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Abstract

Concurrent algorithms are notoriously dif�cult to design

correctly, and high performance algorithms that make little

or no use of locks even more so. In this paper, we describe

a formal veri�cation of a recent concurrent data structure

Scalable NonZero Indicators. The algorithm supports in-

crementing, decrementing, and querying the shared counter

in an ef�cient and linearizable way without blocking. The

algorithm is highly non-trivial and it is challenging to prove

the correctness. We have proved that the algorithm satis-

�es linearizability, by showing a trace re�nement relation

from the concrete implementation to its abstract speci�ca-

tion. These models are speci�ed in CSP and veri�ed auto-

matically using the model checking toolkit PAT.

1 Introduction

Concurrent algorithms are notoriously dif�cult to design

correctly, and high performance algorithms that make lit-

tle or no use of locks even more so. The main correctness

criterion of the concurrent algorithm design is linearizabil-

ity [6]. Informally, a shared object is linearizable if each

operation on the object can be understood as occurring in-

stantaneously at some point, called linearization point, be-

tween its invocation and its response, and its behavior at that

point is consistent with the speci�cation for the correspond-

ing sequential execution of the operation.

Formal veri�cation of linearizability is challenging be-

cause the correctness often relies on the knowledge of lin-

earization points, which is dif�cult or even impossible to

identify. These proofs are too long and complicated to do

(and check) reliably �by hand�. Hence, it is important to

develop techniques for mechanically performing, or at least

checking, such proofs.

In this paper, we present an approach to verify lineariz-

ability based on re�nement relations between abstract spec-

i�cation and concrete implementation models of a concur-

rent algorithm. Both are speci�ed using an event-based

modeling language, which has formal semantics based on

labeled transition systems. We have used this approach

to formally verify a recent concurrent algorithm Scalable

NonZero Indicators (SNZI) due to Ellen et al. [5], since

the algorithm as a complex and useful implementation

serves a good candidate for automatic veri�cation. Our ap-

proach also builds on earlier work [8] in which we proved

(and in some cases disproved and/or improved) a num-

ber of concurrent algorithms like nonblocking stacks, non-

blocking queues, K-valued Registers and Mailbox prob-

lem. We have made considerable progress in understand-

ing how to model algorithms including speci�cations and

implementations to allow model checking to scale up and

handle bigger cases. The complete model of SNZI algo-

rithm is built inside a novel model checking tool, PAT [12]

(http://pat.comp.nus.edu.sg).

The rest of the paper is structured as follows. Section 2

brie�y introduces the SNZI algorithm. Section 3 gives the

standard de�nition of linearizability. Section 4 shows how

to express linearizability using re�nement relations in gen-

eral. Section 5 gives the SNZI model in our modeling lan-

guage. Section 6 presents the veri�cation and experimental

results. Section 7 discusses related work and concludes.

2 The SNZI Algorithms

A SNZI object behaves similarly to traditional shared

counter. It has one shared integer variable surplus and sup-

ports three operations: Arrive increments surplus by 1when
a process enters; Depart decrements surplus by 1 when the

process leaves; the only difference from traditional coun-

ters isQuery operation: it returns a boolean value indicating

whether the value of surplus is greater than 0. We assume

that each Arrive operation is always followed by a Depart

operation for the same process. Therefore surplus is always

greater or equal to 0. The pseudo code in Fig. 1 gives the



shared variable : Surplus : integer ; initially 0

bool Query() : return (Surplus > 0)

void Arrive() : Surplus← Surplus + 1

void Depart() : Surplus← Surplus− 1

Figure 1. SNZI speci�cation

speci�cation of a SNZI object.

In [5], the authors propose a rooted tree as the underlying

data structure of the SNZI objects implementation. An op-

eration on a child node may invoke operations on its parent.

An important invariant is used to guarantee the correctness:

the surplus of parent node is non-zero if and only if there

exists at least one child whose surplus is non-zero. Thus,

if the surplus of one node in the tree is non-zero, so does

the root. A process begins Arrive operation on any node

as long as the corresponding Depart will be invoked at the

same node, and Query operation is directly invoked on the

root. Every tree node has a counter X that is increased by

Arrive and decreased by Depart. Since the operations on

hierarchial nodes differ from those on root node, the algo-

rithms are separated for hierarchical nodes and root node.

The code for hierarchical SNZI nodes is shown in Fig 2.

An Arrive operation on a hierarchial node invokes Arrive

operation on its parent node when increasing X from 0 to

1. Otherwise, it completes without invoking any operation.

Moreover, a process which increases X from 0 to 1 should

�rstly set X by an intermediate value 1
2 . Any process which

sees 1
2 must help that process to invoke parent.Arrive and

try to change X to 1. If a process succeeds in invoking par-

ent.Arrive but fails in setting X to 1, it will invoke a com-

pensating parent.Depart.

Similarly, a Depart operation on a hierarchial node only

invokes Depart on its parent node when decreasing X from

1 to 0. A version number is added to X to ensure that ev-

ery change of X will be detected in both Arrive and Depart

operations for hierarchial nodes as well as root node.

The code for root node is shown in Fig 3. In order to

reduce frequent accesses to X by Query, the solution for the

root node separates out an indicator bit I from X. Hence

every process can �nish Query only by reading the bit I.

The authors model all accesses to I using Read,Write, Load

Linked and Store Conditional primitives to tolerate spurious

failures when external applications try to modify I.

I is set to true after a 0 to 1 transition of X, and it is

unset to false after a 1 to 0 transition of X. Furthermore, an

announce bit a is added to X to indicate that I needs to be

set. Similar to the intermediate value 1
2 , a process should

set a during a 0 to 1 transition and clean it after setting I

successfully. Any other process will also set I if it sees that

a is set. Once the indicator is set, it can safely clear a to

prevent unnecessary future writes to the indicator.

shared variables:

X = (c, v) : (N ∪ { 1
2
},N); initially(0, 0)

parent: scalable indicator

Arrive

succ← false

undoArr← 0

while(¬succ)
x← Read(X)

if x.c ≥ 1 then

if CAS(X, x, (x.c + 1, x.v)) then

succ← true

if x.c = 0 then

if CAS(X, x, ( 1
2
, x.v + 1)) then

succ← true

x← ( 1
2
, x.v + 1)

if x.c = 1
2
then

parent.Arrive

if¬CAS(X, x, (1, x, v)) then

undoArr = undoArr + 1

while(undoArr > 0) do

parent.Depart

undoArr = undoArr − 1

Depart

while(true) do

x← Read(X)

if CAS(X, x, (x.c− 1, x.v)) then

if x.c = 1 then parent.Depart

return

Figure 2. Code for hierarchical SNZI node

3 Linearizability

Linearizability [6] is a safety property of concurrent sys-

tems. It is formalized as follows.

In a shared memory model M, O = {o1, . . . , ok} de-

notes the set of k shared objects, P = {p1, . . . , pn} denotes

the set of n processes accessing the objects. Shared objects

support a set of operations, which are pairs of invocations

and matching responses. Every shared object has a set of

states that it could be in. A sequential speci�cation of a

(deterministic) shared object is a function that maps every

pair of invocation and object state to a pair of response and

a new object state.

The behavior of M is de�ned as H, the set of all possi-

ble sequences of invocations and responses together with

the initial states of the objects. A history σ ∈ H in-

duces an irre�exive partial order <σ on operations such that

op1 <σ op2 if the response of op1 occurs in σ before the in-

vocation of op2. Operations in σ that are not related by <σ

are concurrent. σ is sequential iff <σ is a strict total or-

der. Let σ |i be the projection of σ on process pi, which is

the subsequence of σ consisting of all invocations and re-



shared variables:

X = (c, a, v) : (N, boolean,N); initially(0, false, 0)

I : boolean; initially false

Arrive

repeat

x← Read(X)

if x.c = 0 then x′ ← (1, true, x.v + 1)

else x′ ← (x.c + 1, x.a, x.v)

until CAS(X, x, x′)

if x′.a then

Write(I, true)

CAS(X, x′, (x′.c, false, x′v))

Depart

repeat

1. x← Read(X)

2. if CAS(X, x, (x.c− 1, false, x.v)) then

3. if x.c ≥ 2 then

4. repeat

5. LL(I)

6. if Read(X).v 6= x.v then return

7. if SC(I, false) then return

Query

return Read(I)

Figure 3. Code for SNZI root node

sponses that are performed by pi. Let σ|oi
be the projection

of σ on object oi, which consists of all invocations and re-

sponses of operations that are performed on object oi.

A sequential history σ is legal if it respects the semantics

of the objects as expressed in their sequential speci�cations.

More speci�cally, for each object oi, if sj is the state of oi
before the j-th operation opj in σ|oi

, then the invocation and

response of opj and the resulting new state sj+1 of oi follow

the sequential speci�cation of oi. Given a history σ, a se-

quential permutation π of σ is a seqential history in which

the set of operations as well as the initial states of the objects

are the same as in σ. The formal de�nition of linearizability

is given as follows.

Linearizability There exists a sequential permutation π of

σ such that 1) for each object oi, π |oi
is a legal sequential

history (i.e. π respects the sequential speci�cation of the

objects), and 2) if op1 <σ op2, then op1 <π op2 (i.e., π
respects the real-time ordering of operations).

In every history σ, if we assign increasing time values to

all invocations and responses, then every operation can be

shrunk to a single time point between its invocation and

response such that the operation appears to be completed

instantaneously at this time point [3]. This time point for

each operation is called its linearization point. Lineariz-

ability is de�ned in terms of the invocations and responses

of high-level operations, which are implemented by algo-

rithms on concrete shared data structures in real programs.

Therefore, the execution of high-level operations may have

complicated interleaving of low-level actions. Linearizabil-

ity of a concrete concurrent algorithm requires that, despite

of complicated low-level interleaving, the history of high-

level interface events still has a sequential permutation that

respects both the real-time ordering among operations and

the sequential speci�cation of the objects. This idea is for-

mally presented in Section 4 using re�nement relations.

4 Veri�cation via Re�nement Checking

We model concurrent systems using a process algebra,

whose behavior is described using a labeled transition sys-

tem. Linearizability is then de�ned as a re�nement relation

from an implementation model to a speci�cation model.

4.1 Modeling Language

We introduce the relevant subset of syntax of CSP (Com-

municating Sequential Processes) [7] extended with shared

variables. We choose this language because of its rich set of

operators for concurrent communications.

Process A process P is de�ned using the grammar:

P ::= Stop | Skip | e{program} → P | P \ X | P1; P2

| P1 2 P2 | if (b) {P1} else {P2} | P1 ||| P2

where P,P1,P2 are processes, e is a name representing an

event with an optional sequential program program, X is a

set of events, and b is a Boolean expression.

Stop is the process that communicates nothing, also called

deadlock. Skip = X → Stop, where X is the termination

event. Event pre�xing e → P performs e and afterwards

behaves as process P. If e is attached with a sequential

program, the valuation of the shared variables is updated

accordingly. For simplicity, assignments are restricted to

update only shared variables. Process P\X hides all occur-

rences of events in X. An event is invisible iff it is explicitly

hidden by the hiding operator P \ X. Sequential composi-

tion, P1; P2, behaves as P1 until its termination and then

behaves as P2. External choice P1 2 P2 is solved only

by the occurrence of an visible event. Conditional choice

if (b) {P1} else {P2} behaves as P1 if the Boolean expres-

sion b evaluates to true, and behaves as P2 otherwise. In-

dexed interleaving P1 ||| P2 runs all processes indepen-

dently except for communication through shared variables.

Processes may be recursively de�ned, and may have param-

eters (see examples later). The formal syntax and semantics

of our language is presented in [11].



To model nonblocking algorithms, our language
provides strong support for synchronization primi-
tives, such as compare − and − swap (CAS) and
load − linked (LL)/store − conditional (SC), which are
elaborated as follows.

CAS1 The operational semantics of conditional choice
requires that the condition evaluation and the �rst event to
be executed of true/false branch be �nished in one atomic
step. Hence CAS primitive can be directly modeled using
conditional choices.

/ ∗ The pseudo code of CAS semantics ∗ /

bool CAS(ref addr, val exp, val new) :

atomically {
if (∗addr = exp) {∗addr := new; }
else { }

}
/ ∗ The CSP representation of CAS ∗ /

if (∗addr == old) {τ{∗addr = new; } → Skip}
else {Skip}

LL/SC2 In our model, a shared counter counter is added
to indicate the timestamp when the content of a memory
location X is modi�ed and a counter �ag is associated with
each process. When LL is executed by one of the processes,
the content of X is read and the value of counter is stored
in the counter �ag. If an external event updates X or the
process executes an operation that may invalidate an atomic
sequence (e.g., an exception), then counter is increased by
1. When the corresponding SC is executed, the counter �ag
is checked. If the �ag is equal to counter, then SC will be
successfully executed. Otherwise, nothing can be done.

/ ∗ �ag[i] denotes the counter �ag of process i ∗ /

LL(i) = τ{READ X; �ags[i] = counter; } → Skip;

SC(i, v) = if (�ags[i] == counter)

{τ{X = v; counter++; } → Skip}
else Skip;

Update(v) = τ{UPDATE X; counter++; } → Skip;

The semantics of a model is de�ned using a labeled transi-

tion system (LTS). Let Σ denote the set of all visible events

and τ denote the set of all invisible events. Let Σ∗ be the

set of �nite traces. Let Στ be Σ ∪ τ . A LTS is a 3-tuple

L = (S, init,T) where S is a set of states, init ∈ S is the

initial state, and T ⊆ S × Στ × S is a labeled transition

relation. Let s, s′ be states in S and e ∈ Στ , we write

s
e→ s′ to denote (s, e, s′) ∈ T . We write s

e1,e2,··· ,en→ s′

iff there exists s1, · · · , sn+1 ∈ S such that si
ei→ si+1 for

all 1 ≤ i ≤ n, s1 = s and sn+1 = s′. Let tr : Σ∗

1CAS atomically compares the content of a memory location to an ex-

pected value, and if they are the same, the content of that memory location

is assigned to the new given value.
2LL/SC are a pair of instructions. LL �rst reads the current content

from a memory location X. A subsequent SC stores a new value to X only

if no updates have happened in between LL and SC; otherwise, it fails.

be a sequence of visible events. s
tr⇒ s′ iff there exists

e1, e2, · · · , en ∈ Στ such that s
e1,e2,··· ,en→ s′. The set of

traces of L is traces(L) = {tr : Σ∗ | ∃ s′ ∈ S, init
tr⇒ s′}. In

this paper, we consider only LTSs with a �nite number of

states. In particular, we bound the sizes of variable domains

by constants, which also bounds the depths of recursions.

Theorem 1 (Re�nement). Let Lim = (Sim, initim,Tim) be a

LTS for an implementation. Let Lsp = (Ssp, initsp,Tsp) be a
LTS for a speci�cation. Lim re�nes Lsp, written as Lim wT

Lsp, iff traces(Lim) ⊆ traces(Lsp).

4.2 Linearizability

This section brie�y shows how to create high-level lin-

earizable speci�cations and how to use re�nement relation

to de�ne linearizability of concurrent implementations.

We de�ne the linearizable speci�cation LTS Lsp =
(Ssp, initsp,Tsp)for a shared object o in the following way.

Every execution of an operation of o on a process includes

three atomic steps: the invocation action, the linearization

action, and the matching response action. The linearization

action performs the computation based on the sequential

speci�cation of the object. All the invocation and response

actions are visible events, while the linearization ones are

invisible events. Their complete speci�cation and transition

rules in LTS is formally presented in [8]. We now consider

a LTS Lim = (Sim, initim,Tim) that supposedly implements

object o. Theorem 2 characterizes linearizability of the im-

plementation through re�nement relations.

Theorem 2. Traces of Lim are linearizable iff Lim wT Lsp.

The proof of theorem 2 is given in [8]. The theorem

shows that to verify linearizability of an implementation,

it is necessary and suf�cient to show that the implemen-

tation LTS is a re�nement of the speci�cation LTS as we

de�ned above. This provides the theoretical foundation of

our veri�cation of linearizability. Notice that the veri�ca-

tion by re�nement given above does not require identify-

ing low-level actions in the implementation as linearization

points, which is the dif�cult (and sometimes even impos-

sible) task. In fact, the veri�cation can be automatically

carried out without any special knowledge about the imple-

mentation beyond knowing the implementation code.

5 SNZI Model

In order to prove that SNZI algorithm is a linearizable

implementation , we model its speci�cation and implemen-

tation in extended CSP, and then verify that the implemen-

tation re�nes the speci�cation.

Fig. 4 shows the abstract speci�cation model with P pro-

cesses. Process ArriveA and DepartA consist of invocation



ArriveA(i) = arrive inv.i→ τ{surplus++; }
→ arrive res.i→ Skip;

DepartA(i) = depart inv.i→ τ{surplus--; }
→ depart res.i→ Skip;

QueryA() = query.(surplus > 0)→ QueryA();

ProcessA(i) = ArriveA(i); DepartA(i); ProcessA(i)

SNZIA() = (||| x : {0..P− 1}@ProcessA(x))\{τ}
||| QueryA();

Figure 4. Abstract speci�cation model

ArriveI(p, n) = arrive inv.p→
if (n == 0) ArriveR(p) else Arrive(p, n);

arrive res.p→ Skip;

DepartI(p, n) = depart inv.p→
if (n == 0) DepartR(p) else Depart(p, n);

depart res.p→ Skip;

Process(i) = 2 x : {0..N − 1}@
(ArriveI(i, x); DepartI(i, x));

Query() = query.I → Query();

SNZI() = (||| x : {0..P− 1}@Process(x))\{τ}
||| Query();

Figure 5. Concrete implementation model

event, linearization event τ and response event. Process

QueryA recursively reads whether surplus is greater than

zero or not. ProcessA models the behavior of a process,

i.e., repeatedly performs an ArriveA followed by aDepartA.

SNZIA3 interleaves all ProcessAs and QueryA and hides the

τ events (i.e., the linearization events).

The basic structure of the implementation (the details

of Arrive and Depart operations are skipped) is showed in

Fig. 5. To initialize the rooted tree in the implementation,

a size N array named node is created to store SNZI objects.

The root is node[0], and for 0 < i < N, the parent of node[i]
is nodeb i−1

2 c. Since P processes may visit the same node

concurrently, an N × P array is introduced to store the lo-

cal variables within an operation of P processes visiting N

nodes. The full implementation model is in Appendix.

A process could visit any node at any time, i.e., which

node a process chooses to visit is decided by external en-

vironment. Thus, external choice 2 is used to represent a

process visiting a node randomly. ArriveI(p,n) represents

the process p arriving at the node n. If n = 0 (the visit-

ing node is the root), then it starts process ArriveR which

captures how a process enters the root. Otherwise, it starts

process Arrive which captures how a process arrives a hier-

archical node. So does DepartI. Due to space constraints,

we show the resulting code only for Depart operation at the

3||| x : {1..N}@P(x) is same as P(1) ||| .. ||| P(N), similarly for 2.

1. DepartR(p) =

2. τ{c[p] = C[0]; a[p] = A; v[p] = V[0]; } →
3. if (c[p] == C[0] && a[p] == A && v[p] == V[0]){
4. τ{C[0] = c[p]− 1; A = false; V[0] = v[p]; } →
5. if (c[p] > 1){τ → Skip}
6. else{τ → DepartLoop(p)}
7. }else{τ → DepartR(p)};

8. DepartLoop(p) = τ{counts[p] = count; } →
9. if (v[p] != V[0]) {τ → Skip}
10. else{
11. if (counts[p] != count){τ → DepartLoop(p)}
12. else{τ{I = false; count++; } → Skip}
13. };

Figure 6. Depart operation on root node

root in Fig. 6. The original algorithm of Depart includes

two-fold loop statements. Each loop is modeled as a recur-

sively de�ned process. DepartR process models the outer

loop, while DepartLoop models the inner loop. The origi-

nal X and x are both structured variables composed of three

simple variables (represented respectively by (C,A,V) and
(c, a, v)). An atomic and invisible event τ containing the as-

signment statements of c, a and v represents the assignment

of x on line 2. Similar is X on line 4. For line 5, 6 and 7, an-

other τ is added between if/else condition and the �rst event

of true/false branch to prevent them from executing in one

atomic step. DepartLoop contains a pair of LL/SC prim-

itives. The value of counter is recorded when performing

LL (line 8). Then when the process attempts SC, it checks

whether the recorded value is same as the current value of

counter (line 11). If they are not equal, DepartLoop is re-

peatedly invoked (line 11). Otherwise, the process assigns

false to I and then performs Skip event to return control to

the invoking process (line 12).

6 Veri�cation and Experimental Result

Based on Theorem 2, automatic re�nement checking

allows us to verify the linearizability of SNZI algorithm.

PAT [10] supports different notions of re�nements based

on different semantics. A re�nement checking algorithm

(inspired by the one implemented in FDR [9] but extended

with partial order reduction) is used to perform re�nement

checking on-the-�y. The key idea is to establish a (weak)

simulation relationship from the speci�cation to the imple-

mentation. We remark that FDR does not support shared

variables/arrays, and therefore, is not easily applicable. An-

other candidate tool is the SPIN model checker, which sup-

ports veri�cation of LTL properties. Nonetheless, formal-

ization linearizability as LTL formulae results in large LTL

formulae and thus not feasible for veri�catoin.



We have experimented SNZI on PAT for different num-

ber of processes and tree nodes. The table below summa-

rizes the results, where `-' means infeasible, and `POR'

means partial order reduction. The testbed is a PC with

2.83GHz Intel Q9550 CPU and 4 GB memory.

Setting Result without POR Result with POR

#Proc #Node Time(sec) #States Time(sec) #States

2 2 23.3 28163 17.1 23828

2 3 73.6 62753 41.4 52779

2 4 393 376342 157 173694

2 5 1298 712857 322 341845

2 6 - - 496 485156

3 2 - - 6214 8451568

The number of states and running time increase rapidly

with data size, and especially the number of processes.

This conform to theoretical results [1]: model checking lin-

earizability is in EXPSPACE. We have employed several

optimization techniques to improve scalability. First, we

use partial order reduction to effectively reduce the search

space and running time. Second, we manually combined

sequences of local actions into atomic blocks, such as orga-

nizing consecutive events which only cope with local vari-

ables into one single τ event. Third, we speci�ed every op-

eration using a minimum number of processes, in order not

to generate multiple equivalent states as different parame-

terized processes containing the same events. Overall, our

approach is effective to handle big models like SNZI.

7 Related Work and Conclusion

The idea of re�nement has been explored by Alur, el

al. [1] to show that linearizability can be cast as containment

of two regular languages. Our de�nition of linearizability

on re�nement is more general, regardless of the modeling

language and knowledge of linearization points.

Formal veri�cation of linearizability is a much studied

research area. There are various approaches in the literature.

Veri�cation using theorem provers is another approach [4],

where algorithms are proved to be linearizable by using

simulation between input/output automata modeling the be-

havior of an abstract set and the implementation. However,

theorem prover based approach is not automatic. Conver-

sion to IO automata and use of PVS require strong exper-

tise. Wang and Stoller [14] present a static analysis that

veri�es linearizability for an unbounded number of threads.

Their approach detects certain coding patterns, hence is not

complete (i.e., not applicable to SNZI algorithm). Amit et

al. [2] presented a shape difference abstraction that tracks

the difference between two heaps. The main limitation

of this approach is that users need to provide linearization

points, which is generally unknown. A buggy design may

have no linearization points at all. In [13], Vechev and Ya-

hav provided two methods for linearizability checking. One

method requires user annotations for linearization points.

The other is fully automatic but inef�cient (The worse case

time is exponential in the length of the history). As a result,

the number of operations they can check is only 2 or 3. In

contrast, our approach handles all possible interleaving of

operations given sizes of the shared objects.

In this work, we expressed linearizability using re�ne-

ment relation. By using this de�nition, we have success-

fully veri�ed the SNZI algorithms for the �rst time. We

have shown that the re�nement checking algorithm behind

PAT allows us to successfully verify complicated concurrent

algorithms without the knowledge of linearization points.

During the analysis, we have faced the infamous state ex-

plosion problem. In future, we will explore how to combine

different state space reduction techniques and parameter-

ized re�nement checking for in�nite number of processes.
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Appendix: The Complete Model of SNZI Algorithms

#de�ne P 3; //number of processes

#de�ne N 3; //number of nodes

//−−−−−−−−−−Shared Variables−−−−−−−−−−
var C[N]; //X.c in the original algorithm

var V[N]; //X.v

var A = false; //X.a for root node

var I = false; //presence indicator

//−−−−−−−−−−Local Variables−−−−−−−−−−
var c[N ∗ P]; //x.c

var v[N ∗ P]; //x.v

var a[N ∗ P]; //x.a

var c′[P]; //x′.c

var v′[P]; //x′.v

var a′[P]; //x′.a

var s[N ∗ P]; //succ

var u[N ∗ P]; //undoArr

//for LL/SC Primitives

var count;

var counts[P];

// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗The Concrete Implementation Model ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

ArriveI(p, n) = arrive inv.p→ ArriveGeneral(p, n); arrive res.p→ Skip;

DepartI(p, n) = depart inv.p→ DepartGeneral(p, n); depart res.p→ Skip;

ArriveGeneral(p, n) = if (n == 0) ArriveR(p) else Arrive(p, n);

DepartGeneral(p, n) = if (n == 0) DepartR(p) else Depart(p, n);

// =========== Start : This part is for root node ==========

//−−−− − −−−−−Arrival at Root Node−−−−−−−−−−−−−−−
ArriveR(p) = τ{c[p] = C[0]; a[p] = A; v[p] = V[0]; } → //x← Read(X)

if (c[p] == 0){τ → τ{c′[p] = 1; a′[p] = true; v′[p] = v[p] + 1; } →
if (c[p] == C[0]&&a[p] == A&&v[p] == V[0]){τ{C[0] = c′[p]; A = a′[p]; V[0] = v′[p]; } → R2(p)}
else{ArriveR(p)}
}else{τ → τ{c′[p] = c[p] + 1; a′[p] = a[p]; v′[p] = v[p]; } →

if (c[p] == C[0]&&a[p] == A&&v[p] == V[0]){τ{C[0] = c′[p]; A = a′[p]; V[0] = v′[p]; } → R2(p)}
else{ArriveR(p)}

};

R2(p) = if (a′[p] == true)

{τ → τ{I = true; count = count + 1; } →
if (C[0] == c′[p]&&A == a′[p]&&V[0] == v′[p]){τ{C[0] = c′[p]; A = false; V[0] = v′[p]; } → Skip}
else{τ → Skip}
}else{τ → Skip};

//−−−− − −−−−−Departure from Root Node−−−−−−−−−−−−−
DepartR(p) = τ{c[p] = C[0]; a[p] = A; v[p] = V[0]; } →

if (c[p] == C[0]&&a[p] == A&&v[p] == V[0]) //if CAS(X, x, (x.c− 1, false, x.v))

{τ{C[0] = c[p]− 1; A = false; V[0] = v[p]; } →
if (c[p] > 1){τ → Skip} else{τ → DepartLoop(p)}
}else{τ → DepartR(p)};

DepartLoop(p) = τ{counts[p] = count; } → //LL(I)

if (v[p]! = V[0]){τ → Skip}
else{if (counts[p]! = count){τ → DepartLoop(p)} else{τ{I = false; count = count + 1; } → Skip}};



// ====== = ===== Start : Hierarchical SNZI Node ===========

//−−−−− − −−−− Arrival at Hierarchical SNZI Node−−−−−−−−−−
Arrive(p, n) = τ{s[n ∗ P + p] = false; u[n ∗ P + p] = 0; } → ArriveL1(p, n); ArriveL2(p, n); Skip;

// 1
2

can not be expressed in CSP, therefore the value of X.c will be increased as two times as the original.

ArriveL1(p, n) = if (!s[n ∗ P + p])

{τ → τ{c[n ∗ P + p] = C[n]; v[n ∗ P + p] = V[n]; } →
if (c[n ∗ P + p] > 1)//if x.c >= 1 then

{τ →
if (c[n ∗ P + p] == C[n]&&v[n ∗ P + p] == V[n]) //if CAS(X, x, (x.c + 1, x.v)) then

{τ{C[n] = c[n ∗ P + p] + 2; V[n] = v[n ∗ P + p]; } →
τ{s[n ∗ P + p] = true; } → Case2(p, n)

}else{τ → Case2(p, n)}
}else{τ → Case2(p, n)}
}else{τ → Skip};

Case2(p, n) = if (c[n ∗ P + p] == 0) //if x.c = 0 then

{τ →
if (c[n ∗ P + p] == C[n]&&v[n ∗ P + p] == V[n]) // if CAS(X, x, ( 1

2
, x.v + 1)) then

{τ{C[n] = 1; V[n] = v[n ∗ P + p] + 1; } → τ{s[n ∗ P + p] = true; } →
τ{c[n ∗ P + p] = 1; v[n ∗ P + p] = v[n ∗ P + p] + 1; } → Case3(p, n)

}else{τ → Case3(p, n)}
}else{τ → Case3(p, n)};

Case3(p, n) = if (c[n ∗ P + p] == 1)

{τ → ArriveGeneral(p, (n− 1)/2);

if (c[n ∗ P + p] == C[n]&&v[n ∗ P + p] == V[n])

{τ{C[n] = 2; V[n] = v[n ∗ P + p]; } → ArriveL1(p, n)}
else{τ → τ{u[n ∗ P + p] = u[n ∗ P + p] + 1; } → ArriveL1(p, n)}
}else{τ → ArriveL1(p, n)};

ArriveL2(p, n) = if (u[n ∗ P + p] > 0){τ → DepartGeneral(p, (n− 1)/2); τ{u[n ∗ P + p] = u[n ∗ P + p]− 1; }
→ ArriveL2(p, n)}else{τ → Skip};

//−−−− − −−−−−Departure from Hierarchical SNZI Node−−−−−−−−
Depart(p, n) = τ{c[n ∗ P + p] = C[n]; v[n ∗ P + p] = V[n]; } →

if (c[n ∗ P + p] == C[n]&&v[n ∗ P + p] == V[n]) //if CAS(X, x, (x.c− 1, x.v)) then

{τ{C[n] = c[n ∗ P + p]− 2; V[n] = v[n ∗ P + p]; } →
if (c[n ∗ P + p] == 2){τ → DepartGeneral(p, (n− 1)/2); Skip}
else{τ → Skip}
}else{τ → Depart(p, n)};

Process(i) = (2 x : {0..N − 1}@(ArriveI(i, x); DepartI(i, x));

Query() = query.I → Query();

SNZI() = (||| x : {0..P− 1}@Process(x))\{τ} ||| Query();

// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗Abstract Speci�cation Model ∗ ∗ ∗ ∗ ∗ ∗∗

var surplus = 0;

ArriveA(i) = arrive inv.i→ τ{surplus = surplus + 1; } → arrive res.i→ Skip;

DepartA(i) = depart inv.i→ τ{surplus = surplus− 1; } → depart res.i→ Skip;

ProcessA(i) = ArriveA(i); DepartA(i);

QueryA() = query.(surplus > 0)→ QueryA();

SNZIAbs() = (||| x : 0..P− 1@ProcessA(x))\{τ} ||| QueryA();

// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗Re�nement Checking ∗ ∗ ∗ ∗ ∗ ∗∗

#assert SNZI() re�nes SNZIAbs();


