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Abstract. We study the problem of achieving reliable communication with quiescent algorithms
(i.e., algorithms that eventually stop sending messages) in asynchronous systems with process crashes
and lossy links. We first show that it is impossible to solve this problem in asynchronous systems
(with no failure detectors). We then show that, among failure detectors that output lists of suspects,
the weakest one that can be used to solve this problem is �P, a failure detector that cannot be imple-
mented. To overcome this difficulty, we introduce an implementable failure detector called Heartbeat
and show that it can be used to achieve quiescent reliable communication. Heartbeat is novel: in
contrast to typical failure detectors, it does not output lists of suspects and it is implementable
without timeouts. With Heartbeat, many existing algorithms that tolerate only process crashes can
be transformed into quiescent algorithms that tolerate both process crashes and message losses. This
can be applied to consensus, atomic broadcast, k-set agreement, atomic commitment, etc.
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1. Introduction.

1.1. Motivation. We focus on the problem of quiescent reliable communication
in asynchronous message-passing systems with process crashes and lossy links. To
illustrate this problem consider a system of two processes, a sender s and a receiver
r, connected by an asynchronous bidirectional link. Process s wishes to send some
message m to r. Suppose first that no process may crash, but the link between s and
r may lose messages (in both directions). If we put no restrictions on message losses it
is obviously impossible to ensure that r receives m. An assumption commonly made
to circumvent this problem is that the link is fair : if a message is sent infinitely often,
then it is received infinitely often.

With such a link, s could repeatedly send copies of m forever, and r is guaranteed
to eventually receive m. This is impractical, since s never stops sending messages.
The obvious fix is the following protocol: (a) s sends a copy of m repeatedly until it
receives ack(m) from r, and (b) upon each receipt of m, r sends ack(m) back to s.
Note that this protocol is quiescent : eventually no process sends or receives messages.

The situation changes if, in addition to message losses, process crashes may also
occur. The protocol above still works, but it is not quiescent anymore: for example,
if r crashes before sending ack(m), then s will send copies of m forever. Is there a
quiescent protocol ensuring that if neither s nor r crashes then r eventually receives
m? It turns out that the answer is no, even if one assumes that the link can only lose
a finite number of messages.
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Since process crashes and message losses are common types of failures, this neg-
ative result is an obstacle to the design of fault-tolerant distributed systems. In this
paper, we explore the use of unreliable failure detectors to circumvent this obstacle.
Roughly speaking, unreliable failure detectors provide (possibly erroneous) hints on
the operational status of processes. Each process can query a local failure detector
module that provides some information about which processes have crashed. This
information is typically given in the form of a list of suspects.

In general, failure detectors can make mistakes: a process that has crashed is not
necessarily suspected, and a process may be suspected even though it has not crashed.
Moreover, the local lists of suspects dynamically change and lists of different processes
do not have to agree (or even eventually agree). Introduced in [12], the abstraction
of unreliable failure detectors has been used to solve several important problems such
as consensus, atomic broadcast, group membership, nonblocking atomic commitment,
and leader election [3, 20, 26, 28, 32, 34].

Our goal is to use unreliable failure detectors to achieve quiescence, but before
we do so we must address the following important question. Note that any reasonable
implementation of a failure detector in a message-passing system is itself not quiescent:
a process being monitored by a failure detector must periodically send a message to
indicate that it is still alive, and it must do so forever (if it stops sending messages it
cannot be distinguished from a process that has crashed). Given that failure detectors
are not quiescent, does it still make sense to use them as a tool to achieve quiescent
applications (such as quiescent reliable broadcast, consensus, or group membership)?

The answer is yes for two reasons. First, a failure detector is intended to be a basic
system service that is shared by many applications during the lifetime of the system,
and so its cost is amortized over all these applications. Second, failure detection is
a service that needs to be active forever—and so it is natural that it sends messages
forever. In contrast, many applications (such as a single remote procedure call (RPC)
or the reliable broadcast of a single message) should not send messages forever, i.e.,
they should be quiescent. Thus, there is no conflict between the goal of building
quiescent applications and the use of a nonquiescent failure detection service as a tool
to achieve this goal.

1.2. Achieving quiescent reliable communication using failure detec-
tors. How can we use an unreliable failure detector to achieve quiescent reliable
communication in the presence of process and link failures? This can be done with
the eventually perfect failure detector �P [12]. Intuitively, �P satisfies the following
two properties: (a) if a process crashes, then there is a time after which it is per-
manently suspected, and (b) if a process does not crash, then there is a time after
which it is never suspected. Using �P, the following obvious algorithm solves our
sender/receiver example: (a) while s has not received ack(m) from r, it periodically
does the following: s queries �P and sends a copy of m to r if r is not currently
suspected; (b) upon each receipt of m, r sends ack(m) back to s. Note that this
algorithm is quiescent : eventually no process sends or receives messages.

So �P is sufficient to achieve quiescent reliable communication. But is it neces-
sary? In the first part of the paper, we show that among all failure detectors that
output lists of suspects, �P is indeed the weakest one that can be used to solve this
problem. Unfortunately, �P is not implementable (this would violate a known im-
possibility result [17, 12]). Thus, at a first glance, it seems that achieving quiescent
reliable communication requires a failure detector that cannot be implemented. In
the second part of the paper, we show that this is not so.
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In fact, we show that quiescent reliable communication can be achieved with
a failure detector that is implementable in systems with process crashes and lossy
links. This new failure detector, called Heartbeat and denoted HB, is very simple.
Roughly speaking, the failure detector module of HB at a process p outputs a vector
of counters, one for each neighbor q of p. If neighbor q does not crash, its counter
at p increases with no bound. If q crashes, its counter eventually stops increasing.
The basic idea behind an implementation of HB is the obvious one: each process
periodically sends an I-am-alive message (a “heartbeat”) and every process receiving
a heartbeat increases the corresponding counter.1

HB should not be confused with existing implementations of failure detectors
(some of which have modules that are also called heartbeat [35, 10]). Even though
existing failure detectors are also based on the repeated sending of a heartbeat, they
use timeouts on heartbeats in order to derive lists of processes considered to be up or
down, and applications can only see these lists. In contrast, HB does not use timeouts
on the heartbeats of a process in order to determine whether this process has failed
or not. HB just counts the total number of heartbeats received from each process and
outputs these “raw” counters without any further processing or interpretation.

A remark is now in order regarding the practicality of HB. As we mentioned
above, HB outputs a vector of unbounded counters. In practice, these unbounded
counters are not a problem for the following reasons. First, they are in local memory
and not in messages—our HB implementations use bounded messages. Second, if we
bound each local counter to 64 bits and assume a rate of one heartbeat per nanosecond,
which is orders of magnitude higher than currently used in practice, then HB will work
for more than 500 years.

1.3. Detailed outline of the results. We focus on two types of reliable com-
munication mechanisms: quasi-reliable send and receive, and reliable broadcast. Rough-
ly speaking, a pair of send and receive primitives is quasi-reliable if it satisfies the
following property: if processes s and r are correct (i.e., they do not crash), then r
receives a message from s exactly as many times as s sent that message to r. Re-
liable broadcast [23] ensures that if a correct process broadcasts a message m then
all correct processes deliver m; moreover, all correct processes deliver the same set
of messages. Our goal is to obtain quiescent implementations of these primitives in
networks that do not partition permanently. More precisely, we consider networks
in which processes may crash and links may lose messages, but every pair of correct
processes are connected through some fair path, i.e., a path containing only fair links
and correct processes.

We first show that in asynchronous systems (with no failure detectors), there is no
quiescent implementation of quasi-reliable send and receive or of reliable broadcast in
such networks (even if we assume that links can lose only a finite number of messages).
We then show that the weakest failure detector with bounded output size2 that can be
used to solve these problems is �P—which is not implementable.

To overcome this difficulty, we introduce HB, a failure detector that outputs
unbounded counters, and show that HB is strong enough to achieve quiescent reliable
communication but weak enough to be implementable. We consider two types of
networks. In the first type, all links are bidirectional and fair. In the second one, some
links are unidirectional, and some links have no restrictions on message losses, i.e.,

1As we will see, however, in some types of networks the actual implementation is not as easy.
2Note that a list of suspects has bounded size.
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they are not fair. Examples of such networks are unidirectional rings that intersect.
For the first type of networks, a common one in practice, the implementation of
HB and the reliable communication algorithms are very simple and efficient. The
algorithms for the second type are significantly more complex.

We then consider two stronger types of communication primitives, namely, reliable
send and receive and uniform reliable broadcast, and give quiescent implementations
that use HB. These implementations assume that a majority of processes are correct
(a result in [5] shows that this assumption is necessary).

We conclude the paper by showing how HB can be used to extend previous work in
order to solve problems with algorithms that are both quiescent and tolerant of process
crashes and messages losses. First, we explain how HB can be used to transform
many existing algorithms that tolerate process crashes into quiescent algorithms that
tolerate both process crashes and message losses (fair links). This transformation
can be applied to the algorithms for consensus in [2, 7, 9, 12, 14, 16, 33], for atomic
broadcast in [12], for k-set agreement in [13], for atomic commitment in [20], for
approximate agreement in [15], etc. Next, we show that HB can be used to extend the
work in [5] to obtain the following result. Let P be a problem. Suppose P is correct-
restricted (i.e., its specification refers only to the behavior of correct processes), or
a majority of processes are correct. If P is solvable with a quiescent protocol that
tolerates only process crashes, then P is also solvable with a quiescent protocol that
tolerates process crashes and message losses.3

To summarize, in this paper, we do the following.
1. We explore the use of unreliable failure detectors to achieve quiescent reliable

communication in the presence of process crashes and lossy links—a problem
that cannot be solved without failure detection.

2. We show that the weakest failure detector with bounded output size that can
be used to solve this problem is �P—which is not implementable.

3. To overcome this obstacle, we introduce HB: this failure detector can be
used to achieve quiescent reliable communication, and it is implementable.
In contrast to common failure detectors [3, 12, 20, 21, 28, 34], HB does not
output a list of suspects, and it can be implemented without timeouts.

4. We show that HB can be used to extend existing algorithms for many funda-
mental problems (e.g., consensus, atomic broadcast, k-set agreement, atomic
commitment, and approximate agreement) to tolerate message losses. It can
also be used to extend the results of [5].

Result (2) above implies that failure detectors with bounded output size are either
(a) too weak to achieve quiescent reliable communication, or (b) not implementable.
Thus, failure detectors that output lists of processes, which are commonly used in
practice, are not always the best ones to solve a problem: their power or applicability
is limited. To the best of our knowledge, this is the first work that shows that failure
detectors with bounded output size have inherent limitations.

The problem of achieving reliable communication despite failures has been exten-
sively studied, especially in the context of data link protocols (see Chapter 22 of [29]
for a compendium). Our work differs from previous results because we seek quies-
cent algorithms in systems where processes and links can fail (and this requires the
use of unreliable failure detectors). The works that are the closest to ours are due to
Moses and Roth [30] and Basu, Charron-Bost, and Toueg [5]. The main goal of [30]
is to achieve quiescent reliable communication with algorithms that garbage-collect

3The link failure model in [5] is slightly different from the one used here (cf. section 10).
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old messages in systems with lossy links (the issue of garbage collection is only briefly
considered here). The algorithms in [30], however, are not resilient to process crashes.
The protocols in [5] tolerate both process crashes and lossy links, but they are not
quiescent (and they do not use failure detectors). In section 10, we use HB to extend
the results of [5] and obtain quiescent protocols.

The paper is organized as follows. Our model is given in section 2. In section 3,
we define the reliable communication primitives that we focus on. In section 4, we
show that, without failure detectors, quiescent reliable communication is impossible.
In section 5, we prove that �P is the weakest failure detector with bounded output size
that can be used to solve this problem (this proof is under a simplifying assumption;
the proof without this assumption is given in the appendix). We then define the
heartbeat failure detector HB in section 6. In section 7, we show how to use HB to
achieve quiescent reliable communication. In section 8, we show how to implement
HB. In section 9, we consider two stronger types of communication primitives and
give quiescent implementations that use HB. In section 10, we explain how HB can
be used to extend several previous results. We conclude the paper with some remarks
about message buffering, quiescence versus termination, models of lossy links, and the
generalization of our results to partitionable networks.

2. Model. We consider asynchronous message-passing distributed systems in
which there are no timing assumptions. In particular, we make no assumptions on
the time it takes to deliver a message, or on relative process speeds. Processes can
communicate with each other by sending messages through unidirectional links. We
do not assume that the network is completely connected or that the links are bidirec-
tional. The system can experience both process failures and link failures. Processes
can fail by crashing, and links can fail by dropping messages. The model, based on
the one in [11], is described next.

A network is a directed graph G = (Π,Λ) where Π = {1, . . . , n} is the set of
processes, and Λ ⊆ Π×Π is the set of links. If there is a link from process p to process
q, we denote this link by p → q, and if, in addition, q 
= p, we say that q is a neighbor
of p. The set of neighbors of p is denoted by neighbor(p).

We assume the existence of a discrete global clock—this is merely a fictional
device to simplify the presentation, and processes do not have access to it. We take
the range T of the clock’s ticks to be the set of natural numbers.

2.1. Failures and failure patterns. Processes can fail by crashing, i.e., by
halting prematurely. A process failure pattern FP is a function from T to 2Π. Intu-
itively, FP (t) denotes the set of processes that have crashed through time t. Once a
process crashes, it does not “recover,” i.e., for all t: FP (t) ⊆ FP (t + 1). We say p
crashes in FP if p ∈ FP (t) for some t; otherwise we say p is correct in FP .

Some links in the network are fair. Roughly speaking, a fair link p → q may
intermittently drop messages and may do so infinitely often, but it must satisfy the
following “fairness” property: if p repeatedly sends some message to q and q does not
crash, then q eventually receives that message. Link properties are made precise in
section 2.5.

A link failure pattern FL is a subset of the set of links Λ. Intuitively, FL is the
set of links that may fail to satisfy the above fairness property. If p → q 
∈ FL, we say
that p → q is fair in FL.

A failure pattern F = (FP , FL) combines a process failure pattern and a link
failure pattern, and correct proc(F ) and crashed proc(F ) denote the set of processes
that are correct and crashed in FP , respectively.
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2.2. Network connectivity. The following definitions are with respect to a
given failure pattern F = (FP , FL). We say that a path (p1, . . . , pk) in the network is
fair if processes p1, . . . , pk are correct and links p1 → p2, . . . , pk−1 → pk are fair. We
assume that every pair of distinct correct processes is connected through a fair path.
This precludes permanent network partitions.

2.3. Failure detectors. Each process has access to a local failure detector mod-
ule that provides (possibly incorrect) information about the failure pattern that occurs
in an execution. A failure detector history H with range R is a function from Π × T
to R. H(p, t) is the output value of the failure detector module of process p at time
t. A failure detector D is a function that maps each failure pattern F to a set of
failure detector histories with range RD (where RD denotes the range of the output
of D). D(F ) denotes the set of possible failure detector histories permitted by D for
the failure pattern F .

We now define the eventually perfect failure detector �P [12].4 Each failure de-
tector module of �P outputs a set of processes that are suspected to have crashed,
i.e., R�P = 2Π. For each failure pattern F, �P(F ) is the set of all failure detector
histories H with range R�P that satisfy the following properties.

1. Strong completeness. Eventually, every process that crashes is permanently
suspected by every correct process. More precisely,

∃t ∈ T ∀p ∈ crashed proc(F ), ∀q ∈correct proc(F ), ∀t′ ≥ t : p ∈H(q, t′).

2. Eventual strong accuracy . There is a time after which correct processes are
not suspected by any correct process. More precisely,

∃t ∈ T ∀t′ ≥ t, ∀p, q ∈ correct proc(F ) : p 
∈ H(q, t′).

Sometimes we need to consider systems without failure detectors. For conve-
nience, we model such systems by assuming that their failure detectors always output
nil. More precisely, the nil failure detector D⊥ is the one where the failure detec-
tor modules of all processes always output ⊥, independent of the failure pattern. A
system without failure detectors is one whose failure detector is D⊥.

2.4. Runs of algorithms. An algorithm A is a collection of n deterministic
automata, one for each process in the system. Computation proceeds in atomic steps
of A. In each step, a process may receive a message from a process, get an external
input, query its failure detector module, undergo a state transition, send a message
to a neighbor, and issue an external output.

A run of algorithm A using failure detector D is a tuple R = (F,HD, I, S, T )
where F is a failure pattern, HD ∈ D(F ) is a history of failure detector D for failure
pattern F, I is an initial configuration of A, S is an infinite sequence of steps of A, and
T is an infinite list of increasing time values indicating when each step in S occurs.

A run must satisfy the following properties for every process p. If p has crashed
by time t, i.e., p ∈ FP (t), then p does not take a step at any time t′ ≥ t; if p is correct,
i.e., p ∈ correct proc(F ), then p takes an infinite number of steps; if p takes a step at
time t and queries its failure detector, then p gets HD(p, t) as a response.

2.5. Link properties. Each run R = (F,HD, I, S, T ) must also satisfy some
“link properties.” First, no link creates or duplicates messages. More precisely, for
every link p → q ∈ Λ, the following must hold.

4In [12], �P denotes a class of failure detectors.
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1. Uniform integrity . For all k ≥ 1, if q receives a message m from p exactly k
times by time t, then p sent m to q at least k times before time t.

Moreover, every fair link transports any message that is repeatedly sent through
it. More precisely, for every link p → q 
∈ FL, the following must hold.

2. Fairness. If p sends a message m to q an infinite number of times and q is
correct, then q receives m from p an infinite number of times.

Note that any link, whether fair or not, may lose (or not lose) messages arbitrarily
during any finite period of time. In particular, a fair link may lose all the messages
sent during any finite period of time, while a link that is not fair may behave perfectly
during that time.

2.6. Environments and problem solving. The correctness of an algorithm
may depend on certain assumptions on the “environment,” e.g., the maximum num-
ber of processes that may crash. For example, a consensus algorithm may need the
assumption that a majority of processes is correct. Formally, an environment E is a
set of failure patterns. Unless otherwise stated, the only restriction that we put on the
environment in this paper is that every pair of distinct correct processes is connected
through a fair path.

A problem P is defined by properties that sets of runs must satisfy. An algorithm
A solves problem P using a failure detector D in environment E if the set of all runs
R = (F,HD, I, S, T ) of A using D, where F ∈ E satisfies the properties required by
P .

Let C be a class of failure detectors. An algorithm A solves a problem P using C
in environment E if for all D ∈ C, A solves P using D in E . An algorithm implements
C in environment E if it implements some D ∈ C in E .

3. Quiescent reliable communication. In this paper, we focus on quasi-
reliable send and receive, and reliable broadcast, because these communication prim-
itives are sufficient to solve many problems (see section 10.1). Stronger types of com-
munication primitives—reliable send and receive, and uniform reliable broadcast—are
briefly considered in section 9.

3.1. Quasi-reliable send and receive. Consider any two distinct processes s
and r. We define quasi-reliable send and receive from s to r in terms of two primitives,
qr-sends,r and qr-receiver,s. We say that process s qr-sends message m to process r
if s invokes qr-sends,r(m). We assume that if s is correct, it eventually returns from
this invocation. We allow process s to qr-send the same message m more than once
through the same link. We say that process r qr-receives message m from process s if r
returns from the invocation of qr-receiver,s(m). Primitives qr-sends,r and qr-receiver,s
satisfy the following properties.

1. Uniform integrity . For all k ≥ 1, if r qr-receives m from s exactly k times by
time t, then s qr-sent m to r at least k times before time t.

2. Quasi no loss.5 For all k ≥ 1, if both s and r are correct, and s qr-sends m
to r exactly k times by time t, then r eventually qr-receives m from s at least k times.

Intuitively, quasi no loss together with uniform integrity implies that if s and r
are correct, then r qr-receives m from s exactly as many times as s qr-sends m to r.

We want to implement quasi-reliable send and receive primitives using the com-
munication service provided by the network links. Informally, such an implementation
is quiescent if it sends only a finite number of messages when qr-sends,r is invoked a

5A stronger property, called No Loss, is used in section 9.1 to define reliable send and receive.
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finite number of times.6

3.2. Reliable broadcast. Reliable broadcast [9] is defined in terms of two prim-
itives: broadcast(m) and deliver(m). We say that process p broadcasts message m if p
invokes broadcast(m). We assume that every broadcast message m includes the fol-
lowing fields: the identity of its sender, denoted sender(m), and a sequence number,
denoted seq(m). These fields make every message unique. We say that q delivers
message m if q returns from the invocation of deliver(m). Primitives broadcast and
deliver satisfy the following properties [23].

1. Validity . If a correct process broadcasts a message m, then it eventually
delivers m.

2. Agreement . If a correct process delivers a message m, then all correct pro-
cesses eventually deliver m.

3. Uniform integrity . For every message m, every process delivers m at most
once, and only if m was previously broadcast by sender(m).

Validity and agreement imply that if a correct process broadcasts a message m,
then all correct processes eventually deliver m.

We want to implement reliable broadcast using the communication service pro-
vided by the network links. Informally, such an implementation is quiescent if it sends
only a finite number of messages when broadcast is invoked a finite number of times.

3.3. Relating reliable broadcast and quasi-reliable send and receive.
From a quiescent implementation of quasi-reliable send and receive one can easily
obtain a quiescent implementation of reliable broadcast, and vice-versa.

Remark 3.1. From any quiescent implementation of reliable broadcast, we can
obtain a quiescent implementation of the quasi-reliable primitives qr-sendp,q and
qr-receiveq,p for every pair of processes p and q.

Remark 3.2. Suppose that every pair of correct processes is connected through
a path of correct processes. If we have a quiescent implementation of quasi-reliable
primitives qr-sendp,q and qr-receiveq,p for all processes p and q ∈ neighbor(p), then we
can obtain a quiescent implementation of reliable broadcast.

To implement reliable broadcast from qr-send and qr-receive, one can use a simple
diffusion algorithm (e.g., see [23]).

4. Impossibility of quiescent reliable communication. We now show that
in a system without failure detectors, quiescent reliable communication cannot be
achieved. This holds even if the network is completely connected and only a finite
number of messages can be lost.

Theorem 4.1. Consider a system without failure detectors where every pair of
processes is connected by a fair link and at most one process may crash. Let s and r
be any two distinct processes. There is no quiescent implementation of quasi-reliable
send and receive from s to r. This holds even if we assume that only a finite number
of messages can be lost.

Proof. 7 Assume, by contradiction, that there exists a quiescent implementation
I of quasi-reliable qr-sends,r and qr-receiver,s. The basic intuition behind the proof

6 A quiescent implementation of qr-sends,r and qr-receiver,s is allowed to send a finite number
of messages even if no qr-sends,r is invoked at all (e.g., some messages may be sent as part of an
“initialization phase”).

7This theorem is actually a corollary of Theorem A.12 and the fact that the eventually perfect
failure detector �P cannot be implemented. The proof of Theorem A.12, however, uses some complex
arguments that obscure the intuition behind Theorem 4.1. We prefer to give a self-contained and
direct proof that does not use Theorem A.12.
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is to construct a run R1 where s qr-sends a message to r, but r crashes. Since the
implementation of qr-send and qr-receive is quiescent, only a finite number of messages
are sent to r in R1. We then construct a similar run R2 where s qr-sends a message
to r, r does not crash, but the finite number of messages sent to r are lost. Runs R1

and R2 are indistinguishable from the point of view of r, so r never qr-receives the
message—a contradiction. It turns out that to construct run R1, we need another run
R0. This is because we allow the quiescent implementation of qr-send and qr-receive
to send a finite number of “initialization” messages (see footnote 6). We now describe
runs R0, R1, and R2 in more detail.

In run R0, s qr-sends no messages, all processes are correct, processes take steps
in round-robin fashion, and every time a process takes a step, it receives the earliest
message sent to it that it did not yet receive. Since I is quiescent, there is a time t0
after which no messages are sent or received. By the uniform integrity property of
qr-send and qr-receive, process r never qr-receives any message.

Run R1 is identical to run R0 up to time t0; at time t0 + 1, s qr-sends M to r,
and r crashes; after time t0 + 1, no processes crash, and every time a process takes a
step, it receives the earliest message sent to it that it did not yet receive. Since I is
quiescent, there is a time t1 > t0 after which no messages are sent or received.

In run R2, r behaves exactly as in run R0 (in particular, r does not crash and r
receives a message m in R2 whenever it receives m in R0); all other processes behave
exactly as in run R1 (in particular, a process p 
= r receives a message m in R2

whenever it receives m in R1). Note that, in R2, if messages are sent to or from r
after time t0, then they are never received.

We now show that in R2 all links satisfy the uniform integrity property. Assume
that for some k ≥ 1, some process q receives m from some process p k times by time
t. There are several cases. (1) If q = r, then r receives m from p k times in R0 by time
t (since r behaves in the same way in R0 and R2). In R0, by the uniform integrity
property of the links, p sends m to r at least k times before time t. This happens by
time t0, since there are no sends in R0 after time t0. Note that by time t0, p behaves
exactly in the same way in R0, R1, and R2. Thus p sends m to r at least k times
before time t in R2. (2) If q 
= r and p = r, then q receives m from r k times in R1

by time t (since q behaves in the same way in R1 and R2). In R1, by the uniform
integrity property of the links, r sends m to q at least k times before time t. This
happens by time t0, since r crashes at time t0 +1 in R1. By time t0, r behaves exactly
in the same way in R0, R1, and R2. Thus r sends m to q at least k times before time t
in R2. (3) If q 
= r and p 
= r, then q receives m from p k times in R1 by time t (since
q behaves in the same way in R1 and R2). In R1, by the uniform integrity property of
the links, p sends m to q at least k times before time t. Note that p behaves exactly
in the same way in R1 and R2. Thus p sends m to q at least k times in R2 before
time t. Therefore, in R2 all links satisfy the uniform integrity property.

We next show that in R2 all links satisfy the fairness property, and in fact only a
finite number of messages are lost. Note that r sends only a finite number of messages
in R0 (since it does not send messages after time t0), and every process p 
= r sends
only a finite number of messages in R1 (since it does not send messages after time
t1). So, by construction of R2, all processes send only a finite number of messages in
R2. Therefore, only a finite number of messages are lost, and in R2 all links satisfy
the fairness property.

We conclude that R2 is a possible run of I in a network with fair links that lose
only a finite number of messages. Note that in R2: (a) both s and r are correct;
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(b) s qr-sends M to r; and (c) r does not qr-receive M . This violates the quasi no loss
property of qr-sends,r and qr-receiver,s, and so I is not an implementation of qr-sends,r
and qr-receiver,s—a contradiction.

Theorem 4.1 and Remark 3.1 immediately imply the following corollary.
Corollary 4.2. There is no quiescent implementation of reliable broadcast in a

network where a process may crash and links may lose a finite number of messages.
The above results show that quiescent reliable communication cannot be achieved

in a system without failure detectors. The rest of this paper explores the use of failure
detectors to solve this problem.

5. The weakest failure detector with bounded output size for quiescent
reliable communication. In practice, and in much of the previous literature, the
output of a failure detector is just a set of processes suspected to have failed. One such
failure detector, namely �P, can be used to achieve quiescent reliable communication.
However, �P is not implementable in asynchronous systems. Can we achieve quiescent
reliable communication with a failure detector that outputs a set of suspects and is
implementable?

In this section we show that the answer is no. In fact, we prove a stronger
result: Among all failure detectors with bounded output size (these include all failure
detectors that output a set of suspects), the weakest one for achieving quiescent
reliable communication is �P—which is not implementable. In contrast, if we do not
bound the output size, quiescent reliable communication can be solved with HB—
which is implementable. This shows that failure detectors with bounded output size
have some inherent limitations.

We prove our result with respect to a problem that we call single-shot reliable
send and receive. This problem is weaker than quasi-reliable send and receive, and
reliable broadcast, and thus our result immediately applies to those problems as well.

In section 5.1, we explain what it means for a failure detector to be weaker
than another one. In section 5.2, we define the single-shot reliable send and receive
problem. We then proceed to prove our main result under some reasonable simplifying
assumption. We first give a rough outline of this proof (section 5.3) and then the
proof itself (sections 5.4 and 5.5). In the appendix, we give the full proof without the
simplifying assumption.

5.1. Failure detector transformations. Failure detectors can be compared
via algorithmic transformations [12, 11]. A transformation algorithm TD→D′ uses fail-
ure detector D to emulate D′, as we now explain. At each process p, the algorithm
TD→D′ maintains a variable D′

p that emulates the output of D′ at p. Let HD′ be the
history of all the D′ variables in a run R of TD→D′ , i.e., HD′(p, t) is the value of D′

p

at time t in run R. Algorithm TD→D′ transforms D into D′ in environment E if and
only if for every F ∈ E and every run R = (F,HD, I, S, T ) of TD→D′ using D, we have
HD′ ∈ D′(F ). Intuitively, since TD→D′ is able to use D to emulate D′, D provides at
least as much information about process failures as D′ does, and we say that D′ is
weaker than D in E .

Note that, in general, TD→D′ need not emulate all the failure detector histories
of D′ (in environment E); what we do require is that all the failure detector histories
it emulates be histories of D′ (in that environment).

5.2. Single-shot reliable send and receive. The single-shot reliable send and
receive problem is defined in terms of two communication primitives, called s-send and
s-receive. Each process can s-send a single bit once to one process of its choice, if it



2050 MARCOS KAWAZOE AGUILERA, WEI CHEN, AND SAM TOUEG

wishes to do so (but it is also possible that no process in the system ever s-sends any
bit). The s-send and s-receive primitives must satisfy the following property. For any
two correct processes p and q, and any b ∈ {0, 1}, p s-sends b to q if and only if q
s-receives b from p.

An implementation I of s-send and s-receive is quiescent if it sends only a finite
number of messages throughout the network.

5.3. Intuitive overview of the simple proof. Let D be a failure detector
with bounded output size, i.e., the range of D is finite. Suppose D can be used to
solve the single-shot reliable send and receive problem with a quiescent algorithm I
(I is also called the implementation of s-send and s-receive). We show that D can be
transformed to �P.

The proof that follows makes the simplifying assumption that I does not have
an “initialization phase” that requires the sending of messages. In other words, we
assume that I is such that if no process ever s-sends any bit, then no process ever
sends any messages. This reasonable assumption allows us to simplify the proof and
illustrate the basic ideas. In the appendix, we give the full proof.

Since the range of D is finite, then for every failure detector history H of D: (a)
each failure detector module outputs some values infinitely often (these are the “limit
values”), and (b) there is a time after which it outputs only limit values. Let v be a
limit value for process p and H. A crucial observation is that with H it is possible
to construct runs such that whenever p takes a step it always gets v from its failure
detector module. It is easy to generalize the notion of a limit value for p to a limit
vector for a set of processes P : A vector f (with a value for every process in the
system) is a limit vector for P and H if, for each process p in P, the failure detector
module of p outputs f(p) infinitely often in H. Note that with H it is possible to
construct runs such that whenever a process p in P takes a step, it obtains f(p)
from its failure detector module. We say that vector f hints that P is the set of all
correct processes, if f could occur as a limit vector for P when P is the set of correct
processes (more precisely, f is a limit vector for P in a history H ∈ D(F ) where
correct proc(F ) = P ).

Consider a failure detector history H that can occur when P is the set of all
correct processes. Let f be any limit vector for P and H. Clearly, f hints that P is
the set of all correct processes. Can f also hint that a proper subset P ′ of P is the
set of all correct processes? The answer is no. As we argue next, this is because with
D, a process in P ′ should be able to s-send a bit to a process q in P \P ′ and to do so
quiescently using I.

Suppose, for contradiction, that f hints that P ′ is the set of all correct processes.
Then we can construct a run R1 of I where (a) P ′ is indeed the set of all correct
processes, (b) processes in P ′ are scheduled such that whenever they take steps they
get f from their failure detector module, (c) some process p in P ′ s-sends a bit b to
some process q in P \ P ′, and (d) processes in P \ P ′ never take a step. Because the
implementation I is quiescent, in R1 eventually all processes in P ′ (including p) stop
sending messages—they give up on trying to transmit b to q.

Since f also hints that P is the set of correct processes, we can create another run
R2 of I where (a) P is the set of correct processes, (b) processes in P are scheduled
such that whenever they take steps they get f from their failure detector module,
(c) p s-sends b to q, and (d) messages sent between processes in P ′ and processes
in P \ P ′ are lost. Note that from the point of view of processes in P ′, run R2 is
indistinguishable from run R1. Thus in R2 eventually all processes in P ′ stop sending
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messages—they give up on trying to transmit b to q. So, in R2 process q never receives
any messages, and thus it does not s-receive b from p. Since p and q are correct in
R2, the implementation I of s-send and s-receive is incorrect—a contradiction. Thus
f cannot hint that P ′ is the set of all correct processes.

Let EP be the set of all vectors that hint that P is the set of correct processes (this
set is determined by D). The algorithm that transforms D to �P uses a predetermined
“table of hints” containing, for each possible P, the set EP .

The transformation algorithm works as follows. Each process p periodically sends
its current failure detector output to every process and maintains two variables: f
and Order . Vector f stores the last failure detector value received from each process,
and Order is an ordered set of processes. Whenever p receives a failure detector value
from another process q, it records that value in f(q) and moves q to the front of Order .
Let P be the set of correct processes in this run. Note that (a) eventually f is a limit
vector for P, and (b) the correct processes percolate to the front of Order (processes
that crash end up at the tail), so that eventually P is some prefix of Order .

To satisfy the properties of �P, p must eventually output the complement of
P . By (b) above, eventually P is the largest prefix of Order that contains correct
processes. To find this maximal prefix, p repeatedly uses its current value of f and
the predetermined table of hints, as follows. For each prefix P ′ of Order , in order
of increasing size, p checks if f hints that P ′ is the set of all correct processes, i.e.,
f ∈ EP ′ , and if so p outputs the complement of P ′. This works because, as we argued
above, any limit vector f for P : (1) hints that P is the set of all correct processes, and
(2) cannot hint that a proper subset P ′ of P is the set of all correct processes. This
concludes the overview of the proof (the reader should understand why the argument
above breaks down without the simplifying assumption).

We next give the actual proof. The transformation algorithm TD→�P uses a table
which is determined a priori from D (this is the “table of hints” in our intuitive
explanation). We first define this table and show some of its properties (section 5.4).
We then describe and prove the correctness of the transformation algorithm TD→�P
that uses this table (section 5.5).

5.4. The predetermined table. Let E be an environment and D be any failure
detector with finite range R = {v1, v2, . . . , v	}. Let I be a quiescent implementation
of s-send and s-receive that uses D in environment E . Assume that if no process s-sends
any bit, then I does not send any messages (this simplifying assumption is removed
in the appendix).

Given vj ∈ R, a process p ∈ Π, and a failure detector history H with range R, we
say that vj is a limit value for p and H if, for infinitely many t, H(p, t) = vj . Let f be
an assignment of failure detector values to every process in Π, i.e., f : Π −→ R. Let
P be a nonempty set of processes. We say that f is a limit vector for P and H if for
all p ∈ P, f(p) is a limit value for p and H. The set of all limit vectors for P and H is

denoted LP (H). Let ED,E
P = {f | ∃F ∈ E ,∃H ∈ D(F ) : P = correct proc(F ) and f ∈

LP (H)}. Roughly speaking, ED,E
P is the set of limit vectors that could occur when P

is the set of correct processes.
The table used by the transformation algorithm TD→�P consists of all the sets

ED,E
P where P ranges over all nonempty subsets of processes. Note that this table is

finite. We omit the superscript D, E from ED,E
P whenever it is clear from the context.

Lemma 5.1. Let F ∈ E , P = correct proc(F ), and H ∈ D(F ). Assume P 
= ∅.
If f ∈ LP (H), then f ∈ EP and f 
∈ EP ′ for every P ′ such that ∅ ⊂ P ′ ⊂ P .

Proof. Let f ∈ LP (H). The fact that f ∈ EP is immediate from the definition of
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EP . Let P ′ be such that ∅ ⊂ P ′ ⊂ P . Suppose, for contradiction, that f ∈ EP ′ . Then
there exists a failure pattern F ′ ∈ E and H ′ ∈ D(F ′) such that P ′ = correct proc(F ′)
and f ∈ LP ′(H ′).

We now obtain a contradiction by using the quiescent implementation I of s-send
and s-receive. Let p be a process in P ′ and q be a process in P \ P ′. We construct
two runs, R1 and R2 of I using D, as follows.

1. Run R1 has failure pattern F ′ and failure detector history H ′. Initially p
s-sends some bit b to q. Processes in P ′ take steps and those in Π\P ′ do not. Processes
in P ′ take steps in round-robin fashion such that every time a process r ∈ P ′ takes
a step, it obtains f(r) from its failure detector module (since f ∈ LP ′(H ′), f(r) is a
limit value for r and H ′). Moreover, every process in P ′ receives every message sent
to it.

Since I is quiescent, there is a time t1 after which no messages are sent or received.
Assume without loss of generality that at time t1 all processes in P ′ took the same
number k of steps (otherwise, choose another time t′1 > t1). Note that all messages
in R1 are sent within the finite period of time [0, t1]. Thus the fact that all processes
in P ′ receive all the messages sent to them is consistent with the link failure pattern
of F ′ (even if in F ′ some of the links are not fair).

2. Run R2 has failure pattern F and failure detector history H. Initially, pro-
cesses in R2 behave as in R1: p s-sends some bit b to q; moreover, each process in
P ′ takes the same k steps as in R1, and processes in Π \ P ′ do not take any steps.
More precisely, processes in P ′ take steps in round-robin fashion such that every time
a process r ∈ P ′ takes a step, it obtains f(r) from its failure detector module (since
f ∈ LP (H) and r ∈ P ′ ⊂ P, f(r) is a limit value for r and H). Moreover, every
process in P ′ receives every message sent to it, and all messages sent to processes in
Π \P ′ are lost. This goes on until each process in P ′ takes k steps, exactly as in R1.

8

Let t2 be the time when this happens. After t2, processes in P take steps in round-
robin fashion such that every time a process r ∈ P ′ takes a step, it obtains f(r) from
its failure detector module (it does not matter what a process r ∈ P \ P ′ gets from
its failure detector module, as long as it is compatible with H). Moreover, after t2 no
process s-sends any bit. This completes the description of run R2.

In R2, at time t2, each process in P ′ is in the same state as in run R1 at time t1.
Moreover, each process in P \P ′ is in its initial state. By a simple induction argument
we can show that after time t2 in R2, (a) processes in P ′ continue to behave as in
R1, (b) processes in P \ P ′ behave as if they were in a run of I in which no process
ever s-sends any bit, and (c) no process sends any message (this induction uses the
simplifying assumption that in a run in which there are no s-sends, no process sends
any message). Therefore, in R2, process q (which is in P \ P ′) never receives any
messages. This implies that q does not s-receive b from p.

Note that in R2: (a) both p and q are correct; (b) p s-sends b to q; and (c) q
does not s-receive b from p. Thus I is not a correct implementation of s-send and
s-receive—a contradiction.

5.5. The transformation algorithm. The algorithm TD→D′ that transforms
D to an eventually perfect failure detector D′ = �P in environment E is shown in Fig-
ure 5.1. TD→D′ uses the table of sets EP (for all nonempty subsets of processes P ) that
has been determined a priori from the given D and E . It also uses an implementation

8This behavior of the links is consistent with F because for any finite period of time, any link
(whether fair or not in F ) may lose or not lose any message.
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1 For every process p:
2

3 Initialization:
4 for all q ∈ Π do f [q]← ⊥
5 Order ← ∅
6 D′

p ← ∅
7 { For each ∅ ⊂ P ⊆ Π, the set ED,E

P is determined a priori from D and E }
8

9 cobegin
10 || Task 1:
11 repeat periodically
12 v ← Dp {query D}
13 for all q ∈ Π do qr-send v to q
14

15 || Task 2:
16 upon qr-receive w from q do {upon receipt of a failure detector value from q}
17 f [q]← w
18 Order ← q || (Order \ {q}) {process q is moved to the front of Order}
19 if for some k ≥ 1, f ∈ ED,E

Order [1..k]
then

20 let k0 be the smallest such k
21 D′

p ← Π \Order [1..k0] {suspect processes not in Order [1..k0]}
22 coend

Fig. 5.1. Transformation of D to an eventually perfect failure detector D′ in environment E.

of qr-send and qr-receive between every pair of processes. A simple implementation is
by repeated retransmissions and diffusion (it does not have to be quiescent).

All variables are local to each process. Vector f stores the last failure detector
value that p qr-received from each process; Order is an ordered set that records the
order in which the last failure detector value from each process was qr-received; D′

p

denotes the output of the eventually perfect failure detector that p is simulating (a
set of processes that p currently suspects).

In Task 1, each process p periodically qr-sends the output of its failure detector
module Dp to every process q. Upon the qr-receipt of a failure detector value from
process q in Task 2, process p enters it into f [q] and moves q to the front of Order .
Then p checks if there is some prefix Order [1..k] of Order such that f ∈ EOrder [1..k].
If there is, it sets D′ to the complement of the smallest such prefix.

We now show that the failure detector constructed by this algorithm, namely D′,
is an eventually perfect failure detector. Consider a run of this algorithm with failure
pattern F ∈ E and failure detector history H ∈ D(F ), such that correct proc(F ) 
= ∅.
Let t be the number of processes that crash in F, i.e., t = |Π \ correct proc(F )|.
Henceforth, p denotes a correct process in F, and variables f and Order are local to
p.

Lemma 5.2. There is a time after which (1) Order [1..n− t] = correct proc(F ),
and (2) f ∈ LOrder [1..n−t](H).9

Proof. Part (1) is clear from the way Order is updated, the fact that p keeps
qr-receiving failure detector values from every correct process, and the fact that p

9This does not mean that eventually the values of variables f and Order at p stop changing. It
means that, although they may continue to change forever, eventually the predicates (1) and (2) are
true forever at p.
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eventually stops qr-receiving messages from processes that crash. Part (2) of the
lemma follows from part (1) and the fact that the range R of D is finite.

Corollary 5.3. There is a time after which (1) f ∈ EOrder [1..n−t], and (2) for
all 1 ≤ k < n− t, f 
∈ EOrder [1..k].

Proof. By Lemma 5.2, there is a time t0 after which f ∈ LOrder [1..n−t](H) and
Order [1..n− t] = correct proc(F ). So after time t0, by Lemma 5.1, f ∈ EOrder [1..n−t].
This shows (1). Let k be such that 1 ≤ k < n − t. After t0, ∅ ⊂ Order [1..k] ⊂
correct proc(F ), and f ∈ Lcorrect proc(F )(H). So, by Lemma 5.1, f 
∈ EOrder [1..k].
This shows (2).

Corollary 5.4. There is a time after which D′
p = Π \ correct proc(F ).

Proof. By Corollary 5.3 and the algorithm, there is a time after which the k0

selected in line 20 is always n− t. Now apply Lemma 5.2 part (1).
By Corollary 5.4, we have the following theorem.
Theorem 5.5. Consider an asynchronous system subject to process crashes and

message losses. Suppose failure detector D with finite range can be used to solve the
single-shot reliable send and receive problem in environment E , and that the imple-
mentation is quiescent. Assume further that if no process ever s-sends any bit, then
this implementation does not send any messages. Then D can be transformed (in
environment E) to the eventually perfect failure detector �P.

Theorems 5.5 and A.12 imply that if we restrict ourselves to failure detectors that
output a set of suspects, we cannot achieve quiescent reliable communication with a
failure detector that can be implemented. Thus we next introduce HB, a failure
detector that does not output a set of suspects. HB can be used to achieve quiescent
reliable communication and it is implementable.

6. Definition of HB. A heartbeat failure detector D has the following fea-
tures. The output of D at each process p is a list (p1, n1), (p2, n2), . . . , (pk, nk), where
p1, p2, . . . , pk are the neighbors of p, and each nj is a nonnegative integer. Intuitively,
nj increases while pj has not crashed, and stops increasing if pj crashes. We say that
nj is the heartbeat value of pj at p. The output of D at p at time t, namely H(p, t),
will be regarded as a vector indexed by the set {p1, p2, . . . , pk}. Thus H(p, t)[pj ] is
nj . The heartbeat sequence of pj at p is the sequence of the heartbeat values of pj at
p as time increases. D satisfies the following properties.

• HB-completeness. At each correct process, the heartbeat sequence of every
neighbor that crashes is bounded:

∀F, ∀H ∈ D(F ), ∀p ∈ correct proc(F ), ∀q ∈ crashed proc(F ) ∩ neighbor(p),

∃K ∈ N , ∀t ∈ T : H(p, t)[q] ≤ K.

• HB-accuracy .
– At each process, the heartbeat sequence of every neighbor is nondecreas-

ing:

∀F, ∀H ∈ D(F ), ∀p ∈ Π, ∀q ∈ neighbor(p), ∀t ∈ T : H(p, t)[q] ≤ H(p, t + 1)[q].

– At each correct process, the heartbeat sequence of every correct neighbor
is unbounded:

∀F, ∀H ∈ D(F ), ∀p ∈ correct proc(F ), ∀q ∈ correct proc(F ) ∩ neighbor(p),

∀K ∈ N , ∃t ∈ T : H(p, t)[q] > K.

The class of all heartbeat failure detectors is denoted HB. By a slight abuse of
notation, we sometimes use HB to refer to an arbitrary member of that class.
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It is easy to generalize the definition of HB so that the failure detector module at
each process p outputs the heartbeat of every process in the system [1], rather than
just the heartbeats of the neighbors of p, but we do not need this generality here.

7. Quiescent reliable communication using HB. The communication net-
works that we consider are not necessarily completely connected, but we assume that
every pair of correct processes is connected through a fair path. We first consider
a simple type of such networks, in which every link is assumed to be bidirectional10

and fair (Figure 7.1a). This assumption, a common one in practice, allows us to
give efficient and simple algorithms. We then drop this assumption and treat a more
general type of networks, in which some links may be unidirectional and/or not fair
(Figure 7.1b). For both network types, we give quiescent reliable communication al-
gorithms that use HB. Our algorithms have the following feature: processes do not
need to know the entire network topology or the number of processes in the system;
they only need to know the identity of their neighbors.

In our algorithms, Dp denotes the current output of the failure detector D at
process p.

7.1. The simple network case. We assume that all links in the network are
bidirectional and fair (Figure 7.1a). In this case, the algorithms are very simple. We
first give a quiescent implementation of quasi-reliable qr-sends,r and qr-receiver,s for
the case r ∈ neighbor(s). For s to qr-send a message m to r, it repeatedly sends m
to r every time the heartbeat of r increases, until s receives ack(m) from r. Process
r qr-receives m from s the first time it receives m from s, and r sends ack(m) to s
every time it receives m from s.

From this implementation and Remark 3.2, we can obtain a quiescent imple-
mentation of reliable broadcast. Then, from Remark 3.1, we can obtain a quiescent
implementation of quasi-reliable send and receive for every pair of processes.

7.2. The general network case. In this case (Figure 7.1b), some links may be
unidirectional, e.g., the network may contain several unidirectional rings that intersect
with each other. Moreover, some links may not be fair (and processes do not know
which ones are fair).

Achieving quiescent reliable communication in this type of network is significantly
more complex than before. For instance, suppose that we seek a quiescent implemen-
tation of quasi-reliable send and receive. In order for the sender s to qr-send a message
m to the receiver r, it has to use a diffusion mechanism, even if r is a neighbor of
s (since the link s → r may not be fair). Because of intermittent message losses,
this diffusion mechanism needs to ensure that m is repeatedly sent over fair links.
But when should this repeated send stop? One possibility is to use an acknowledge-
ment mechanism. Unfortunately, the link in the reverse direction may not be fair (or
may not even be part of the network), and so the acknowledgement itself has to be
diffused. But diffusing the acknowledgements quiescently and reliably introduces a
“chicken and egg” problem. We now explain how our algorithms avoid this problem.

We give a quiescent implementation of reliable broadcast in Figure 7.2. This
implementation can be used to obtain quasi-reliable send and receive between every
pair of processes (see Remark 3.1). For each message m that is broadcast, each process
p maintains a variable gotp[m] containing a set of processes. Intuitively, a process q

10In our model, this means that link p → q is in the network if and only if link q → p is in the
network. In other words, q ∈ neighbor(p) if and only if p ∈ neighbor(q).
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correct process process that crashes

(a) simple network case (b) general network case

link is fair link is not fair

Fig. 7.1. Examples of the simple and general network cases.

is in gotp[m] if p has evidence that q has delivered m. All the messages sent by a
process p in the reliable broadcast algorithm are of the form (m, got msg , path) where
got msg is the current value of gotp[m], and path is the sequence of processes that
this copy of (m, got msg , path) has traversed so far.

In order to reliably broadcast a message m, p first delivers m; then p initializes
variable gotp[m] to {p} and forks task diffuse(m); finally p returns from the invocation
of broadcast(m). The task diffuse(m) runs in the background. In this task, p period-
ically checks if, for some neighbor q 
∈ gotp[m], the heartbeat of q at p has increased,
and, if so, p sends (m, gotp[m], p) to all neighbors whose heartbeat increased—even
to those who are already in gotp[m].11 The task terminates when all neighbors of p
are contained in gotp[m].

Upon the receipt of a message (m, got msg , path), process p first checks if it has
already delivered m, and, if not, it delivers m and forks task diffuse(m). Then p adds
the contents of got msg to gotp[m] and appends itself to path. Finally, p forwards the
new message (m, gotp[m], path) to all its neighbors that appear at most once in path.

The code consisting of lines 19 through 27 is executed atomically.12 Each con-
current execution of the diffuse task (lines 9 to 17) has its own copy of all the local
variables in this task.

We now outline the proof that, for the general network case, Figure 7.2 is a

11It may appear that p does not need to send this message to processes in gotp[m], since they
have already gotten m! But with this “optimization” the algorithm is no longer quiescent; in the
proof of Lemma 7.8 we will indicate exactly where the sending to every neighbor whose heartbeat
increased is necessary.

12A process p executes a region of code atomically if at any time there is at most one thread of p
in this region.
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1 For every process p:
2

3 To execute broadcast(m):
4 deliver(m)
5 got [m]← {p}
6 fork task diffuse(m)
7 return
8

9 task diffuse(m):
10 for all q ∈ neighbor(p) do prev hb[q]← −1
11 repeat periodically
12 hb← Dp { query the heartbeat failure detector }
13 if for some q ∈ neighbor(p), q �∈ got [m] and prev hb[q] < hb[q] then
14 for all q ∈ neighbor(p) such that prev hb[q] < hb[q] do
15 send (m, got [m], p) to q
16 prev hb← hb
17 until neighbor(p) ⊆ got [m]
18

19 upon receive (m, got msg, path) from q do
20 if p has not previously executed deliver(m) then
21 deliver(m)
22 got [m]← {p}
23 fork task diffuse(m)
24 got [m]← got [m] ∪ got msg
25 path ← path · p
26 for all q such that q ∈ neighbor(p) and q appears at most once in path do
27 send (m, got [m], path) to q

Fig. 7.2. General network case—quiescent implementation of broadcast and deliver using HB.

quiescent implementation of reliable broadcast that uses HB. The first few lemmas
are obvious.

Lemma 7.1 (uniform integrity). For every message m, every process delivers
message m at most once, and only if m was previously broadcast by sender(m).

Lemma 7.2 (validity). If a correct process broadcasts a message m, then it even-
tually delivers m.

Lemma 7.3. For any processes p and q, (1) if at some time t, q ∈ gotp[m], then
q ∈ gotp[m] at every time t′ ≥ t; (2) when gotp[m] is initialized, p ∈ gotp[m]; and (3)
if q ∈ gotp[m], then q delivered m.

Lemma 7.4. For every m and path, there is a finite number of distinct messages
of the form (m, ∗, path).

Lemma 7.5. If some process sends a message of the form (m, ∗, path), then no
process appears more than twice in path.

Lemma 7.6. Suppose link p → q is fair, and p and q are correct processes. If p
delivers a message m, then q eventually delivers m.

Proof. Suppose, by contradiction, that p delivers m and q never delivers m. Since
p delivers m and it is correct, it forks task diffuse(m). Since q does not deliver m, by
Lemma 7.3 part (3) q never belongs to gotp[m]. Since p is correct, this implies that
p executes the loop in lines 11–17 an infinite number of times. Since q is a correct
neighbor of p, the HB-accuracy property guarantees that the heartbeat sequence of
q at p is nondecreasing and unbounded. Thus the condition in line 13 evaluates to
true an infinite number of times. Therefore, p executes line 14 an infinite number of
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times, and so p sends a message of the form (m, ∗, p) to q an infinite number of times.
By Lemma 7.4, there exists a subset g0 ⊆ Π such that p sends message (m, g0, p)
infinitely often to q. So, by the fairness property of link p → q, q eventually receives
(m, g0, p). Therefore, q delivers m. This contradicts the assumption that q does not
deliver m.

Lemma 7.7 (agreement). If a correct process p delivers a message m, then every
correct process q eventually delivers m.

Proof (sketch). By successive applications of Lemma 7.6 over any fair path from
p to q.

We now show that the algorithm in Figure 7.2 is quiescent. In order to do so, we
focus on a single invocation of broadcast and show that it causes the sending of only
a finite number of messages. This implies that the implementation sends only a finite
number of messages when broadcast is invoked a finite number of times.

Let m be a message and consider an invocation of broadcast(m). This invocation
can only cause the sending of messages of form (m, ∗, ∗). Thus, all we need to show
is that every process eventually stops sending messages of this form.

Lemma 7.8. Let p be a correct process and q be a correct neighbor of p. If p forks
task diffuse(m), then eventually condition q ∈ gotp[m] holds forever.

Proof. By Lemma 7.3 part (1), we only need to show that eventually q be-
longs to gotp[m]. Suppose, by contradiction, that q never belongs to gotp[m]. Let
(p1, p2, . . . , pk′) be a simple fair path13 from p to q with p1 = p and pk′ = q. Let
(pk′ , pk′+1, . . . , pk) be a simple fair path from q to p with pk = p. For 1 ≤ j < k, let
Pj = (p1, p2, . . . , pj). Note that a process can appear at most twice in Pk. Thus, for
1 ≤ j < k, process pj+1 appears at most once in Pj .

We claim that for each j ∈ {1, . . . , k−1}, there is a set gj containing {p1, p2, . . . , pj}
such that pj sends (m, gj , Pj) to pj+1 an infinite number of times. For j = k − 1,
this claim together with the fairness property of link pk−1 → pk immediately implies
that pk = p eventually receives (m, gk−1, Pk−1). Upon the receipt of such a message,
p adds the contents of gk−1 to its variable gotp[m]. Since gk−1 contains pk′ = q, this
contradicts the fact that q never belongs to gotp[m].

We show the claim by induction on j. For the base case note that, since q never
belongs to gotp[m] and q is a neighbor of p1 = p, then p1 executes the loop in lines 11–
17 an infinite number of times. Since q is a correct neighbor of p1, the HB-accuracy
property guarantees that the heartbeat sequence of q at p1 is nondecreasing and
unbounded. Thus, the condition in line 13 evaluates to true an infinite number of
times. So p1 executes line 14 infinitely often. Since p2 is a correct neighbor of p1, its
heartbeat sequence is nondecreasing and unbounded, and so p1 sends messages of the

form (m, ∗, p1) to p2 an infinite number of times.14 By Lemma 7.4, there is some g1

such that p1 sends (m, g1, p1) to p2 an infinite number of times. Note that Lemma 7.3
parts (1) and (2) imply that p1 ∈ g1. This shows the base case.

For the induction step, suppose that for j < k − 1, pj sends (m, gj , Pj) to pj+1

an infinite number of times for some gj containing {p1, p2, . . . , pj}. By the fairness
property of link pj → pj+1, pj+1 receives (m, gj , Pj) from pj an infinite number of
times. Since pj+2 is a neighbor of pj+1 and appears at most once in Pj+1, each time
pj+1 receives (m, gj , Pj), it sends a message of the form (m, ∗, Pj+1) to pj+2. It is easy

13A path is simple if all processes in that path are distinct.
14This is where the proof uses the fact that p sends message containing m to all its neighbors

whose heartbeat increased—even to those (such as p2) that may already be in gotp[m] (cf. line 14 of
the algorithm).
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to see that each such message is (m, g, Pj+1) for some g that contains both gj and
pj+1. By Lemma 7.4, there exists gj+1 ⊆ Π such that gj+1 contains {p1, p2, . . . , pj+1}
and pj+1 sends (m, gj+1, Pj+1) to pj+2 an infinite number of times.

Corollary 7.9. If a correct process p forks task diffuse(m), then eventually p
stops sending messages in task diffuse(m).

Proof. For every neighbor q of p, there are two cases. If q is correct, then
eventually condition q ∈ gotp[m] holds forever by Lemma 7.8. If q crashes, then
the HB-completeness property guarantees that the heartbeat sequence of q at p is
bounded, and so eventually condition prev hbp[q] ≥ hbp[q] holds forever. Therefore,
there is a time after which the guard in line 13 is always false. Hence, p eventually
stops sending messages in task diffuse(m).

Lemma 7.10 (quiescence). Eventually every process stops sending messages of
the form (m, ∗, ∗).

Proof. Suppose, for a contradiction, that the lemma is not true. Then there
exists a process p such that p never stops sending messages of the form (m, ∗, ∗). By
Lemma 7.5, the third component of a message of the form (m, ∗, ∗) ranges over a finite
set of values. Therefore, there is some fixed path such that p sends an infinite number
of messages of the form (m, ∗, path).

Now let path0 to be the shortest path such that there exists some process p0

that sends messages of the form (m, ∗, path0) an infinite number of times. Note
that p0 must be correct. Corollary 7.9 shows that there is a time after which p0

stops sending messages in its task diffuse(m). Since p0 only sends a message in task
diffuse(m) or in line 27, then p0 sends messages of the form (m, ∗, path0) in line 27 an
infinite number of times. For each (m, ∗, path0) that p0 sends in line 27, p0 must have
previously received a message of the form (m, ∗, path1) such that path0 = path1 · p0.
So p0 receives a message of the form (m, ∗, path1) an infinite number of times. By
the uniform integrity property of the links, some process p1 sends a message of form
(m, ∗, path1) to p0 an infinite number of times. But path1 is shorter than path0—a
contradiction to the minimality of path0.

From Lemmas 7.1, 7.2, 7.7, and 7.10 we have the following theorem.
Theorem 7.11. For the general network case, the algorithm in Figure 7.2 is a

quiescent implementation of reliable broadcast that uses HB.
From this theorem and Remark 3.1 we have the following corollary.
Corollary 7.12. In the general network case, quasi-reliable send and receive

between every pair of processes can be implemented with a quiescent algorithm that
uses HB.

8. Implementations of HB. We now give implementations of HB for the two
types of communication networks that we considered in the previous sections. These
implementations do not use timeouts.

8.1. The simple network case. We assume all links in the network are bi-
directional and fair (Figure 7.1a). In this case, the implementation is obvious. Each
process periodically sends a HEARTBEAT message to all its neighbors; upon the
receipt of such a message from process q, p increases the heartbeat value of q.

8.2. The general network case. In this case some links are unidirectional
and/or not fair (Figure 7.1b). The implementation is more complex than before be-
cause each HEARTBEAT has to be diffused, and this introduces the following problem:
when a process p receives a HEARTBEAT message it has to relay it even if this is not
the first time p receives such a message. This is because this message could be a
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1 For every process p:
2

3 Initialization:
4 for all q ∈ neighbor(p) do Dp[q]← 0
5

6 cobegin
7 || Task 1:
8 repeat periodically
9 for all q ∈ neighbor(p) do send (HEARTBEAT, p) to q
10

11 || Task 2:
12 upon receive (HEARTBEAT, path) from q do
13 for all q such that q ∈ neighbor(p) and q appears in path do
14 Dp[q]← Dp[q] + 1
15 path ← path · p
16 for all q such that q ∈ neighbor(p) and q does not appear in path do
17 send (HEARTBEAT, path) to q
18 coend

Fig. 8.1. General network case—implementation of HB.

new “heartbeat” from the originating process. But this could also be an “old” heart-
beat that cycled around the network and came back, and p must avoid relaying such
heartbeats.

The implementation is given in Figure 8.1. Every process p executes two concur-
rent tasks. In the first task, p periodically sends message (HEARTBEAT, p) to all its
neighbors. The second task handles the receipt of messages of the form (HEARTBEAT,
path). Upon the receipt of such message from process q, p increases the heartbeat val-
ues of all its neighbors that appear in path. Then p appends itself to path and forwards
message (HEARTBEAT, path) to all its neighbors that do not appear in path.

We now show that, for the general network case, the algorithm in Figure 8.1
implements HB.

Lemma 8.1. At every process p, the heartbeat sequence of every neighbor q is
nondecreasing.

Proof. The proof is obvious.

Lemma 8.2. At each correct process p, the heartbeat sequence of every correct
neighbor q is unbounded.

Proof (sketch). It is possible that link q → p is not fair or not even in the network.
However, there is a simple fair path P = (p1, . . . , pk) from q to p with p1 = q and
pk = p. Process p1 = q sends its heartbeat to all its neighbors infinitely often. Since
the links p1 → p2, . . . , pk−1 → pk are fair and each pj is correct, the heartbeats of
q are relayed infinitely often through that path, and pk = p receives them infinitely
often.

Corollary 8.3 (HB-accuracy). At each process the heartbeat sequence of every
neighbor is nondecreasing, and at each correct process the heartbeat sequence of every
correct neighbor is unbounded.

Proof. The proof follows from Lemmas 8.1 and 8.2.

The proofs of the next two lemmas are obvious.

Lemma 8.4. If some process p sends (HEARTBEAT, path) then (1) p is the last
process in path, and (2) no process appears twice in path.
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Lemma 8.5. Let p, q be processes, and let path be a nonempty sequence of pro-
cesses. If p receives message (HEARTBEAT, path ·q) an infinite number of times, then
q receives message (HEARTBEAT, path) an infinite number of times.

Lemma 8.6 (HB-completeness). At each correct process, the heartbeat sequence
of every neighbor that crashes is bounded.

Proof (sketch). Let p be a correct process, and let q be a neighbor of p that crashes.
Suppose that the heartbeat sequence of q at p is not bounded. Then p increments Dp[q]
an infinite number of times. So, for an infinite number of times, p receives messages of
the form (HEARTBEAT, ∗) with a second component that contains q. By Lemma 8.4
part (2), the second component of a message of the form (HEARTBEAT, ∗) ranges
over a finite set of values. Thus there exists a path containing q such that p receives
(HEARTBEAT, path) an infinite number of times.

Let path = (p1, . . . , pk). Then, for some j ≤ k, pj = q. If j = k, then, by
the uniform integrity property of the links and by Lemma 8.4 part (1), q sends
(HEARTBEAT, path) to p an infinite number of times. This contradicts the fact that
q crashes. If j < k, then, by repeated applications of Lemma 8.5, we conclude that
pj+1 receives message (HEARTBEAT, (p1, . . . , pj)) an infinite number of times. There-
fore, by the uniform integrity property of the links and Lemma 8.4 part (1), pj sends
(HEARTBEAT, (p1, . . . , pj)) to pj+1 an infinite number of times. Since pj = q, this
contradicts the fact that q crashes.

By Corollary 8.3 and the above lemma, we have the following theorem.
Theorem 8.7. For the general network case, the algorithm in Figure 8.1 imple-

ments HB.
9. Stronger communication primitives. Quasi-reliable send and receive and

reliable broadcast are sufficient to solve many problems (see section 10.1). However,
stronger types of communication primitives, namely, reliable send and receive and
uniform reliable broadcast, are sometimes needed. We now give quiescent implemen-
tations of these primitives for systems with process crashes and message losses.

Let t be the number of processes that may crash. [5] shows that if t ≥ n/2 (i.e.,
half of the processes may crash), these primitives cannot be implemented, even if we
assume that links may lose only a finite number of messages and we do not require
that the implementation be quiescent.

We now show that if t < n/2, then there are quiescent implementations of these
primitives for the two types of network considered in this paper. The implementations
that we give here are simple and modular but are inefficient (in terms of number of
messages sent). More efficient ones can be obtained by modifying the algorithms in
sections 7.1 and 7.2. Hereafter, we assume that t < n/2.

9.1. Reliable send and receive. Consider any two distinct processes s and r.
We define reliable send and receive from s to r in terms of two primitives: r-sends,r and
r-receiver,s. We require that if a correct process invokes r-send, it eventually returns
from this invocation. If a process s returns from the invocation of r-sends,r(m), we
say that s completes the r-send of message m to r. With quasi-reliable send and
receive, it is possible that s completes the qr-send of m to r, then s crashes, and r
never qr-receives m (even though it does not crash). In contrast, with reliable send
and receive primitives, if s completes the r-send of message m to a correct process r,
then r eventually r-receives m (even if s crashes). More precisely, reliable send and
receive satisfies the following properties.

1. Uniform integrity . For all k ≥ 1, if r r-receives m from s exactly k times by
time t, then s r-sent m to r at least k times before time t.



2062 MARCOS KAWAZOE AGUILERA, WEI CHEN, AND SAM TOUEG

1 For process s:
2

3 Initialization:
4 seq ← 0 { seq is the current sequence number }
5

6 To execute r-sends,r(m):
7 seq ← seq + 1
8 lseq ← seq
9 broadcast(m, lseq, s, r)
10 wait until qr-received (ACK, lseq) from t + 1 processes
11 return
12

13 For every process p:
14

15 upon deliver(m, lseq, s, r) do
16 qr-sendp,s(ACK, lseq)
17 if p = r then r-receiver,s(m)

Fig. 9.1. Quiescent implementation of r-sends,r and r-receiver,s for n > 2t.

2. No loss. For all k ≥ 1, if r is correct and s completes the r-send of m to r
exactly k times by time t, then r eventually r-receives m from s at least k times.15

A quiescent implementation of r-send and r-receive can be obtained using a quies-
cent implementation of reliable broadcast and of qr-send/qr-receive between every pair
of processes. Roughly speaking, when s wishes to r-send m to r, it broadcasts a mes-
sage that contains m, s, r, and a fresh sequence number, and then waits to qr-receive
t + 1 acknowledgements for that message before returning from this invocation of
r-send. When a process p delivers this broadcast message, it qr-sends an acknowledge-
ment back to s, and if p = r, then it also r-receives m from s. This algorithm is shown
in Figure 9.1 (the code consisting of lines 7 and 8 is executed atomically).

9.2. Uniform reliable broadcast. The agreement property of reliable broad-
cast states that if a correct process delivers a message m, then all correct processes
eventually deliver m. This requirement allows a faulty process (i.e., one that subse-
quently crashes) to deliver a message that is never delivered by the correct processes.
This behavior is undesirable in some applications, such as atomic commitment in dis-
tributed databases [4, 19, 22]. For such applications, a stronger version of reliable
broadcast is more suitable, namely, uniform reliable broadcast which satisfies uniform
integrity, validity (section 3.2), and the following.

• Uniform agreement [31]. If any process delivers a message m, then all correct
processes eventually deliver m.

A quiescent implementation of uniform reliable broadcast can be obtained us-
ing quiescent implementations of reliable broadcast, and of quasi-reliable send and
receive between every pair of processes. Roughly speaking, when p wishes to uniform-
broadcast m, it broadcasts m. Upon the delivery of m, each process r qr-sends an
acknowledgement to every process, waits for the qr-receipt of such acknowledgements
from t + 1 processes, and then uniform-delivers m.

15The no loss and quasi no loss properties are very similar to the strong validity and validity
properties in section 6 of [23].
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10. Using HB to extend previous work. HB can be used to extend previous
work in order to solve problems with algorithms that are both quiescent and tolerant
of process crashes and messages losses.

10.1. Extending existing algorithms to tolerate link failures. HB can be
used to transform many existing algorithms that tolerate process crashes into quies-
cent algorithms that tolerate both process crashes and message losses. For example,
consider the randomized consensus algorithms of [7, 14, 16, 33], the failure-detector
based ones of [2, 12], the probabilistic one of [9], and the algorithms for atomic broad-
cast in [12], k-set agreement in [13], atomic commitment in [20], and approximate
agreement in [15]. All these algorithms tolerate process crashes. Moreover, it is easy
to verify that the only communication primitives that they actually need are quasi-
reliable send and receive and/or reliable broadcast. Thus in systems where HB is
available, all these algorithms can be made to tolerate both process crashes and mes-
sage losses (with fair links) by simply plugging in the quiescent communication prim-
itives given in section 7.16 The resulting algorithms tolerate message losses and are
quiescent.

10.2. Extending results of Basu, Charron-Bost, and Toueg [5]. Another
way to solve problems with quiescent algorithms that tolerate both process crashes
and message losses is obtained by extending the results of [5]. That work addresses
the following question: given a problem that can be solved in a system where the only
possible failures are process crashes, is the problem still solvable if links can also fail
by losing messages? One of the models of lossy links considered in [5] is called fair
lossy. Roughly speaking, a fair lossy link p → q satisfies the following property. If p
sends an infinite number of messages to q and q is correct, then q receives an infinite
number of messages from p (see section 11.3 for a brief comparison between fair lossy
and fair links).

[5] establishes the following result: any problem P that can be solved in systems
with process crashes can also be solved in systems with process crashes and fair lossy
links, provided P is correct-restricted17 or a majority of processes are correct. For
each of these two cases, [5] shows how to transform any algorithm that solves P in a
system with process crashes into one that solves P in a system with process crashes
and fair lossy links. The algorithms that result from these transformations, however,
are not quiescent: each transformation requires processes to repeatedly send messages
forever.

Given HB, we can modify the transformations in [5] to ensure that if the orig-
inal algorithm is quiescent, then so is the transformed one. Roughly speaking, the
modification consists of (1) adding message acknowledgements; (2) suppressing the
sending of a message from p to q if either (a) p has received an acknowledgement for
that message from q, or (b) the heartbeat of q has not increased since the last time p
sent a message to q; and (3) modifying the meaning of the operation “append Queue1

to Queue2” so that only the elements in Queue1 that are not in Queue2 are actually
appended to Queue2. The results in [5], combined with the above modification, show
that if a problem P can be solved with a quiescent algorithm in a system with crash
failures only, and either P is correct-restricted or a majority of processes are correct,

16This can also be done to algorithms that require reliable send/receive or uniform reliable broad-
cast by plugging in the implementations given in section 9, provided a majority of processes are
correct.

17Intuitively, a problem P is correct-restricted if its specification does not refer to the behavior of
faulty processes [6, 18].
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then P is solvable with a quiescent algorithm that uses HB in a system with crash
failures and fair lossy links.

11. Concluding remarks.

11.1. About message buffering. We now address the issue of message buffer-
ing in the implementation of quasi-reliable send and receive, and of reliable broadcast
(section 7). Soon after a process p crashes, its heartbeat ceases everywhere and pro-
cesses stop sending messages to p. However, they do have to keep the messages they
intended to send to p, just in case p is merely very slow, and the heartbeat of p resumes
later on. In theory, they have to keep these messages forever. In practice, however,
the system will eventually decide that p is indeed useless and will “remove” p (e.g.,
via a group membership protocol). All the stored messages addressed to p can then
be discarded. The removal of p may take a long time,18 but the heartbeat mechanism
ensures that processes stop sending messages to p soon after p actually crashes, and
much before its removal.

11.2. Quiescence versus termination. In this paper, we considered reliable
communication protocols that tolerate process crashes and message losses, and we
focused on achieving quiescence. What about achieving termination? A terminating
protocol guarantees that every process eventually reaches a halting state from which
it cannot take further actions. A terminating protocol is obviously quiescent, but
the converse is not necessarily true. For example, consider the protocol described
at the beginning of section 1. In this protocol, (a) s sends a copy of m repeatedly
until it receives ack(m) from r, and then it halts; and (b) upon each receipt of m, r
sends ack(m) back to s. In the absence of process crashes this protocol is quiescent.
However, the protocol is not terminating because r never halts: r remains (forever)
ready to reply to the receipt of a possible message from s.

Can we use HB to obtain reliable communication protocols that are terminat-
ing? The answer is no, even for systems with no process crashes, as we now explain.
Consider a system with message losses (fair links) and no process crashes. [27] proves
that for any terminating protocol P and any initial configuration of P, there are runs
of P in which all processes halt without receiving any message. This implies that
a terminating protocol cannot solve the reliable communication problem (in systems
with fair links).

To deal with this problem, we propose a layering that allows applications to
terminate. This layering, shown in Figure 11.1, separates applications, reliable com-
munication, and failure detection. At the lowest level, there are failure detectors,
such as HB. Of course, these are neither quiescent nor terminating. At the middle
level, there are reliable communication protocols, such as those that we described
in sections 3 and 9. These communication protocols are quiescent (thanks to the
failure detectors at the lower level) but not terminating. Finally, at the top level,
there are applications, such as concurrent instances of consensus, atomic broadcast,
atomic commitment protocols, etc. Applications are both quiescent and terminating:
they achieve termination thanks to the reliable communication layer. For example,
consider an instance of consensus. Once a process decides, it delegates the task of
broadcasting the decision value to the reliable communication layer, and then it ter-
minates (without waiting for the broadcast to terminate). Since every correct process
eventually decides and terminates, this instance of consensus terminates.

18In some group membership protocols, the timeout used to remove a process is on the order of
minutes: killing a process is expensive and so timeouts are set conservatively.
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(quiescent and terminating)

Instance #1 of atomic commitment

Reliable communication
(quiescent, non-terminating)

Failure detection

(non-quiescent, non-terminating)

Instance #1 of consensus

Applications

Instance #2 of consensus

Fig. 11.1. Layering that separates applications, reliable communication, and failure detection.

If necessary, termination in the reliable communication layer can also be achieved
in practice, as we now explain. A reliable communication protocol is unable to termi-
nate when processes cannot determine whether a nonresponsive process has crashed
or it is only very slow. However, as we mentioned in our discussion of message buffer-
ing, a process that actually crashes is eventually removed by the operating system or
a group membership protocol (and the remaining processes are notified accordingly).
When this happens, the communication protocol can terminate. Note that with the
heartbeat mechanism quiescence can be achieved long before termination (this is be-
cause when a process crashes, it may take a relatively long time to decide that it
actually crashed, but its heartbeat count at other processes stops increasing almost
immediately).

As a final remark, we note that some communication protocols, such as standard
data link protocols, are inherently nonterminating: they are shared communication
services that are always “ready” for message transmission. The reliable communica-
tion protocols (in our middle level) could also be viewed in the same way, namely, as
nonterminating shared services that are always ready for message transmission.

11.3. Fair links versus fair lossy links. Fair links and fair lossy links are two
typical models of lossy links considered in the literature.19 Roughly speaking, a fair
link guarantees that for every m, if p sends m to q an infinite number of times, and q is
correct, then q receives m an infinite number of times. On the other hand, a fair lossy
link guarantees that if p sends an infinite number of messages to q, and q is correct,
then q receives an infinite number of messages from p. Fair lossy links and fair links
differ in a subtle way. For instance, if process p sends the infinite sequence of distinct
messages m1,m2,m3, . . . to q and p → q is fair lossy, then q is guaranteed to receive
an infinite subsequence, whereas if p → q is fair, q may receive nothing (because each
distinct message is sent only once). On the other hand, if p sends the infinite sequence
m1,m2,m1,m2, . . . and p → q is fair lossy, q may never receive a copy of m2 (while

19In [29], these links correspond to the strong and weak loss limitation properties, respectively.
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it receives m1 infinitely often), whereas if p → q is fair, q is guaranteed to receive an
infinite number of copies of both m1 and m2.

In this paper, we chose the fair links model. A natural question is whether our
results still hold with fair lossy links instead. It turns out that the answer is yes, as
we now explain. First note that Theorems 4.1, 5.5, and A.12 still hold because their
proofs rely only on the fact that lossy links may lose (or not lose) messages arbitrarily
during any finite period of time—a behavior allowed by fair lossy links. Moreover,
the algorithms in sections 7 and 8 can be easily modified to work with fair lossy links
through the use of piggybacking; namely, every time a process wishes to send a mes-
sage, it piggybacks all the messages that it previously sent.20 Finally, the algorithms
in section 9 are still correct because they do not directly use the communication links;
rather, they rely only on the communication algorithms of section 7.

11.4. Quiescent versus nonquiescent transformations. We proved that if
D is a failure detector with finite range that can be used to solve quiescent reliable
communication, then D can be transformed to �P. Our transformation is not quies-
cent: to “extract” �P out of D, processes keep on sending messages forever. This,
however, does not invalidate the two facts that we wanted to show, namely:

1. D encodes at least as much information as �P.
2. D cannot be implemented (this follows from the transformation from D to

�P, and the fact that �P cannot be implemented).
This shows that finite-range failure detectors have some inherent limitation (be-

cause there is a failure detector with infinite range, namely HB, that can be used to
solve quiescent reliable communication such that (1) HB does not encode �P, and (2)
HB can be implemented).

Even though a nonquiescent transformation was sufficient to establish our re-
sults, quiescent transformations are necessary when comparing the power of failure
detectors to solve tasks with quiescent algorithms, as we now explain. If D can be
transformed to D′, we can conclude that D is (at least) as powerful as D′ in terms of
task solving (intuitively, a task is a relation between inputs and outputs [8, 25]). If
the transformation from D to D′ is not quiescent, however, D may not be as powerful
as D′ in terms of solving tasks quiescently: there may be a task that can be solved
quiescently with D′ but not with D. On the other hand, if the transformation from
D to D′ is quiescent, we can conclude that D is (at least) as powerful as D′ in terms
of solving tasks with quiescent algorithms. The study of quiescent transformations is
a new and interesting subject of research.

11.5. Extension to partitionable networks. In this paper, we considered
networks that do not partition: we assumed that every pair of correct processes are
reachable from each other through fair paths. In a subsequent paper [1], we drop this
assumption and consider partitionable networks. We first generalize the definition of
HB and show how to implement it in such networks. We then consider generalized
versions of reliable communication and of consensus for partitionable networks and
use HB to solve these problems with quiescent protocols (to solve consensus we also
use a generalization of the eventually strong failure detector [12]).

Appendix. Removing the simplifying assumption from Theorem 5.5.
We now give an extended, more complex proof of Theorem 5.5 without the simplifying
assumption.

20With the fair links used in this paper, this expensive piggybacking is avoided. We believe that
in practice, links that intermittently lose messages are both fair and fair lossy.



ON QUIESCENT RELIABLE COMMUNICATION 2067

Let E be an environment and D be any failure detector with finite range R =
{v1, v2, . . . , v	}. Let I be a quiescent implementation of s-send and s-receive that uses
D in environment E .

As in the simpler proof in section 5, the transformation algorithm TD→�P uses a
finite table that is predetermined from D. We first define this table and show some
of its properties (section A.1). We then describe and prove the correctness of the
transformation algorithm TD→�P that uses this table (section A.2).

A.1. The predetermined table. For the definitions in this proof, let

• vj be a failure detector value, i.e., vj ∈ R,
• p be a process, i.e., p ∈ Π,
• F be a failure pattern,
• H be a failure detector history with range R,
• f be an assignment of failure detector values to every process in Π, i.e.,

f : Π −→ R,
• P and P0 be a nonempty set of processes,
• p0, p1, . . . , pm−1 be the processes in P (where m = |P | and p0 < p1 < · · · <

pm−1).

Definition A.1. We say that vj is a limit value for p and H if, for infinitely
many t, H(p, t) = vj.

Definition A.2. We say that f is a limit vector for P and H if for all p ∈ P,
f(p) is a limit value for p and H. The set of all limit vectors for P and H is denoted
LP (H).

Definition A.3. RRIRounds(P, f) is defined as follows.

Consider the round-robin execution of implementation I in which (a) processes
in P take steps forever in a round-robin fashion21 and processes in Π \P do not take
any steps, (b) no process ever s-sends any bit, (c) every time a process p ∈ P queries
its failure detector module, p gets f(p), (d) every time a process p ∈ P takes a step,
p receives the earliest message sent to it that it did not yet receive (thus, every p ∈ P
eventually receives each message sent to it), and (e) all messages sent to processes in
Π \ P are lost.22

There are two possible cases in the above round-robin execution of I.
1. Every process eventually stops sending messages. In this case, after some
number k of round-robin rounds, no process ever receives any messages. We
say that “round-robin initialization (r.r.i.) occurs in k rounds,” and define
RRIRounds(P, f) = k.

2. Some process never stops sending messages. In this case, we define
RRIRounds(P, f) = ∞.

Intuitively, we say that F and H allow r.r.i. for P and f if the following hold:
(a) in the above execution with P and f, r.r.i. occurs in k rounds for some k, and
(b) there is a schedule compatible with F and H that allows this k-round r.r.i. More
precisely, we have the following definition.

Definition A.4. We say that F and H allow r.r.i. for P and f if

(a) RRIRounds(P, f) = k for some k, and
(b) there are times t0 < t1 < · · · < tmk−1 such that for every 0 ≤ j ≤ mk −

1, (1) pj mod m is not crashed at time tj , i.e., pj mod m 
∈ F (tj), and (2)

21That is, p0 takes the first step, then p1 takes a step, and so on, so that the jth step is taken by
process p(j−1) mod m.

22It is possible that this is not a valid execution of I using D in environment E.
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the failure detector module of pj mod m at time tj outputs f(pj mod m), i.e.,
H(pj mod m, tj) = f(pj mod m).

Definition A.5. LP,P0(F,H) = {f | f ∈ LP (H), and F and H allow r.r.i. for
P0 and f}.

Definition A.6. ED,E
P,P0

= {f | ∃F ∈ E ,∃H ∈ D(F ) : P = correct proc(F ), and
f ∈ LP,P0(F,H)}.

Roughly speaking, ED,E
P,P0

is the set of limit vectors f that could occur when P is
the set of correct processes and it is possible to have r.r.i. for P0 and f .

The table used by the transformation algorithm TD→�P consists of all the sets
ED,E

P,P0
where P and P0 range over all nonempty subsets of processes. Note that this

table is finite. We omit the superscript D, E from ED,E
P,P0

whenever it is clear from the
context.

Lemma A.7. Let F ∈ E , P = correct proc(F ), H ∈ D(F ), and f ∈ LP (H).
Assume P 
= ∅. Then RRIRounds(P, f) < ∞.

Proof. We can construct a run R of implementation I using D with F ∈ E , such
that all processes behave exactly as in the round-robin execution of I that was used
to define RRIRounds(P, f). To see this, note that since F ∈ E , P = correct proc(F ),
H ∈ D(F ), and f ∈ LP (H), we can find times for the round-robin steps of cor-
rect processes such that, for each time u at which a process p takes a step, the
output H(p, u) of its failure detector module is f(p). Since I is quiescent, there is
a time after which no process sends any message in run R. Thus, RRIRounds(P, f) <
∞.

Lemma A.8. Let F ∈ E , P = correct proc(F ), and H ∈ D(F ). Assume P 
= ∅
and let P0 be such that P ⊆ P0 ⊆ Π. If f ∈ LP,P0

(F,H), then f ∈ EP,P0
and

f 
∈ EP ′,P0 for all P
′ such that ∅ ⊂ P ′ ⊂ P .

Proof. Let f ∈ LP,P0(F,H). The fact that f ∈ EP,P0 is immediate from the
definition of EP,P0 . Let P ′ be such that ∅ ⊂ P ′ ⊂ P . Suppose, for contradiction, that
f ∈ EP ′,P0 . Then there exists a failure pattern F ′ ∈ E and H ′ ∈ D(F ′) such that
P ′ = correct proc(F ′) and f ∈ LP ′,P0(F

′, H ′).
We now obtain a contradiction by using the quiescent implementation I. Let p

be a process in P ′ and q be a process in P \P ′. We construct three runs of I, namely,
R0, R1, and R2. Roughly speaking, each one of these runs starts with an r.r.i. for P0

and f . After this initialization, in R0 nothing else happens, in R1 process p s-sends
some bit to q but q crashes, and in R2 process p s-sends the same bit to q and q is
correct. We will reach a contradiction by arguing that in R2 process q behaves as in
R0, and thus it never s-receives any bit from p—this violates the defining property of
s-send and s-receive.

Runs R0, R1, and R2 are defined as follows.23

1. Run R0 has failure pattern F and failure detector history H. Since f ∈
LP,P0(F,H), f ∈ LP (H), and F and H allow r.r.i. for P0 and f . R0 consists initially
of an r.r.i. for P0 and f . More precisely, initially: (a) processes in P0 take steps in
a round-robin fashion and processes in Π \ P0 do not take any steps, (b) no process
s-sends any bit, (c) every time a process r ∈ P0 queries its failure detector module, r
gets f(r), (d) every time a process r ∈ P0 takes a step, r receives the earliest message
sent to it that it did not yet receive, and (e) all messages sent to processes in Π \ P0

are lost. This goes on until each process in P0 has taken RRIRounds(P0, f) steps. Let

23In each one of these runs, we will require that for a certain finite period of time, some messages
are lost while others are not. As we explained in our model (section 2.5), this behavior is consistent
with any link failure pattern.
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t0 be the time when this happens. After t0, processes in P take steps in a round-robin
fashion such that every time a process r ∈ P takes a step, it obtains f(r) from its
failure detector module (this is possible because f ∈ LP (H)); moreover, no process
s-sends any bit. Note that since both p and q are in P = correct proc(F ), and p
does not s-send any bit to q, it must be that q does not s-receive any bit from p.
Furthermore, after time t0, no processes send or receive any messages.

2. Run R1 has failure pattern F ′ and failure detector history H ′. Since f ∈
LP ′,P0

(F ′, H ′), f ∈ LP ′(H ′), and F ′ and H ′ allow r.r.i. for P0 and f . Initially,
processes in R1 behave as in R0, i.e., R1 starts with an r.r.i. for P0 and f . Then,
execution proceeds as follows: (a) p s-sends some bit b to q, (b) processes in P ′ take
steps in round-robin fashion and processes in Π \ P ′ take no steps, (c) every time a
process r ∈ P ′ takes a step, it obtains f(r) from its failure detector module, (d) every
time a process r ∈ P ′ takes a step, r receives the earliest message sent to it that it
did not yet receive, and (e) all messages sent to processes in Π \ P ′ are lost.

Note that, since implementation I is quiescent, there is a time t1 after which
no messages are sent or received. Assume without loss of generality that at time t1
every process in P ′ took the same number k of steps (otherwise, choose another time
t′1 > t1).

3. Run R2 has failure pattern F and failure detector history H. Initially, pro-
cesses in R2 behave as in R1: R2 starts with an r.r.i. for P0 and f, and then p s-sends b
to q and execution continues as in R1, until each process in P ′ has taken k steps (this
is possible because f ∈ LP (H) and P ′ ⊆ P ). Let t2 be the time when this happens.
After t2, execution proceeds as follows: (a) no process s-sends any bit, (b) processes in
P take steps in round-robin fashion and processes in Π\P take no steps, and (c) every
time a process r ∈ P takes a step, it obtains f(r) from its failure detector module
(this is possible because f ∈ LP (H)).

In R2, at time t2, each process in P ′ is in the same state as in run R1 at time
t1, and each process in P \ P ′ is in the same state as in run R0 at time t0. A simple
induction on the steps taken shows that, in R2, (1) processes in P ′ have the same
behavior as in run R1; (2) processes in P \ P ′ have the same behavior as in run R0;
(3) no messages are sent or received after time t2. Since q ∈ P \ P ′ and q does not
s-receive any bit from p in R0, it does not s-receive any bit from p in R2.

In summary, in R2: (a) both p and q are correct; (b) p s-sends b to q; and (c) q
does not s-receive b from p. Thus, I is not a correct implementation of s-send and
s-receive—a contradiction.

A.2. The transformation algorithm. The algorithm TD→D′ that transforms
D to an eventually perfect failure detector D′ = �P in environment E is shown in
Figure A.1. TD→D′ uses the table of sets EP,P0 (for all nonempty subsets P and P0 of
processes) that has been determined a priori from the given D and E . It also uses an
implementation of qr-send and qr-receive between every pair of processes. A simple
implementation is by repeated retransmissions and diffusion (it does not have to be
quiescent).

All variables are local to each process. Sequences is a finite set of finite sequences
of pairs (p, v) where p ∈ Π is a process and v ∈ R is a failure detector value. It stores
possible schedules that could have resulted from F and H. Vector f stores the last
failure detector value that p qr-received from each process. Order is an ordered set
that records the order in which the last failure detector value from each process was
qr-received. D′

p denotes the output of the eventually perfect failure detector that p
is simulating (a set of processes that p currently suspects). AllowsRRI is a Boolean
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1 For every process p:
2

3 Initialization:
4 for all q ∈ Π do f [q]← ⊥
5 Order ← ∅
6 Sequences ← {λ}
7 D′

p ← ∅
8 { For each ∅ ⊂ P, P0 ⊆ Π, the set ED,E

P,P0
is determined a priori from D and E }

9

10 cobegin
11 || Task 1:
12 repeat periodically
13 v ← Dp {query D}
14 append (p, v) to each sequence in Sequences
15 for all q ∈ Π do qr-send (Sequences, v) to q
16

17 || Task 2:
18 upon qr-receive (Sequences′, v′) from q do
19 f [q]← v′
20 Order ← q || (Order \ {q}) {process q is moved to the front of Order}
21 Sequences ← Sequences ∪ Sequences′
22 if for some k ≥ 1, AllowsRRI (Sequences,Order [1..k], f) then
23 let k0 be the largest such k

24 if for some k′ ≥ 1, f ∈ ED,E
Order [1..k′],Order [1..k0]

then

25 let k1 be the smallest such k′
26 D′

p ← Π \Order [1..k1] {suspect processes not in Order [1..k1]}
27 coend

Fig. A.1. Transformation of D to an eventually perfect failure detector D′.

function that takes three parameters: a set Sequences, a set P = {p0, p1, . . . , pm−1} ⊆
Π (where p0 < p1 < · · · < pm−1), and a vector f . It returns true if and only if
for some sequence s ∈ Sequences, there exists a subsequence of s that consists of
RRIRounds(P, f) repetitions of (p0, f(p0)), (p1, f(p1)), . . . , (pm−1, f(pm−1)).

In Task 1, each process p periodically queries its failure detector module, ap-
pends a new pair to each sequence in Sequences, and then qr-sends Sequences and
the output of its failure detector module Dp to every process. Upon the qr-receipt
of (Sequences ′, v′) from process q in Task 2, process p enters v′ into f [q], moves q to
the front of Order , and updates Sequences. Then, p uses the function AllowsRRI
to check whether there is some k such that r.r.i. could have occurred for Order [1..k]
and f . If there is, it sets k0 to the largest such k and then checks if for some k′,
f ∈ EOrder [1..k′],Order [1..k0]. If so, it sets k1 to the smallest such k′ and sets D′ to the
complement of Order [1..k1].

We now show that the failure detector constructed by this algorithm, namely D′,
is an eventually perfect failure detector. Consider a run of this algorithm with failure
pattern F ∈ E and failure detector history H ∈ D(F ), such that correct proc(F ) 
= ∅.
Let t be the number of processes that crash in F, i.e., t = |Π \ correct proc(F )|.
Henceforth, p denotes a correct process in F, and f, Order , and Sequences are variables
local to p.

Lemma A.9. There is a time t0 after which (1) Order [1..n−t] = correct proc(F ),
(2) f ∈ LOrder [1..n−t](H), and (3) AllowsRRI (Sequences,Order [1..n− t], f).24

24This does not mean that eventually the values of variables f, Sequences, and Order at p stop
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Proof. Note that p eventually stops qr-receiving messages from processes that
crash, and p never stops qr-receiving messages from correct processes. From the way
Order is updated, there is a time t1 after which (1) holds.

Let P = correct proc(F ). Variable f ranges over a finite number of values, so
there are functions f1, f2, . . . , fN : Π → R such that (a) for every 1 ≤ j ≤ N, variable
f is equal to fj an infinite number of times, and (b) there is a time t2 after which
the predicate f ∈ {f1, f2, . . . , fN} holds. We now show that for every 1 ≤ j ≤ N,
fj ∈ LP (H), and there is a time τj after which AllowsRRI (Sequences, P, fj) holds.
Together with (1) and (b), this implies that after time t0 = max{t1, t2, τ1, τ2, . . . , τN},
both (2) and (3) hold.

Let 1 ≤ j ≤ N . We first claim that each process q ∈ P obtains fj(q) from D
in line 13 an infinite number of times—this immediately implies fj ∈ LP (H). To
show the claim, note that process p qr-receives a message from q and updates f [q] an
infinite number of times. Together with (a), this implies that p qr-receives a message
containing fj(q) from q an infinite number of times, and this implies the claim.

We now show that there is a time τj after which AllowsRRI (Sequences, P, fj)
holds. Since fj ∈ LP (H), by Lemma A.7, RRIRounds(P, fj) = k for some k < ∞.
Let p0 < p1 < · · · < pm−1 be the processes in P . By the claim, at some time u0,
p0 obtains fj(p0) from D in line 13. After doing so, p0 appends (p0, fj(p0)) to all
sequences in Sequences and qr-sends a message containing Sequences to all processes.
At some time u′

1 > u0, p1 qr-receives this message and updates Sequences. By the
claim, at some time u1 > u′

1, p1 obtains fj(p1) from D in line 13. After doing so,
p1 appends (p1, fj(p1)) to all sequences in Sequences and so p1 obtains a sequence
containing (p0, fj(p0)) before (p1, fj(p1)). We can repeat this argument for all the
processes in P in a round-robin order, for k+1 rounds, and conclude that eventually
AllowsRRI (Sequences, P, fj) holds.

Lemma A.10. There is a time t1 after which for every m0 ≥ n − t such that
AllowsRRI (Sequences, Order [1..m0], f) holds: (1) f ∈ EOrder [1..n−t],Order [1..m0] and
(2) for all 1 ≤ m1 < n− t, f 
∈ EOrder [1..m1],Order [1..m0].

Proof. By Lemma A.9, there is a time t0 after which (a) Order [1..n − t] =
correct proc(F ), and (b) f ∈ LOrder [1..n−t](H). Let t1 = t0. Suppose that at
some time t′1 > t1, AllowsRRI (Sequences,Order [1..m0], f) holds for some
m0 ≥ n − t. This implies that F and H allow r.r.i. for Order [1..m0] and f . From
(b), f ∈ LOrder [1..n−t],Order [1..m0](F,H) holds at time t′1. By Lemma A.8, f ∈
EOrder [1..n−t],Order [1..m0].

Let 1 ≤ m1 < n− t. By (a), ∅ ⊂ Order [1..m1] ⊂ correct proc(F ) ⊆ Order [1..m0]
holds at time t′1. Note that f ∈ LOrder [1..n−t],Order [1..m0](F,H) holds at time t′1. By
Lemma A.8, f 
∈ EOrder [1..m1],Order [1..m0].

Corollary A.11. There is a time after which D′
p = Π \ correct proc(F ).

Proof. By Lemma A.9 part (3), there is a time t0 after which every time p
qr-receives some message, the if in line 22 evaluates to true and the k0 selected in
line 23 is at least n − t. After time t0, by Lemma A.10, there is a time after which
every time p qr-receives some message, the if in line 24 evaluates to true and the k1

selected in line 25 is n− t. Now apply Lemma A.9 part (1).
By Corollary A.11, we have the following theorem.
Theorem A.12. Consider an asynchronous system subject to process crashes

and message losses. Suppose that failure detector D with finite range can be used to

changing. It means that, although they may continue to change forever, eventually the predicates
(1), (2), and (3) are true forever at p.
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solve the single-shot reliable send and receive problem in environment E and that the
implementation is quiescent. Then D can be transformed (in environment E) to the
eventually perfect failure detector �P.
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