read operation 836
 end 837
 end 838
 839
 2'b01 : begin 840
 if (pclk_del_r == 2'b01) begin 841
 /* Memory write state */ 842
 RNL_OUT <= 1'b0; 843
 BLS_OUT <= 1'b0; 844
 HLS_OUT <= 1'b0; 845
 MOE_OUT <= 1'b0; 846
 MWE_OUT <= 1'b1; 847
 848
 mem_this_state <= 2'b10; 849
 end 850
 end 851
 852
 default : begin 853
 /* No memory access this state */ 854
 RNL_OUT <= 1'b0; 855
 BLS_OUT <= 1'b0; 856
 HLS_OUT <= 1'b0; 857
 MOE_OUT <= 1'b0; 858
 MWE_OUT <= 1'b0; 859
 860
 mdata_in <= 32'b0; 861
 mem_this_state <= 2'b00; 862
 end 863
 endcase 864
 end 865
 3'b101 : begin 866
 // Remove memory read request after the falling edge of MDATA_VLD_IN 867
 if (mdata_vld_fall) begin 868
 MOE_OUT <= 1'b0; 869
 end 870

 - 31 -

 if(~MOE_OUT & mdata_vld_rise) begin // Look for MDATA_VLD_IN signal only after initiating 871
the request 872
 // and after the falling edge of PCLK 873
 mdata_in <= MDATA_IN; // Assign the input data to the result register 874
 875
 // Latch the memory done signal (MDATA_VLD_IN) 876
 mdne_c <= 1; 877
 mem_this_state <= 2'b00; 878
 end 879
 end 880
 3'b110 : begin 881
 // Remove memory write request after the falling edge of MDATA_VLD_IN 882
 if (mdata_vld_fall) begin 883
 MWE_OUT <= 1'b0; 884
 end 885
 if(~MWE_OUT & mdata_vld_rise) begin // Look for MDATA_VLD_IN signal only after initiating 886
the request 887
 // and after the falling edge of PCLK 888
 889
 // Latch the memory done signal (MDATA_VLD_IN) 890
 mdne_c <= 1; 891
 mem_this_state <= 2'b00; 892
 end 893
 end 894
 default : begin 895
 end 896
 endcase 897
 end 898
 899
 // state machine logic for compiled extension 900
 always @ (*) begin 901
 pclk_rise = (pclk_del_r == 2'b01); 902
 pclk_fall = (pclk_del_r == 2'b10); 903
 904
 // start the extension instruction 905
 clr_dne = state_r[1] & en_r & sll128_r; 906
 907
 // state machine for read logic 908
 read_this_state = (| (state_r & read_state_r)); 909
 rsm_wait = read_this_state & 910
 (rsm_idle_r & gr_r) | 911
 (rsm_wait_r & (rsm_count_r != REG_READ_WAIT_STATES)); 912
 rsm_latch = rsm_wait_r & (rsm_count_r == REG_READ_WAIT_STATES); 913
 rsm_wait2 = (rsm_wait2_r | rsm_latch_r) & ~done_state; 914
 rsm_idle = ~rsm_wait & ~rsm_wait2 & ~rsm_latch; 915
 rsm_count = rsm_idle_r ? 4'h0 : (rsm_count_r + 1); 916
 rsm_done = ~read_this_state | 917
 (read_this_state & (rsm_latch_r | rsm_wait2_r)); 918
 919
 // state machine for write logic 920
 write_this_state = (| (state_r & write_state_r)); 921
 wsm_pulse = wsm_idle_r & write_this_state & gr_r & regrdy_r & ~regfull_r; 922
 wsm_wait = (wsm_pulse_r & ~done_state) | 923
 (wsm_wait_r & ~done_state); 924
 wsm_idle = ~wsm_pulse & ~wsm_wait; 925
 wsm_done = ~write_this_state | 926
 (write_this_state & (wsm_pulse_r | wsm_wait_r)); 927
 928
 // state machine for Memory read logic 929
 mem_read_this_state = (| (state_r & mem_read_state_r)) & ~mdne; 930
 mrs_done = ~mem_read_this_state | 931
 (mem_read_this_state & mdne); 932
 933
 // state machine for Memory write logic 934
 mem_write_this_state = (| (state_r & mem_write_state_r)) & ~mdne; 935
 mws_done = ~mem_write_this_state | 936
 (mem_write_this_state & mdne); 937

 - 32 -

 938
 // state machine for branch logic 939
 branch_this_state = (| (state_r & branch_state_r)); 940
 bsm_calc = bsm_idle_r & branch_this_state; 941
 bsm_waitpf = (bsm_calc_r & take_branch_r) | 942
 (bsm_waitpf_r & ~pclk_fall); 943
 bsm_waitpr = (bsm_waitpf_r & pclk_fall) | 944
 (bsm_waitpr_r & ~pclk_rise); 945
 bsm_wait = (bsm_calc_r & ~take_branch_r & ~done_state) | 946
 (bsm_waitpr_r & pclk_rise & ~done_state) | 947
 (bsm_wait_r & ~done_state); 948
 bsm_idle = ~bsm_calc & ~bsm_wait & ~bsm_waitpr & ~bsm_waitpf; 949
 bsm_done = ~branch_this_state | 950
 (branch_this_state & 951
 ((bsm_calc_r & ~take_branch_r) | 952
 (bsm_waitpr_r & pclk_rise) | 953
 bsm_wait_r)); 954
 955
 // state machine to finish up the extension instruction 956
 final_state = state_r[MAX_STATE]; 957
 fsm_wait = final_state & rsm_idle_r | 958
 (fsm_wait_r & ~(gr_r & regempty_r & extnop_ma_r)); 959
 fsm_wait2 = (fsm_wait_r & gr_r & regempty_r & extnop_ma_r) | 960
 (fsm_wait2_r & ~en_r); 961
 fsm_idle = ~fsm_wait & ~fsm_wait2; 962
 fsm_done = final_state & fsm_wait2_r & ~en_r; 963
 964
 // clear DNE as the extension instruction is entered 965
 // set DNE as the extension instruction is exited 966
 DNE_c = (DNE | (fsm_wait_r & gr_r & regempty_r & extnop_ma_r)) & ~clr_dne; 967
 ACK_c = (ACK | (~DNE & ~ACK)) & ~(ACK & DNE & pclk_rise) & EN; 968
 // & EN -> to bring down ACK when it loses control/resources in case of an interrupt 969
 end 970
 971
 always @ (*) begin 972
 // true when all conditions for a state have been satisfied 973
 done_state = clr_dne | 974
 (~state_r[1] & bsm_done & rsm_done & wsm_done & mrs_done & mws_done & tran_state_done); 975
 end 976
 977
 978
 // state to determine rising and falling edges of pclk 979
 always @ (posedge CLK) begin 980
 pclk_del_r <= {pclk_del_r[0], PCLK}; 981
 // rise and falling edge of MDATA_VLD_IN 982
 mdata_vld_r <= {mdata_vld_r[0], MDATA_VLD_IN}; 983
 end 984
 985
 // buffer signals that may be heavily loaded or come from a distance 986
 // - is this needed? this is present to maintain compatibility with Neil 987
 always @ (posedge CLK) begin 988
 if (!RESET) begin 989
 en_r <= 1'h0; 990
 sll128_r <= 1'h0; 991
 gr_r <= 1'h0; 992
 regrdy_r <= 1'h0; 993
 regfull_r <= 1'h0; 994
 regempty_r <= 1'h0; 995
 extnop_ma_r <= 1'h0; 996
 end else begin 997
 en_r <= EN; 998
 sll128_r <= SLL128; 999
 gr_r <= GR; 1000
 regrdy_r <= REGRDY; 1001
 regfull_r <= REGFULL; 1002
 regempty_r <= REGEMPTY; 1003
 extnop_ma_r <= EXTNOP_MA; 1004

 - 33 -

 end 1005
 end 1006
 1007
 // misc control for the extension 1008
 always @ (posedge CLK) begin 1009
 if (!RESET) begin 1010
 ACK <= 1'h0; 1011
 DNE <= 1'h1; 1012
 done_state_r <= 1'b0; 1013
 1014
 wsm_idle_r <= 1'b1; 1015
 wsm_pulse_r <= 1'b0; 1016
 wsm_wait_r <= 1'b0; 1017
 1018
 rsm_idle_r <= 1'b1; 1019
 rsm_latch_r <= 1'b0; 1020
 rsm_wait_r <= 1'b0; 1021
 rsm_wait2_r <= 1'b0; 1022
 rsm_count_r <= 4'b0; 1023
 1024
 bsm_idle_r <= 1'b1; 1025
 bsm_calc_r <= 1'b0; 1026
 bsm_wait_r <= 1'b0; 1027
 bsm_waitpr_r <= 1'b0; 1028
 bsm_waitpf_r <= 1'b0; 1029
 take_branch_r <= 1'h0; 1030
 1031
 fsm_idle_r <= 1'b1; 1032
 fsm_wait_r <= 1'b0; 1033
 fsm_wait2_r <= 1'b0; 1034
 1035
 end else begin 1036
 /* 1037
 // clear ack 1038
 if (ACK & DNE & pclk_rise) 1039
 ACK <= 1'h0; 1040
 // set ack 1041
 else if (~DNE & ~ACK) 1042
 ACK <= 1'h1; 1043
 */ 1044
 1045
 ACK <= ACK_c; 1046
 DNE <= DNE_c; 1047
 done_state_r <= done_state; 1048
 1049
 wsm_idle_r <= wsm_idle; 1050
 wsm_pulse_r <= wsm_pulse; 1051
 wsm_wait_r <= wsm_wait; 1052
 1053
 rsm_idle_r <= rsm_idle; 1054
 rsm_latch_r <= rsm_latch; 1055
 rsm_wait_r <= rsm_wait; 1056
 rsm_wait2_r <= rsm_wait2; 1057
 rsm_count_r <= rsm_count; 1058
 1059
 bsm_idle_r <= bsm_idle; 1060
 bsm_calc_r <= bsm_calc; 1061
 bsm_wait_r <= bsm_wait; 1062
 bsm_waitpr_r <= bsm_waitpr; 1063
 bsm_waitpf_r <= bsm_waitpf; 1064
 // if take_branch_r is ever used outside of the branch state machine, 1065
 // it may need to be cleared at the end of the branch operation 1066
 take_branch_r <= bsm_calc ? take_branch : take_branch_r; 1067
 1068
 fsm_idle_r <= fsm_idle; 1069
 fsm_wait_r <= fsm_wait; 1070
 fsm_wait2_r <= fsm_wait2; 1071

 - 34 -

 end 1072
 end 1073
 1074
// 1075
// INFO: finished reading from m2v_state_mc.v 1076
// 1077
 1078
 // state machine for transaction model 1079
 always @ (*) begin 1080
 transaction_end_this_state = (| (state_r & tran_end_state_r)); 1081
 1082
 virpc_tr0 = PC; 1083
 virpc_tr1 = PC + 28; 1084
 virpc_tr2 = CJMPADD; 1085
 1086
 VIRPC = ({32{state_r[1]}} & virpc_tr0) 1087
 | ({32{state_r[2]}} & virpc_tr0) 1088
 | ({32{state_r[3]}} & virpc_tr1) 1089
 | ({32{state_r[4]}} & virpc_tr1) 1090
 | ({32{state_r[5]}} & virpc_tr1) 1091
 | ({32{state_r[6]}} & virpc_tr2) 1092
 | ({32{state_r[7]}} & virpc_tr2); 1093
 end 1094
 1095
 // transaction model control for the extension 1096
 always @ (posedge CLK) begin 1097
 if (!RESET) begin 1098
 tran_state_done <= 1; 1099
 end else begin 1100
 if (EXCEXT & EN) begin 1101
 if (transaction_end_this_state) begin 1102
 tran_state_done <= 0; 1103
 end 1104
 end else begin 1105
 if (~EN) begin 1106
 tran_state_done <= 1; 1107
 end 1108
 end 1109
 end 1110
 end 1111
 1112
 1113
 // registers that contain state about this cycle 1114
 always @ (posedge CLK) begin 1115
 if (~RESET) begin 1116
 branch_state_r[1] <= 1'b0; 1117
 write_state_r[1] <= 1'b0; 1118
 read_state_r[1] <= 1'b1; 1119
 mem_write_state_r[1] <= 1'b0; 1120
 mem_read_state_r[1] <= 1'b0; 1121
 tran_end_state_r[1] <= 1'b1; 1122
 1123
 branch_state_r[2] <= 1'b0; 1124
 write_state_r[2] <= 1'b0; 1125
 read_state_r[2] <= 1'b1; 1126
 mem_write_state_r[2] <= 1'b0; 1127
 mem_read_state_r[2] <= 1'b0; 1128
 tran_end_state_r[2] <= 1'b1; 1129
 1130
 branch_state_r[3] <= 1'b1; 1131
 write_state_r[3] <= 1'b1; 1132
 read_state_r[3] <= 1'b1; 1133
 mem_write_state_r[3] <= 1'b0; 1134
 mem_read_state_r[3] <= 1'b0; 1135
 tran_end_state_r[3] <= 1'b0; 1136
 1137
 branch_state_r[4] <= 1'b0; 1138

 - 35 -

 write_state_r[4] <= 1'b1; 1139
 read_state_r[4] <= 1'b0; 1140
 mem_write_state_r[4] <= 1'b0; 1141
 mem_read_state_r[4] <= 1'b0; 1142
 tran_end_state_r[4] <= 1'b0; 1143
 1144
 branch_state_r[5] <= 1'b0; 1145
 write_state_r[5] <= 1'b1; 1146
 read_state_r[5] <= 1'b0; 1147
 mem_write_state_r[5] <= 1'b0; 1148
 mem_read_state_r[5] <= 1'b0; 1149
 tran_end_state_r[5] <= 1'b1; 1150
 1151
 branch_state_r[6] <= 1'b0; 1152
 write_state_r[6] <= 1'b1; 1153
 read_state_r[6] <= 1'b0; 1154
 mem_write_state_r[6] <= 1'b0; 1155
 mem_read_state_r[6] <= 1'b0; 1156
 tran_end_state_r[6] <= 1'b0; 1157
 1158
 branch_state_r[7] <= 1'b0; 1159
 write_state_r[7] <= 1'b1; 1160
 read_state_r[7] <= 1'b0; 1161
 mem_write_state_r[7] <= 1'b0; 1162
 mem_read_state_r[7] <= 1'b0; 1163
 tran_end_state_r[7] <= 1'b1; 1164
 1165
 end else begin 1166
 branch_state_r <= branch_state_r; 1167
 write_state_r <= write_state_r; 1168
 read_state_r <= read_state_r; 1169
 mem_write_state_r <= mem_write_state_r; 1170
 mem_read_state_r <= mem_read_state_r; 1171
 tran_end_state_r <= tran_end_state_r; 1172
 end 1173
 end 1174
 1175
 1176
 // combinatorial logic to/from the register file 1177
 always @ (*) begin 1178
 // combinatorial logic for register reads 1179
 // use read ports 3 & 4 to prevent write conflicts 1180
 RDREG1 = 0; 1181
 RDREG2 = 0; 1182
 r9_1 = RDREG3DATA; 1183
 r8_4 = RDREG2DATA_ID; 1184
 r4_11 = RDREG1DATA_ID; 1185
 r5_18 = RDREG4DATA; 1186
 r6_23 = RDREG3DATA; 1187
 RDREG3 = ({5{state_r[2]}} & (RT + 1)) 1188
 | ({5{state_r[1]}} & RT) 1189
 | ({5{state_r[3]}} & (RS + 2)); 1190
 RDREG4 = ({5{state_r[1]}} & RS) 1191
 | ({5{state_r[2]}} & (RS + 1)); 1192
 1193
 // combinatorial logic for register writes 1194
 WRREG1 = ({5{state_r[3]}} & 11) 1195
 | ({5{state_r[4]}} & RT) 1196
 | ({5{state_r[5]}} & (RT + 1)) 1197
 | ({5{state_r[6]}} & RS) 1198
 | ({5{state_r[7]}} & 11); 1199
 WRDATA1 = ({32{state_r[3]}} & r11_13_r) 1200
 | ({32{state_r[4]}} & r8_15_r) 1201
 | ({32{state_r[5]}} & r9_8_r) 1202
 | ({32{state_r[6]}} & r4_22_r) 1203
 | ({32{state_r[7]}} & r11_25_r); 1204
 REGWRITE1 = wsm_pulse_r & (state_r[3] 1205

 - 36 -

 | state_r[4] 1206
 | state_r[5] 1207
 | state_r[6] 1208
 | state_r[7]); 1209
 WRREG2 = ({5{state_r[4]}} & RS) 1210
 | ({5{state_r[6]}} & (RS + 1)); 1211
 WRDATA2 = ({32{state_r[4]}} & r4_17_r) 1212
 | ({32{state_r[6]}} & r5_29_r); 1213
 REGWRITE2 = wsm_pulse_r & (state_r[4] 1214
 | state_r[6]); 1215
 end 1216
 1217
 // internal pipeline logic 1218
 always @ (posedge CLK) begin 1219
 if (~RESET) begin 1220
 r8_4_r <= 32'h0; 1221
 r4_11_r <= 32'h0; 1222
 r9_8_r <= 32'h0; 1223
 r11_13_r <= 32'h0; 1224
 r8_15_r <= 32'h0; 1225
 r4_17_r <= 32'h0; 1226
 r4_22_r <= 32'h0; 1227
 r11_25_r <= 32'h0; 1228
 r5_29_r <= 32'h0; 1229
 end else begin 1230
 r8_4_r <= state_r[1] ? r8_4 : r8_4_r; 1231
 r4_11_r <= state_r[1] ? r4_11 : r4_11_r; 1232
 r9_8_r <= state_r[2] ? r9_8 : r9_8_r; 1233
 r11_13_r <= state_r[2] ? r11_13 : r11_13_r; 1234
 r8_15_r <= state_r[2] ? r8_15 : r8_15_r; 1235
 r4_17_r <= state_r[2] ? r4_17 : r4_17_r; 1236
 r4_22_r <= state_r[2] ? r4_22 : r4_22_r; 1237
 r11_25_r <= state_r[3] ? r11_25 : r11_25_r; 1238
 r5_29_r <= state_r[2] ? r5_29 : r5_29_r; 1239
 end 1240
 end 1241
 1242
 1243
 // logic for the Memory address and data out 1244
 always @ (posedge CLK) begin 1245
 MADDR_OUT <= (32'h0); 1246
 MDATA_OUT <= (32'h0); 1247
 end 1248
 1249
 // combinatorial logic for the instruction nodes 1250
 always @ (*) begin 1251
 // [0x0] 0x10840 sll r9, r9, 1 1252
 r9_3 = r9_1 << 1; 1253
 1254
 // [0x4] 0x21fc2 srl r11, r8, 31 1255
 r11_6 = r8_4_r >> 31; 1256
 1257
 // [0x8] 0x230825 or r9, r9, r11 1258
 r9_8 = r9_3 | r11_6; 1259
 1260
 // [0xc] 0x21040 sll r8, r8, 1 1261
 r8_10 = r8_4_r << 1; 1262
 1263
 // [0x10] 0x41fc2 srl r11, r4, 31 1264
 r11_13 = r4_11_r >> 31; 1265
 1266
 // [0x14] 0x431025 or r8, r8, r11 1267
 r8_15 = r8_10 | r11_13; 1268
 1269
 // [0x18] 0x42040 sll r4, r4, 1 1270
 r4_17 = r4_11_r << 1; 1271
 1272

 - 37 -

 // [0x1c] 0x51fc2 srl r11, r5, 31 1273
 r11_20 = r5_18 >> 31; 1274
 1275
 // [0x20] 0x832025 or r4, r4, r11 1276
 r4_22 = r4_17 | r11_20; 1277
 1278
 // [0x24] 0x26182b sltu r11, r9, r6 1279
 r11_25 = ({1'b0, r9_8_r} < {1'b0, r6_23}) ? 1 : 0; 1280
 1281
 // [0x28] 0x10030005 beq r0, r11, 20 1282
 take_branch = (32'h0 == r11_25); 1283
 CJMPADD = take_branch ? (PC + 4 + {{16{DIMM[15]}},DIMM}) : PC; 1284
 PCNEXT = state_r[3] & bsm_waitpr & take_branch; 1285
 1286
 // [0x2c] 0x52840 sll r5, r5, 1 1287
 r5_29 = r5_18 << 1; 1288
 1289
 end 1290
 1291
 // primary extension state machine 1292
 always @ (posedge CLK) begin 1293
 if (~RESET) begin 1294
 state_r <= 1; 1295
 mdne <= 0; 1296
 end else begin 1297
 mdne <= mdne_c; 1298
 if (en_r) begin 1299
 if (done_state) begin 1300
 state_r <= {state_r[MAX_STATE-1:1], 1'b0}; 1301
 mdne <= 0; 1302
 end 1303
 end 1304
 else begin 1305
 state_r <= 1; 1306
 end 1307
 end 1308
 end 1309
 1310
endmodule1311

 - 38 -

Appendix IV – Circuit Graph Visualization

Figure A-4: Visualization of the Circuit graph using the DOT file generated

by the M2V compiler, for the example basic block from Figure 10.

