Urban Computing –Using Big Data to Solve Urban Challenges

Dr. Yu Zheng

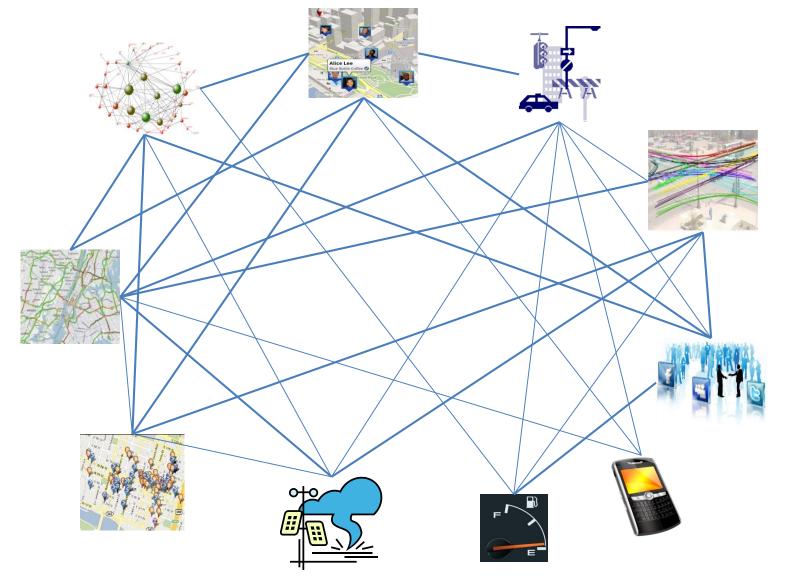
Lead Researcher, Microsoft Research Asia

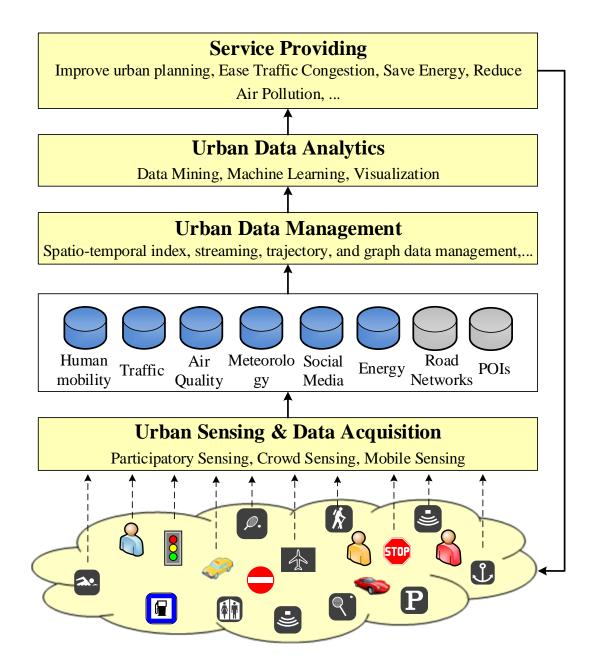
Chair Professor at Shanghai Jiaotong University

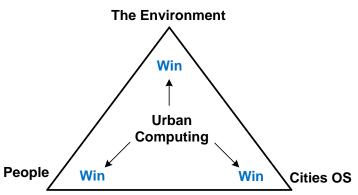
http://research.microsoft.com/en-us/projects/urbancomputing/default.aspx

Big Challenges in Big Cities

Big Data in Cities





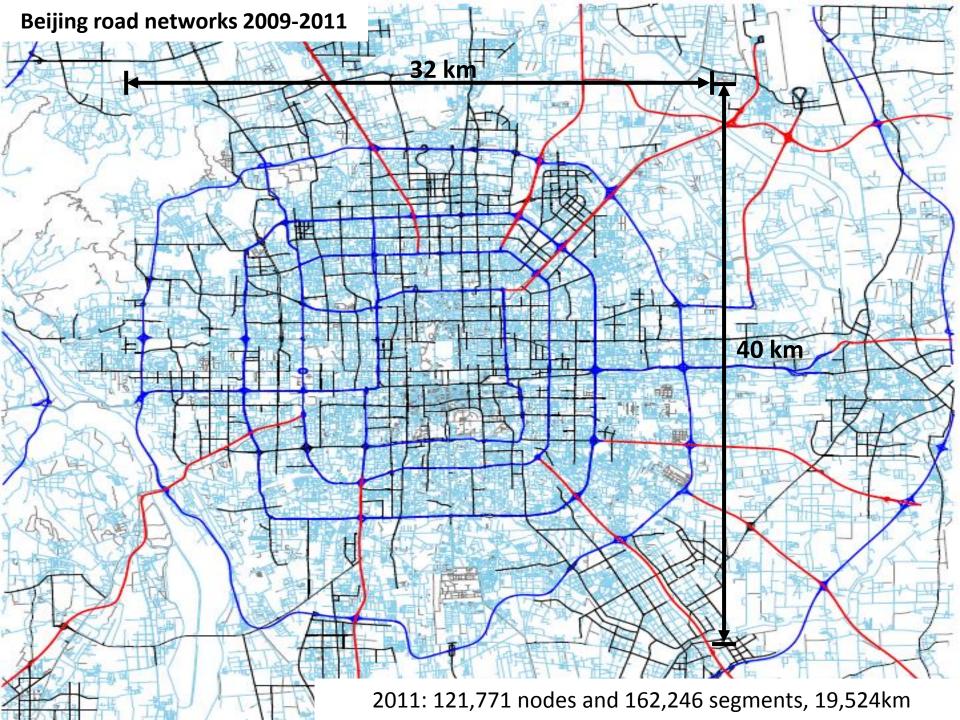


Tackle the Big challenges in Big cities using Big data!

Zheng, Y., et al. Urban Computing: concepts, methodologies, and applications. ACM transactions on Intelligent Systems and Technology.

Key Focuses and Challenges

- Sensing city dynamics
 - Unobtrusively, automatically, and constantly
 - A variety of sensors: Mobile phones, vehicles, cameras, loops,...
 - Human as a sensor: User generated content (check in, photos, tweets)
 - Loose control and unreliable \rightarrow data missing and skewed distribution
 - Unstructured, implicit, and noisy data
 - Trade off among energy, privacy and the utility of the data
- Computing with heterogeneous data sources
 - Geospatial, temporal, social, text, images, economic, environmental,...
 - Learn mutually reinforced knowledge across a diversity of data
 - Efficiency + Effectiveness: Data Management + Mining + Machine Learning
- Blending the physical and virtual worlds
 - Serving both people and cities (virtually and physically)
 - Hybrid systems: Mobile + Cloud, crowd sourcing, participatory sensing...

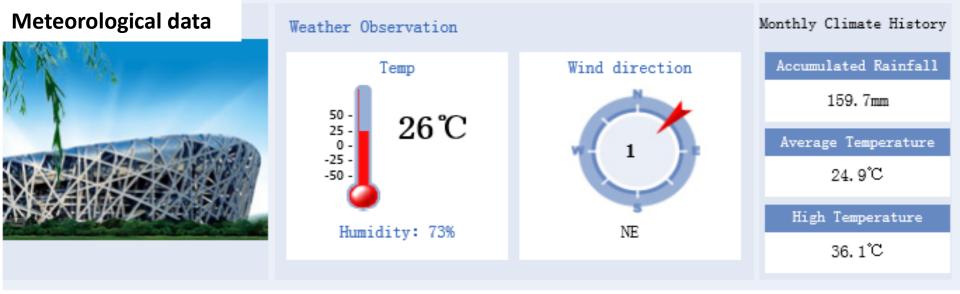




Air Quality Data

boundaries by the EPA.

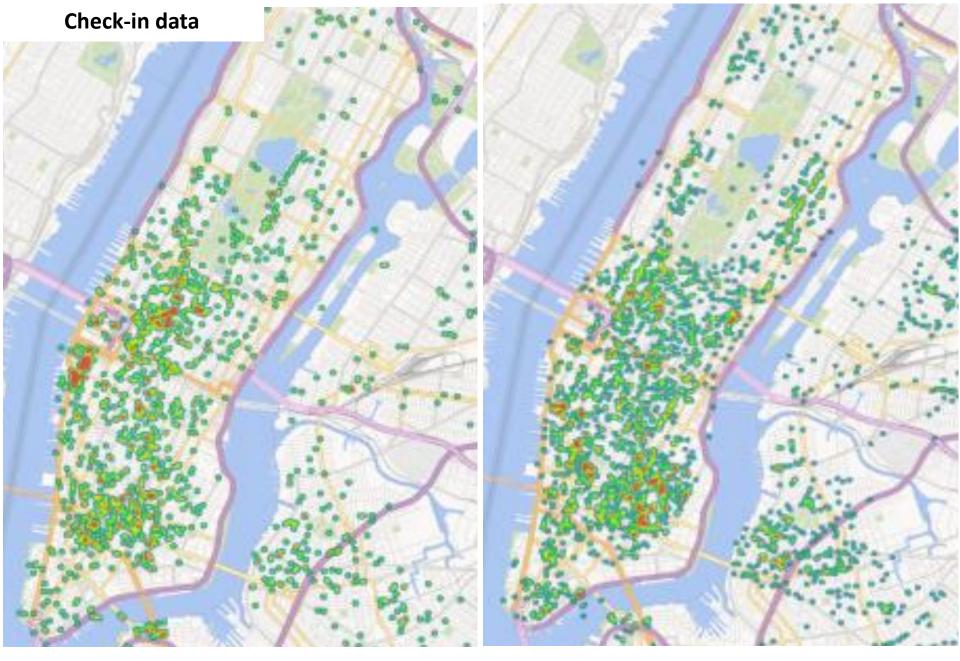
Good Moderate USG Unhealthy Very Hazardous ! Action Day



BeijingWeather Forecast (2013-08-20 18:00)

4-7 Days Forecast

Date		weatherForecast		Temperature	wind
Tuesday Aug 20	night	-	Shower	Low: 23°C (73°F)	<12km/h
Wednesday Aug 21	day	*	Cloudy	High: 30°C (86°F)	<12km/h
	night	>	Cloudy	Low: 22°C(72°F)	<12km/h
Thursday Aug 22	day	*	Sunny	High: 29°C (84°F)	<12km/h
	night		Sunny	Low: 22°C(72°F)	<12km/h
Friday Aug 23	day	*	Sunny	High: 32°C (90°F)	<12km/h
	night		Sunny	Low: 22°C(72°F)	<12km/h



Check-in: Entertainment

Check-ins: Nightlife Spot

Occupied Taxis

Non-occupied Taxis

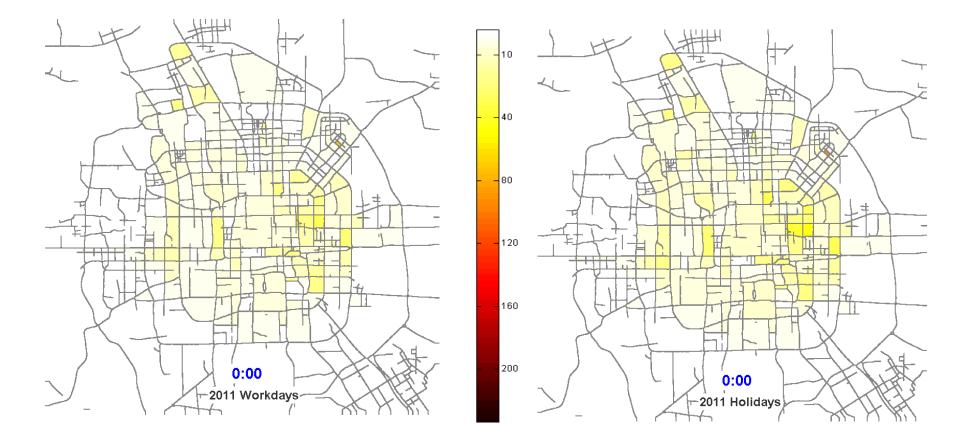
4344

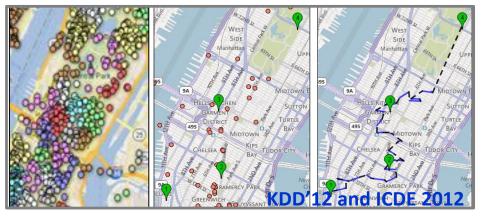
2163

Parked Taxis

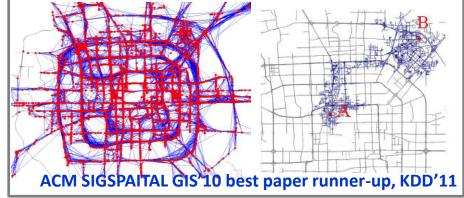
Total

Heat Maps of Beijing (2011)

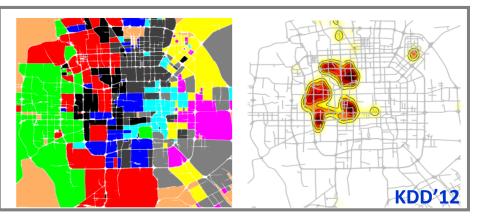




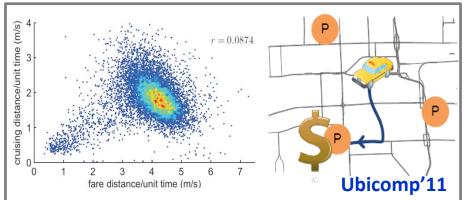
Route Construction from Uncertain Trajectories



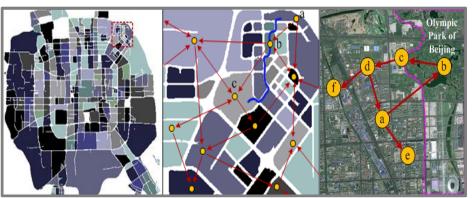
Finding Smart Driving Directions



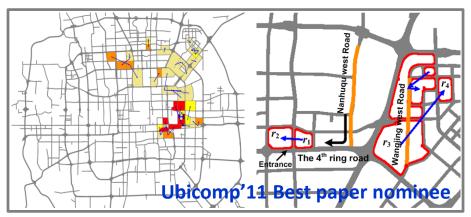
Discovery of Functional Regions



Passengers-Cabbie Recommender system

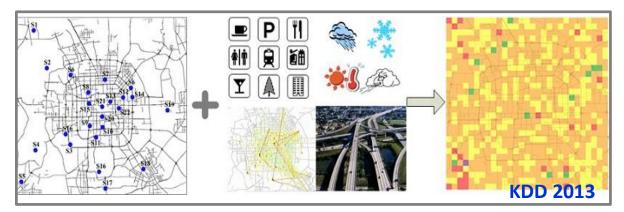


Anomalous Events Detection KDD'11 and ICDM 2012

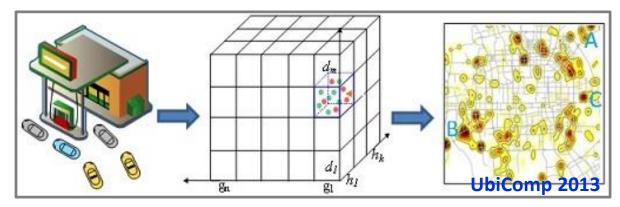


Urban Computing for Urban Planning

Real-time and large-scale dynamic ridesharing



Real-time and find-grained air quality inference using big data

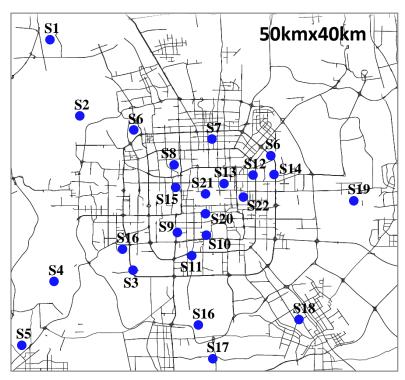


Real-time city-scale gas consumption sensing

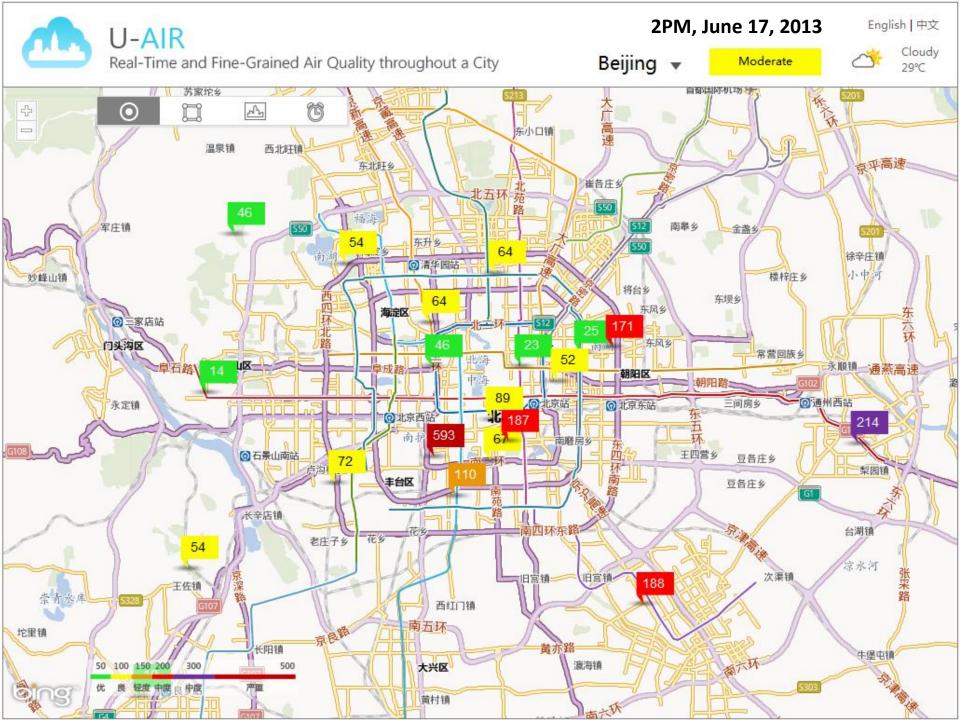
KDD 2013

http://urbanair.msra.cn/

Background

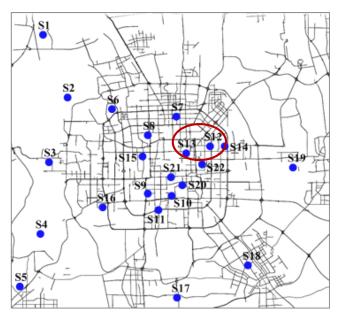


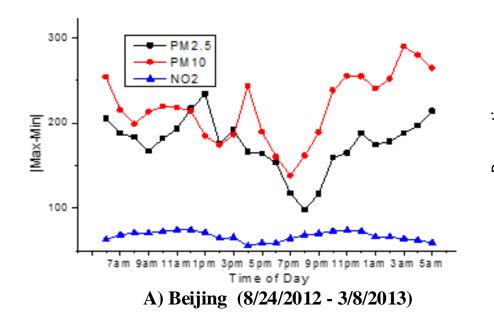
• Air quality monitor station

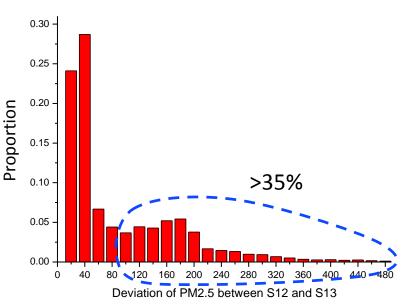


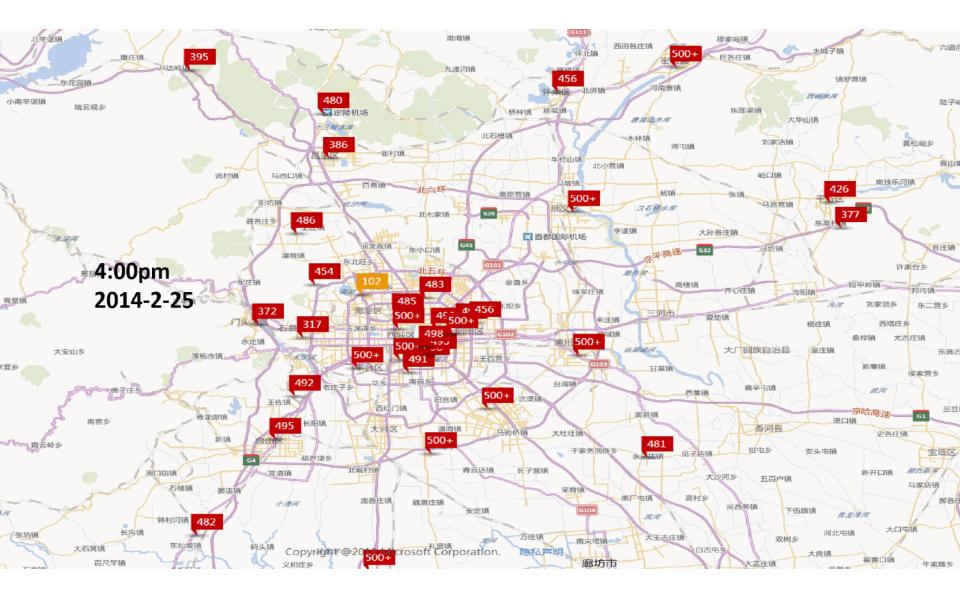
Challenges

- Air quality varies by locations non-linearly
- Affected by many factors
 - Weathers, traffic, land use...
 - Subtle to model with a clear formula

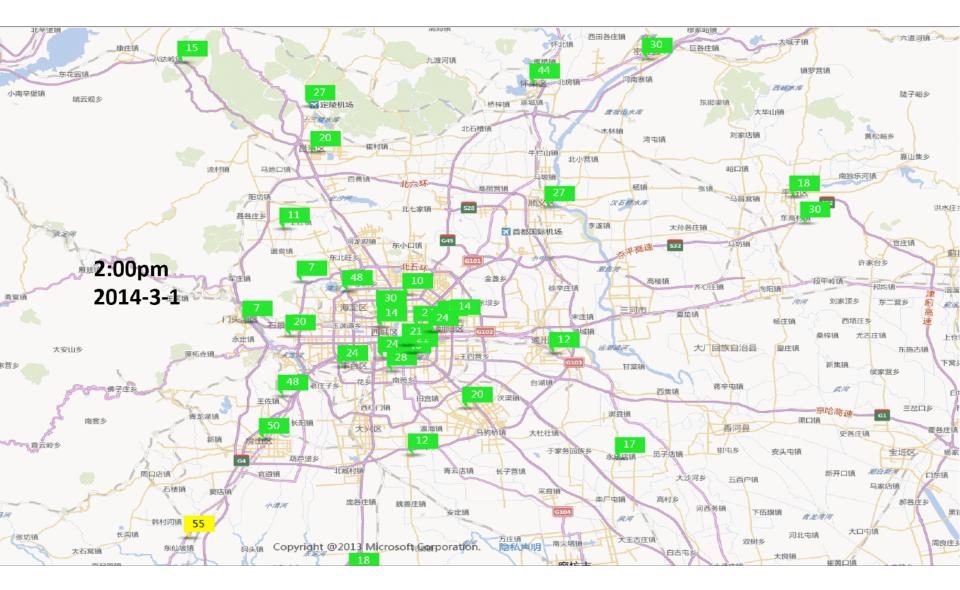




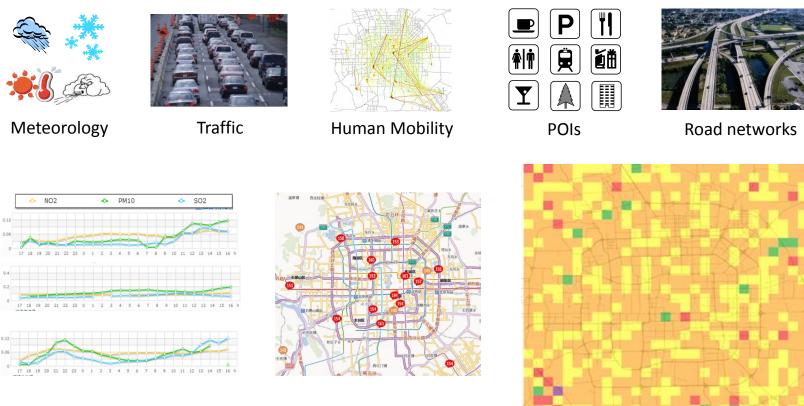




We do not really know the air quality of a location without a monitoring station!

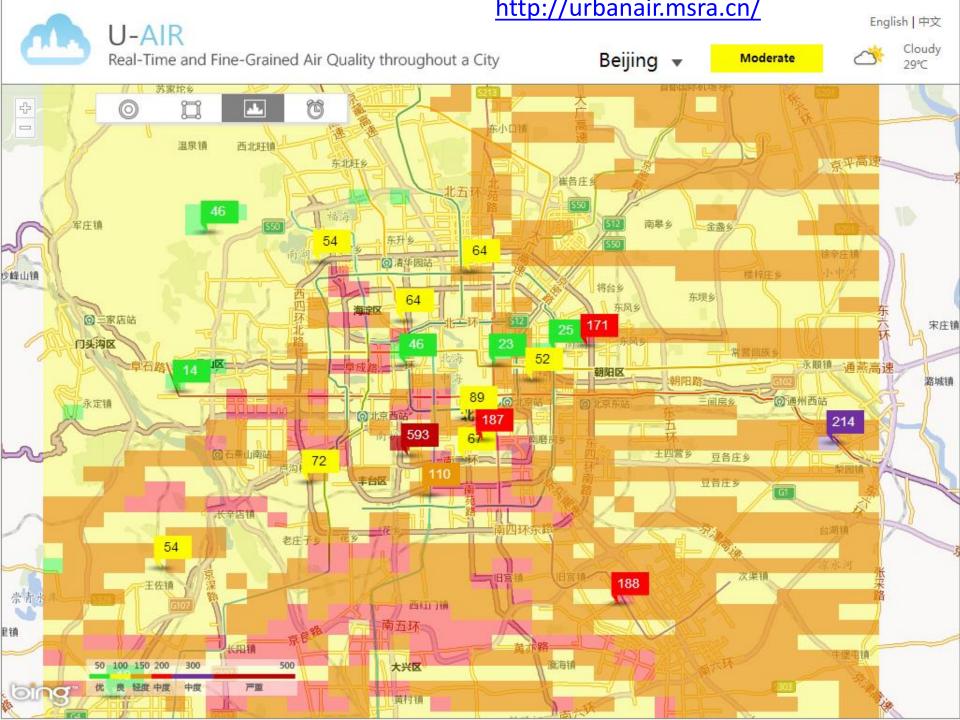


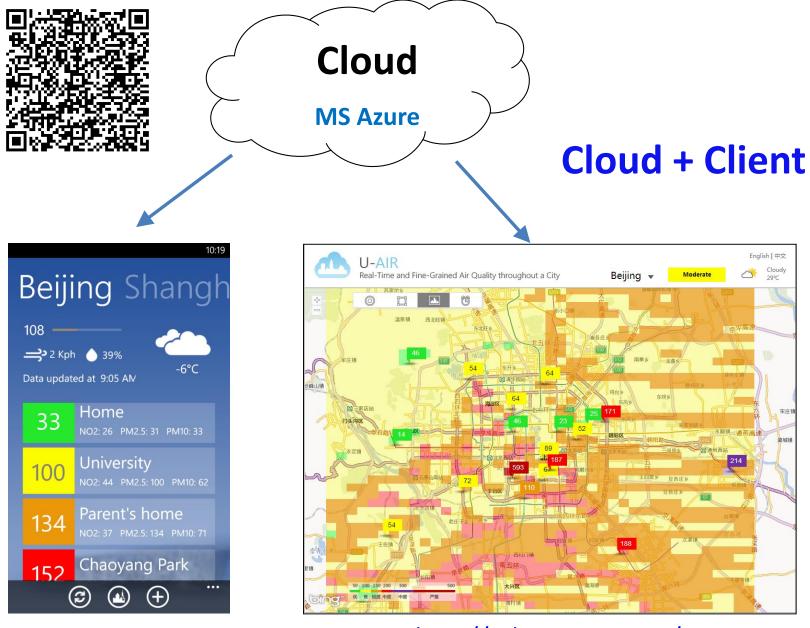
Inferring **Real-Time** and **Fine-Grained** air quality throughout a city using **Big Data**



Historical air quality data

Real-time air quality reports





Clients

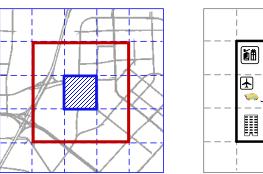
http://urbanair.msra.cn/

Difficulties

- Incorporate multiple heterogeneous data sources into a learning model
 - Spatially-related data: POIs, road networks
 - Temporally-related data: traffic, meteorology, human mobility
- Data sparseness (little training data)
 - Limited number of stations
 - Many places to infer
- Efficiency request
 - Massive data
 - Answer instant queries

Methodology Overview

- Partition a city into disjoint grids
- Extract features for each grid from its impacting region
 - Meteorological features
 - Traffic features
 - Human mobility features
 - POI features
 - Road network features

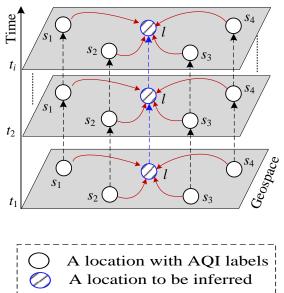


- Co-training-based semi-supervised learning model for each pollutant
 AQI
 Values Levels of Health Concern
 Colors
 - Predict the AQI labels
 - Data sparsity
 - Two classifiers

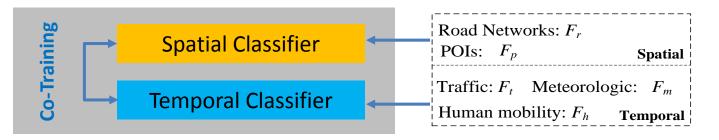
AQI	Values Levels of Health Concern	Colors	
0-50	Good (G)	Green	
51-100	Moderate (M)	Yellow	
101-150	Unhealthy for sensitive groups (U-S)	Orange	
151-200	Unhealthy (U)	Red	
201-300	Very unhealthy (VU)	Purple	
301-500	Hazardous (H)	Maroon	

Semi-Supervised Learning Model

- Philosophy of the model
 - States of air quality
 - Temporal dependency in a location
 - Geo-correlation between locations
 - Generation of air pollutants
 - Emission from a location
 - Propagation among locations
 - Two sets of features
 - Spatially-related
 - Temporally-related

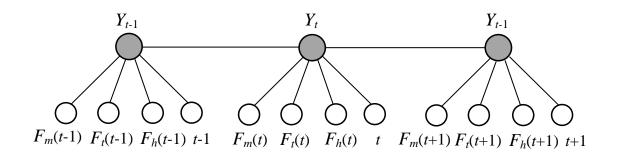


- --→ Temporal dependency
- → Spatial correlation



Semi-Supervised Learning Model

- Temporal classifier (TC)
 - Model the temporal dependency of the air quality in a location
 - Using temporally related features
 - Based on a Linear-Chain Conditional Random Field (CRF)



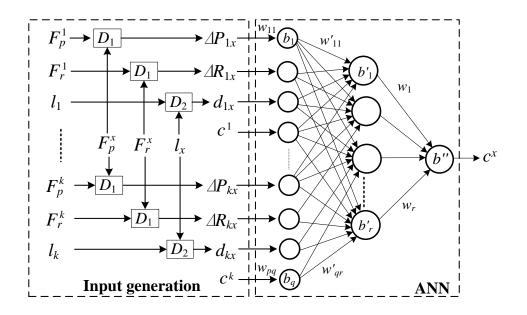
Semi-Supervised Learning Model

• Spatial classifier (SC)

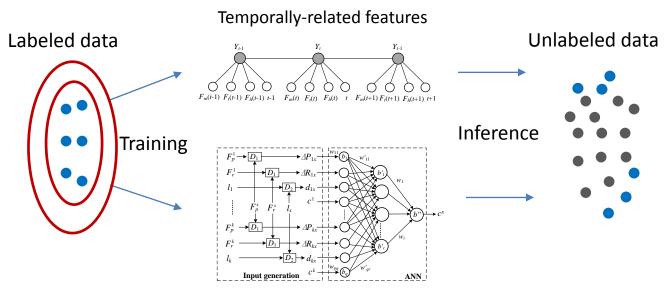
- Model the spatial correlation between AQI of different locations
- Using spatially-related features
- Based on a BP neural network

Input generation

- Select *n* stations to pair with
- Perform *m* rounds

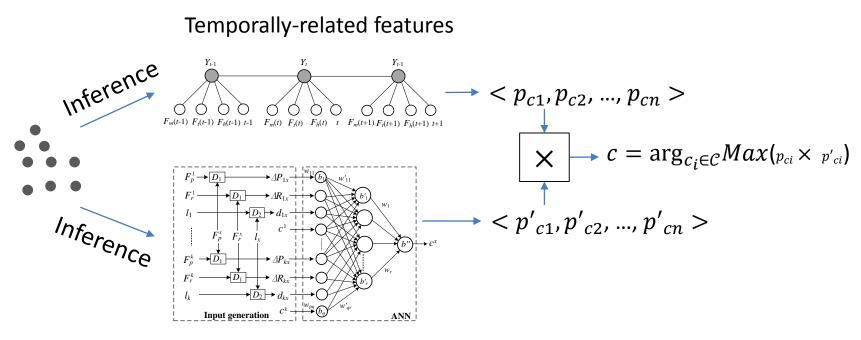


Learning Process of Our Model



Spatially-related features

Inference Process



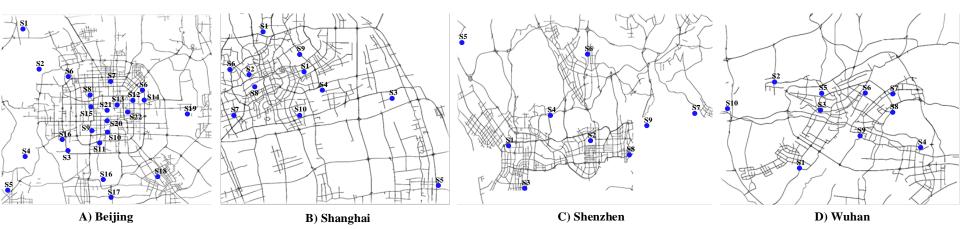
Spatially-related features

Evaluation

• Datasets

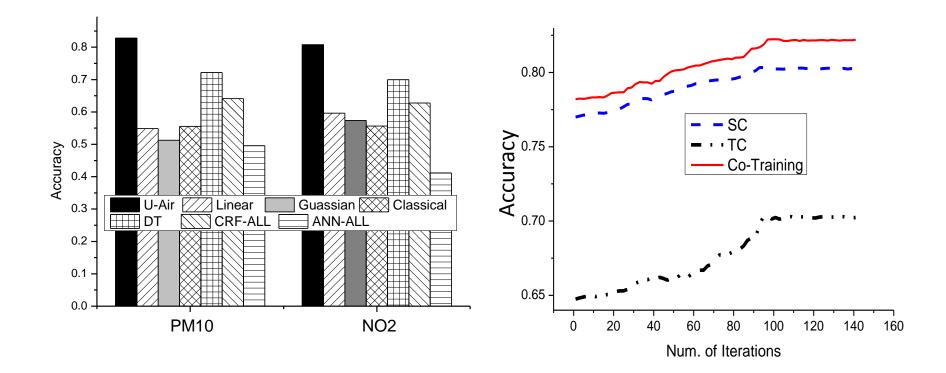
Data Released

Data sources		Beijing	Shanghai	Shenzhen	Wuhan
ΡΟΙ	2012 Q1	271,634	321,529	107,061	102,467
	2012 Q3	272,109	317,829	107,171	104,634
Road	#.Segments	162,246	171,191	45,231	38,477
	Highways	1,497km	1,963km	256km	1,193km
	Roads	18,525km	25,530km KM	6,100km	9,691km
	#. Intersec.	49,981	70,293	32,112	25,359
AQI	#. Station	22	10	9	10
	Hours	23,300	8,588	6,489	6,741
	Time spans	8/24/2012- 3/8/2013	1/19/2013- 3/8/2013	2/4/2013- 3/8/2013	2/4/2013-3/8/2013
Urban Size (grids)		50×50km (2500)	50×50km (2500)	57×45km(2565)	45×25km (1165)



Evaluation

Overall performance of the co-training



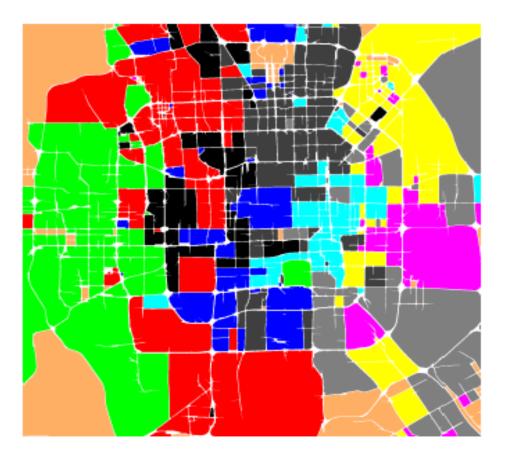
Zheng, Y., et al. U-Air: when urban air quality inference meets big data. KDD 2013

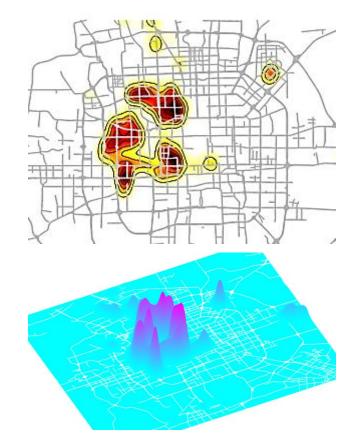
Discover Regions of Different Functions using Human Mobility and POIs

In KDD 2012

Goals

- Discover regions of different functions in urban areas
- Identify the kernel density of a functionality





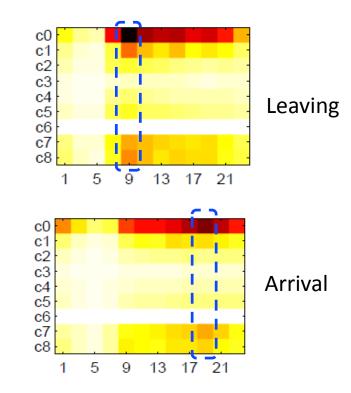
Functionality Density

Motivation and Challenges

• POIs indicate the function

- But not enough
 - Compound
 - Quality

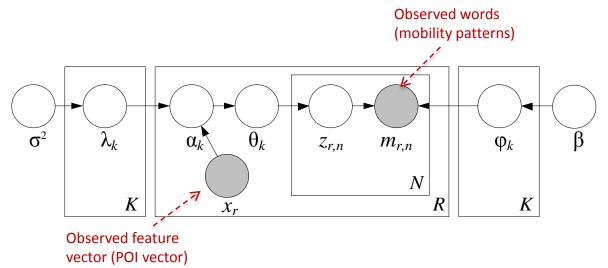
- Human mobility
 - Differentiate between POIs of the same category
 - Indicate the function of a region



Methodology Overview

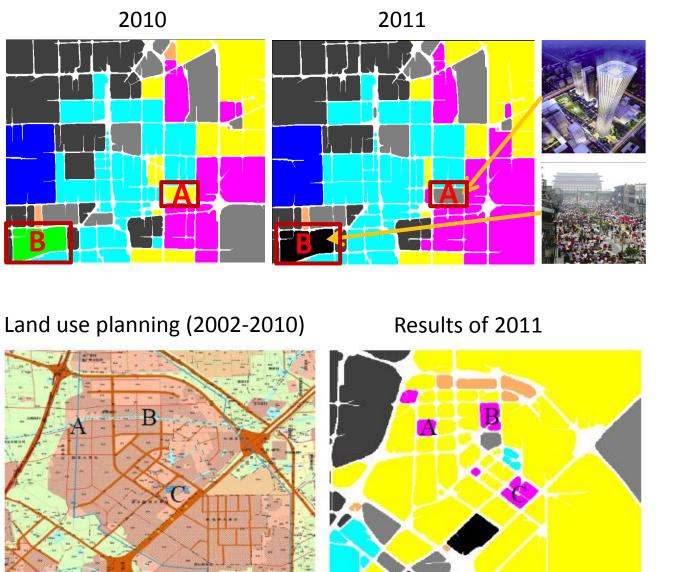
Mapping from regions to documents

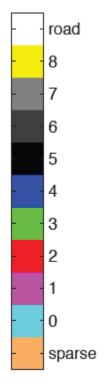
- Regions \rightarrow Documents (R)
- Functions \rightarrow Topics (K)
- Mobility patterns \rightarrow Words (N)
- POIs \rightarrow meta data like Key words and authors



Infer the topic distribution using a LDA(Latent Dirichlet allocation)-variant topic model

Results





Sensing the Pulse of Urban Refueling Behavior

UbiComp 2013



Questions

How many liters of gas have been consumed in the past 1 hour in NYC?

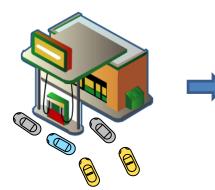
Which gas station in 3 miles has the shortest queue?

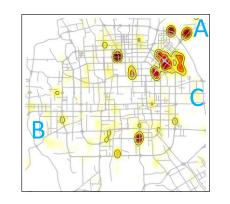
Goal

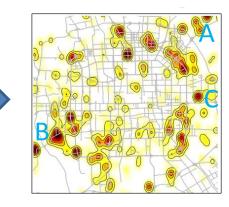
- Use GPS-equipped taxicabs as a sensor to capture both
 - Waiting time at a gas station
 - City-wide petrol consumption

Waiting time of taxis in a gas station

City-scale Gas consumption

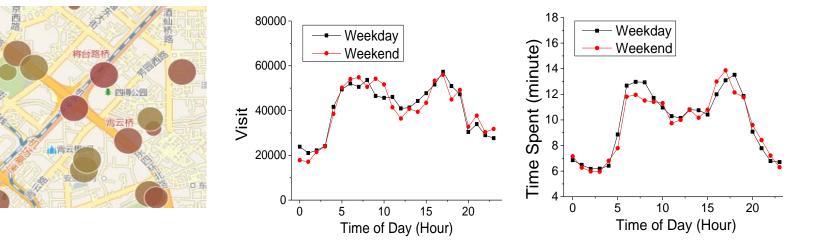






Motivation

- Gas stations are owned by competing organizations
 - Do not want to make data available to competitors
 - There is a cost but no benefit for them
 - No time information
- Benefits
 - Gas station recommendation
 - Support the planning and operation of gas stations
 - Monitoring real-time city-scale energy consumption

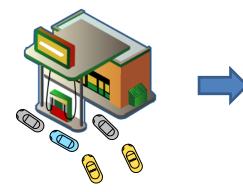


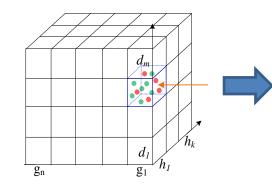
Methodology Overview

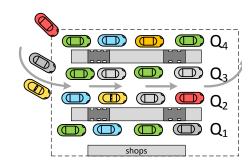
Spatio-temporal clustering and classification

Tensor Decomposition

Queue theory







1. Refueling event detection in a gas station

2. Waiting time inference across different stations

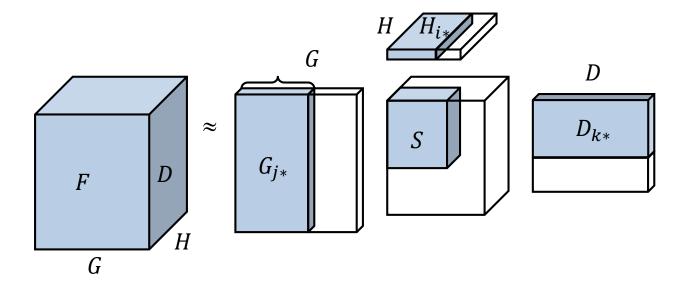
3. Estimation number of vehicles in a station

Expected Duration Learning

Tensor decomposition

- Approximate a tensor with the multiplication of three (low-rank) matrices and a core tensor
- High order singular value decomposition (HOSVD)

$$F_{ijk} = S \times_H H \quad \times_G G \quad \times_D D \quad \approx S \times_H H_{i*} \times_G G_{j*} \times_D D_{k*}$$

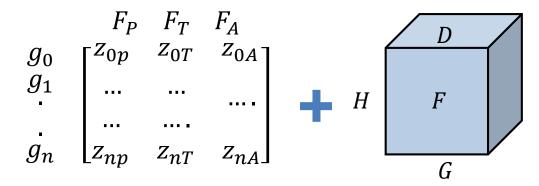


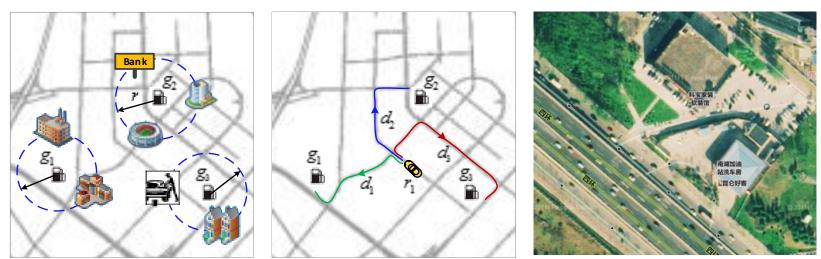
Expected Duration Learning

• The context of a station

Stations with similar contextual features tend to have a similar duration

- POI feature F_P
- Traffic feature F_T
- Area feature F_A





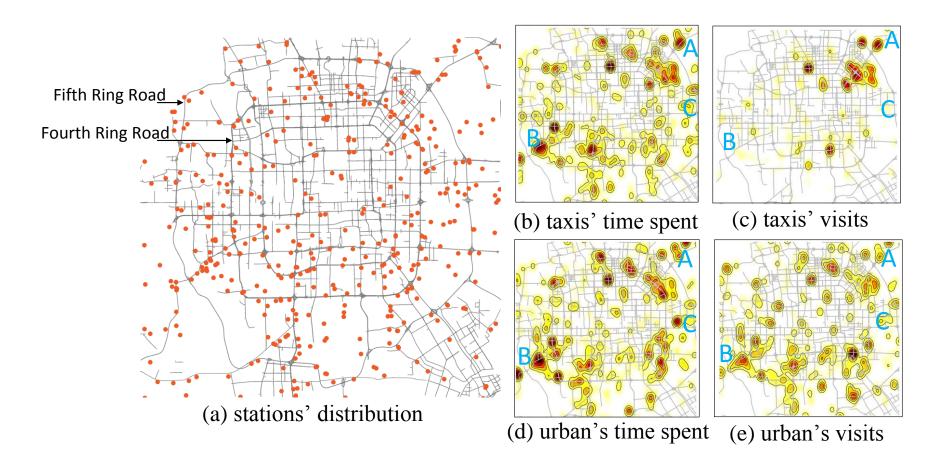
Evaluation

• In the field study

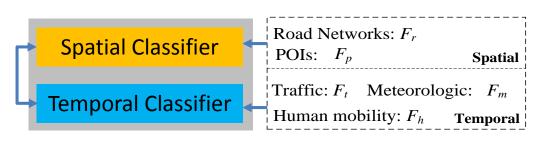
- Sent students to two stations to observe the queues
- Oct.17 to Nov.15 in 2012, 5-6pm
- Recorded the number of vehicles and the waiting time of some
- Evaluate waiting time and number of vehicles

Visualization

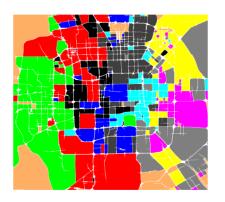
• Geographic View

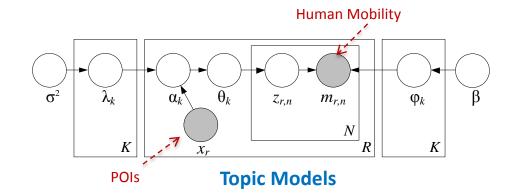


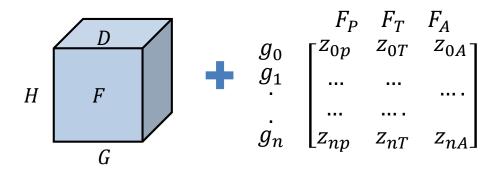
Computing with Multiple Heterogeneous Data Sources



Co-Training-based Semi-supervised learning







Context-aware Tensor Decomposition

T-Share: A Large-Scale Dynamic Taxi Ridesharing Service

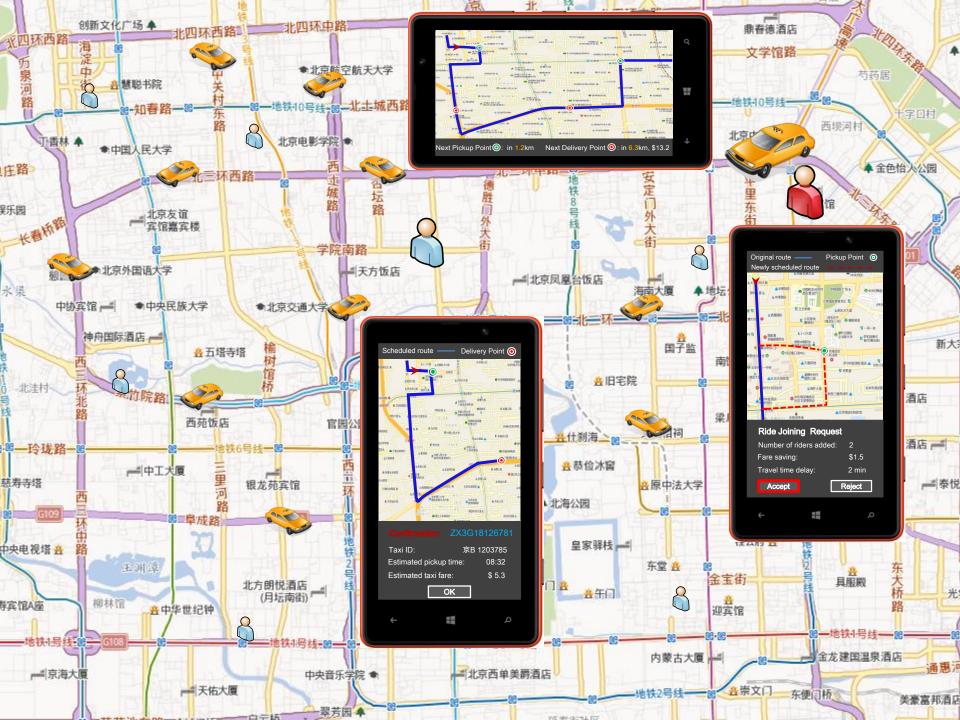
Best Paper Runner up Award at ICDE 2013

Difficult to take a taxi!

- A problem among passengers, taxi drivers and government
- Possible Solutions
 - Increasing taxis?
 - Taxi dispatching? ?
- There are quite a few seats left in a taxi

Taxi Ridesharing





Problem Definition

- Query *Q*=< *Q*.*o* , *Q*.*d* , *Q*.*wp*, *Q*.*wd*, *n* >
 - Origin and destination: Q.o and Q.d
 - Pickup time: Q. wp
 - Delivery time: Q. wd

Given a fixed number of taxis traveling on a road network and a stream of queries, we aim to serve each query Q in the stream by dispatching the taxi which

- satisfies schedule constraint, capacity constraint of a taxi, and monetary constraint
- with the minimum increase in travel distance.

Value

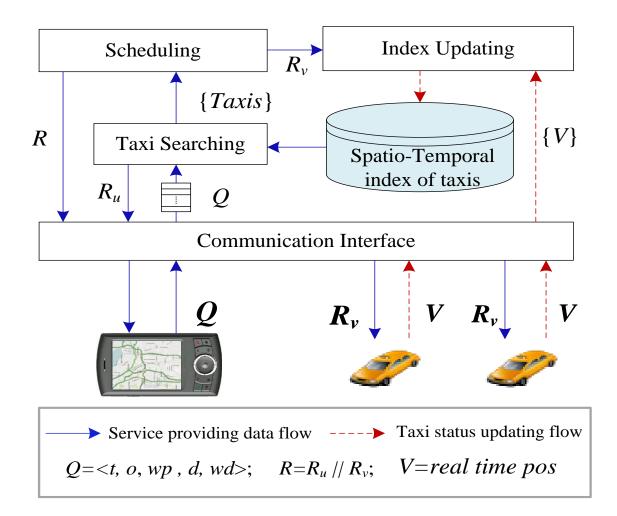
Government

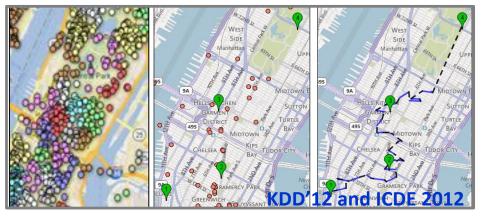
- Save 120 million liter gasoline per year
 - Supporting 1M cars for 1.5 months
 - Worth about 150 million USD
 - 246 million KG CO2 emission

Passengers

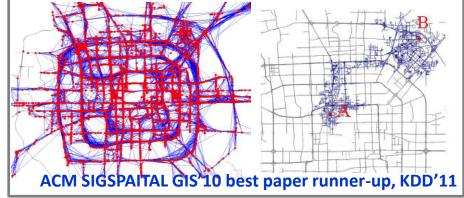
- Serving rate increased 300%
- Save 7% expense on average
- Taxi drivers increase profit 10% on average

Architecture

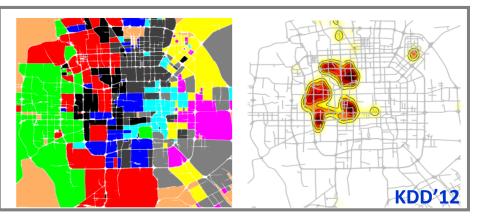




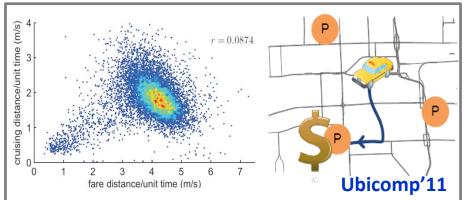
Route Construction from Uncertain Trajectories



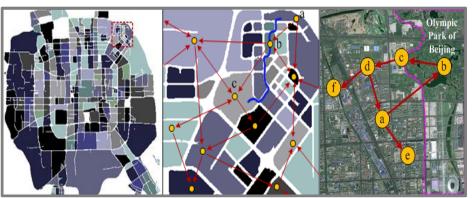
Finding Smart Driving Directions



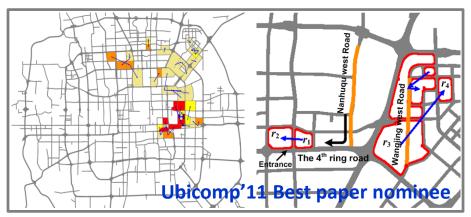
Discovery of Functional Regions



Passengers-Cabbie Recommender system



Anomalous Events Detection KDD'11 and ICDM 2012



Urban Computing for Urban Planning

Take Away Messages

- 3**B**: *B*ig city, *B*ig challenges, *B*ig data
- 3M: Data Management, Mining and Machine learning
- 3W: Win-Win-Win: people, city, and the environment

3-BMW

Search for "Urban Computing"

Thanks!

Download Urban Air App Yu Zheng

yuzheng@microsoft.com

<u>Homepage</u>