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In distributed shared-memory systems, a breakable object is one that may enter a special
broken state, after which all operations will fail and return a special broken symbol ⊥B .
Most breakable objects appeared in literature belong to a class we call acyclic breakable
objects, in which every operation moves the object closer to the broken state. We show
in general that acyclic breakable objects have limited consensus power. Our main results
focus on the richer but less covered cyclic breakable objects. We study the consensus
numbers of cyclic breakable objects by using a general algorithmic framework, and obtain
several interesting results. In particular one result on a breakable queue points out a
mistake that appeared both in a previous paper and a textbook. We further study operation-
wise breakable objects in which some operations on the object may break but not other
operations. We use various breakable queues as running examples, and demonstrate that
the generic framework can be applied in this context as well, and in some cases with
nontrivial implementations of the framework. We also provide matching impossibility
results to obtain exact consensus numbers for all the cases we consider. Finally, since
all example objects we found in the literature with a generic consensus number n are
breakable objects, we provide a simple and natural non-breakable object class with generic
consensus number n.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In shared-memory distributed systems, individual processes communicate with one another through various shared ob-
jects, such as read-write registers, queues, stacks, and testAndSet. In [4], Herlihy introduces consensus numbers to compare
the power of various shared objects in standard asynchronous and wait-free shared-memory distributed computing model.
Consensus is a distributed task in which processes propose their values and they need to agree on one irrevocable value
from one of the values proposed, and the decision should be made no matter how many processes participate in consensus.
A shared object type has consensus number n if using any number of objects of this type plus any number of read-write
registers one can implement n-process consensus, but not (n + 1)-process consensus. Herlihy uses consensus numbers to
build a wait-free hierarchy, in which different objects are placed at different levels. For example, read-write registers are the
weakest, with consensus number 1; normal queues, stacks, and testAndSet objects have consensus number 2; while queues
augmented with a peek operation have consensus number infinity, meaning that they can be used to solve consensus with
any number of processes.
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Table 1
Consensus numbers of various breakable queues.

Enqueue operation Dequeue operation

Normal Break-all Break-op

Normal 2 (normal queue, [4]) ∞ (Theorem 4) ∞ (Theorem 7)
n-cell normal 2 (similar to the above) ∞ (Theorem 4) n (Theorems 8, 9)***

n-cell break-all ∞ (n-BQ, Theorem 3)† n + 1 (Theorems 5, 6) 2n (Theorems 13, 14)
n-cell break-op 2n (Theorems 11, 12)* 2n (Theorems 15, 16)* n (Theorems 8, 10)**

Roughly, “normal” means the operation will never fail. “break-all” means after the operation fails, all subsequent operations on the object will fail, while
“break-op” means only subsequent operations of the same type will fail. See Section 4 for details.

* Correct for n � 2; when n = 1, consensus number is 3 (Theorem 18).
** Correct for n � 3; when n = 1 or 2, consensus number is 3 (Theorems 18, 19).

*** Correct for n � 2; when n = 1, consensus number is 2 (by an argument similar to the normal queue).
Others are correct for n � 1.

† This result fixes a mistake appearing in [6] (a claim after its Claim 5), and in [2], hint of Exercise 15.8.

Objects studied in [4] are all objects that will not be broken under any circumstances. Later, in [6] Jayanti and Toueg
introduce an object that may break under certain conditions. Their purpose is to provide a class of objects with consensus
number n for any positive integer n. The object class they introduced is called n-bounded peek queue, which is based on
a queue with enqueue and peek operations (but no dequeue operations) and has at most n cells. When the queue is full,
the next enqueue operation will break the queue and all subsequent operations including this enqueue will return a broken
symbol ⊥B . Breakable objects are also used in textbooks [2,5] as examples of shared objects with consensus number n.
In [1], Afek and Shalom study bounded-use objects, in which certain operations can only be invoked for a bounded number
of times and then fail. This is another kind of objects that can break certain operations but not others.

In this paper, we provide a systematic study on the consensus power of objects that may break or objects having some
operations that may break, which we refer to as breakable objects. We found that almost all breakable objects studied
before [1,5,6] are restricted to one class of objects — objects which are unidirectionally moving towards their broken states.
For example, n-bounded peek queue of [6] always moves towards filling the queue and then breaks (since there is no
dequeue operation). We call these objects acyclic and show that their consensus power are limited by the distance between
their normal states and the broken state.

Our main focus of the paper is on the richer class of cyclic objects whose operations may move their states away from
the broken states, e.g., adding the dequeue operation to the n-bounded peek queue. We provide a general algorithmic
framework and show how to implement n-process consensus in this framework. All actual consensus algorithms are various
implementations of this framework using different breakable objects.

We use various breakable queues as running examples to show how to apply the generic framework. Our results are
summarized in Table 1. First, we study objects that have an object-wide broken state such that all operations are broken
once in this state. One important result in this category is that, if the queue has n cells, a normal dequeue operation and an
enqueue operation that will break the queue when the queue is already full (n-cell break-all enqueue), its consensus number
is infinity. This result corrects a mistake appearing both in [6], which claimed that even adding the dequeue operation
to n-bounded peek queue the consensus number is still n, and in [2], Exercise 15.8, which hinted that n-bounded queue
augmented with the peek operation has consensus number n. More importantly, this result illustrates the drastic difference
between acyclic breakable objects and cyclic ones: n-bounded peek queue is acyclic and has consensus number n, but once
adding the dequeue operation, it is cyclic and its consensus power increases to infinity. We also study queues that may
break when dequeuing an empty queue (break-all dequeue operation), and the combination of break-all dequeue and n-cell
break-all enqueue operations. The former has consensus number infinity, while the latter has consensus number n + 1.

Next, we study operation-wise breakable objects with break-op operations, which are operations that may break under
certain state but not breaking the object itself or other operations. In the case of queues, a break-op dequeue operation
will break all subsequent dequeues when the queue is empty (but not breaking the enqueues), while an n-cell break-op
enqueue operation will break all subsequent enqueues after doing enqueue operation in a full queue (but not breaking the
dequeue operations). We study combinations of break-op operations with normal operations or break-all operations, and
fully characterize their consensus numbers for all variants of queues (Table 1). Our algorithmic results are still based on the
generic framework, but we need more involved implementations of the framework using objects with break-op operations.
All our impossibility results apply the bivalency argument [4], but some need involved case studies to deal with certain
tricky cases. The results themselves are also interesting. For example, an n-cell queue with a break-op dequeue operation
and a normal enqueue operation has consensus number n, but the seemingly symmetric object with a break-op enqueue and
a normal dequeue has consensus number 2n. This illustrates subtle differences between dequeue and enqueue operations.
From the results and their analyses, we see that intuitively the difference in the consensus power of these objects is due to
the ability of communicating about object break status among processes.

The above results are not specific to the breakable queue objects. We point out that most of our algorithmic results rely
on the state transition patterns of the breakable object, not on specific value domain or the semantics of the operations. For
example, an n-bounded counter has the same state transition pattern as an n-bounded queue, and thus the two have the
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same consensus numbers. Moreover, all our algorithmic results on breakable queues are easily carried over to corresponding
breakable stacks.

Finally, we propose a new non-breakable object n-bounded shift augment queue, which has consensus number n.
We notice that all objects having a generic consensus number n in the literature are breakable objects. Thus this new
object could be a nice addition to the literature as the first natural non-breakable object with a generic consensus num-
ber n.

As a summary, we conduct a systematic study of the consensus power of breakable objects, especially of cyclic breakable
objects that were not covered well before. We correct a mistake on breakable queues in the literature, and provide a
comprehensive characterization of various breakable queues. Our study enriches the theory of wait-free consensus hierarchy
by introducing a large class of breakable objects and a generic framework applicable to these objects. It also provides rich
pedagogical materials for teaching the consensus power of shared objects. It may also has practical implementations, since it
provides a new class of simple and universal shared objects that could be used to implement any other objects in wait-free
systems.

1.1. Related work

The first breakable object seems to be the n-bounded peek queue in [6]. Breakable objects also appear in textbooks [2,5],
and in the context of studying bounded-use and bounded-size objects [1]. Although the study in [1] bears some resemblance
with our work, introducing broken states is different from bounded-use and bounded-size restrictions, and it leads to several
important differences between the two works. First, their bounded-use objects are limited cases of our operation-wise
breakable objects. In our case, the number of operation invocations are not bounded, and no operation will break as long
as the object is in safe states. We believe this makes significant difference in the consensus power of objects. Second, their
bounded-size objects do not have broken states, so they are different from our bounded-size breakable objects. Third, in our
work we are able to provide a general algorithmic framework, and we also point out that the consensus power of breakable
objects are mainly due to their general state transition patterns. This seems not the case for the bounded-use objects —
their algorithms are individually designed for each object and rely on detailed semantics of the objects.

Some other objects in the literature may bear resemblance with breakable objects. For example, sticky bit [7] is an object
such that the first value written to the object sticks. It can be viewed as later writes are broken. This is a special case of
bounded-use objects, and thus has the same limitation as discussed above.

Paper organization. In Section 2, we provide basic definitions and terminologies of the paper. In Section 3, we show the
general results on breakable objects, including the upper bound on the consensus number of acyclic breakable objects, and
the generic algorithmic framework implementing consensus using cyclic breakable objects. Sections 4 and 5 provide results
on object-wide breakable queues and operation-wise breakable queues, respectively. In particular, all lower bound results
on consensus numbers are applications of the generic algorithmic framework, with matching upper bounds proven by the
bivalency arguments. In Section 6, we provide the first object type with no broken states and a generic consensus number n.
We conclude the paper in Section 7.

2. Preliminaries

We consider a standard asynchronous shared-memory distributed computing model as given in [4]. The system is
equipped with shared-memory objects, each of which has a certain type. An object type T = (ΣT ,ΩT ) specifies (a) ΣT ,
the set of possible states of the object, and (b) ΩT , the set of possible primitive operations on the object, for example, deq
and enq(v) operations of queue object. The argument (if any) is part of the operation, for example, two enq operations with
different arguments are two different operations. Each operation ω ∈ ΩT of the object is deterministic, and thus is modeled
as a function mapping the current state of the object to a new state of the object and the return value of the operation
(could be null). For example, register is a basic type with its state coming from a value domain V plus a special empty
symbol ⊥, and operations read and write(v)’s with standard semantics. The main class of objects we study in this paper
are queues. A normal queue type has a sequence of values (of certain value domain V ) as its states, and has a dequeue
operation deq and enqueue operations enq(v) for all values v ∈ V . Operations deq and enq(v) have standard semantics: deq
removes the head of queue and returns it, and returns ⊥E if the queue is empty, and enq(v) appends v to the end of queue
with default return value.

A concurrent system consists of a finite number of processes and a number of base shared-memory objects, such that
processes communicate with one another solely via accessing these base objects. Every operation by a process on a base
object is atomic, that is, in one atomic step, one process can invoke one operation on one object and obtain its return value,
and based on the return value and the local state of the process conduct a state transition to reach a new process state.
We consider deterministic algorithms in the concurrent system, which on each process p at every state s, specify the object
o and the operation ω on o to be applied, and also specify the new state s′ based on the current state s and the return
value v of the operation ω on o. A configuration C is a collection of process states and object states, reflecting the state
of the system at a point in time. A run of an algorithm is an infinite sequence C0, p1, C1, p2, . . . , starting with the initial
configuration C0 and alternating between configurations and process identifiers. In the sequence, configuration Ci is the
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result of process pi taking a step at configuration Ci−1, for all i � 1. Process run is asynchronous, meaning that between
any two steps of a process there could be an arbitrary number of steps of other processes. A correct process in a run is
one that executes an infinite number of steps in the run, and a faulty process is one that executes only a finite number of
steps.

In this paper, we study the power of shared objects by their ability of implementing consensus tasks [4], as defined
below. In consensus, each process proposes a value v ∈ V from some value domain V by invoking consensus(v), and the
return value is called its consensus decision. It needs to satisfy the following properties:

– Agreement: no two processes decide differently.
– Termination: if a correct process proposes, eventually it decides.
– Validity: if a process decides v , then v has been proposed by some process.

Note that the Termination property implies that it is wait-free, that is, the process will terminate its consensus no matter
if other processes participate or stop participating on the consensus task. We say that an object type T solves n-process
consensus if there is an algorithm implementing consensus among n processes using any number of registers and objects
of type T . We say that object type T has consensus number n if it could solve n-process consensus but not (n + 1)-process
consensus, and it has consensus number infinity if it could solve n-process consensus for all n ∈ N.

In this paper, we focus on objects that may break and end up in a broken state. Technically, for an object type T =
(ΣT ,ΩT ), we say that a set of states B ⊆ ΣT are broken states of the object if (a) any operation w ∈ ΩT applied at state
b ∈ B keeps the object state in B and returns a special predefined symbol ⊥B ; and (b) for any operation w ∈ ΩT on a state
s ∈ ΣT that does not result in a state b ∈ B , its return value is not ⊥B . Since there is no need to distinguish states in B , we
collapse all states in B into one special state sB , which is called the broken state of the object. An object with a broken state
is called an object-wide breakable object, and after the object enters its broken state, we say that it is broken. For example,
an n-bounded queue type [6,2], denoted as n-BQ, is a queue with deq and enq(v) operations and only n cells, such that when
the queue is full (all n cells contain previously enqueued values), the next enq(·) operation will break the queue and return
⊥B , and all subsequent operations will keep the queue in the broken state and return ⊥B . A related object is n-bounded
peek queue [6], denoted as n-BPQ, which differs from n-BQ by removing the deq operation but adding the peek operation,
which returns the head of queue without changing the queue state.

For a breakable object type T = (ΣT ,ΩT ), we say that a state c ∈ ΣT is a cliff state of T if there exists an operation
ω ∈ ΩT such that ω applied to c results in the broken state sB . We refer to operation ω at c as a jump operation. We
exclude trivial breakable objects that either contain only the broken state or contain no transition from non-broken states
to the broken state, and thus all breakable objects contain cliff states. If a breakable object has a state s that is neither a
broken state or a cliff state, we call it a safe state. An operation that transfers a cliff state to a safe state is called a save
operation. For example, for the n-bounded queue type, any full queue state is a cliff state, any enq(v) operation on the full
queue is a jump operation, any non-full queue state is a safe state, and the deq operation at any full queue state is a save
operation.

We say that an operation is trivial if it never changes the state of the object. Given an object type T = (ΣT ,ΩT ), its
state transition graph G T is a labeled graph such that the vertex set is ΣT , and for every state s ∈ ΣT and every operation
ω ∈ ΩT , there is an edge from s to s′ labeled with ω, where s′ is the resulting state when applying ω to s. The transition
graph allows self-loops and multi-edges. A breakable object type T is acyclic if the subgraph of G T after removing the
broken state and all self-loops labeled by trivial operations is a directed acyclic graph (DAG). A breakable object type T is
cyclic if it is not acyclic. For example, n-bounded queue is cyclic while n-bounded peek queue is acyclic. In particular, the
latter has no save operations. We will see that whether the breakable object is cyclic or not could make a big difference in
its consensus power.

We also study partially breakable objects. In particular, a set of operations A ∈ ΩT is breakable if for any operation
ω ∈ A, there exists some state s ∈ ΣT such that ω applied to s leaves the state unchanged and returns the special symbol
⊥B ; and (b) once ⊥B is returned by some ω ∈ A, any subsequent invocation of any operation in A in the run will not
change the object state and will always return ⊥B . We call objects with breakable operations operation-wise breakable
objects. Note that when some set of operations break, the object itself is not broken, and other operations not in A may
continue to behave normally. For example, an n-bounded enq-breakable queue is a queue with at most n cells. When the
queue is full, the next enq(v) operation for any v ∈ V will break and all subsequent enq(v) operations for any v ∈ V will
only return ⊥B , but the deq operation can continue behaving normally. Bounded-use objects studied in [1] can be viewed
as a special type of operation-wise breakable objects, which break an operation after a certain number of invocations of the
operation.

3. General results on breakable objects

In this section, we first show that acyclic breakable objects have limited consensus power, and then provide an algo-
rithmic framework to solve consensus based on cyclic breakable objects. As we shall see, our results are based on the state
transition pattern among cliff, safe, and broken states of a breakable object, not on the actual values stored in the objects
or semantics of their operations. Thus, they are generic results illustrating the power of breakable objects.
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3.1. Limited consensus power of acyclic breakable objects

As pointed out in the introduction, most of the breakable objects encountered in the literature are acyclic breakable
objects. In this section, we show that their consensus power is limited by the diameter of their state transition graphs. This
serves as a motivation for us to turn our attention to the less studied cyclic breakable objects.

For impossibility results, it is enough to show that binary consensus is not solvable. For binary consensus, we define
configuration valency as the standard one [3]: a configuration is v-valent (v is 0 or 1) if all possible runs from it reach
decision v; a configuration is univalent if it is 0-valent or 1-valent; and a configuration is bivalent if it is not univalent.
All impossibility results of this paper will use the following lemma, which is essentially proven in [4] but not explicitly
summarized as a lemma there.

Lemma 1. (See [4].) If an object type T solves n-process consensus for some n > 1, then there is a bivalent critical configuration C
reachable from some initial configuration satisfying the following properties: (a) every operation of every process on C results in a
univalent configuration; (b) all operations on C must be on the same object of type T (not a register); and (c) none of the operations
on C is trivial.

The following theorem provides an upper bound on the consensus number of acyclic breakable objects.

Theorem 1. For an acyclic breakable object type T with state transition graph G T , let G ′
T be the acyclic subgraph of G T after removing

the broken state and the self-loops labeled by trivial operations. If the length of the longest path in G ′
T is n, then the consensus number

of T is at most n + 1. Moreover, if all of its jump operations on cliff states return ⊥B and n � 2, its consensus number is at most n.

Proof. Assume the object type T can solve (n + 2)-process consensus (n � 1). By Lemma 1, there is a bivalent critical
configuration C satisfying the three properties stated in Lemma 1. Define S1 to be the set of processes whose next operation
leads to a 1-valent configuration, and S0 to be the set of processes whose next operation leads to a 0-valent configuration.
By property (a), the union of S1 and S0 is the set of all processes, hence |S1| + |S0| = n + 2 � 3. Without loss of generality
we assume |S1| � 2. Pick a process P1 in S1, consider the following two sequences of steps from C (S1 \ {P1} �= ∅):

1. Every process in S1 \ {P1} takes an operation, then every process in S0 takes an operation;
2. Every process in S0 takes an operation, then every process in S1 \ {P1} takes an operation.

The first sequence leads to a 1-valent configuration C1 but the second leads to a 0-valent configuration C0. By properties (b)
and (c), both sequences take n + 1 nontrivial operations on a single object. As the longest path in the DAG G ′

T has length n,
the object must be in the broken state after either step sequence. Now if P1 runs solo after C0 or C1, it cannot distinguish
these two configurations and thus must decide on the same value. This contradicts the fact that C0 is 0-valent and C1 is
1-valent. Therefore the consensus number of T is at most n + 1.

If all of T ’s jump operations on cliff states return ⊥B and n � 2, we show that the consensus number is at most n.
Similarly we can define the two sets S1 and S0, and we have |S1| + |S0| = n + 1 � 3. Assume |S1| � 2, pick a process
P1 ∈ S1 and consider the two step sequences above. Both sequences take n nontrivial operations on a single object. This
object may be in a cliff state or a broken state. Now if P1 runs solo, its first operation returns ⊥B and then the object
must be in a broken state. P1 cannot distinguish these two runs from now on and has to decide on the same value —
a contradiction. Therefore the consensus number of T is at most n. �

The above theorem immediately implies that n-bounded peek queue [6] and n-bounded compareAndSet (Exercise 5.70
of [5]) with n � 2 have consensus number at most n, because for both objects, it only takes at most n nontrivial operations
to transfer the object to the cliff state, and the next nontrivial operation is a jump operation with return value ⊥B .1 The
theorem indicates that purely by the state transition pattern we can upper bound the consensus power of acyclic breakable
objects. This leads us to look into cyclic breakable objects and see if they can provide higher consensus power. The rest of
the paper thus focuses on cyclic breakable objects.

3.2. Algorithmic framework for consensus implementation using cyclic breakable objects

We develop a general algorithmic framework to solve consensus based on state transition patterns of cyclic breakable
objects with save operations. The idea is to use the differentiation power of the cliff states — if applying a jump operation
at a cliff state, it will go to the broken state, but if applying a save operation, it will go to a safe state. All implementations
in this paper on actual breakable objects are different realizations of the generic framework.

1 Note that when n = 1, both n-bounded peek queue and n-bounded compareAndSet have consensus number 2 instead of 1, since both can easily
implement testAndSet objects. This subtle difference for the case of n = 1 was not pointed out in [6] for n-bounded peek queue, or in [5], Exercise 5.70 for
n-bounded compareAndSet.
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In the general framework, we have two (possibly non-atomic) methods, jumpAndCheck and saveAndCheck, each of which
is implemented by atomic operations on some base breakable object of type T .2 Both methods have two possible re-
turn values — broken or safe. We say that a method invocation I1 is before a method invocation I2 if the first atomic
operation in I1 is executed before any atomic operation in invocation I2. We also have an initial state of the object s0.
We require that methods jumpAndCheck and saveAndCheck together with the initial state s0 satisfy the following condi-
tion:

– n-Break Condition: If there is at most one invocation of method jumpAndCheck and at most n − 1 invocations of method
saveAndCheck on an object with initial state s0, then all method invocations return the same symbol, and they return
the broken symbol if and only if jumpAndCheck is invoked before any other method invocations.

If methods jumpAndCheck and saveAndCheck together with an initial state s0 satisfy the n-Break Condition, then we could
use them to implement n-process consensus. Algorithm 1 provides the pseudocode for it among processes {P1, P2, . . . , Pn}.
It uses jumpAndCheck and saveAndCheck on n breakable objects {O 1, O 2, . . . , O n} of type T with initial object state s0, and
n additional atomic registers {R1, R2, . . . , Rn}. The idea is that each process Pi “owns” one breakable object O i and one
register Ri . When Pi proposes v , it first writes v into Ri , and then invokes the jumpAndCheck method on O i (line 4). Then
it goes through objects O 1, O 2, . . ., in this order, but skips its own object O i , such that on each object O j , it invokes the
saveAndCheck method (line 6). From these invocations, it finds the smallest index b such that the invocation on object O b
(either saveAndCheck or jumpAndCheck) returns symbol broken. It does not need to go further after finding such a b, and
just returns the value stored in Rb as the consensus decision.

Theorem 2. For a breakable object type T , if the methods jumpAndCheck and saveAndCheck together with an initial state s0 satisfy
the n-Break Condition, then Algorithm 1 implements n-process consensus.

Algorithm 1: Consensus algorithm for n processes {P1, P2, . . . , Pn} using jumpAndCheck and saveAndCheck on n break-
able objects {O 1, O 2, . . . , O n} of type T with initial object state s0, and n atomic registers {R1, R2, . . . , Rn}. The code is
for process Pi . Note that jumpAndCheck and saveAndCheck may not be atomic.

1 Initially, all objects O 1, O 2, . . . , O n have state s0.
2 consensus(v) begin
3 write(Ri , v)

4 if jumpAndCheck(O i) = broken then b := i else b := n
5 foreach j ∈ {1,2, . . . ,b}, j �= i, in ascending order do
6 if saveAndCheck(O j) = broken then
7 b := j
8 break

9 return read(Rb)

Proof. The Termination property is straightforward, because the loop is simple and finite.
In Algorithm 1, every O i (1 � i � n) is initially in state s0. There are at most one invocation of method jumpAndCheck

(by Pi ) and at most n−1 invocations of method saveAndCheck (by processes other than Pi ) on O i . By the n-Break Condition,
all these methods on O i return the same symbol, and they return broken if and only if jumpAndCheck is invoked first.

Every process invokes one jumpAndCheck before any saveAndCheck in Algorithm 1. For the process that first invokes
jumpAndCheck, say P j (1 � j � n), one can see that the first method invocation on O j is jumpAndCheck. Let B ⊆ {1,2, . . . ,n}
be such that for every b ∈ B , the first method invocation on O b is jumpAndCheck, and thus all method invocations on O b
returns broken according to the n-Break Condition. B is not empty since j ∈ B .

By Algorithm 1, the final value of variable b in every process must be in B . For such a b ∈ B , the first invocation of
method on O b is jumpAndCheck by process Pb . Before this, Pb must have already written its proposal into Rb . Therefore the
Validity property is satisfied.

Let b0 be the smallest number in B . We claim that the final value of variable b in every process equals to b0, which
means they all decide on the value of Rb0 . If this is not true, assume that a process finds a number b �= b0. There must be a
method jumpAndCheck or saveAndCheck on O b that returns broken. Hence all methods on O b return broken, and the first
method invocation on O b is jumpAndCheck. Therefore b ∈ B and b0 < b. By Algorithm 1, this process must have invoked
saveAndCheck on O b0 and that method returns safe. This is in contradiction with b0 ∈ B . Therefore all processes decide on
Rb0 , the Agreement property is satisfied.

In summary Algorithm 1 implements n-process consensus. �
2 The framework can be easily generalized to the case of using multiple base objects to implement jumpAndCheck and saveAndCheck methods, but it is

not needed in this paper.
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In our general framework, methods jumpAndCheck and saveAndCheck may be implemented by multiple operations and
thus may not be atomic. The following corollary covers the special case when indeed we can use the atomic jump and save
operations of the object to implement jumpAndCheck and saveAndCheck.

Corollary 1. Suppose a breakable object type T satisfies the following conditions:

(a) it has a cliff state c with a jump operation ω J on c that returns ⊥B ;
(b) it has a save operation ωS on c;
(c) for any operation sequence consisting of at most n−1 ωS and at most one ω J , as long as the first operation is not ω J , the sequence

applied to state c will not enter the broken state.

Then the consensus number of T is at least n. In particular, if ωS always transitions a non-broken object state into a safe state, then the
consensus number of T is infinity.

Proof. Let s0 = c, broken = ⊥B , jumpAndCheck be ω J , saveAndCheck be ωS , and consider every return value other than ⊥B

as the safe symbol. One can see that the n-Break Condition is satisfied. By the above theorem, Algorithm 1 implements
n-process consensus.

Moreover, when ωS always transfers a non-broken object state into a safe state, any one ω J operation inserted in the
middle of a sequence of ωS ’s of any length will not break the object, so condition (c) is satisfied for any n > 1. Thus in this
case the consensus number of T is infinity. �

The above corollary demonstrates that a cyclic breakable object could bring strong consensus power all the way to
infinity, and its power is mainly due to its particular state transition pattern between the cliff, safe, and broken states, not
on the values stored in the objects or the semantics of the operations. In the next two sections, we apply our framework to
various breakable queues. The results are easily carried over to corresponding breakable stacks.

4. Object-wide breakable objects

In this section, we focus on object-wide breakable objects. In particular, we use various versions of breakable queues as
our running examples to show how we apply our general algorithmic framework and Theorem 2 to provide lower bounds
on their consensus numbers. We also provide matching upper bounds on the consensus numbers to show that our results
are tight. We will point out that the actual semantics of the queue type is not important, and our results can be applied to
other breakable objects.

Given a normal queue with deq and enq(v) operations, we can introduce the broken state in several ways. First, we can
revise the enq(v) operation such that the queue has at most n cells and enq(v) may break the full queue. Overall, we can
introduce three types of enqueue operations: (a) normal, in which the queue has no limit and enq(v) always succeeds with
no return value; (b) n-cell normal, in which the queue has at most n cells, and when enq(v) is applied to a full queue, the
queue state does not change and enq(v) has no return value as if it is a normal operation; and (c) n-cell break-all, in which
the queue has at most n cells and when enq(v) is applied to a full queue, the queue enters the broken state and enq(v)

returns ⊥B . The n-bounded queue defined in Section 2 is a queue with the n-cell break-all enq(v) operations and a normal
deq operation. Similarly, we can also revise the deq operation such that deq has the following two types: (a) normal, which
is the normal deq operation; and (b) break-all, in which deq on an empty queue will transfer the queue into the broken
state and return ⊥B . Combining three types of enq(v) operations and two types of deq operations, we obtain six variants of
queues. Their consensus numbers are fully known, and are listed in Table 1 (ignoring the last row and column for now).

All of our algorithmic results are based on our algorithmic framework, but different variants of queues require different
realization of the two methods jumpAndCheck and saveAndCheck. The matching impossibility proofs all start by applying
Lemma 1, but need different treatments based on the semantics of different objects. We now provide individual results
below on different breakable objects, with a discussion on generalizing the results to other objects.

4.1. n-BQ: n-cell break-all enq(v)’s and normal deq

We start with the n-bounded queue, which contains the core operations as a variant defined in [6] and another variant
defined in [2], Exercise 15.8. Contrary to what has been claimed in the literature, which imply that the consensus number
of n-BQ is n, we show here that the consensus number of n-BQ is infinity. Algorithm 2 provides the implementation of
our general framework using the n-BQ object. We summarize it here for completeness, even though our theorem can be
obtained directly from Corollary 1.

Theorem 3. The implementation in Algorithm 2 using the n-BQ object solves m-process consensus for all n � 1 and m � 1. Thus, the
consensus number of n-bounded queue is infinity for any n � 1.
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Algorithm 2: Implementation of the general framework with n-BQ: n-cell break-all enq(v)’s and normal deq, n � 1.

1 initial State s0 : any full queue state
2 jumpAndCheck: if enq(v) = ⊥B then return broken else return safe

3 saveAndCheck: if deq = ⊥B then return broken else return safe

Proof. This is a direct application of Corollary 1. For any n-bounded queue with n � 1, pick any full queue state c as its
cliff state, any enq(v) as its jump operation on c, the deq operation is a save operation on c. The deq operation always
transfers any non-broken queue state into a safe state (i.e., the queue will not be full after deq as long as it is not broken
yet). Therefore, by Corollary 1, n-bounded queue has consensus number infinity. �

Even though the result seems to be easy after we have developed our generic algorithmic framework, the result is still
important in providing several insights in our understanding of the consensus power of breakable objects.

First, the n-bounded queue achieves infinite consensus number without using the peek operation. This is in contrast to
the normal queue and the normal augmented queue with the peek operation. The normal queue with normal enq(v)’s and
deq only achieves consensus number 2. But after adding the peek operation, it achieves consensus number infinity. However,
by just adding the ability of breaking a normal queue, and even if the queue can only have one cell, we are able to achieve
consensus number infinity. This shows that consensus power can be greatly increased when an object may break.

Second, while n-BQ achieves infinite consensus number without using the peek operation, it actually does not use the
content of the queue at all. All it needs is the state transition pattern in which enqueue on a full queue (the cliff state) can
break the queue while a dequeue on a full queue (or any normal queue state) will bring the queue away from the cliff state.
The same result can be applied to different breakable objects with the same state transition pattern. For example, consider
a simple n-bounded counter object, which stores a natural number and has two operations inc and dec. inc operation will
increment the counter value by one if the current value is less than n, and will break the counter if it is n. And dec operation
will decrement the counter by one if the current value is greater than 0, keeps it 0 if it is already 0. Both dec and inc return
the value of the counter after the change. Even though the semantics of the n-bounded counter is different from that of the
n-bounded queue, it has the same state transition pattern, and thus we can also apply Corollary 1 to show that n-bounded
counter has consensus number infinity. Therefore, our approach not only works on queues, but works on a general class of
breakable objects.

Third, the deq operation makes a huge difference on the consensus power of breakable queues. If we remove the deq
operation and add the peek operation, making it an n-bounded peek queue as in [6], then it is acyclic and the consensus
number is reduced to n as shown in [6]. Note that [6] made an incorrect claim (after their Claim 5) saying that adding deq
operation to the n-bounded peek queue will not change the consensus number of the resulting object. In contrast, we show
here that adding deq will boost the consensus number to infinity. In general, deq represents save operations. It demonstrates
that the availability of a save operation can greatly increase the consensus power of the breakable object, while the absence
of it may greatly reduce the consensus power.

4.2. Breakable queue with break-all deq and normal or n-cell normal or n-cell break-all enq(v)’s

We now look at breakable queues in which the dequeue operation will break the object when the queue is empty. The
implementation of the framework is symmetric to the previous case when enqueue operations break the queue, and it
works for several different cases based on whether the queue is bounded and whether the enqueue operations also break
the queue (Algorithm 3).

Algorithm 3: Implementation of the general framework with object having break-all deq with normal or n-cell normal
or n-cell break-all enq(v)’s, n � 1.

1 initial State s0 : empty queue state
2 jumpAndCheck: if deq = ⊥B then return broken else return safe

3 saveAndCheck: if enq(v) = ⊥B then return broken else return safe

Theorem 4. The implementation in Algorithm 3 using the breakable queue with break-all deq and normal or n-cell normal enq(v)’s
solves m-process consensus for all n � 1 and m � 1. Thus, the consensus number of these two breakable queue types are infinity for
any n � 1.

Proof. This is a direct application of Corollary 1, with the empty queue as the cliff state, deq as the jump operation, and
enq(v) as the save operation, which always transfers a non-broken state into a safe state (a non-empty queue). �

Even though we use the same implementations above for both normal enq(v) operations and break-all enq(v) operations,
the implications to consensus number are different. The following two theorems show that if both enq(v)’s and deq can
break the queue, the consensus number is no longer infinity but n + 1.
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Theorem 5. The implementation in Algorithm 3 using the breakable queue with break-all deq and n-cell break-all enq(v)’s solves
(n + 1)-process consensus, for any n � 1.

Proof. This is also an application of Corollary 1, with the empty queue as the cliff state, deq as the jump operation, and
enq(v) as the save operation. In this case, we can allow n consecutive enq(v)’s from the empty queue without breaking the
queue, so by Corollary 1, we can solve (n + 1)-process consensus. However, the difference from Theorem 4 is that enq(v)

may transfer a non-broken state, in particular the full queue state, into a broken state. �
Theorem 6. Breakable queue type with break-all deq and n-cell break-all enq(v)’s cannot solve (n + 2)-process consensus, for any
n � 1.

Proof. Suppose, for the purpose of a contradiction, that the statement is not true. Then we can find a critical configuration
as stated in Lemma 1. Let the processes be P1, P2, . . . , Pn+2. Assume without loss of generality that P1’s next step leads
to a 1-valent configuration and P2’s next step leads to a 0-valent configuration. We conduct the following case analysis to
reach a contradiction.

Case 1. The next operations of all processes are enq(·)’s. The following two sequences of steps lead to opposite univa-
lent configurations. However, if we let Pn+2 run solo from now on, Pn+2 cannot distinguish these two configurations
since in both cases Pn+2 gets ⊥B as its return value and the queue is broken after n + 2 enq operations — a contradic-
tion.

1. P1, P2, P3, . . . , Pn+2 take steps in the order P1, P2, P3, . . . , Pn+2.
2. P1, P2, P3, . . . , Pn+2 take steps in the order P2, P1, P3, . . . , Pn+2.

Case 2. The next operations are all deq’s. We again consider the above two step sequences, which also lead to opposite
univalent configurations, in which the queue is broken and the return value of Pn+2’s deq is ⊥B in both cases. Thus, if we
let Pn+2 run solo, it cannot distinguish the two runs — a contradiction.

Case 3. The next operations contain both enq(·)’s and deq’s. Without loss of generality, we assume that P1’s next step is
enq(v) and P2’s next step is deq. We further divide this case into several subcases.

– The queue is full and there is another process P3 whose next step is enq. In this case, the following two step sequences
lead to opposite univalent configurations but P1 cannot distinguish them, because P1’s enq in both cases will break the
queue and return ⊥B .
1. P1 takes a step (enq).
2. P1, P2, P3 take steps in the order P2, P3, P1 (deq, enq, enq).

– The queue is full and the next operations of P2, P3, . . . , Pn+2 are all deq’s. In this case, the following two step sequences
lead to opposite univalent configurations but P1 cannot distinguish them, because the queue is broken by P1’s enq in
the first case while by the n + 1 deq’s in the second case.
1. P1 takes a step (enq).
2. P1, P2, P3, . . . , Pn+2 take steps in the order P2, P3, . . . , Pn+2, P1 (deq, . . . ,deq, enq).

– The queue is empty. This is symmetric to the above two cases.
– The queue is neither full nor empty. The following two sequences lead to the same configuration, contradicting the fact

that they should lead to opposite univalent configurations.
1. P1, P2 take steps in the order P1, P2 (enq,deq).
2. P1, P2 take steps in the order P2, P1 (deq, enq).

There is a contradiction in every case. Therefore the consensus number is at most n + 1. �
Again we point out that the above results are not limited to breakable queues. We can adapt the n-bounded counter

object so that its dec operation will break the counter when the counter value is 0. Then the above results on breakable
queues can be transferred to such breakable counter objects.

5. Operation-wise breakable objects

We now turn to operation-wise breakable objects, in which some operations may break but not other operations. We
still use breakable queues as running examples, and extend both enq(·) and deq operations to allow the following variants:
(a) n-cell break-op enq(·): It behaves normally when the queue is not full; when the queue is full, it returns ⊥B and all
subsequent enq(·) operations return ⊥B , but keeps the queue state unchanged (deq can still work on the queue); and (b)
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break-op deq: It behaves normally when the queue is not empty; when it is empty, it returns ⊥B and breaks all subsequent
deq operations but leave the queue state unchanged (enq(·) can still work on the queue as normal).

We are still able to apply the general framework in this case, but the actual implementations of the framework are more
involved than that in the object-wide breakable objects case. Our results are summarized in the last row and column of
Table 1. After obtaining the technical results, we make comparisons between objects with break-all or break-op operations.
Intuitively we find that the difference in their consensus power lies in their ability of communicating about their break
status among processes.

5.1. Breakable queue with break-op deq and normal or n-cell normal or n-cell break-op enq(v)’s

Algorithm 4: Implementation of the general framework with object having break-op deq and normal or n-cell normal
or n-cell break-op enq(v)’s, n � 1.

1 initial State s0 : empty queue state
2 jumpAndCheck: if deq = ⊥B then return broken else return safe

3 saveAndCheck: enq(v); enq(v); if deq = ⊥B then return broken else return safe

Algorithm 4 shows the implementation of the framework using a breakable queue with break-op deq and several kinds
of enq(v) operations. We use empty queue as the initial state s0, and deq as the jumpAndCheck method. Different from
Algorithm 3, we cannot simply use an enq(v) for saveAndCheck. The reason is that enq(v) will detect the breaking of the
queue when the entire queue breaks, but it will not detect any difference when only deq breaks. Thus, we need to do two
enq(v)’s first, and then use deq to detect if deq is broken. The reason of using two enq(v)’s is to leave an extra element in
the queue so as to avoid having a later jumpAndCheck to break the queue.

Theorem 7. The implementation in Algorithm 4 using the breakable queue with break-op deq and normal enq(v)’s solves m-process
consensus for all n � 1 and m � 1. Thus, the consensus number of this breakable queue type is infinity for any n � 1.

Proof. There is at most one jumpAndCheck, and at most m − 1 saveAndCheck’s invoked on each queue in an m-process sys-
tem. We need to check the n-Break Condition for the implementation in Algorithm 4. If the first invocation is jumpAndCheck
on a queue, a deq is invoked on an empty queue, so the deq is broken and jumpAndCheck method returns broken. For any
subsequent saveAndCheck method invocation, it contains a deq operation that is broken, so it will return broken. If the first
invocation is saveAndCheck, the first operation on the queue is enq(v). By Algorithm 4, there is at most one deq in each
method, and the deq is after two enq(v)’s in saveAndCheck. Thus in any partial run with m − 1 saveAndCheck’s and one
jumpAndCheck, as long as the first invocation is saveAndCheck, the number of deq’s is no more than the number of previous
enq’s. Hence the deq operation can never get broken and all methods return safe. Therefore m-Break Condition is satisfied.
By Theorem 2, m-process consensus can be solved by our algorithm. �
Theorem 8. The implementation in Algorithm 4 using the breakable queue with break-op deq and n-cell normal enq(v)’s or n-cell
break-op enq(v)’s solves n-process consensus for all n � 1.

Proof. There is at most one jumpAndCheck, and at most n −1 saveAndCheck’s invoked on each queue in an n-process system.
If the first invocation is jumpAndCheck on a queue, the deq operation is broken, and all methods return broken. Otherwise,
if the first invocation is saveAndCheck, the first operation on the queue is enq(v). Before the queue becomes full, the same
argument as in Theorem 7 can show deq does not get broken. After the queue becomes full with n entries, since there can
be at most n deq operations in the n − 1 saveAndCheck’s and one jumpAndCheck, deq does not get broken either. Note that,
we only prove that deq operation does not get broken in this case. It is possible that enq operation has already broken (if it
is n-cell break-op enq), but it does not affect the deq operation. By our algorithm, all methods return safe. Therefore n-Break
Condition is satisfied. By Theorem 2, n-process consensus can be solved by our algorithm. �
Theorem 9. Breakable queue with break-op deq and n-cell normal enq(v)’s cannot solve (n + 1)-process consensus, for any n � 2.

Proof. Suppose, for a contradiction, that this is not true. Then we can find a critical configuration as stated in Lemma 1. Let
the processes be P1, P2, . . . , Pn+1. Assume without loss of generality that P1’s next operation leads to a 1-valent configura-
tion, and P2’s next operation leads to a 0-valent configuration.

Case 1. The next operations of P1 and P2 are both enq’s. Consider the following two step sequences that lead to opposite
univalent configurations.

1. P1, P2 take steps in the order P1, P2.
2. P1, P2 take steps in the order P2, P1.
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After this, the only possible difference between the two runs is on at most two elements in the queue. Precisely, if the
queue had at most n − 2 elements at the critical configuration, the difference is only the order of the last two elements in
the queue; if the queue had n − 1 elements at the critical configuration, the difference is only on the last one element in
the queue; and if the queue was full at the critical configuration, there is no difference.

– If the queue had at most n − 2 elements, we schedule the processes using the same idea as in [4] and [2] (page 325)
to reach a contradiction. Let a and b be the elements of P1 and P2 to enqueue respectively. The difference of the two
runs is the order of a,b in the queue ((a,b) in the first run and (b,a) in the second run). If we let P1 run solo, it will
eventually decide differently in the two runs. Hence P1’s internal states of the two runs must become different at some
point. And before this point, P1 must be taking internal steps and applying operations on shared objects identically in
the two runs. The only operation that can cause P1’s internal states to differ is a deq when {a,b} are at the first two
positions of the queue. P1’s deq operation will return a in the first run and b in the second run. We suspend P1 right
before this deq operation. Now the only difference between the two runs is still the order of a,b, but {a,b} are at the
first two positions of the queue. A similar argument shows that if we turn to let P2 run solo, it will eventually deq the
first element of the queue. Let P2 run solo until it reaches this deq. Then let P1 and P2 do their deq’s in a row. After
that, the only differences between the two runs are the internal states of P1 and P2. Another process P3 (here we use
the condition n � 2) will not be able to distinguish the two runs if P1 and P2 are both suspended.

– If the queue had n − 1 elements, the difference of the two run is on only one element. This is because the second enq
in each run has no effect. Let P1 run solo, it will eventually deq this element due to the same reason as in the above
subcase. However, after that, any other process will not be able to distinguish the two runs if we suspend P1.

– If the queue was full, there is no difference since neither enq can succeed. Hence no process is able to distinguish the
two runs.

Case 2. The operations are both deq’s. We also consider the above two sequences, which lead to opposite univalent configu-
rations, in which the queue state is the same. Then another process P3 cannot distinguish the two runs if it runs solo (here
we use the condition n � 2).

Case 3. P1’s next step is enq and P2’s next step is deq. We assume that every process whose next step is enq leads to a
1-valent configuration, and every process whose next step is deq leads to a 0-valent configuration, since all the other cases
are covered by Cases 1 and 2 above. We consider the following subcases.

– If the queue is full, the following two sequences lead to opposite univalent configurations but P2 cannot distinguish
them, because P1’s enq in the second sequence has no effect on a full queue.
1. P2 takes a step (deq).
2. P1, P2 take steps in the order P1, P2 (enq,deq).

– If the queue is empty and there is another process P3 whose next step is deq, the following two sequences lead to
opposite univalent configurations, but P2 cannot distinguish them, because in both cases the queue is empty and P2
gets ⊥B from its deq.
1. P2 takes a step (deq).
2. P1, P2, P3 take steps in the order P1, P3, P2 (enq,deq,deq).

– If the queue is empty and the next operations of P3, . . . , Pn+1 are all enq’s (and they all lead to 1-valent configurations),
then consider the following two step sequences that lead to opposite univalent configurations.
1. P1, P2, P3, . . . , Pn+1 take steps in the order P2, P1, P3, . . . , Pn+1 (deq, enq, . . . , enq).
2. P1, P3, . . . , Pn+1 take steps in the order P1, P3, . . . , Pn+1 (enq, . . . , enq).
The only possible differences between the two runs are the internal states of P2 and that deq is broken in the first
run. Each of the other processes P1, P3, . . . , Pn+1 has identical internal states in the two runs. We use the same idea
as in Case 1 to schedule these n processes. Let P1 run solo first. It will eventually take a deq, since it cannot gain any
information from enq operations and deq is the only operation that can return differently in the two runs. We suspend
P1 before its first deq on the queue. Now even though P1 may have done some operations that affected the shared
objects, they were all identical in both runs. We then similarly let each of P3, . . . , Pn+1 run solo, and suspend before
the first deq’s. At last, we let all these n processes do their deq’s in a row. Since the queue was filled with n entries,
these n deq’s will empty the queue. Afterwards, in the second run let P2 take its deq operation. This deq operation will
break all subsequent deq operations and change P2’s internal state to be the same as in the first run. At this point, the
process P2 cannot distinguish the two runs with all the other processes suspended.

– If the queue is neither full nor empty, the following two sequences lead to the same configuration, contradicting the
fact that they should lead to opposite univalent configurations.
1. P1, P2 take steps in the order P1, P2 (enq,deq).
2. P1, P2 take steps in the order P2, P1 (deq, enq).

Case 4. P1’s next step is deq and P2’s next step is enq. This is symmetric to Case 3.
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There is a contradiction in every case. Therefore the consensus number is at most n. �
Comparing the above theorem with Theorem 4, we can see that break-op dequeue operations together with n-cell normal

enqueues have less consensus power than break-all dequeues with n-cell normal enqueues. The intuition is that break-op
dequeue cannot directly communicate its broken status to the enqueue operation, but break-all dequeue can do so. Thus
to communicate this status, we have to use two enqueues and then a dequeue in Algorithm 4 for the enqueues to de-
tect the broken dequeues. This works fine if the queue is unbounded (Theorem 7), but if the queue is n-cell bounded,
communications about the broken status are constrained, and it can only support n processes for consensus.

The boundary case of Theorem 9, namely when n = 1, is that breakable queue with break-op deq and 1-cell normal
enq(v)’s has consensus number 2. It solves 2-process consensus by the standard method of using one queue filled with one
value, and whoever successfully dequeues the value wins the consensus. The proof that it cannot solve 3-process consensus
follows exactly as the proof of Theorem 9.

Theorem 10. Breakable queue with break-op deq and n-cell break-op enq(v)’s cannot solve (n + 1)-process consensus, for any n � 3.

Proof. Suppose, for a contradiction, that this is not true. Then we can find a critical configuration as stated in Lemma 1. Let
the processes be P1, P2, . . . , Pn+1. Assume without loss of generality that P1’s next operation leads to a 1-valent configura-
tion, and P2’s next operation leads to a 0-valent configuration.

Case 1. The next operations of P1 and P2 are both enq’s. Consider the following two step sequences that lead to opposite
univalent configurations.

1. P1 and P2 take steps in the order P1, P2.
2. P1 and P2 take steps in the order P2, P1.

This is similar to Case 1 of Theorem 9. The difference is that here enq returns ⊥B in the case of failure while it does not
return anything in Theorem 9. Note that there are always equal number of enq’s and deq’s taken in both runs. Hence the
number of elements in the queue is always the same, and the enq operation must always have the same state (broken or
not) in both runs. This also implies that no process can distinguish the two runs through enq operations.

– If the queue had at most n−2 elements at the critical configuration, both P1 and P2 can successfully enq. The difference
is the order of two elements at the tail of the queue. We schedule them in the same way as in Theorem 9. Let P1 run
solo until it reaches a deq when those two elements are at the head of the queue. Then let P2 run solo until the first
deq. Next if we let them do the deq’s, another process P3 will have no way to distinguish the two runs.

– If the queue had n − 1 elements at the critical configuration, only one of P1 and P2 can successfully enq. This subcase
is different from Theorem 9, because both P1 and P2 can distinguish the two runs by the return value of enq. But we
can apply the idea to another process P3. Let P3 run solo, it has to deq out the element enqueued by either P1 or P2
to see the difference. After that, P4 cannot distinguish the two runs (here we need n � 3).

– If the queue was full, no process can distinguish the two runs.

Case 2. The next operations of P1 and P2 are both deq’s. We also consider the above two sequences, which lead to opposite
univalent configurations. One can see that another process P3 cannot distinguish the two runs.

Case 3. P1’s next step is enq and P2’s next step is deq. We assume that every process whose next step is enq leads to a
1-valent configuration, and every process whose next step is deq leads to a 0-valent configuration, since all the other cases
are covered by Cases 1 and 2 above.

– If the queue is full and there is another process P3 whose next step is enq, consider the following two sequences that
lead to opposite univalent configurations.
1. P1, P2 take steps in the order P1, P2 (enq, deq).
2. P1, P2, P3 take steps in the order P2, P3, P1 (deq, enq, enq).
The queue in the first run has n − 1 elements, which are the same as the first n − 1 elements of the queue in the
second run. In both cases, the enq operation is broken by P1’s enq. The only differences between the two runs are P3’s
internal states and that the queue in the second run has one more element at its tail. We use the idea in Case 1 of
Theorem 9 again. Each of P1, P2, P4, . . . , Pn+1 has to do at least one deq to see the difference if it runs solo, because
enq is broken and always returns the same value ⊥B in both runs. Let them run solo one by one until the first deq’s.
Then let P2, P4, . . . , Pn+1 do their deq’s in a row. Each of these n − 1 processes gets the same entry in both runs.
Afterwards, in the second run let P1 take its deq operation. Now the queue is empty in both runs. The only differences
between the two runs are the internal states of P1 and P3. Thus P2, P4, . . . , Pn+1 cannot distinguish the two runs if P1
and P3 are suspended.
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– If the queue is full and the next operations of P2, P3, . . . , Pn+1 are all deq’s (and they all lead to 0-valent configurations),
consider the following two sequences that lead to opposite univalent configurations.
1. P1, P2 take steps in the order P1, P2 (enq,deq).
2. P2 takes a step (deq).
The difference between the two runs is that enq is broken in the first run. We consider what P2 does if it runs solo
after its deq operation at the critical configuration.
• P2’s first operation on the queue after the deq is enq. Let P2 run until it finishes this enq in both runs, and then for

the second run let P1 take its enq operation. Now in both runs, enq is broken by P1’s enq operation. The elements of
the queue in the first run are the same as the first n−1 elements of the queue in the second run. The only differences
between the two runs are the internal states of P2 and that the queue in the second run has one more element. This
scenario is very similar to the previous case except that P3 is replaced by P2. The processes P1, P3, P4, . . . , Pn+1 each
have to do at least one deq to see the difference. We can schedule them in the same way as in the previous case,
and get a contradiction.

• P2’s first operation on the queue after the deq is also deq. Let P2 run until it finishes this second deq, and then
let P3, P4, . . . , Pn+1 take their deq operations. Now the queue is empty and deq is broken in both runs. The only
differences between the two runs are the internal states of P1 and that enq is broken in the first run. We use the
trick similarly to the previous cases. Each of P2, P3, . . . , Pn+1 has to do an enq to see the difference if it runs solo.
Let them run solo one by one until their first enq’s are finished. These enq’s have no effect in the first run since enq
is already broken, but they fill up the queue in the second run. Then for the second run let P1 take its enq operation,
which breaks the enq. Now in both runs P1 has taken one enq operation that returned ⊥B , and both enq and deq are
broken (even though the content of the queue is not the same). In this scenario, P1 cannot distinguish the two runs.

– If the queue is empty and there is another process P3 whose next step is deq, the following two sequences lead to
opposite univalent configurations but P2 cannot distinguish them.
1. P2 takes a step (deq).
2. P1, P2, P3 take steps in the order P1, P3, P2 (enq,deq,deq).

– If the queue is empty and the next operations of P3, . . . , Pn+1 are all enq’s (and they all lead to 1-valent configurations),
consider the following two runs that lead to opposite univalent configurations.
1. P1, P2 take steps in the order P2, P1 (deq, enq).
2. P1 takes a step (enq).
The difference between the two runs is that deq is broken in the first run. We consider what P1 does if it runs solo
after its enq operation at the critical configuration.
• P1’s first operation on the queue after that enq is deq. In both runs, let P1 run until it finishes this deq, and then in

the second run let P2 takes its deq operation. Now in both runs the queue is empty and deq is broken by P2’s deq
operation. The process P2 cannot distinguish the two runs.

• P1’s first operation on the queue after that enq is also enq. In both runs, let P1 run until it finishes this second enq,
and then let P3, P4, . . . , Pn+1 take their enq operations. Now enq is broken in both runs, and the only differences are
the internal states of P2 and that deq is broken in the first run. Each of P1, P3, P4, . . . , Pn+1 has to do an deq to see
the difference if it runs solo. Let these n processes run solo one by one until their first deq’s are finished. Then for
the second run let P2 take its deq operation. Now in both runs P2 has taken one deq operation that returned ⊥B ,
and both enq and deq are broken. In this scenario, P2 cannot distinguish the two runs.

– If the queue is neither full nor empty. The following two sequences lead to the same configuration, contradicting the
fact that they should lead to opposite univalent configurations.
1. P1, P2 take steps in the order P1, P2 (enq,deq).
2. P1, P2 take steps in the order P2, P1 (deq, enq).

Case 4. P1’s next step is deq and P2’s next step is enq. This is symmetric to Case 3.

There is a contradiction in every case. Therefore the consensus number is at most n. �
For boundary case of the above theorem when n = 1 or 2, their consensus numbers are all 3. The algorithm implementing

3-process consensus using these boundary objects are nontrivial. For completeness, the algorithm and the correctness proof
are included in Appendix A.

5.2. Breakable queue with n-cell break-op enq(v)’s and normal deq

We now look at breakable queues where enqueue operations will break when the queue is full, but dequeue operation
behaves normally. This is a case where we cannot treat enqueue and dequeue operations in a symmetric manner: its
consensus number turns out to be 2n, while a breakable queue with n-cell normal enqueues and break-op dequeue has
consensus number n. The implementation of the framework is more involved, and it is the only case when we need to use
two different values in the queue.
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The idea starts by using a symmetric treatment of Algorithm 4: use a full queue as the initial state s0, enqueue as
jumpAndCheck, two dequeues followed by an enqueue as saveAndCheck. This satisfies n-Break Condition. When the number
m of saveAndCheck invocations is between n and 2n − 1, it is possible that all m enqueues in saveAndCheck are scheduled
together and thus breaking the enqueue operation even if jumpAndCheck is not invoked first. However, in this case, the
queue is full and thus the content of the queue could leave a trace indicating that the enqueue is broken not because the
jumpAndCheck is invoked first. This is the reason that in Algorithm 5, we initialize the full queue with all values x, and
when doing enqueue, we always enqueue a different value y. Then even after the enqueue is broken, we invoke another
deq to check if the queue contains y, and if so, the invocation still returns safe.

Algorithm 5: Implementation of the general framework with object having n-cell break-op enq(v)’s and normal deq.
Let x and y be two values in the value domain of the object, x �= y.

1 initial State s0 : full queue filled with value x
2 jumpAndCheck: if enq(y) �= ⊥B then return safe else if deq = y then return safe else return broken

3 saveAndCheck: begin
4 if deq = y then
5 return safe

6 else if deq = y then
7 return safe

8 else if enq(y) �= ⊥B then return safe else if deq = y then return safe else return broken

Theorem 11. The implementation in Algorithm 5 using the breakable queue with n-cell break-op enq(v)’s and normal deq solves
2n-process consensus for all n � 1.

Proof. We focus on one queue and prove the 2n-Break Condition. There are at most one invocation of jumpAndCheck and at
most 2n − 1 invocations of saveAndCheck on this queue.

If the first invocation is jumpAndCheck, the first operation is enq(y). This makes the enq operation broken, and all deq
operations return x or ⊥E because no y can ever be put into the queue. Following Algorithm 5, both jumpAndCheck and
saveAndCheck methods return broken.

Otherwise, if the first invocation is saveAndCheck, the first operation is deq. Before the enq operation gets broken, no
methods return broken. This can be seen from the only enq operation in jumpAndCheck and saveAndCheck, which does not
return ⊥B . In both methods, there is at most one enq operation. Moreover, in the saveAndCheck method, the enq operation
is after two deq’s. One can see that the queue must have once been emptied before enq is broken. Thus if the queue is
never emptied then all methods return safe. Suppose the queue becomes empty at some point. We consider the scenario
right after the queue becomes empty. The first n enq operations do not return ⊥B on the empty queue, which means
the corresponding n method invocations return safe. These processes also fill the queue with value y. Thus if enq breaks,
the queue must contain n y’s at the time enq breaks. At the moment that the enq is broken, there are at most n − 1
saveAndCheck’s and one jumpAndCheck that has not returned yet. According to Algorithm 5, each of these method invocations
will invoke exactly one deq operation, which returns y, making the method return safe. Hence all method invocations return
safe.

Therefore 2n-Break Condition is satisfied. By Theorem 2, our algorithm solved 2n-process consensus. �
Theorem 12. Breakable queue with n-cell break-op enq(v)’s and normal deq cannot solve (2n + 1)-process consensus, for any n � 2.

Proof. Suppose, for a contradiction, that this is not true. We can find a critical configuration as stated in Lemma 1. Let the
processes be P1, P2, . . . , P2n+1. Assume without loss of generality that P1’s next operation leads to a 1-valent configuration,
and P2’s next operation leads to a 0-valent configuration.

Case 1. The next operations of P1 and P2 are both enq’s. Consider the following two runs that lead to opposite univalent
configurations.

1. P1, P2 take steps in the order P1, P2.
2. P1, P2 take steps in the order P2, P1.

By the same argument as in Case 1 of Theorem 10, we can reach a contradiction if there are at least 4 processes (here we
use the condition n � 2).

Case 2. The next operations of P1 and P2 are both deq’s. We also consider the above two runs, which lead to opposite
univalent configurations. In this case, another process P3 cannot distinguish the two runs.
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Case 3. P1’s next step is enq and P2’s next step is deq. We assume that every process whose next step is enq leads to a
1-valent configuration, and every process whose next step is deq leads to a 0-valent configuration, since all the other cases
are covered by Cases 1 and 2 above.

– The queue is full and there is another process P3 whose next step is enq. This case can be argued verbatim as the first
subcase of Case 3 in the proof of Theorem 10, so we do not repeat it here.

– The queue is full and the next operations of P2, P3, . . . , P2n+1 are all deq’s (and they all lead to 0-valent configurations).
This is the key case that differs from the corresponding one of Theorem 9 and leads to the difference in the consensus
power of the two cases. Consider the following two step sequences that lead to opposite univalent configurations.
1. P1, P2, P3, . . . , Pn+1 take steps in the order P1, P2, P3, . . . , Pn+1 (enq,deq, . . . ,deq).
2. P2, P3, . . . , Pn+1 take steps in the order P2, P3, . . . , Pn+1 (deq, . . . ,deq).
The queue becomes empty after both runs. The only differences are the internal states of P1 and that enq is broken in
the first run. We use the same idea as in Case 1 of Theorem 9. Each of P2, P3, . . . , Pn+1 has to do at least one enq if
it runs solo, because enq is the only operation that returns differently in the two runs and the process should decide
differently in the end. Let these n processes run solo one by one, and suspend right before the first enq’s. During this
procedure deq’s may have been applied on the queue, but they do not affect the state because the queue is empty.
Then we let the processes take the n enq’s in a row. In the first run the queue is still empty while in the second
run the queue becomes full. Afterwards in the second run, let P1 take its enq, which breaks the operation, and let
Pn+2, Pn+3, . . . , P2n+1 take their deq’s to empty the queue. At this point in both runs the process P1 has done one enq
which returned ⊥B , and the queue has the same state. Hence the process P1 cannot distinguish the two runs if it runs
solo.

– If the queue is empty. The following two sequences lead to opposite univalent configurations but P1 cannot distinguish
them.
1. P1 takes a step (enq).
2. P2, P1 take steps in the order P2, P1 (deq, enq).

– If the queue is neither full nor empty. The following two sequences lead to the same configuration, contradicting the
fact that they should lead to opposite univalent configurations.
1. P1, P2 take steps in the order P1, P2 (enq,deq).
2. P1, P2 take steps in the order P2, P1 (deq, enq).

Case 4. P1’s next step is deq and P2’s next step is enq. This is symmetric to Case 3.

There is a contradiction in every case. Therefore the consensus number is at most 2n. �
Comparing with the seemingly symmetric case of n-cell normal enqueues and break-op dequeue, the consensus number

of breakable queues with n-cell break-op enqueues and normal dequeue is doubled. The intuitive reason is that we can use
the difference between the initial and later content of the queue to convey the break status to more processes in the latter
object type, but in the former type the initial state has to be empty, reducing the power of communicating about the break
status.

For the boundary case of the above theorem when n = 1, again its consensus number is 3, and can be shown using the
same algorithm included in Appendix A.

5.3. Breakable queue with n-cell break-all enq(v)’s and break-op deq

In this section, we show that the consensus number of breakable queue with n-cell break-all enq(v)’s and break-op deq
is 2n.

Algorithm 6: Implementation of the general framework with object having n-cell break-all enq(v)’s and break-op deq.

1 initial State s0 : any full queue state
2 jumpAndCheck: if enq(v) = ⊥B then return broken else return safe

3 saveAndCheck: if deq �= ⊥B then return safe else if enq(v) = ⊥B then return broken else return safe

Theorem 13. The implementation in Algorithm 6 using the breakable queue with n-cell break-all enq(v)’s and break-op deq solves
2n-process consensus for all n � 1.

Proof. There is at most one jumpAndCheck, and at most 2n −1 saveAndCheck invoked on each queue in a 2n-process system.
If the first invocation is jumpAndCheck on a queue, the queue goes into the broken state, and all methods return broken.
Otherwise, if the first invocation is saveAndCheck, the first operation on the queue is deq. By the algorithm, before deq
becomes broken no saveAndCheck takes any enq(v) operation, so they do not return broken. The only way that deq becomes
broken (but the queue is not broken) is for at least n processes to invoke saveAndCheck method and successfully deq
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(not return ⊥B ). These n invocations of saveAndCheck return safe. After deq becomes broken, the queue is empty. The
remaining (at most n) processes’ methods return safe because their calls to enq(v) do not break the queue. Therefore
2n-Break Condition is satisfied. By Theorem 2, 2n-process consensus can be solved by our algorithm. �
Theorem 14. Breakable queue with n-cell break-all enq(v)’s and break-op deq cannot solve (2n +1)-process consensus, for any n � 1.

Proof. Suppose, for a contradiction, that this is not true. We can find a critical configuration as stated in Lemma 1. Let the
processes be P1, P2, . . . , P2n+1. Assume without loss of generality that P1’s next operation leads to a 1-valent configuration,
and P2’s next operation leads to a 0-valent configuration.

Case 1. The next operations of P1 and P2 are both enq’s. Consider the following two step sequences that lead to opposite
univalent configurations.

1. P1, P2 take steps in the order P1, P2.
2. P1, P2 take steps in the order P2, P1.

If one of P1 and P2 failed to enq (return ⊥B ), P3 cannot distinguish the two runs because the queue is broken. If both P1
and P2 successfully finished enq, the difference between the two runs would be the order of the last two elements in the
queue. We can reach a contradiction by the same argument as in Case 1 of Theorem 9.

Case 2. The operations are both deq’s. We also consider the above two runs, which lead to opposite univalent configurations.
One can see that another process P3 cannot distinguish the two runs.

Case 3. P1’s next step is enq and P2’s next step is deq. We assume that every process whose next step is enq leads to
1-valent, and every process whose next step is deq leads to 0-valent, since all the other cases are covered by Cases 1 and 2
above.

– The queue is full and there is another process P3 whose next step is enq. The following two sequences lead to opposite
univalent configurations but P1 cannot distinguish them.
1. P1 takes a step (enq).
2. P1, P2, P3 take steps in the order P2, P3, P1 (deq, enq, enq).

– The queue is full and the next operations of P3, P4, . . . , P2n+1 are all deq’s (and they all lead to 0-valent configurations).
This is the case where we need 2n + 1 processes. Consider the following two sequences that lead to opposite univalent
configurations.
1. P1, P2, P3, . . . , P2n+1 take steps in the order P1, P2, P3, . . . , P2n+1 (enq,deq, . . . ,deq).
2. P1, P2, P3, . . . , P2n+1 take steps in the order P2, P3, . . . , P2n+1, P1 (deq, . . . ,deq, enq).
The queue is full in the first run, while it has one element in the second run. In both runs, deq is broken and the return
values for Pn+2, . . . , P2n+1 are all ⊥B . The difference is that enq is broken in the first run. We use the idea in Case 1
of Theorem 9 again. Each of Pn+2, . . . , P2n+1 has to do an enq if it runs solo, because enq is the only operation that
returns differently in the two runs. Let these n processes run solo one by one until their first enq’s are finished. In the
second run the queue is broken by P2n+1’s enq. In both cases P2n+1 gets the return value ⊥B and the queue is broken.
Thus the process P2n+1 cannot distinguish the two runs.

– If the queue is empty and there is another process P3 whose next step is deq, the following two sequences lead to
opposite univalent configurations but P2 cannot distinguish them.
1. P2 takes a step (deq).
2. P1, P2, P3 take steps in the order P1, P3, P2 (enq,deq,deq).

– If the queue is empty and the next operations of P3, P4, . . . , P2n+1 are all enq’s (and they all lead to 1-valent configu-
rations). The following two sequences lead to opposite univalent configurations but Pn+2 cannot distinguish them since
the queue is broken in both runs.
1. P1, P2, . . . , Pn+2 take steps in the order P2, P1, P3 . . . , Pn+2 (deq, enq, . . . , enq).
2. P1, P3, . . . , Pn+2 take steps in the order P1, P3, . . . , Pn+2 (enq, . . . , enq).

– If the queue is neither full nor empty. The following two sequences lead to the same configuration, contradicting the
fact that they should lead to opposite univalent configurations.
1. P1, P2 take steps in the order P1, P2 (enq,deq).
2. P1, P2 take steps in the order P2, P1 (deq, enq).

Case 4. P1’s next step is deq and P2’s next step is enq. This is symmetric to Case 3.

There is a contradiction in every case. Therefore the consensus number is at most 2n. �
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5.4. Breakable queue with n-cell break-op enq(v)’s and break-all deq

In this section, we show that the consensus number of breakable queue with n-cell break-op enq(v)’s and break-all deq
is 2n. The technique is similar to the previous section.

Algorithm 7: Implementation of the general framework with object having n-cell break-op enq(v)’s and break-all deq.

1 initial State s0 : empty queue
2 jumpAndCheck: if deq = ⊥B then return broken else return safe

3 saveAndCheck: if enq(v) �= ⊥B then return safe else if deq = ⊥B then return broken else return safe

Theorem 15. The implementation in Algorithm 7 using the breakable queue with n-cell break-op enq(v)’s and break-all deq solves
2n-process consensus for all n � 1.

Proof. There is at most one jumpAndCheck, and at most 2n −1 saveAndCheck invoked on each queue in a 2n-process system.
If the first invocation is jumpAndCheck on a queue, the queue goes into the broken state, and all methods return broken.
Otherwise, if the first invocation is saveAndCheck, the first operation on the queue is enq(v). By the algorithm, before enq
becomes broken no saveAndCheck takes a deq operation, so they do not return broken. The only way that enq becomes
broken (but the queue is not broken) is for at least n processes to invoke saveAndCheck method and successfully enq (not
return ⊥B ). These n invocations of saveAndCheck return safe. After enq becomes broken, the queue is full. The remaining (at
most n) processes’ methods return safe because all their deq’s are successful. Therefore 2n-Break Condition is satisfied. By
Theorem 2, 2n-process consensus can be solved by our algorithm. �
Theorem 16. Breakable queue with n-cell break-op enq(v)’s and break-all deq cannot solve (2n +1)-process consensus, for any n � 2.

Proof. Suppose, for a contradiction, that this is not true. We can find a critical configuration as stated in Lemma 1. Let the
processes be P1, P2, . . . , P2n+1. Assume without loss of generality that P1’s next operation leads to a 1-valent configuration,
and P2’s next operation leads to a 0-valent configuration.

Case 1. The next operations of P1 and P2 are both enq’s. Consider the following two step sequences that lead to opposite
univalent configurations.

1. P1, P2 take steps in the order P1, P2.
2. P1, P2 take steps in the order P2, P1.

By the same argument as in Case 1 of Theorem 10, we can reach a contradiction if there are at least 4 processes (here we
use the condition n � 2).

Case 2. The next operations of P1 and P2 are both deq’s. We also consider the above two sequences, which lead to opposite
univalent configurations. One can see that another process P3 cannot distinguish the two runs.

Case 3. P1’s next step is enq and P2’s next step is deq. We assume that every process whose next step is enq leads to a
1-valent configuration, and every process whose next step is deq leads to a 0-valent configuration, since all the other cases
are covered by Cases 1 and 2 above.

– The queue is full and there is another process P3 whose next step is enq. This case can be argued verbatim as the first
subcase of Case 3 in the proof of Theorem 10, so we do not repeat it here.

– The queue is full and the next operations of P3, P4, . . . , P2n+1 are all deq’s (and they all lead to 0-valent configurations).
The following two sequences lead to opposite univalent configurations but Pn+2 cannot distinguish them since the
queue is broken in both runs.
1. P1, P2, P3, . . . , Pn+2 take steps in the order P1, P2, P3, . . . , Pn+2 (enq,deq, . . . ,deq).
2. P2, P3, . . . , Pn+2 take steps in the order P2, P3, . . . , Pn+2 (deq, . . . ,deq).

– The queue is empty and there is another process P3 whose next step is deq. The following two sequences lead to
opposite univalent configurations but P2 cannot distinguish them.
1. P2 takes a step (deq).
2. P1, P2, P3 take steps in the order P1, P3, P2 (enq,deq,deq).

– The queue is empty and the next operations of P3, P4, . . . , P2n+1 are all enq’s (and they all lead to 1-valent configu-
rations). This is the case where we need 2n + 1 processes. Consider the following two sequences that lead to opposite
univalent configurations.
1. P1, P2, P3, . . . , P2n+1 take steps in the order P2, P1, P3, . . . , P2n+1 (deq, enq, . . . , enq).
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2. P1, P2, P3, . . . , P2n+1 take steps in the order P1, P3, . . . , P2n+1, P2 (enq, . . . , enq,deq).
The queue is empty in the first run, while it has n − 1 elements in the second run. In both runs, enq is broken and the
return values for Pn+2, . . . , P2n+1 are all ⊥B . The difference is that deq is broken in the first run. We use the idea in
Case 1 of Theorem 9 again. Each of Pn+2, . . . , P2n+1 has to do a deq if it runs solo, because deq is the only operation
that returns differently in the two runs. Let these n processes run solo one by one until their first deq’s are finished.
In the second run the queue is broken by P2n+1’s deq. In both cases P2n+1 gets the return value ⊥B and the queue is
broken. Thus the process P2n+1 cannot distinguish the two runs.

– If the queue is neither full nor empty. The following two sequences lead to the same configuration, contradicting the
fact that they should lead to opposite univalent configurations.
1. P1, P2 take steps in the order P1, P2 (enq,deq).
2. P1, P2 take steps in the order P2, P1 (deq, enq).

Case 4. P1’s next step is deq and P2’s next step is enq. This is symmetric to Case 3.

There is a contradiction in every case. Therefore the consensus number is at most 2n. �
For the boundary case of the above theorem when n = 1, the same algorithm in the appendix shows that its consensus

number is 3.
Comparing the result in the above two sub-sections with results on breakable queues with both break-all deq and n-cell

break-all enq’s (Theorems 5 and 6), queues with one-end break-all operations have higher consensus power than queues
with two-end break-all operations. We can see the reason is that two-end break-all operations are too rigid, making it
harder to communicate about the break status; while for one-end break-all operations with only break-op operation at the
other end, even if the other operation breaks, the queue is still working and can still be used to communicate about the
break status, and thus it has higher consensus power.

Finally, we point out that all the algorithmic results in this and the previous section apply to corresponding breakable
stack objects, and thus our results are not specific to breakable queues only.

6. n-Consensus object with no broken states

To the best of our knowledge, so far all general objects with consensus number n are breakable objects, e.g. n-bounded
peek queue of [6], n-bounded compareAndSet of [5], and the objects we studied in Table 1. In [4], Herlihy defines an
n-register assignment object, which is non-breakable but has consensus number 2n. Naturally, one may ask what would be
a natural non-breakable object with consensus number n. Of course, n-consensus object itself has consensus number n, but
we do not consider it as “natural” since (a) it is an artificial object used to define consensus number, (b) it is one-shot,
meaning that it could only be used to decide one value and once the first value is locked in, its state will not change (in
this sense, it is similar to breakable objects), and (c) it limits its power by restricting the number of ports for process to
access.

In this section, we provide a variant of augmented queue object and show that its consensus number is exactly n, for
any positive integer n � 2. It is very similar to n-bounded augmented queue, with normal deq and peek operations, and the
enq(v) operation that behaves normally when the queue is not full. When the queue is full, the next enq(v) operation will
insert v to the end of queue and remove the head of queue, so that the queue still has n entries after the operation, and
it has no special return value. This enq(v) operation at full queue acts as shifting the queue, so we call it n-bounded shift
augmented queue (n-BSAQ). We show below that n-BSAQ has consensus number exactly n, for any n � 2.

Theorem 17. For any n � 2, n-bounded shift augmented queue has consensus number n.

The theorem is proven by the following two lemmas.

Lemma 2. The n-bounded shift augmented queue can solve n-process consensus.

Proof. We show that the following simple algorithm can implement n-process consensus. Let the processes be P1, P2, . . . , Pn ,
and Pi ’s proposal is vi (1 � i � n). All processes use one n-bounded shift augmented queue Q , which is initially empty.
Every process Pi first enq(vi), then decide on the return value of peek on Q .

The Termination property is straightforward. The Validity property is because every element put into Q must be the
proposal of some process. For the Agreement property, one can see that all processes decide on the first element ever put
into Q , because there are n processes and no element is removed out of the queue.

Therefore the n-bounded shift augmented queue can solve n-process consensus. �
Lemma 3. The n-bounded shift augmented queue cannot solve (n + 1)-process consensus for any n � 2.
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Proof. Suppose, for a contradiction, that this is not true. Then we can find a critical configuration as stated in Lemma 1. Let
the processes be P1, P2, . . . , Pn+1. The next operation of every process is not peek because peek is trivial. Assume without
loss of generality that P1’s next operation leads to a 1-valent configuration, and P2’s next operation leads to a 0-valent
configuration.

Case 1. The next operations of P1 and P2 are both deq’s. The following two step sequences lead to opposite univalent
configurations but P3 cannot distinguish them (here we use the condition n � 2).

1. P1, P2 take steps in the order P1, P2.
2. P1, P2 take steps in the order P2, P1.

Case 2. P1’s next operation differs from P2’s. Without loss of generality, say P1’s next operation is enq and P2’s next
operation is deq.

– The queue is empty. The following two sequences lead to opposite univalent configurations but P1 cannot distinguish
them.
1. P1 takes a step (enq).
2. P1, P2 take steps in the order P2, P1 (deq, enq).

– The queue is full. We also consider the above two sequences, which lead to opposite univalent configurations. Since the
enq of P1 in the first run will shift the full queue, it is equivalent as a dequeue and then an enqueue, thus process P1
cannot distinguish the two runs.

– The queue is neither full nor empty. The following two sequences lead to the same configuration, contradicting the fact
that they should lead to opposite univalent configurations.
1. P1, P2 take steps in the order P1, P2 (enq,deq).
2. P1, P2 take steps in the order P2, P1 (deq, enq).

Case 3. Every process’ next operation is enq. The following two sequences lead to opposite univalent configurations, but
Pn+1 cannot distinguish them, because Pn+1’s enq will remove the entry enqueued by P1 in the first run, making it the
same as in the second run where P1 did not do an enq.

1. P1, P2, P3, . . . , Pn+1 take steps in the order P1, P2, P3, . . . , Pn+1.
2. P2, P3, . . . , Pn+1 take steps in the order P2, P3, . . . , Pn+1.

There is a contradiction in every case. Therefore the consensus number is at most n. �
7. Concluding remarks

In this paper, we provide a systematic study of breakable objects, focusing on cyclic breakable objects that are not well
covered before. For breakable queues, we also considered several other variants, such as adding the peek operation, allowing
jump operations to return a symbol different from ⊥B , allowing n-cell normal enqueue operation to return a special symbol
when operating on a full queue, etc. We are still able to use our generic framework developed to implement consensus and
find matching impossibility results, but we omit their presentation in the paper.

One open problem on breakable objects is to find the minimum number of objects needed to implement consensus.
Currently, our framework needs n objects to implement n-process consensus. What is the minimum number of objects (say
n-bounded queues) to solve n-process consensus? Another direction is to look into other general conditions on breakable
objects either allowing solving consensus or showing impossibility results.

Appendix A. Boundary cases for breakable queues with n-cell break-op enq(·) operations, when n = 1 or 2

Theorem 18. The consensus number of breakable queues with 1-cell break-op enq(·) operations and normal or break-all or break-op
deq operation is 3.

Proof. We first show that Algorithm 8 implements 3-process consensus. The Termination property is straightforward. There
is one and only one process can successfully enqueue in line 6. Without loss of generality, say P1 succeeds on line 6 and
returns on line 7, which means it decides on its own proposal. The other two processes P2 and P3 must go to line 9, before
which P1 already saved its proposal in R1. We just need to show that both P2 and P3 return the proposal of P1, so that the
Validity and Agreement properties are satisfied. P2 and P3 try deq(Q ) on line 10, and exactly one gets the value enqueued
by P1. Say P2 gets it, we can see P2 returns the proposal of P1 on line 13. For the process P3, its deq(Q ) operation either
returns ⊥E (for a normal deq operation) or ⊥B (for a break-op or break-all deq operation), and thus it must execute line 12.
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Algorithm 8: Consensus algorithm for 3 processes {P1, P2, P3} using breakable queues with 1-cell break-op enq(·)
operations and normal or break-all or break-op deq. The code is for process Pi .

1 Initialization: begin
2 A breakable queue Q , empty
3 Registers R1, R2, R3, all with ⊥
4 consensus(v) begin
5 write(Ri , v)

6 if enq(Q , v) �= ⊥B then
7 return v

8 else
9 write(Ri ,⊥)

10 x = deq(Q )

11 if x = ⊥E or ⊥B then
12 return the non-⊥ value in read(R1), read(R2), read(R3)

13 else return x

Before P3 executes line 12, R2 and R3 were cleaned to ⊥ at line 9. So R1 is the only register with non-⊥, and P3 also
returns the proposal of P1.

By the same case study and arguments in Theorems 16, 12 and 10 respectively, we can show that the 3 types of
1-cell queues cannot implement 4-process consensus. Therefore the consensus number of these queues is 3. (Some cases
degenerate for 1-cell queue, e.g. the case that the queue is neither empty nor full no longer exists.) �
Theorem 19. The consensus number of breakable queues with 2-cell break-op enq(·) operations and break-op deq operation is 3.

Proof. We can slightly modify Algorithm 8 as follows to show that it implements 3-process consensus when the breakable
queue has 2-cell break-op operations. First, we initially insert an entry ⊥ into the queue. Second, at line 10, we replace
deq(Q ) with two deq(Q )’s. Let x = ⊥E if neither deq(Q ) returns a valid proposal (a non-⊥ symbol), and let x be that
proposal otherwise. The modified algorithm implements 3-process consensus using a breakable queue with 2-cell break-op
enq(·) operations.

By the same case study and arguments in Theorem 10, we can show this queue cannot implement 4-process consensus.
Therefore the consensus number of breakable queues with 2-cell break-op enq(·) and break-op deq is 3. �
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