
Adaptive Evaluation of Non-Strict Programs

Robert Jonathan Ennals

King’s College

Dissertation submitted for the degree of Doctor of Philosophy

University of Cambridge

July 2, 2004



Declaration

This dissertation is not substantially the same as any I have submitted for a degree or diploma

or any other qualification at any other university. Further, no part of the dissertation has already

been or is being currently submitted for any such degree, diploma or other qualification.

This dissertation does not exceed 60,000 words. This total includes tables and footnotes,

but excludes appendices, bibliography, and diagrams.

Material from Chapters 2, 3 and 4 has been presented in a paper I co-authored with my

supervisor [EP03b]. Chapter 5 is largely the same as a paper that I co-authored with my super-

visor and with Alan Mycroft [EPM03]. Chapter 11 is largely identical to another paper that I

co-authored with my supervisor [EP03a]. This dissertation is my own work and contains noth-

ing which is the outcome of work done in collaboration with others, except as specified in the

text.

Robert Ennals, July 2, 2004

i



Abstract

Most popular programming languages are strict. In a strict language, the binding of a variable

to an expression coincides with the evaluation of the expression.

Non-strict languages attempt to make life easier for programmers by decoupling expression

binding and expression evaluation. In a non-strict language, a variable can be bound to an

unevaluated expression, and such expressions can be passed around just like values in a strict

language. This separation allows the programmer to declare a variable at the point that makes

most logical sense, rather than at the point at which its value is known to be needed.

Non-strict languages are usually evaluated using a technique called Lazy Evaluation. Lazy

Evaluation will only evaluate an expression when its value is known to be needed. While

Lazy Evaluation minimises the total number of expressions evaluated, it imposes a considerable

bookkeeping overhead, and has unpredictable space behaviour.

In this thesis, we present a new evaluation strategy which we call Optimistic Evaluation.

Optimistic Evaluation blends lazy and eager evaluation under the guidance of an online pro-

filer. The online profiler observes the running program and decides which expressions should

be evaluated lazily, and which should be evaluated eagerly. We show that the worst case per-

formance of Optimistic Evaluation relative to Lazy Evaluation can be bounded with an upper

bound chosen by the user. Increasing this upper bound allows the profiler to take greater risks

and potentially achieve better average performance.

This thesis describes both the theory and practice of Optimistic Evaluation. We start by

giving an overview of Optimistic Evaluation. We go on to present a formal model, which we

use to justify our design. We then detail how we have implemented Optimistic Evaluation as

part of an industrial-strength compiler. Finally, we provide experimental results to back up our

claims.

ii



Acknowledgments

First of all, I would like to thank my supervisor, Simon Peyton Jones, who has provided in-

valuable support, inspiration, and advice. Enormous thanks must go to Alan Mycroft, who has

acted as my lab supervisor. I am also extremely grateful for the support of Microsoft Research,

who have provided me not only with funding and equipment, but also with a supervisor, and a

building full of interesting people.

I would also like to thank Jan-Willem Maessen and Dave Scott, who provided suggestions

on this thesis, and Manuel Chakravarty, Karl-Filip Faxén, Fergus Henderson, Neil Johnson,

Alan Lawrence, Simon Marlow, Greg Morisett, Nick Nethercote, Nenrik Nilsson, Andy Pitts,

Norman Ramsey, John Reppy, Richard Sharp, and Jeremy Singer, who have provided useful

suggestions during the course of this work.

This work builds on top of years of work that many people have put into the Glasgow

Haskell Compiler. I would like to thank all the people at Glasgow, at Microsoft, and elsewhere,

who have worked on GHC over the years. Special thanks must go to Simon Marlow, who was

always able to help me when I ran into deep dark corners in the GHC runtime system.

iii



Contents

1 Introduction 1

1.1 Lazy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mixing Eager and Lazy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Optimistic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Overview 7

2 Optimistic Evaluation 8

2.1 Switchable Let Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Abortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Chunky Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Probability of a Nested Speculation being Used . . . . . . . . . . . . . . . . . 12

2.5 Exceptions and Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Unsafe Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Online Profiling 16

3.1 The Need for Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Goodness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Calculating Wasted Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Burst Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iv



CONTENTS v

II Theory 24

4 Semantics 25

4.1 A Simple Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Denotational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 A Cost Model for Non-Strict Evaluation 41

5.1 Why We Need a Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Cost Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Producing a Cost View for a Program . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Rules for Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 An Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.6 Denotational Meanings of Operational States . . . . . . . . . . . . . . . . . . 63

6 Deriving an Online Profiler 67

6.1 Categorising Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Blame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Bounding Worst Case Performance . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Burst Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

III Implementation 87

7 The GHC Execution Model 88

7.1 The Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 The Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Evaluating Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4 Implementing the Evaluation Rules . . . . . . . . . . . . . . . . . . . . . . . . 97

7.5 Other Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Switchable Let Expressions 105

8.1 Speculative Evaluation of a Let . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2 Flat Speculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.3 Semi-Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.4 Problems with Lazy Blackholing . . . . . . . . . . . . . . . . . . . . . . . . . 117



vi CONTENTS

9 Online Profiling 120

9.1 Runtime State for Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.2 Implementing the Evaluation Rules . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3 Heap Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.4 Further Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10 Abortion 135

10.1 When to Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10.2 How to Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

11 Debugging 141

11.1 How the Dark Side Do It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

11.2 Failing to Debug Lazy Programs . . . . . . . . . . . . . . . . . . . . . . . . . 143

11.3 Eliminating Tail Call Elimination . . . . . . . . . . . . . . . . . . . . . . . . . 143

11.4 Optimistic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

11.5 HsDebug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

IV Conclusions 146

12 Results 147

12.1 How the Tests were Carried Out . . . . . . . . . . . . . . . . . . . . . . . . . 148

12.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

12.3 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

12.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

12.5 Semi-Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

12.6 Heap Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

12.7 Miscellanea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

13 Related Work 174

13.1 Static Hybrid Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

13.2 Eager Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

13.3 Speculative Evaluation for Multiprocessor Parallelism . . . . . . . . . . . . . . 182

13.4 Speculation for Uniprocessor Parallelism . . . . . . . . . . . . . . . . . . . . 184

13.5 Models of Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

13.6 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

13.7 Debuggers for Non-Strict Languages . . . . . . . . . . . . . . . . . . . . . . . 190

13.8 Reducing Space Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

13.9 Other Approaches to Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 193



CONTENTS vii

14 Conclusions 195

A Proof that Meaning is Preserved 198

A.1 Evaluation Preserves Meaning . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.2 Abortion Preserves Meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

B Proof that Costed Meaning is Preserved 204

B.1 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

B.2 Proof of Soundness for Evaluation Rules . . . . . . . . . . . . . . . . . . . . . 205

B.3 Proof of Soundness for Abortion Rules . . . . . . . . . . . . . . . . . . . . . . 207

C Proof that programWork predicts workDone 209

C.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

C.2 Proof for Evaluation Transitions . . . . . . . . . . . . . . . . . . . . . . . . . 210

C.3 Proof for Abortion Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 213

D Example HsDebug Debugging Logs 214



CHAPTER 1

Introduction

Avoiding work is sometimes a waste of time.

Non-strict languages are elegant, but they are also slow. Optimistic Evaluation is an imple-

mentation technique that makes them faster. It does this by using a mixture of Lazy Evaluation

and Eager Evaluation, with the exact blend decided by an online profiler.

1.1 Lazy Evaluation

Lazy Evaluation is like leaving the washing-up until later. If you are never going

to use your plates again then you can save considerable time by not washing them

up. In the extreme case you may even avoid washing up a plate that is so dirty that

it would have taken an infinite amount of time to get clean.

However, if you are going to need to use your plates again, then leaving the washing

up until later will waste time. By the time you eventually need to use your plates,

the food on them will have stuck fast to the plate and will take longer to wash off.

You will also have to make space in your kitchen to hold all the washing up that

you have not yet done.

Non-strict languages aim to make life easier for programmers by removing the need for a

programmer to decide if and when an expression should be evaluated. If a programmer were to

write the following:

let x = E in E ′

1



2 Chapter 1. Introduction

then a strict language such as C [KR88] or ML [MTHM97] would evaluate the let expression

eagerly. It would evaluate the E to a value, bind x to this value, and then evaluate E ′.

By contrast, a non-strict language such as Haskell [Pey03] or Clean [BvEvLP87, NSvEP91]

will not require that E be evaluated until x is known to be needed. Non-strict languages are

usually evaluated using an evaluation strategy called Lazy Evaluation.1 If the evaluator evalu-

ates the let lazily then it will bind x to a description of how to evaluate E, only evaluating E if

x is found to be needed.

In a strict language, the let declaration does not just say what x means—it also says that

x should be evaluated now. This forces the programmer to declare x at a point at which it is

known that E is needed; otherwise the work done to evaluate E might be wasted. However, the

best point for x to be evaluated might not be the most logical place for x to be declared. Pro-

grammers are forced to make a compromise between elegance and efficiency in their placement

of declarations.

Non-strict languages avoid this problem by distinguishing between the point at which a vari-

able is declared and the point at which it is evaluated. It is argued that this gives programmers

more freedom, and allows them to write more elegant programs than they would in a strict

language [Hug89].

Unfortunately, this beauty comes at a cost. If the evaluator is not going to evaluate an

expression immediately, then it must create a data structure describing how to produce the

value later. Producing this data structure takes time and space. As a result of this, non-strict

languages are usually significantly slower than strict languages.

1.2 Mixing Eager and Lazy Evaluation

Rather than leaving all the washing up until later, or washing up everything now,

it might be best to wash up some plates now, but leave some other plates for later.

I might decide to wash up the plates that I know I am going to need tomorrow.

Alternatively, I might wash up only those plates which I know are fairly clean and

so won’t take very long to wash up.

Unfortunately, it can be difficult to know for certain that a plate will definitely be

needed or that it will definitely be easy to clean. I may have used my favourite plate

every day this year, but if I got hit by a bus tomorrow then I would never need to

use it again. Similarly, although my plate has always been easy to wash up in the

past, I can’t be sure that it won’t be impossible to wash up this time.

1The only non-lazy implementation of a non-strict language of which we are aware is Eager Haskell, which we
discuss in Section 13.2.



1.3. Optimistic Evaluation 3

One way for an implementation to avoid the cost of Lazy Evaluation is to simply not use it.

If E is very cheap to evaluate, or is always needed, then it is safe to evaluate x at the point at

which it is declared. We can thus arrange to use Eager Evaluation in such cases, and save Lazy

Evaluation for the cases where it is necessary.

It is all very well to say “we will only use Lazy Evaluation when it is necessary”, but how

does a language implementation find out where Lazy Evaluation can be safely replaced by Eager

Evaluation?

Most existing compilers for non-strict languages use a static analysis called strictness anal-

ysis (Section 13.1.2) to find expressions that are guaranteed to be needed.2 Another approach

is cheapness analysis (Section 13.1.3) which finds expressions that are guaranteed to be cheap

to evaluate.

While both these analyses work well they, like all static analyses of undecidable properties,

are limited by the need to be conservative. If a static analysis decides to evaluate an expression

eagerly, then the analysis must be 100% sure that the expression is either cheap or needed. If

the expression turned out to be expensive and unnecessary, then this could cause the program to

execute much more slowly than otherwise, or perhaps even to not terminate. This requirement

to be conservative can be very frustrating. Often one will have an expression that one is “pretty

sure” could be safely evaluated eagerly, but because one is not 100% sure one has to evaluate

it lazily. A further problem is that such analyses miss expressions that are “usually used and

usually cheap”.

In practice this conservatism causes static analyses to lazily evaluate many more expressions

than necessary. Figure 1.1 summarises the proportion of lazy let evaluations left behind by

GHC’s [PHH+93] strictness analyser [PP93] in a suite of test programs, that our profiler believes

should be evaluated eagerly. This graph is explained in more detail in Section 12.4.4.

Static analyses, and other approaches to mixed eager/lazy evaluation are discussed in more

depth in Chapter 13. The implementation of Lazy Evaluation is discussed further in Chapter 7.

1.3 Optimistic Evaluation

Perhaps a better approach is to wash up “optimistically”. As days go by, I learn

which plates are likely to be easy to wash up and which ones are likely to be needed

again. I will soon learn that, while paper plates are usually not needed again, my

favourite dinner plate usually is. If a plate turns out to be harder to wash up than I

expected then I can stop washing it up and move onto something else.

2In this introductory chapter, we are fairly sloppy in distinguishing between static program expressions and
dynamic expression instances. We will be more formal in later chapters.



4 Chapter 1. Introduction

Figure 1.1: Percentage of lazy let evaluations left behind by GHC’s strictness analyser that we
believe should be evaluated eagerly

In this thesis, we introduce Optimistic Evaluation, a new evaluation strategy for non-strict

programs. Optimistic Evaluation avoids the curse of conservatism by using an online profiler to

decide how best to blend lazy and eager evaluation, rather than using a static analysis. Every let

expression is compiled such that it can evaluate either eagerly, or lazily, depending on the state

of a dynamically changing structure called the speculation configuration. An online profiler

monitors the behaviour of the program as it runs, and updates the speculation configuration to

take account of what it has seen.

Optimistic Evaluation is a speculative evaluation strategy. It evaluates expressions without

knowing whether their values are needed or whether evaluation will have to be aborted. When

Optimistic Evaluation evaluates the right hand side3 of a let eagerly, we say that it is speculat-

ing the let, and refer to the evaluation of the right hand side as a speculation or a speculative

evaluation.

Unlike a static analysis, Optimistic Evaluation is not conservative. An expression will be

evaluated eagerly if the profiler judges that this will probably make the program go faster,

rather than only if this will definitely not make the program go slower. If the profiler makes a

bad decision, and causes the program to attempt to eagerly evaluate an expensive expression,

then the profiler will spot that the evaluation has gone on for too long, and arrange for it to be

aborted (more details in Section 2.2).

The purpose of this thesis is to explore the concept of Optimistic Evaluation, develop the

theory behind it, demonstrate that it can be practically implemented, and show that it gives

considerable (approx 20%) performance improvements relative to the best performing compiler

previously available.

3For the expression ‘let x = E in E ′’ we say that x is the binder, E is the right hand side, and E ′ is the body.
While these terms are quite widespread, they can be confusing because, although the right hand side is written to
the right of the binder, it is written to the left of the body.



1.4. Structure of this Thesis 5

1.4 Structure of this Thesis

This thesis is divided into four parts:

• Part I: An overview of Optimistic Evaluation

• Part II: The theory behind Optimistic Evaluation

• Part III: The implementation of Optimistic Evaluation in the Glasgow Haskell Compiler

• Part IV: Performance results, related work, and conclusions.

All terms defined in this thesis can be found in the index.

1.5 Contributions

This thesis makes the following contributions:

• We introduce Optimistic Evaluation, a novel approach to evaluating non-strict programs,

which dynamically explores the space between Lazy Evaluation and Eager Evaluation

(Chapter 2).

• We give a concrete semantics for Optimistic Evaluation and prove that it is sound with

respect to Lazy Evaluation (Chapter 4).

• We give a novel cost semantics for non-strict programs and prove that this semantics cor-

rectly models the costs experienced by a conventional operational semantics (Chapter 5).

• We use this cost model to motivate the design of an online profiler (Chapter 6).

• We show that, given certain safe assumptions, we can guarantee that such a profiler can

bound the worst case performance of Optimistic Evaluation, relative to Lazy Evaluation.

This is an important property if Optimistic Evaluation is to be used as a “plug-in” replace-

ment for Lazy Evaluation. (Chapter 6).

• We describe a real, practical implementation of Optimistic Evaluation that is able to cor-

rectly execute arbitrary Haskell programs. (Part III)

• We demonstrate that Optimistic Evaluation allows the use of debugging techniques that

would not otherwise be practical. (Chapter 11)



6 Chapter 1. Introduction

• We demonstrate significant performance increases (approx 20%) compared to our base-

line compiler. Given that our compiler has been tuned for many years and was itself the

fastest compiler available for the Haskell language, this is a considerable achievement.

(Chapter 12)

• Optimistic Evaluation opens up a considerable design space. We have explored part of

this space, and have compared several different approaches.



Part I

Overview

7



CHAPTER 2

Optimistic Evaluation

Optimistic Evaluation consists of several components that come together to produce a function-

ing system:

• Each let expression can evaluate either eagerly or lazily (Section 2.1). Which of these

it does depends on the state of a run-time adjustable switch, one for each let expression.

The set of all such switches is known as the speculation configuration.

• If the evaluator decides that a speculation has gone on for too long then it will abort the

speculation. The evaluator will resume by evaluating the body of the let that spawned

the aborted speculation. (Section 2.2).

• Recursively generated structures such as infinite lists can be generated in chunks of several

elements, thus reducing the cost of laziness, while avoiding evaluating too much of the

structure in one go. (Section 2.3).

• Online Profiling learns which lets are expensive to evaluate, or are rarely used (Chap-

ter 3). The profiler modifies the speculation configuration so that expensive and rarely

used let definitions are not speculated.

A more formal treatment of these concepts is provided in Chapter 4, while more implemen-

tation details are provided in Chapter 8.

8



2.1. Switchable Let Expressions 9

2.1 Switchable Let Expressions

Our compiler reduces the full Haskell language to a restricted subset in which all complex

expressions must be bound by let expressions (Section 4.1). Each let expression takes the

following form:

let x = E in E ′

Such a let can be evaluated either eagerly or lazily:

• Eager: Evaluate E immediately. Bind x to the value that E evaluates to.

• Lazy: Do not evaluate E immediately. Bind x to a thunk in the heap, containing all the

information needed to evaluate E later.

Our implementation decides at runtime whether to evaluate a given let eagerly or lazily.1 The

code generator translates the let expression above into code that behaves logically like the

following:
if(switch237 6= 0){

x := result of evaluating E

}else{

x := thunk to compute E when demanded

}

evaluate E ′

Our current implementation associates one static switch (in this case switch237) with each let.

There are many other possible choices. For example, for a function like map, which is used

in many different contexts, it might be desirable for the switch to take the calling context into

account. We have not explored these context-dependent possibilities because the complexity

costs of dynamic switches seem to overwhelm the uncertain benefits. In any case, GHC’s

aggressive inlining tends to reduce this particular problem. We discuss such switches further in

Section 4.2.2. If E was large, then this compilation scheme could result in code bloat because

two blocks of code are generated for E. We explain ways to avoid this problem in Section 8.1.6.

If a let is evaluated eagerly, then we say that the let is speculated, we refer to the time

spent evaluating the right hand side of the let as a speculation, we say that the speculation was

spawned by the let, and we say that the let is the source of the speculation.

1If strictness analysis is applied beforehand, then some let expressions may be hard-coded as eager.



10 Chapter 2. Optimistic Evaluation

2.2 Abortion

Optimistic Evaluation aims to improve performance by evaluating expressions eagerly even

when it does not know for sure that they will be cheap or needed.2 An obvious consequence

of this strategy is that it will sometimes evaluate expressions that are expensive and unneeded.

It is essential that the evaluator has a way to recover from such mistakes in order to avoid

non-termination; this is the role of abortion.

If the evaluator detects that a speculation has been going on for a long time, then it aborts

all active speculations (they can of course be nested), resuming after the let that started the

outermost speculation.3

Detecting when a speculation has been running for too long can be done in several ways;

the choice is not important, so long as it imposes minimal overheads on normal execution. One

approach is to have periodic sample points which look at the state of the running program. If

a speculation remains active for two consecutive sample points then the evaluator considers the

speculation to have gone on for too long. Our real implementation is more complicated, as

discussed in Section 10.1.

There are also several ways in which a speculation can be aborted. Our current scheme is

similar to the suspension system used for handling asynchronous exceptions in Haskell [MPMR01].

A suspension is created in the heap containing the state of the aborted speculation. If the result

of this speculation is found to be needed, then the speculation will be unfrozen and resumed

from the point where it left off. The implementation of abortion is described in detail in Sec-

tion 10.2. Abortion turns out to be a fairly rare event, so it does not need to be particularly

efficient (see the statistics in Section 12.4.3).

Abortion alone is enough to guarantee correctness, i.e. that the program will deliver the

same results as its lazy counterpart. Indeed, previous work (discussed in Section 13.2) has

evaluated a non-strict language using only eager evaluation and abortion. However abortion

alone is not sufficient to guarantee reasonable performance—for that we need online profiling,

which we describe in Chapter 3.

2We formalise the concepts of cheap and needed in Chapter 6.
3It is not always necessary to abort all active speculations. See Section 6.3.1.



2.3. Chunky Evaluation 11

1 2 3 4 5 6 7

1 thunk

1 2 3 4 thunk

Eager:

Lazy:

Chunky:

Figure 2.1: Results of evaluating rest eagerly, lazily, or chunkily

2.3 Chunky Evaluation

Programs in non-strict languages ofter work with infinite data structures [Hug89]. Chunky

Evaluation is a feature of Optimistic Evaluation that allows such structures to be evaluated in

chunks, giving better performance than if they were evaluated entirely eagerly or entirely lazily.

Consider the following Haskell program, which generates an infinite stream of integers.

ints n = n : ints (n + 1)

In the core language used by our compiler, function arguments can only be variables. This

example will thus be desugared to the following:

ints n =

let n′ = n + 1 in

let rest = ints n′ in

(n : rest)

The function ints generates an infinite list of integers, starting from n. Let us assume that

the first million elements of this list are needed. How should rest be evaluated? Figure 2.1

illustrates several alternatives. If the evaluator always evaluates rest eagerly then it will call

ints recursively forever and so will not terminate. However always evaluating rest lazily is

not very good either. In this case, the evaluator will have to bear the overhead of creating one

million thunks, even though all but one of them describe evaluations that are needed.

A better alternative is what we call chunky evaluation. Under chunky evaluation rest is

evaluated eagerly up to some limit and then evaluated lazily. If rest is set to evaluate chunkily

then ints will produce its result list in chunks. Consider the case where the list is generated in

chunks of 4 elements. Chunky Evaluation of ints will only recurse 4 levels deep and so will

terminate; however 4 times fewer thunks will be created.

The size of the chunks used by chunky evaluation is set by the profiler and can adapt ac-

cording to dynamic demand. The profiler aims to set the chunk size such that performance is

maximised. The chunk size will thus increase if more elements are used and decrease if fewer

elements are used.



12 Chapter 2. Optimistic Evaluation

This chunky behaviour can be useful even for finite lists that are entirely needed. Non-strict

programmers often use a generate-and-filter paradigm, relying on laziness to avoid creating

a very large intermediate list. Even if the compiler knew that the intermediate list would be

completely evaluated, it would sometimes be a bad plan to evaluate it eagerly as the intermediate

data structure might be too big to fit in the cache or even to big to fit in main memory. In such

cases, Chunky Evaluation will give much better performance.

Our compiler implements chunky evaluation by limiting the depth to which speculation may

be nested. Consider what happens in the program above if speculation of rest is limited to a

depth of 4. In this case, outermost evaluation of rest will be speculative and will itself start a

second, nested, speculation of rest . This second speculation of rest will start a third speculation,

which will in turn start a fourth speculation. However, because the speculation depth limit for

rest is 4, there can be no fifth nested speculation and so the next attempt to evaluation rest will

be lazy. The four nested speculations will then return, each building a cons cell. The result is

the chunky structure shown in Figure 2.1.

The code for a let now behaves semantically like the following (replacing the code given in

Section 2.1):
if(SpecDepth < limit237){

SpecDepth :=SpecDepth + 1

x := value of E

SpecDepth :=SpecDepth− 1

}else{

x := thunk for E

}

evaluate E ′

where SpecDepth is the number of nested speculations that we are currently inside and

limit237 is an integer depth limit that determines how deeply this particular let can be spec-

ulated.

2.4 Probability of a Nested Speculation being Used

We can justify depth limited speculation by appealing to an intuitive notion of probability. We

can label every let in a program with the probability that its right hand side will be needed,

given that its body is needed. If speculative evaluations are nested, then we multiply their

probabilities together. Consider the following program:

f x = let y = g x in E

g x = let z = h x in E ′



2.5. Exceptions and Errors 13

Imagine that the probabilities for y and z are 1
2

and 3
4

respectively. What then is the probability

of the right hand side of z being needed, given that E is needed? This is the probability that y

is needed, given that E is needed, and that z is needed, given that E ′ is needed. If we assume

that these two probabilities are independent, then we can multiply them together, giving 3
8
.

In practice, things are not so simple. The probabilities for y and z are unlikely to be inde-

pendent and so the compound probability is unlikely to be exactly equal to the product of the

two; however the intuitive principle of more deeply nested speculations being less likely to be

needed than less deeply nested ones does seem to hold. A similar notion of probability is used

to justify task priorities in several parallel systems (Section 13.3).

2.5 Exceptions and Errors

It is important that Optimistic Evaluation deals correctly with exceptions and errors. Consider

the following function:
f x =

let

y = error “urk”

in

if x then y else 12

In Haskell, the error function prints an error message and halts the program. Optimistic Evalua-

tion may evaluate y without knowing whether y is actually needed. It is obviously unacceptable

to print "urk" and halt the program because Lazy Evaluation would not do that if x is False .

The same issue applies to exceptions of all kinds, including divide-by-zero and black-hole de-

tection [MLP99].

In GHC, error raises a catchable exception, rather than halting the program [PRH+99]. The

exception-dispatch mechanism tears frames off the stack in the conventional way. The only

change needed is to modify this existing dispatch mechanism to recognise a speculative-return

frame, and return to it with a thunk that will re-raise the exception. A let thus behaves rather

like a catch statement, preventing exceptions raised by speculative evaluation of its right hand

side from escaping. This concept is formalised in Section 4.2.

2.6 Unsafe Input/Output

Optimistic Evaluation is only safe because Haskell is a pure language: evaluation has no side

effects, and thus evaluation order does not affect the result of a program. Input/Output is safely

partitioned using the IO monad [Wad95, PW93, Wad97], so there is no danger of speculative

computations performing I/O. However, Haskell programs sometimes make use of impure I/O,



14 Chapter 2. Optimistic Evaluation

using the “function” unsafePerformIO . This “function“ has the following type signature:

unsafePerformIO : IO α→ α

We initially believed that speculation of unsafePerformIO was safe. Our argument was that,

by using the unsafePerformIO function, one was asserting that the IO behaved like a pure

function and could be evaluated at any time without affecting the semantics of the program.

However, while speculating unsafePerformIO is indeed safe, aborting it is not. Consider the

following example:4

let x = unsafePerformIO (do

acquire lock(lock)

y ← use locked object

release lock(lock)

return y

)

in

. . .

This example binds x to the result of an imperative procedure in the IO Monad. The imperative

procedure acquires a lock, does some work, and then releases the lock. It is not safe to abort the

procedure while it is holding the lock because this would put the system into a state in which the

lock was held by a suspended computation. There is no guarantee that a suspended computation

will ever be resumed and thus the lock may never be released—causing a deadlock.

A similar problem is that code which expects to be executed atomically can find itself being

interleaved with other IO. Consider the following example:

let x = unsafePerformIO (do

writeIORef ref 1

v ← readIORef ref

return v

)

in

. . .

In this example, the imperative procedure writes the value 1 to an imperative reference and

then reads this value back again. If the program has only a single thread of execution, then we

would expect x to always have the value 1. However, if unsafePerformIO is speculated, then it

4This example uses do-notation [Pey01]. The indented lines after the do keyword are imperative commands in
the IO Monad.



2.6. Unsafe Input/Output 15

may be suspended between the call to writeIORef and the call to readIORef . By the time the

procedure is is resumed, another procedure may have written a different value to ref , causing a

value other than 1 to be returned.

It is for these reasons that Optimistic Evaluation does not allow uses of unsafePerformIO

inside speculative evaluations. Any speculation which attempts to call unsafePerformIO will

abort immediately.



CHAPTER 3

Online Profiling

Optimistic Evaluation saves pennies by risking pounds. Each speculation saves the relatively

small cost of creating a thunk, but risks the potentially huge cost of evaluating an unneeded

expression. The purpose of the online profiler is to ensure that the pennies saved outweigh the

(hopefully few) pounds wasted.

In this chapter we give a rough overview of how online profiling works. A more detailed

theoretical analysis is given in Chapter 6 while more details on practical implementation are

given in Chapter 9.

3.1 The Need for Profiling

While abortion ensures that all speculations must terminate, it does not ensure that evalua-

tion is efficient. It turns out that with the mechanisms described so far, some programs run

faster, but some run dramatically slower. For example the constraints program from the

NoFib benchmark suite [Par92] runs over 150 times slower (Section 12.3.1). Detailed inves-

tigation shows that these programs build many moderately-expensive thunks that are seldom

used. These thunks are too cheap to trigger abortion, but nevertheless aggregate to waste mas-

sive amounts of time (and space).

One obvious solution is this: trigger abortion very quickly after starting a speculative eval-

uation, thereby limiting the size of a speculation and thus limiting wasted work. Unfortunately,

this would ignore the large proportion (See Section 12.4.5) of speculations that are moderately

expensive, but whose values are almost always needed. It would also restrict chunky evaluation

because a chunk can be fairly expensive.

16



3.2. Goodness 17

Goodness

Sp
ec

ul
at

io
n 

D
ep

th

Figure 3.1: The speculation depth for a let depends on its estimated goodness

If the evaluator is to exploit such opportunities, it needs to have an accurate estimate of the

amount of work that is actually being wasted by speculation of a let, taking into account not

only the costs of speculations, but also which speculations are actually needed. This is the role

of our online profiler.

3.2 Goodness

For each let in the program, our profiler maintains an estimate of its goodness. Goodness is

defined as:

goodness = savedWork − wastedWork

where savedWork is the amount of work that has been saved so far by speculating the let

and wastedWork is the amount of work wasted so far by speculating the let. Going back to

our previous analogy, savedWork is the pennies that have been saved and wastedWork is the

pounds that have been wasted.

In practice it is not possible to know at runtime exactly how much work has been wasted

by speculation of a let as the profiler cannot know exactly which of the expressions evaluated

so far will turn out to be needed. It is however possible for the profiler to cheaply compute an

overestimate of wastedWork , and thus a safe underestimate of goodness .

We start by describing an idealised implementation in which all let expressions are profiled

all of the time and in which a counter is maintained for every let, holding the current estimate

of its goodness.

3.2.1 Using Goodness to Guide Speculation

If the evaluator has an estimate of the goodness of a let, then it can use this to guide its specu-

lation of that let. Figure 3.1 gives a possible function from goodness to speculation depth limit

(Section 2.3). As the estimated goodness of a let increases, we increase the depth limit and so



18 Chapter 3. Online Profiling

speculate it more. Similarly, as the estimated goodness of a let decreases we decrease the depth

limit and so speculate it less.

Once the goodness of a let falls below a defined cutoff point, the let will become entirely

lazy and will waste no more work. This allows us to place a bound on the amount of work that

a let can waste before it becomes entirely lazy, as we explain in Section 6.3.3.

3.2.2 Calculating Saved Work

Every time a let is speculated, the evaluator saves the work required to build and manage a

thunk. The evaluator keeps track of the work saved in this way by maintaining a savedWork

counter for each let and incrementing this counter every time the let is speculated.1

By speculating a let, the evaluator may also change the amount of work that the garbage

collector has to do. We discuss this in Section 9.3.

3.3 Calculating Wasted Work

Speculation of a let will waste work if the right hand side of the let would not have been needed

by Lazy Evaluation. Our calculation of wasted work relies on the concepts of ventures, local

work, and blame, which we describe in the following subsections.

3.3.1 Ventures

We use the term venture to refer to the region of time during which work was done to produce

a value for a particular heap binding.2 To understand this concept, it may help to consider the

following example:
let x =

let y = Ey in

let z = Ez in

Ex

in

. . .

If x, y and z are all speculated, then the evaluation of this expression will contain the ventures

illustrated in Figure 3.2. The ventures for y and z take place during the venture for x. When a

venture starts, it will place a return frame on the stack; this frame will remain on the stack until

the venture completes. If ventures are nested then we consider all ventures with a return frame

1Of course, if the let is itself evaluated inside another speculation then that let might not otherwise have been
speculated. This issue is addressed in Section 3.3.5.



3.3. Calculating Wasted Work 19

venture spawned by y

venture spawned by zventure spawned by x

Time

St
ac

k

Ventures for x and z are
active at this point.
The venture for z is current

Figure 3.2: A venture represents the time during which work is done to produce a value for a
particular binding

on the stack to be active and consider the innermost venture to be current. In Figure 3.2 the

return frame for the current venture is shaded.

Every venture is either the unique root venture which computes the return value for the

program, a speculation which is speculatively evaluating the right hand side of a let, or a thunk

venture which is evaluating a thunk whose value was demanded by another venture. In this

thesis, we will often write “x”, to mean “a venture that is producing a value for the right hand

side of the let identified by the binder x”.

3.3.2 Work

We use the term work to refer to any reasonable measure of execution cost, such as time or heap

allocation.3 We discuss a formal model of work in Chapter 5 and practical measurement of

work in Chapter 9.

3.3.3 Local Work

The local work done in a venture is a measure of the work done by the venture, excluding any

work done in enclosed ventures. All work done in the lifetime of a program is included in the

local work of exactly one venture. In Figure 3.2 the local work of a venture is the area of that

venture that is shaded.

3.3.4 Blame

The blame for a venture is the amount of work that the profiler has chosen to assign to that

venture. Like local work, all work done in the lifetime of a program is included in the blame of

exactly one venture. Unlike local work, blame may be moved between ventures as the program

runs. If work is known to be needed by Lazy Evaluation, then it will be blamed on the root

2By “produce a value”, we mean “to evaluate it to weak head normal form”.
3By “heap allocation” we mean the total number of bytes of memory allocated during the lifetime of the

program. Haskell, like most purely functional languages, has to allocate a new heap cell for every value produced
and so allocates heap almost continually.



20 Chapter 3. Online Profiling

x

y

demand

blame

Figure 3.3: When y demands x, x’s blame is passed to y

venture, otherwise it will be blamed on the first speculation whose execution required that the

work be done. The wastedWork counter that we maintain for each let is the sum of the blames

for all ventures that were spawned from that let.

Blame behaves like a linear object [Wad90b, Bak95, TWM95]. It can be passed between

ventures, but cannot be duplicated or deleted. If the result of a venture is needed by another

venture then the blame of the demanded venture will be transferred to the demanding venture.

The justification for this is that the work done in the demanded venture was necessary in order

to produce the result for the demanding venture. If the result of a venture has not been used

by any other venture, then its blame will be the sum of the local work for that venture and any

other work that was blamed on that venture while it executed.

To illustrate how blame works, consider the following program (illustrated by Figure 3.3):

let x = E in

let y = x + 1 in

4

If x and y are both speculated then the local work done to evaluate x is the work done to evaluate

E, while the local work done to evaluate y is simply the work required to perform an addition.

When speculation of x completes, the profiler will initially assume that it was not needed, and

blame x for the evaluation of E. When y is speculated, it will demand the value of x, causing

the profiler to transfer all blame from x into y. When the program completes, the blame for x

will be zero, and the blame for y will be the work required to evaluate E plus the work required

to do an addition.

Our blame allocation system can attribute more blame to a venture than is “fair”. Consider

the following example (illustrated by Figure 3.4):



3.3. Calculating Wasted Work 21

x

root

demand

blame

y

Figure 3.4: x’s blame is passed to y rather than to the root computation and so is incorrectly
regarded as being wasted

root

x

yz

blame

blame

demand

demand

Figure 3.5: x’s blame will be passed to either y or z depending on evaluation order.

let x = E in

let y = x + 1 in

x

The local work for x is blamed on y and so is considered to be wasted. But in fact, x is needed

by the root venture, so the “real” work wasted by speculating y is tiny (just incrementing a

value). Fortunately it is safe to overestimate the amount of work wasted, so we simply accept

this approximation.

Similarly, the blame assigned to a venture will depend on the order of evaluation. Consider

the following example (illustrated in Figure 3.5):

let x = E in

let y = x + 1 in

let z = x + 1 in

y

If y and z are both speculated then y will demand x before z does and so y will be blamed for

x’s work rather than z. This seems unfair as y and z have the same definition. However, this

does not affect the safety of our profiler, and so again we simply accept it.

For a more rigorous definition of work and blame, refer to Chapter 6. For more details of

the implementation of this technique, refer to Chapter 9.



22 Chapter 3. Online Profiling

3.3.5 The Cost of a Let

It is important that the cost of evaluating an enclosed let expression should include the cost of

building a thunk for that let, even if that let was actually speculated. Consider for example:

let x =

let y = 1 + 2 in

3

in

. . .

If y is speculated then the work required to build a thunk has been saved; however it is spec-

ulation of y that has saved the work and not speculation of x. When y is speculated it will

increment its savedWork counter to record the fact that the work was saved. If the cost of eval-

uating x did not include the thunk cost then this saving would be counted twice, causing the

profiler to overestimate goodness.

To illustrate what can go wrong if this principle is not followed, consider the following

example:
f x =

let y = f x in 3

Evaluating y speculatively is clearly bad. It will lead to an expensive speculation which is not

needed. Any safe profiling strategy should thus decrease y’s goodness whenever it is speculated.

Consider however what would happen if a naive profiler assumed that a call to f did not

incur the cost of building a thunk for y. In this case, the wasted work for y would only be the

work required to call f and then immediately return 3. However this work is likely to be less

than the work that will be added to the savedWork counter when y is speculated. As a result, y

will appear to be saving more work than it was wasting, and so its goodness would increase.

By contrast, a correct profiler would ensure that the work done by f included the cost of

building a thunk for y, even if y was speculated. This work would cancel out the work recorded

as saved and so ensure that y had negative goodness.

3.4 Burst Profiling

It would be inefficient to profile every speculation that took place, so we instead profile a random

selection of speculations. The runtime of a program is divided up into a series of periods. Each

period starts at a boundary point and lasts until the next boundary point. Any speculations that

start during a period are considered to belong to that period. This is illustrated in Figure 3.6.

A random selection of periods is profiled. When a period is profiled, all speculations that



3.4. Burst Profiling 23

Time Elapsed

St
ac

k

end B / start C end C/start Dend A / start B end D/start E

B C D

Figure 3.6: Every computation belongs to exactly one profile period

Time Elapsed

St
ac

k

Profile start Profile end

Figure 3.7: Only those computations that start during a profiled period will be profiled.

belong to that period will be profiled (Figure 3.7). If every period has a probability p of being

profiled, then it follows that every speculation also has a probability p of being profiled.

The burst profiler assumes that the program behaves in the same way when being profiled

as it does when it is not being profiled. It is thus able to build up a reasonable estimate of the

goodness of any let. Over time, it becomes increasingly unlikely that a let can be wasting

work while having a positive estimated goodness. In the limit, as runtime tends to infinity, the

estimate of relative goodness produced by burst profiling should be the same as the estimate

that would be produced by a continuous profiler. This convergence is accelerated if the profiler

starts off by profiling everything, and gradually backs off as it gains confidence (Section 9.4.3).

While burst profiling does not make it impossible for Optimistic Evaluation to perform very

badly relative to Lazy Evaluation, it does make it vanishingly unlikely that it will do so.



Part II

Theory

24



CHAPTER 4

Semantics

In this chapter we present a formal model of Optimistic Evaluation. This model provides an

insight into the way that Optimistic Evaluation works, and serves as the basis for the more

detailed models of Chapters 5 and 6.

• We start, in Section 4.1, by describing a simple non-strict language. This is the language

that we work with for the rest of the thesis.

• In Section 4.2, we give a small-step operational semantics for our language. This seman-

tics describes not only evaluation, but also abortion. We see in Part III that this semantics

corresponds very closely to our real implementation of Optimistic Evaluation.

• In Section 4.3, we give a denotational semantics for our language. This semantics pro-

vides a high-level model of evaluation that is independent of evaluation strategy.

• Finally, in Section 4.4, we prove that the operational semantics of Section 4.2 is sound

with respect to the denotational semantics of Section 4.3, thus proving that Optimistic

Evaluation will always produce the same results as Lazy Evaluation.

25



26 Chapter 4. Semantics

Expression E ::= x variable
| C x0 . . . xn constructor application
| case E of P0 . . . Pn case analysis
| let x = E in E ′ thunk creation
| λx.E function abstraction
| E x function application
| exn exception or error
| n integer constant
| x⊗ x′ primitive operation

Alternatives P ::= C x0 . . . xn → E

ValueExp V ::= C α0 . . . αn | λx.E | exn | n

Here C ranges over constructors, x over variable names, and α over heap references (see later).

Figure 4.1: Terms of a simple language

4.1 A Simple Language

The language we work with is Haskell [Pey03]. While the externally-visible Haskell language

is very complex, it can be reduced into the simple form given in Figure 4.1, and that is the

language our theory deals with. This language is similar to the augmented Core [TtGT01]

language1which GHC uses internally and also to A-normal form [FSDF93]. Key points to note

are the following:

• A variable x is a local variable bound by an enclosing let, case or λ expression.

• Each let is required to have a unique binder x. This allows us to refer to a let by its

binder.

• Functions and constructors are always applied to variables, rather than to expressions. It

follows that let is the only point at which a thunk might be created (A case expression

scrutinises an arbitrary expression E, but it does not first build a thunk.). This restriction

does not limit the expressiveness of the language because a let expression can be used to

give a name to an argument of a function or constructor.

• We represent booleans using the nullary constructors True and False .

• ⊗ ranges over primitive operations, such as +,−, /, ==, < etc.

1Core should not be confused with the Kernel language used in the Haskell report. Unlike the Kernel, the Core
requires that function arguments be variables.



4.2. Operational Semantics 27

• Exceptions and errors (see Section 2.5) are handled exactly as described in [PRH+99].

An exception exn is considered to be a value, rather than a control operator.

• let is not recursive. That is E cannot make reference to x. If recursion is desired, then

the user can define a fixed point function within the language. For example, Y can be

written as:

Y ≡ λf. let y = (λx. let z = x x in f z) in y y

In the real language used by our compiler, recursive lets are of course allowed; however

omitting them simplifies our formal presentation. In particular, it avoids us having to deal

with speculations that demand their own values.

4.2 Operational Semantics

We describe program execution using a small step operational semantics. This semantics speci-

fies the sequence of states that the virtual machine will pass through as execution proceeds. The

main transition relation, −→, takes the form:

S −→Σ S ′

meaning that the virtual machine will transform the state S into the state S ′ in one step, un-

der speculation configuration Σ. The speculation configuration is updated sporadically by the

profiler, rather than by the the evaluation rules.2

The semantics we present is similar to the STG Machine [Pey92] and to the semantics for

Lazy Evaluation given by Sestoft [Ses97], being lower level than Sestoft, but higher level than

the STG Machine. Unlike Sestoft, we evaluate expressions to references to values, rather than

to values themselves. This allows us to be precise about the closures that are present in the heap.

While this leads to a semantics that is more complex than Sestoft’s, it causes our semantics to be

a very accurate model of our real implementation; this is important, given that we are interested

in modelling performance.

In the subsections that follow, we formalise Optimistic Evaluation in more detail. In Sec-

tion 4.2.1 we explain the structure of the program state S. In Section 4.2.2 we give the rules

that define the evaluation relation ‘−→’. In Section 4.2.4 we use the evaluation relation ‘−→’ to

define a semantics for bounded speculation. In Section 4.2.3 we give a semantics for abortion.

Finally, in Section 4.2.6 we define the restricted language that is used for the rest of Part II.

2We give a semantics for this profiler in Section 6.2.5.



28 Chapter 4. Semantics

State S ::= Γ; c; s Program state with heap, command, and stack

Command c ::= E evaluate E
| Oα return α
| }α demand the value of α

Heap Γ ::= {αi 7→ Ki}
n
0

Closure K ::= (|V |) value closure, with value V
| 〈(α)〉 indirection, with indirectee α
| E thunk, with body E
| α∠l suspended stack frame

Stack s ::= [ ] empty stack
| f : s stack with topmost frame f

Frame: f ::= {x}E speculative return frame
| #α update frame
| l local frame

LocalFrame l ::= {Pi}
n
0 Case Match

| @α Function application
| ⊗α Primop, awaiting first argument
| n⊗ Primop, awaiting second argument

Config Σ ::= {xi 7→ ni}
m
0 Speculation configuration.

Figure 4.2: Syntactic forms for states

4.2.1 The Program State

The structure of program states is given in Figure 4.2 and is commented on below:

• Γ represents the heap. The heap is a function mapping heap references to closures. If Γ

maps a heap reference α to a closure K , then K describes how one can obtain a value for

α. A closure is either a value closure, a thunk, an indirection, or a suspended stack frame.

– The value of a value closure (|V |) is V .

– The value of an indirection 〈(α)〉 is the value of the closure referenced by α.

– The value of a thunk E is the value one obtains by evaluating E.

– The value of a suspended stack frame is discussed in Section 4.2.3.

Runtime expressions may contain heap references in place of variables. We write E[α/x]

to denote the expression formed by replacing all instances of the variable x with the heap

reference α.

• c represents a command. The command says what the program is currently doing. If the

command is E then the program is evaluating the expression E. If the command is Oα



4.2. Operational Semantics 29

then the program is returning α, which is a reference to a value. If the command is }α

then the program is demanding the value of α.

• s is a stack of stack frames f (c.f. [Gus98]), each of which represents work still to be

done.

– A speculative return frame contains work that should be done once a speculation

has been completed or aborted. If the virtual machine returns to a speculative return

frame, {x}E, it will bind x to the result of the speculation and then evaluate E.

We define the speculation depth of a state to be the number of speculations that are

active, or equivalently, the number of speculative return frames on the stack.

– An update frame represents a thunk that needs to be updated with its value. If the

virtual machine returns to an update frame, #x, it will replace the thunk with an

indirection to its value.

– A case return frame contains a set of case alternatives. If the virtual machine returns

to a case return frame, {Pi}
n
0 , it will select the appropriate alternative, Pj , and

evaluate it.

– A function application frame contains an argument to pass to the returned function.

If the returned value is not a function then the program will fail.

– A primop frame gives the state of a partially applied primitive operation. If the stack

frame is ‘⊗α’ then the primop is waiting for its first argument. If the stack frame is

‘n⊗’ then the first argument evaluated to n and the primop is waiting for its second

argument.

A subset of stack frames are local frames. Local frames describe work to be done within

the current venture (see Section 3.3.1) while other stack frames represent venture bound-

aries. We develop these ideas further in Chapters 5 and 6. While the letter f can refer to

any kind of stack frame, the letter l can only refer to a local frame.

• Σ represents the speculation configuration. Σ maps a let (identified by its binder) to its

depth limit: the maximum speculation depth at which it can be speculated. If the let is

always lazy then the depth limit will be 0.

4.2.2 Evaluation Transitions

The transition rules for −→ are given in Figure 4.3. The first ten rules describe conventional

Lazy Evaluation (cf. [Ses97]) while the last two describe speculation:



30 Chapter 4. Semantics

Evaluate a value constant:
(VAL) Γ; V ; s −→Σ Γ[α 7→ (|V |)];Oα; s

where α is fresh

Demand the value of a closure:
(VAR) Γ; α; s −→Σ Γ;}α; s

(DEM1) Γ[α 7→ (|V |)];}α; s −→Σ Γ[α 7→ (|V |)];Oα; s

(DEM2) Γ[α 7→ 〈(α′)〉];}α; s −→Σ Γ[α 7→ 〈(α′)〉];}α′; s

(DEM3) Γ[α 7→ E];}α; s −→Σ Γ; E; (#α : s)

(RESUME) Γ[α 7→ α′∠l];}α; s −→Σ Γ;}α′; (l : #α : s)

(UPD) Γ;Oα; (#α′ : s) −→Σ Γ[α′ 7→ 〈(α)〉];Oα; s

Function Application:
(APP1) Γ; E α; s −→Σ Γ; E; (@α : s)

(APP2) Γ[α 7→ (|λx.E|)];Oα; (@α′ : s) −→Σ Γ[α 7→ (|λx.E|)]; E[α′/x]; s

Case Expression:
(CASE1) Γ; case E of {Pi}

n
0 ; s −→Σ Γ; E; ({Pi}

n
0 : s)

(CASE2) Γ[α 7→ (|C {αi}
n
0 |)];Oα; ({Pi}

n
0 : s) −→Σ Γ[α 7→ (|C {αi}

n
0 |)]; E[{αi/xi}

n
0 ]; s

where Pk = C {xi}
n
0 → E

Primitive Operation:
(OP1) Γ; α⊗ α′; s −→Σ Γ;}α; (⊗α′ : s)

(OP2) Γ[α 7→ (|n|)];Oα; (⊗α′ : s) −→Σ Γ[α 7→ (|n|)];}α′; (n⊗ : s)

(OP3) Γ[α′ 7→ (|n′|)];Oα′; (n⊗ : s) −→Σ Γ[α′ 7→ (|n′|)]; n ⊗̃n′; s

Exception:
(EXN1) Γ[α 7→ (|exn|)];Oα; (@α′ : s) −→Σ Γ[α 7→ (|exn|)];Oα; s

(EXN2) Γ[α 7→ (|exn|)];Oα; ({Pi}
n
0 : s) −→Σ Γ[α 7→ (|exn|)];Oα; s

(EXN3) Γ[α 7→ (|exn|)];Oα; (n⊗ : s) −→Σ Γ[α 7→ (|exn|)];Oα; s

(EXN4) Γ[α 7→ (|exn|)];Oα; (⊗α′ : s) −→Σ Γ[α 7→ (|exn|)];Oα; s

Lazy Evaluation of a let:
(LAZY) Γ; (let x = E in E ′); s −→Σ Γ[α 7→ E]; E ′[α/x]; s

if Σ(x) ≤ specDepth(s)
and α is fresh

Speculative Evaluation of a let:
(SPEC1) Γ; (let x = E in E ′); s −→Σ Γ; E; ({x}E ′ : s)

if Σ(x) > specDepth(s)

(SPEC2) Γ;Oα; ({x}E : s) −→Σ Γ; E[α/x]; s

Figure 4.3: Operational semantics: evaluation



4.2. Operational Semantics 31

• Rule (VAL) evaluates a value V by creating a value closure (|V |) in the heap and returning

a reference to it.

• Rule (VAR) evaluates a heap reference α by demanding the value of the closure it refer-

ences.

• Rule (DEM1) demands the value of a value closure. A value closure is already fully

evaluated, so (DEM1) returns immediately.

• Rule (DEM2) demands the value of an indirection by demanding the value of the closure

that the indirection points to.

• Rule (DEM3) demands the value of a thunk by evaluating its body. The thunk is removed

from the heap, and an update frame is pushed. When evaluation of the thunk body com-

pletes, the update frame will trigger rule (UPD) which will replace the thunk with an

indirection to its value, allowing the result of the evaluation to be shared.

• Rules (DEM1) and (DEM2) could be subsumed into rule (DEM3) by considering the

value closure (|V |) to be the thunk V and the indirection 〈(α)〉 to be the thunk α. However,

such a virtual machine would create unnecessary closures and push unnecessary update

frames. The inclusion of rules (DEM1) and (DEM2) also mirrors the behaviour of our

real implementation.

• Rule (RESUME) resumes a suspended evaluation. This rule is discussed in Section 4.2.3.

• Rule (APP1) evaluates a function application E α by evaluating the function E and plac-

ing a function application frame on the stack. When evaluation of the function completes,

the function application frame will trigger an application of rule (APP2), causing the re-

turned function to be applied to α.

• Rule (CASE1) evaluates a case expression by evaluating the scrutinee and pushing the

case alternatives on the stack. When evaluation of the scrutinee completes, rule (CASE2)

will evaluate the appropriate case alternative.

• Rule (OP1) evaluates a primitive operation by pushing a primop frame and evaluating the

first argument. When the first argument is evaluated, rule (OP2) will evaluate the second

argument. When both arguments are evaluated, rule (OP3) will perform the primitive

operation (denoted by ⊗̃).

• If an exception is raised, then rules (EXN1), (EXN2), (EXN3), and (EXN4) unwind the

stack until a speculative return frame is reached.3

3This language has no catch expressions and thus no catch frames. This corresponds to the behaviour of



32 Chapter 4. Semantics

(!EXP) Γ; E; s Ã Γ[α 7→ E];}α; s

(!RET) Γ;Oα; s Ã Γ;}α; s

(!SPEC) Γ;}α; ({x}E : s) Ã Γ; E[α/x]; s

(!UPD) Γ;}α; (#α′ : s) Ã Γ[α′ 7→ 〈(α)〉];}α; s

(!ABORT) Γ;}α; (l : s) Ã Γ[α′ 7→ α∠l];}α′; s
where α′ is fresh

Figure 4.4: Operational semantics : abortion

The last three rules implement the let construct. Rule (LAZY) evaluates the let using con-

ventional Lazy Evaluation, creating a thunk for the right hand side of the let. Rules (SPEC1)

and (SPEC2) implement speculative evaluation. The semantics chooses between the two ap-

proaches based on the values of Σ(x) and specDepth(s), where Σ(x) is the depth limit for x

and specDepth(s) is the current speculation depth.

• Rule (LAZY) is used if the depth limit, Σ(x), is less than or equal to the current specula-

tion depth specDepth(s). The rule builds a thunk α in the heap, binds x to α, and then

evaluates the body of the let.

• Rule (SPEC1) is used if Σ(x) is greater than the current speculation depth specDepth(s).

The rule begins speculative evaluation of the right-hand side E. A speculative return

continuation is pushed, causing the body of the let to be evaluated once speculative eval-

uation of the right hand side has completed.

• Rule (SPEC2) is used once the speculation completes. The rule binds x to the returned

reference and proceeds to evaluate the let body. It should be noted that neither (SPEC1)

nor (SPEC2) allocate any closures in the heap.

4.2.3 Abortion Transitions

The process of abortion is described by theÃ rules given in Figure 4.2.3. These rules allow a

program to back out of a speculation which has turned out to be too expensive:

• Rule (!EXP) creates a thunk in the heap for the current expression. This rule is rather like

rule (VAL), except that rule (VAL) turns a value into a value closure, while rule (!EXP)

turns an arbitrary expression into a thunk.

Haskell, in which pure expressions can raise exceptions but not catch them; exceptions can only be caught in the
IO Monad [Wad95, PW93, Wad97].



4.2. Operational Semantics 33

(RUN)
Γ; c; s −→Σ Γ′; c′; s′

Γ; c; s; t yΣ Γ′; c′; s′; t + 1
if t ≤ MAXTIME and specDepth(s) > 0

(RESET)
Γ; c; s −→Σ Γ′; c′; s′

Γ; c; s; t yΣ Γ′; c′; s′; 0
if specDepth(s) = 0

(ABORT)
Γ; c; s Ã Γ′; c′; s′

Γ; c; s; t yΣ Γ′; c′; s′; t
if t > MAXTIME and specDepth(s) > 0

Figure 4.5: Operational semantics : bounded speculation

• Rule (!RET) converts a return command, Oα, into a demand command, }α. Like rule

(!EXP) the only purpose of this rule is to simplify the state in preparation for other rules.

• Rule (!SPEC) starts evaluating the body of a let, despite the fact that its right hand side

has not finished evaluating. This rule captures the essence of abortion.

• Rule (!UPD) removes an update frame from the stack, binding its updatee, x′, to a par-

tially evaluated result.

• Rule (!ABORT) removes a local frame from the stack and moves it to a suspension clo-

sure in the heap, together with the identifier α. If the value of this suspension frame is

demanded then rule (RESUME) will place the frame back onto the stack and demand α

again.

4.2.4 Bounded Speculation

As discussed in Section 2.2, Optimistic Evaluation will abort any speculation that goes on for

too long. To formalise this, we introduce a new transition relation, y:

Γ; c; s; t yΣ Γ′; c′; s′; t′

The components of the state are the same as for −→, except that we add a new component t,

representing the speculation time. The speculation time is the number of steps that have been

taken since the virtual machine last started evaluating speculatively. The rules for bounded

speculation are given in Figure 4.5. If the program has been evaluating speculatively for less

than MAXTIME steps then rule (RUN) evaluates it as normal. If the program stops speculating

then rule (RESET) resets t to 0. If the program evaluates speculatively for more that MAXTIME

steps then rule (ABORT) will apply abortion transitions until all speculations have been aborted.

We give an improved version of this semantics in Section 6.3.1.



34 Chapter 4. Semantics

4.2.5 Well Formed States

We say that a state Γ; E; s is well formed if no heap reference α is bound in both the heap Γ and

the stack s, and additionally no heap reference α is bound by more than one update frame in the

stack s. An initial state will always be well formed because its heap and stack are both empty.

We can observe that the evaluation and abortion rules given in Figures 4.3 and 4.2.3 preserve

well-formedness.

4.2.6 Exceptions and Case Statements

The language presented in Section 4.1 includes exceptions and case statements. In the seman-

tics given in Figure 4.3 we showed that neither of these pose any real problems for Optimistic

Evaluation.

In the chapters that follow, we will work with a simplified language that has neither case

statements, nor exceptions. The revised expression form is thus the following:

Expression E ::= x variable

| let x = E in E ′ thunk creation

| λx.E function abstraction

| E x function application

| n integer constant

| x⊗ x′ primitive operation

ValueExp V ::= λx.E | n

The stack frames remain the same, except that case return frames are removed.

Neither case statements nor exceptions increase the expressiveness of the language: both

features can be encoded using the features of this simplified language. By removing these

features from the language, we are able to reduce the size of the proofs and semantic models

that we present in subsequent chapters. We claim that introducing case or exceptions would

present no significant problems.

4.3 Denotational Semantics

While an operational semantics formalises the way in which a program executes, it does not give

a clear view of what a program actually means. This purpose is better served by a denotational

semantics. Our denotational semantics makes no reference to the order of evaluation or to

whether expressions are evaluated or not. It thus allows us to present a considerably simpler

model of what our language means.



4.3. Denotational Semantics 35

Perhaps more critically, by proving that our operational semantics is sound with respect to

our denotational semantics, we can demonstrate that changing the evaluation order by means of

the speculation configuration Σ has no effect on the meaning of the program (Section 4.4.1).

The semantics we give here is influenced by that used by Launchbury [Lau93], and the

work of Abramsky [Abr90] and Ong [Ong88]. For a background in Domain Theory, refer to

Abrasmsky and Jung [AJ94].

4.3.1 Semantic Functions

We introduce semantic functions E [[−]], C[[−]], H[[−]], K[[−]], S[[−]] and M[[−]] that map the

syntactic objects of Section 4.2 to their semantic meanings:

E [[−]] : Expression → Env → Value

C[[−]] : Command → Env → Value

H[[−]] : Heap → Env → Env

K[[−]] : Closure → Env → Value

S[[−]] : Stack → Env → Value → Env

L[[−]] : LocalFrame → Env → Value → Value

M[[−]] : State → Value

where Value and Env are defined in Sections 4.3.2 and 4.3.4 respectively. These semantic

functions can be understood as follows:

• E [[E]]ρ is the value that the expression E would evaluate to in the environment ρ.

• C[[c]]ρ is the value that the command c would return in the environment ρ.

• H[[Γ]]ρ is the environment containing the meanings of the bindings in the heap Γ. Each

binding is has its meaning taken relative to the environment ρ.

• K[[K]]ρ is the value that the closure K would evaluate to in the environment ρ.

• S[[s]]ρ v is the environment containing the meanings of the bindings in the stack s, given

that the value v has been returned to it. This environment will contain a binding for the

return value and a binding for each update frame in the stack.

• L[[l]]ρ v is the value that the local stack frame l would produce if v was returned to it.

• M[[Γ; c; s]] is the value that the virtual machine state ‘Γ; c; s’ would terminate with if

executed.

We explain the significance of each semantic function in more detail in the following sec-

tions.



36 Chapter 4. Semantics

4.3.2 Values

The domain4 of semantic values is a solution to the following domain equation:

Value = (Value → Value) ⊕ Z⊥

A semantic value is either a continuous function from a value to a value, an integer, or the

bottom value ⊥. ⊥ is used to denote non-termination or an undefined value.

4.3.3 Identifiers

An identifier (Id ) is either a local variable (x) or a heap reference (α). The denotational seman-

tics does not distinguish between the two, considering both to be abstract symbols that can be

mapped to values. Within the denotational semantics, we will write x to refer to an identifier,

irrespective of whether it is a variable or a heap reference.

4.3.4 Environments

An environment ρ is a function that maps identifiers to their values:

Env
def
= Id → Value

We write (x1 7→ v1, x2 7→ v2, . . .) to denote the environment that maps x1 to v1, x2 to v2 etc,

and that maps all other identifiers to ⊥. We write ρ[x 7→ v] to denote the environment that is

like ρ but which maps x to v.

4.3.5 Meanings of Expressions

The semantic function E [[−]] takes a syntactic expression E and an environment ρ and maps

them to the value that E would terminate with in the environment ρ. This function is continuous

with respect to ρ. We define E [[−]] as follows:

E [[−]] : Expression → Env → Value

E [[x]]ρ = ρ(x)

E [[let x = E in E ′]]ρ = E [[E ′]]ρ[x7→E[[E]]ρ]

E [[λx.E]]ρ = λv.E [[E]]ρ[x7→v]

E [[E x]]ρ = E [[E]]ρ (ρ(x))

E [[x⊗ x′]]ρ = ρ(x) ⊗̃ ρ(x′)

4Here domain means a set equipped with complete partial order (having limits of all ω chains) and having a
least element ⊥.



4.3. Denotational Semantics 37

We write ⊗̃ to denote the mathematical function represented by ⊗.

The following results are proved by induction on the structure of expressions:

Theorem 4.3.1 (Equivalent Identifiers)

If two identifiers x and x′ have the same meaning in the environment ρ then we can freely

substitute x′ for x in an expression E without changing the meaning of E in ρ.

ρ(x) = ρ(x′) ⇒ E [[E[x′/x]]]ρ = E [[E]]ρ

Theorem 4.3.2 (Unused Identifiers)

If an identifier x is not mentioned in the expression E then the meaning of E is unaffected by

the presence of a binding for this identifier in the environment ρ.

x /∈ vars(E) ⇒ E [[E]]ρ = E [[E]]ρ[x7→v]

4.3.6 Meanings of Commands and Closures

The denotational semantics does not distinguish between commands and expressions. The form

of a command is merely a direction to the virtual machine telling it what to do next, and so is

ignored by the denotational semantics. We can thus trivially define a semantic function C[[−]]

that gives meanings to commands:

C[[Ox]]ρ = E [[x]]ρ

C[[}x]]ρ = E [[x]]ρ

C[[E]]ρ = E [[E]]ρ

The denotational meaning of a closure is similarly trivial. Value closures and indirections

have the same meanings as their corresponding expressions, while the meaning of a suspension

is the meaning of the stack frame, using the L[[−]] function defined is Section 4.3.8:

K[[(|V |)]]ρ = E [[V ]]ρ

K[[〈(x)〉]]ρ = E [[x]]ρ

K[[x∠f ]]ρ = L[[f ]]ρ ρ(x)

4.3.7 Meanings of Heaps

Meanings are given to heaps using the semantic function H[[−]]. H[[Γ]]ρ is the environment

formed by evaluating all the closures in Γ under the environment ρ. If a heap Γ maps x to a

closure K thenH[[Γ]]ρ will map x to K[[K]]ρ.

H[[−]] : Heap → Env → Env



38 Chapter 4. Semantics

H[[x1 7→ E1, . . . , xn 7→ En]]ρ = (x1 7→ K[[E1]]ρ, . . . , xn 7→ K[[En]]ρ)

We observe thatH[[−]] is continuous with respect to ρ.

4.3.8 Meanings of Stacks

The meaning of a stack is similar to the meaning of a heap. The semantic function S[[−]] takes

a stack s, an environment ρ, and a value v and maps them to the environment that is produced

by returning v and performing all the updates on the stack:

S[[−]] : Stack → Env → Value → Env

S[[[ ]]]ρ v = (ε 7→ v)

S[[{x}E : s]]ρ v = S[[s]]ρ E [[E]]ρ[x7→v]

S[[#x : s]]ρ v = S[[s]]ρ v t (x 7→ v)

S[[l : s]]ρ v = S[[s]]ρ (L[[l]]ρ v)

This definition deserves some explanation:

• The empty stack behaves like an update frame for the result of the program. It defines a

mapping from ε (the identifier for the program result5) to the value returned.

• A speculative return frame returns the value of the let body, E, to the stack. Note that

there is no requirement that v be non-⊥; this reflects the real behaviour of Optimistic

Evaluation, in which a non-terminating speculation will be aborted and its suspension

will be returned to the speculation frame.

• An update frame creates a binding from its updatee to the returned value.

• If the topmost frame is a local frame, then we use the semantic function L[[−]] to produce

a new value, and return that. We define the semantic function L[[−]] as follows:

L[[−]] : LocalFrame → Env → Value → Value

L[[@x]]ρ v = v (ρ(x))

L[[n⊗]]ρ n′ = n ⊗̃n′

L[[⊗x]]ρ n = n ⊗̃ ρ(x)

• The least upper bound (t) is only defined if the stack s does not contain any other binding

for x. Fortunately, this will be the case for all well-formed states (see Section 4.2.5).

We observe that S[[−]] is continuous with respect to both ρ and v.

5The reason for this choice of symbol is revealed in Section 5.2.3.



4.4. Soundness 39

4.3.9 Meanings of States

Given the meaning of a heap, a command, and a stack, we can produce the meaning of a

complete program state, as defined is Section 4.2.1. The meaningM[[Γ; c; s]] of a state ‘Γ; c; s’

is the value that that state would terminate with if executed. To obtain this return value we

construct an environment containing all bindings held in the heap, Γ, and the stack, s, and

select the value for ε from this environment:

M[[−]] : State → Value

M[[Γ; c; s]] = (µ ρ. H[[Γ]]ρ t S[[s]]ρ C[[c]]ρ) ε

Here, µ is the least fixed point operator. It selects the least environment ρ (as defined by v)

such that:

ρ = H[[Γ]]ρ t S[[s]]ρ C[[c]]ρ

The purpose of the fixed point is to allow recursive bindings between the heap and stack.

The least upper bound used here may not be defined if the heap and stack both contain

bindings for the same heap reference α. Fortunately this will never be the case for a well-

formed state (see Section 4.2.5).

Theorem 4.3.3 (Extension of the Heap)

We observe that the meaning of a state is preserved if the heap Γ is extended with a binding for

a new identifier x:

x /∈ vars(Γ) ∧ x /∈ vars(s) ∧ x /∈ vars(c) ⇒ M[[Γ[x 7→ K]; c; s]] =M[[Γ; c; s]]

where vars is the set of all identifiers (variables and heap identifiers) mentioned in its argument.

4.4 Soundness

If we are to use Optimistic Evaluation as a drop in replacement for Lazy Evaluation then it is

essential that Optimistic Evaluation always gives the same results as Lazy Evaluation. In order

to do this, it must be both sound and complete:

Sound: If a program terminates with a value, that value will be the same value that the program

would have terminated with under Lazy Evaluation.

Complete: If a program would terminate under Lazy Evaluation, then it will also terminate

under Optimistic Evaluation.



40 Chapter 4. Semantics

Theorem 4.4.1 (Soundness)

Lazy Evaluation is a special case of Optimistic Evaluation, arising when Σ maps all let identi-

fiers to 0. It is thus sufficient to prove that, for any given start state, there is only one result that

Optimistic Evaluation can return, irrespective of speculation configuration. That is:

∅; E; [ ] −→∗
Σ Γ;Ox; [ ] ∧ ∅; E; [ ] −→∗

Σ′ Γ′;Ox′; [ ] ⇒ E [[x]]H[[Γ]] = E [[x′]]H[[Γ′]]

We prove the following stronger property:

Γ; c; s −→Σ Γ′; c′; s′ ⇒ M[[Γ; c; s]] = M[[Γ′; c′; s′]]

If −→ preserves the meaning of a state, then any final state must have same meaning as the

initial state. Given that no initial state can have more than one meaning, it must be the case

that all terminal states have the same meaning. Given that the meaning of a terminal state is

the meaning of the value returned, it must be the case that all possible terminal states return the

same value.

The proof of this property is given in Appendix A. We proceed case-wise, demonstrating

that the property holds for all rules defining ‘−→’ and ‘Ã’.

4.4.1 Completeness

We do not provide a proof of completeness. This is partly because such a proof is quite difficult

to obtain, but primarily because, for our purposes, completeness is not a particularly interesting

property.

The purpose of Optimistic Evaluation is to evaluate programs more efficiently than Lazy

Evaluation. It is thus not sufficient for Optimistic Evaluation to be guaranteed to terminate if

Lazy Evaluation terminates — the number of steps required for it to terminate must be within

some bound of the number of steps required by Lazy Evaluation.

We develop an informal proof of the efficiency of Optimistic Evaluation in Section 6.3.3.

The completeness of Optimistic Evaluation follows as a corrollary of this result.



CHAPTER 5

A Cost Model for Non-Strict Evaluation

Although the speculation configuration Σ has no effect on the value that a program produces, it

does have an effect on the amount of time needed for this value to be produced.

In this chapter we give a denotational semantics that formalises the cost of evaluating an

expression. The costs given by this semantics are independent of evaluation strategy but relate

closely to real evaluation costs—allowing such costs to be easily derived. This cost model forms

the basis of the online profiling techniques that we describe in Chapter 6.

This Chapter is structured as follows:

• In Section 5.1 we explain why we need a cost model.

• In Section 5.2 we define the concept of a cost graph.

• In Sections 5.3 and 5.4 we explain how one can create a cost graph for a program.

• In Section 5.5 we introduce an operational semantics that keeps track of the amount of

work it has done.

• In Section 5.6 we give denotational meanings to the states of the costed operational se-

mantics and demonstrate that our denotational cost model accurately models the costs

experienced by the operational semantics.

41



42 Chapter 5. A Cost Model for Non-Strict Evaluation

Result A

Start

Result B

Lazy

Optimistic

N units of work

M units of work

Figure 5.1: Comparing Optimistic Evaluation to Lazy Evaluation

5.1 Why We Need a Cost Model

The aim of Optimistic Evaluation is to evaluate non-strict programs faster than Lazy Evaluation.

It is thus important to be able to prove that the performance of Optimistic Evaluation will never

be significantly worse than that of Lazy Evaluation. Doing this turns out to be somewhat tricky.

5.1.1 The Challenges Faced by the Online Profiler

It is easy to see that there are some choices of Σ for which Optimistic Evaluation will be slower

than Lazy Evaluation. For example, if our program is:

let x = expensive in 3

then any speculation configuration Σ that chooses to speculate x is likely to be slower than Lazy

Evaluation. Similarly, it is easy to see that there are some choices of Σ for which Optimistic

Evaluation will outperform Lazy Evaluation. For example, if our program is:

let x = 1 + 2 in x + 1

then any speculation configuration Σ that chooses to speculate x is likely to be faster than Lazy

Evaluation.

What is not easy is to tell, at runtime, whether the current value for Σ is outperforming Lazy

Evaluation, and how Σ can be changed so as to improve performance. This is the task that the

online profiler faces.

If we are allowed to run a program to completion, then it is easy to see how Σ compares to

Lazy Evaluation; we simply run the program with Σ, run it with Lazy Evaluation, and compare

the amount of work done (Figure 5.1). However the online profiler does not have this luxury; it

cannot wait until the program has terminated before adjusting Σ: once the program has finished,

it is too late to make it run faster. The profiler thus needs to have a way of estimating the



5.1. Why We Need a Cost Model 43

let x = <expensive> in

let y = x + 3 in

let z = x + 3 in

let p = y + z in

<rest of program>

Figure 5.2: A simple program

performance of Σ relative to Lazy Evaluation, without actually performing the Lazy Evaluation,

and without waiting for the program to finish.

This job of the profiler is made yet harder by the fact that:

• It is essential that the profiler does not believe that Σ is outperforming Lazy Evaluation if

it is in fact performing significantly worse than Lazy Evaluation.

• The profiler has to work with very limited information. In particular, it does not know for

sure which of its computations will turn out to be needed.

• The profiler must itself impose a very low overhead on the program, lest the costs of

profiling outweigh the benefits of Optimistic Evaluation.

In order to do all of this, it is necessary that we have a good understanding of the costs of

non-strict programs. In particular, it is necessary that we have a solid cost model which we can

use to justify and verify our online profiler.

5.1.2 The Problems with Simple Cost Models

How much does it cost to evaluate x + 3?

The obvious answer would be that the cost of an evaluation is the number of steps taken

to perform it; however this turns out to behave poorly for non-strict languages. Consider the

program in Figure 5.2:

• How expensive is y? If x is already evaluated then y will be cheap to evaluate—because

it only needs to perform an integer addition. However, if x is unevaluated, then y will be

expensive—because it needs to evaluate x before it can produce a result.

• How expensive is z? It seems sensible that z should have the same cost as y; but, if x is

unevaluated, then one of y and z will look at x first and so appear more expensive.

• How expensive is p? Can I obtain the cost of p by combining the costs of y and z?

• Finally, is p’s value actually needed? Should this affect its cost?



44 Chapter 5. A Cost Model for Non-Strict Evaluation

[x]

[y] [z]

3 3

10

[p]

2
[let x]

[let y]

[let z]

[let p]

root

5 5

<rest of program>

Figure 5.3: Cost graphs illustrate the dependencies between computations

value edge: 
[y] [x]

[y] demands [x]’s value

demand edge: 
[y] [x]

[y] demands [x]’s value

and [y] has the same value as [x]

eager edge: 
[y] [x]

y would do x under eager evaluation

42
[x]

x has value 42

Figure 5.4: Key: Edges can be demand edges, value edges, or eager edges

In this chapter we give a new, denotational, cost semantics for a non-strict language, that

takes full account of sharing. The cost model is compositional: the cost of an evaluation is

obtained by combining the costs of its fragments. Furthermore the semantics is independent of

evaluation strategy, so it can describe the cost of Eager Evaluation, Lazy Evaluation, or anything

in between.

5.2 Cost Graphs

In our cost semantics, the meaning of a program1 is its cost graph. For example, we can

represent the costs involved in evaluating the program from Figure 5.2 using the cost graph

shown in Figure 5.3.

A cost graph gives an unrolled trace of the computations that can be done by the program.

Each node represents a computation that takes one unit of time and produces a value. An arrow

from a node i to a node i′ denotes the fact that the computation i depends on the value produced

by the computation i′. If the arrow is thick, then the value produced by i is the same as that

1For the purposes of this chapter, a program is a closed expression.



5.2. Cost Graphs 45

produced by i′. If the arrow is dashed, then the dependency only exists under Eager Evaluation.

We refer to plain links as demand edges, thick links as value edges and dashed links as eager

edges. This is illustrated in Figure 5.4.

Computation nodes are classified into value nodes and dependent nodes:

• A value node is labelled with the value it produces, and does not have links to any other

node. Such a node represents a computation that places a value in the program heap.

• A dependent node is not labelled with a value; instead it has a value edge linking it to

another node. A dependent node may also have demand edges and eager edges.

The graph in Figure 5.3 tells us that p does one unit of work (to perform an addition) and

depends on y, z and a computation that creates a 10 value. We can similarly see that y and z

both demand the value of x, and also depend on computations that produce a 3 and a 5.

The graph also tells us the values that computations produce. We can see that p has the

value 10, and y and z are both 5. In order to find the value for x, we must follow a long chain

of value edges, eventually reaching a value node holding 2. In some cost graphs, the chain of

value edges leading from a dependent node may be infinite. In this case, the value of the node

is ⊥, representing non-termination.

In this graph we have annotated nodes with variable identifiers (e.g. [x]). In reality, we

must distinguish multiple instantiations of the same variable, so we need a more refined naming

scheme. We discuss such a scheme in Section 5.2.3.

5.2.1 Work Sets

Given a cost graph, we can represent the work required to perform a particular evaluation using

a subset of the nodes in the cost graph. Such a set is known as a work set.

The work required to evaluate a computation lazily is the set of nodes in the cost graph that

are reachable from that computation’s node using only value and demand edges. Figure 5.5 and

Figure 5.6 illustrate the work required to evaluate z and y respectively.

The work required to evaluate several computations is the union of the work required to do

each computation on its own. Figure 5.7 illustrates the work required to evaluate both y and z

lazily.

If work has already been done, or must be done later, then we can subtract it. Figure 5.8

illustrates the work required to evaluate z, excluding the work required to evaluate y.



46 Chapter 5. A Cost Model for Non-Strict Evaluation

[x]

[y] [z]

3 3

10

[p]

2
[let x]

[let y]

[let z]

[let p]

root

5 5

<rest of program>

Figure 5.5: Work required to evaluate z lazily

[x]

[y] [z]

3 3

10

[p]

2
[let x]

[let y]

[let z]

[let p]

root

5 5

<rest of program>

Figure 5.6: Work required to evaluate y lazily

[x]

[y] [z]

3 3

10

[p]

2
[let x]

[let y]

[let z]

[let p]

root

5 5

<rest of program>

Figure 5.7: Work required evaluate both y and z lazily



5.2. Cost Graphs 47

[x]

[y] [z]

3 3

10

[p]

2
[let x]

[let y]

[let z]

[let p]

root

5 5

<rest of program>

Figure 5.8: Work required evaluate z given that y has already been evaluated, or must be
evaluated later

[x]

[y] [z]

3 3

10

[p]

2
[let x]

[let y]

[let z]

[let p]

root

5 5

<rest of program>

Figure 5.9: Work required to evaluate [let z] entirely eagerly

[x]

[y] [z]

3 3

10

[p]

2
[let x]

[let y]

[let z]

[let p]

root

5 5

<rest of program>

Figure 5.10: Work required to evaluate [let z] entirely lazily



48 Chapter 5. A Cost Model for Non-Strict Evaluation

[x]

[y] [z]

1 1

10

[p]

2
[let x]

[let y]

[let z]

[let p]

root

5 5

<rest of program>

Figure 5.11: Extra work required to evaluate [let z] eagerly rather than lazily

[x]

[y] [z]

3 3

10

[p]

2
[let x]

[let y]

[let z]

[let p]

root

5 5

<rest of program>

Figure 5.12: Extra work required to evaluate [let z] eagerly, if we know that [y] is needed by
<rest of program>

We can also use work sets to compare evaluation strategies. Figure 5.9 illustrates the work

required to evaluate ‘let z’ eagerly. This is the set of all computations reachable from ‘let

z’, including computations reachable by eager edges. We can compare this with Figure 5.10

which shows the work required to evaluate ‘let z’ lazily. By subtracting the lazy work from

the eager work, we can obtain the extra work required by Eager Evaluation, which we illustrate

in Figure 5.11. If it turns out that y is needed by ‘<rest of program>’, then we can subtract

the work required for y, and so the extra work will be that shown in Figure 5.12.

The key point to note is that work is just a set of nodes. We can take unions, intersections,

differences, or do anything else that we might want to do with a set.



5.2. Cost Graphs 49

[r]

42

[s]

42

[r]

42

[s]

?or

[r]

42

[s]

42

[r]

42

or

[s]

Figure 5.13: To combine two graphs, we must know which nodes are equivalent.

5.2.2 Useful Properties of Cost Graphs

Cost graphs give us a number of useful properties:

• The cost of any evaluation within a program is fully described by the cost graph for the

program.

• The work required for any evaluation can be represented as a subset of the nodes in the

cost graph for the program.

• The number of nodes in a work set corresponds directly to the number of steps that would

be needed to perform that evaluation in a low-level operational semantics, as we show in

Section 5.5.

• Work sets can be easily manipulated, allowing one to add and subtract work in a compo-

sitional way.

• Cost graphs are independent of any particular evaluation strategy.2 For example, the cost

graph in Figure 5.3 is independent of whether x, y and z were evaluated previously.

5.2.3 Giving Names to Computations

If we are to compare work sets or take their unions and intersections, then it is important that

we have a standard naming scheme for nodes.

Consider the example shown in Fig.5.13. In this example we are attempting to combine the

work set for evaluating r with the work set for evaluating s, creating the work set for evaluating

both r and s. In order to do this, we need to know which nodes in the two sets represent the

same computation. If two sets share a subcomputation then it is important that the combined set

preserves this sharing. It is equally important that work sets do not consider a computation to be

shared if it was in fact repeated. We prevent such problems by ensuring that every computation

within a program has a single, unique name.

We assign every computation in a program a name that is a string of ◦ and • tokens (cf.

contexts from context semantics [Mai03]). A new name can be constructed by prefixing an

2Provided that the strategy is a sequential hybrid of lazy and eager evaluation. Parallel strategies are not
currently supported, nor are strategies that can perform reductions under lambdas.



50 Chapter 5. A Cost Model for Non-Strict Evaluation

i

i

i

i i i i

i ii ii ii i

Figure 5.14: Names form a tree

existing name with additional tokens. We say that a name i is descended from a name i′ if i′ is a

suffix of i. It can be helpful to visualise names as representing points within a tree, as illustrated

in Figure 5.14.

We see in Section 5.3 that: (1) The semantic function that produces a cost graph for an

evaluation is passed a root name i that it can use to create unique names for the computations it

defines; and (2) the name of a computation represents the location it would have in the program

text if all function calls were statically expanded. We see in Section 5.5 that the name of

a computation also represents that point at which it would it would be evaluated in a strict

language: if a name i′ descends from a name i, then i′ would be a subcomputation of i in a strict

language.

Formally, a computation name, Name, is a finite string of ◦ and • tokens:

Name
def
= {◦, •}∗

The Work required by an evaluation is the set of computations that it has performed:3 4

Work
def
= P(Name)

5.2.4 Formalising Cost Graphs and Cost Views

In the classical graph model, a cost graph is a 6-tuple (Nv, Nd, Ev, Ed, Ee, `), where:

Nv ⊂ Name is a set of value nodes

Nd ⊂ Name is a set of dependent nodes (Nd ∩Nv = ∅)

Ev ∈ (Nd → Name) is the value edges

Ed ⊂ (Nd × Name) is a set of demand edges

Ee ⊂ (Nd × Name) is a set of eager edges

` ∈ (Nv → CValue \ {⊥}) gives values to value nodes

3Names uniquely identify computation nodes; indeed it is convenient to think of the set of nodes as actually
being a subset of Name.

4P(Name) is the power set of Name . This is the set of all subsets of Name.



5.2. Cost Graphs 51

The CValue domain referred to here is not the Value type defined in Chapter 4, but a new

domain, which we define in Section 5.3.1.

Note that a cost graph can be an open graph: a node may have an edge that links to a name

that is not a node in the graph. Open graphs arise as a result of non-termination, as we describe

in Section 5.4.3.

For the purposes of our semantics, it is convenient to instead represent a cost graph as a

partial function that maps a node onto its value, its immediately reachable nodes, or ⊥. We

refer to this representation as a cost view (CV ), defined to be a domain5 that is a solution to the

following domain equation (CValue is defined mutually recursively in Section 5.3.1):

CV = Name → CValue ⊕ (Name × P(Name)× P(Name))⊥

where the right summand is interpreted as a flat domain.

A cost view γ will map a computation name i to⊥ if i is not a computation in the cost graph.

If i is a value node then γ(i) will be its value (discussed in Section 5.3.1). If i is a dependent

node then γ(i) will be (i′, d, e) where i′ is the destination of the value edge from i, and d and

e are sets containing the destinations of the demand edges and eager edges from i respectively.

We say γ defines i if γ(i) 6= ⊥. We say that γ is a complete view if it defines every node in the

cost graph for the program being analysed.

There is a bijection between these two representations. Given a cost graph in the classical

representation, we can produce the corresponding cost view as follows:

γ(i) =



















⊥ if i /∈ (Nv ∪Nd)

`(i) if i ∈ Nv

(Ev(i), {i′ | (i, i′) ∈ Ed}, {i
′ | (i, i′) ∈ Ee}) if i ∈ Nd

The inverse translation is also simple:

Nv = {i | γ(i) = v ∧ v ∈ CValue \ {⊥}}

Nd = {i | γ(i) = (i′, d, e)}

Ev = {(i 7→ i′) | γ(i) = (i′, d, e)}

Ed = {(i, i′) | γ(i) = (i′′, d, e) ∧ i′ ∈ d}

Ee = {(i, i′) | γ(i) = (i′′, d, e) ∧ i′ ∈ e}

` = {(i 7→ v) | γ(i) = v ∧ v ∈ CValue \ {⊥}}

We define bicγ to be the value produced by the computation i, in the cost view γ. b−c

follows value edges until it finds a value. b−c is defined to be a solution to the following

5As before, we use the term domain to mean a set equipped with complete partial order (having limits of all ω

chains) and having a least element ⊥.



52 Chapter 5. A Cost Model for Non-Strict Evaluation

equation:

b−c : Name → CG → CValue

bicγ =



















v if (i 7→ v) ∈ γ

bi′cγ if (i 7→ (i′, d, e)) ∈ γ

⊥ if (i 7→ ⊥) ∈ γ

If the chain of value dependencies from i is infinite, then bicγ will be ⊥.

5.2.5 The Real Cost of an Evaluation Strategy

An evaluation strategy defines a hybrid of lazy and eager evaluation. We define a Strategy , Ψ,

to be the set of computations that should be evaluated eagerly.

Strategy
def
= P(Name)

If i ∈ Ψ then i depends on the computations reachable by its eager edges, as well as those

reachable by its value or demand edges, otherwise i only depends on those nodes reachable

by its value or demand edges. Lazy Evaluation corresponds to the empty set ∅, while Eager

Evaluation corresponds to the set of all computation names Name.

Given a complete cost graph γ and a strategy Ψ, the function W{{−}} defines the work

required to produce values for the computations in the set D:

W{{−}} : P(Name)→ CV → Strategy →Work

W{{D}}Ψγ = D ∪ W{{
⋃

j∈D

realDeps(γ, Ψ, j)}}Ψγ

realDeps(γ, Ψ, j) =



















{i} ∪ d ∪ e if (j 7→ (i, d, e)) ∈ γ ∧ j ∈ Ψ

{i} ∪ d if (j 7→ (i, d, e)) ∈ γ ∧ j /∈ Ψ

∅ otherwise

If evaluation would not terminate, then the resulting work set will be infinite.

We define a function programWork that gives the work required to evaluate the program

defined by the cost view γ, using the strategy Ψ:

programWork(γ, Ψ) = W{{{ε}}}Ψγ

In Section 5.6.5 we prove that this function correctly describes the work that would be done

by an operational semantics when evaluating a program.

By comparing the work sets for different evaluation strategies, we can see how well they



5.3. Producing a Cost View for a Program 53

perform. We explore this concept in more detail in Chapter 6, where we use it to motivate the

design of an online profiler.

5.3 Producing a Cost View for a Program

In this Section we present a denotational semantics that produces a complete cost view for the

a program. This cost view contains all computations that can possibly take place during the

evaluation of the program.

The language we work with is that presented in Section 4.2.6.

5.3.1 Cost View Producers and CValues

We find it convenient to work with the notion of a cost view producer (CVP ). The domain

CVP is defined as follows:

CVP = Name → CV → CV

A cost view producer is a continuous function that will produce a new cost view γ ′ if it is given:

• a computation name i to use as the source for all names in γ ′

• a complete cost graph γ that defines every computation that can possibly take place in the

program.

By defining the type CVP it becomes possible for the types of our semantic functions to

resemble those of the semantics from Chapter 4, with CVP taking on the role that Value had

previously.

A CValue , v, is either an integer or a function. The domain CValue is defined to be a

solution to the following domain equation, taken mutually recursively with the definition of

CV :

CValue = Z⊥ ⊕ (Name → CVP)

If v is a function value, then we can create a cost view producer by passing it the name of the

computation that produced its argument; this cost view producer will produce a cost view for

the evaluation of the function’s body.

5.3.2 The Meaning of a Program

We define a semantic function P [[−]] that produces a complete cost view for a program by

taking the least fixed point of its cost view producer, for the root name ε. We obtain a cost view



54 Chapter 5. A Cost Model for Non-Strict Evaluation

producer for the program by applying the semantic function E [[−]] (defined in Section 5.3.3) to

its top level expression:
P [[−]] : Expression → CV

P [[E]]
def
= µγ.E [[E]]∅ ε γ

This fixed point is not strictly necessary. A computation can only depend on computations that

would have been performed before it under Eager Evaluation. It is thus possible to give an

alternative semantics which does not use a fixed point, instead passing every semantic function

a cost view defining the computations that would be performed previously under Eager Evalu-

ation. Although this semantics works, we have found it to be significantly more cumbersome

than the semantics we present here. We know that a least fixed point must exist because E [[−]]

is continuous with respect to γ.

5.3.3 Meanings of Expressions

The semantic function E [[−]] gives cost view producer meanings to expressions:

E [[−]] : Expression → Locals → CVP

E [[E]]β i γ denotes the cost view for the expression E where:

• β is a partial function that maps local variables to computation names.

Locals
def
= Var ⇀ Name

• i is the root name to used for nodes in the resulting view.

• γ is a complete cost view for the program (see Section 5.3.2).

The result of E [[E]]β i γ is a cost view γ ′ with the following properties:

• γ′ defines a computation node with the name i.

• The value of i corresponds to the meaning of the expression under a conventional lazy

semantics [Lau93, Abr90, Ong88].6

• All nodes defined in γ ′ have names descended from i (We say that γ ′ is rooted at i).

• Every node defined in γ ′ represents a computation that would take place if E were evalu-

ated in a strict language. The computations performed to evaluate a thunk will be defined

in the cost view for the thunk’s definition, and not in the cost view for the thunk’s user.

6If the value is an integer, it will be the same integer. Relating functions is somewhat harder.



5.4. Rules for Evaluation 55

• Some nodes may have dependencies on nodes that are not defined in γ ′, but which are

defined in γ. Such dangling dependencies can be resolved by combining γ with a view

that defines the node depended on.

• If a computation would not be performed during lazy evaluation of E then its node will

not be reachable from i via demand or value edges.

• γ′ may be infinite; this will be the case if eager evaluation of E would not terminate.

5.4 Rules for Evaluation

In this section we give the rules that define E [[−]]. These rules are summarised in Fig.5.15.

The following lemmas can be proved by induction over the structure of the rules defining

E [[−]]:

Lemma 5.4.1 (Continuity)

E [[−]] is continuous with respect to γ. It is this property that allows us to take a fixed point when

we give meanings to programs in Section 5.3.2.

Lemma 5.4.2 (Local Names)

All names defined in E [[E]]β i will be descended from i. It is this property that causes the various

lubs used in our definitions to be well defined.

5.4.1 Variables

[var]
<node referenced by var>

i(VAR)

E [[x]]β i γ = (i 7→ (β x, ∅, ∅))

The cost view for a variable x defines a single node. This is a dependent node that represents

the computation that looks up the value of x. The value edge links to the node that x is bound

to in the environment β.

Note that the dependent node will depend on a node that is not defined (maps to ⊥) in the

new cost view. This reflects the fact that the computation that x references would already be

evaluated in a strict language, and so would not form part of x’s evaluation.



56 Chapter 5. A Cost Model for Non-Strict Evaluation

5.4.2 Lambda Expressions

[\x.x]

i(LAM)
fun

E [[λx.E]]β i γ = (i 7→ λj . E [[E]]β[x7→j])

The cost view for a lambda expression also defines a single node. This node holds a function

value as described in Section 5.3.1. When the function is given an argument name j it will

extend the local environment to map x to j and partially apply the semantic function E [[−]] to

give a cost view producer for its body. We see an example of this in Section 5.4.6.

5.4.3 Function Application

[<func> var]

[<func>]

i

i
[<body>[var/x]]

(APP) i

if i \x.<body>*

E [[E x]]β i γ = (i 7→ (•i, {◦i}, ∅)) t E [[E]]β ◦i γ t (b◦icγ (β x) •i γ)

This rule is perhaps the most complex. To build the cost view for the application of an ex-

pression E to an argument x, we combine the cost views for evaluation of E and for application

of E’s function value to x, adding a new node which connects them.

We will describe the three parts of this view individually:

• E [[E]]β ◦i γ is the cost view for the evaluation of the function expression E. This evalua-

tion is given the name ◦i.

• (b◦icγ (β x) •i γ) is the cost view for application of the function value to the argument

‘β x’. This evaluation is given the name •i.

• (i 7→ (•i, {◦i}, ∅)) defines the computation that produces a value for ‘E x’. The value of

‘E x’ is that of the evaluated function body (•i), however the application also depends on

the evaluation of the function (◦i). Note the lack of a direct dependency on the function

argument—as one would expect for a non-strict language.

The least upper bound is known to be well defined because all the names defined in E [[E]]β ◦i γ

will be descended from ◦i, all the names defined in (b◦icγ (β x) •i γ) will be descended from

•i, and (i 7→ (•i, {◦i}, ∅)) only contains a binding for i. There thus be no conflicting definitions

in the three cost views being combined.



5.4. Rules for Evaluation 57

The choice of which sub-evaluation to name with ◦ and which with • is arbitrary. All that

matters is that both sub-evaluations are given names that descend from i and that neither name

is a descendant of the other.

What happens if b◦icγ = ⊥? In this case no function application computations can take

place and (b◦icγ (β x) •i γ) will produce the empty cost view, ⊥. i will thus have a value

dependency on a node that does not exist and the corresponding cost graph will be open.

5.4.4 Let expressions

[let x = <rhs> in <body>]

[<rhs>] [<body>[  i/x]]

i

(LET) i i

E [[let x = E in E ′]]β i γ = (i 7→ (•i, ∅, {◦i})) t E [[E]]β ◦i γ t E [[E ′]]β[x7→◦i] •i γ

The meaning of a let expression is similar to the meaning of a function application. To

build the cost view for a let expression, we combine the cost views for the body and right hand

side of the let, together with a new node connecting them. We will describe the three parts of

this view individually:

• E [[E]]β ◦i γ is the cost view for the evaluation of the right hand side of the let. This

evaluation is named ◦i.

• E [[E ′]]β[x7→◦i] •i γ is the view for the evaluation of the let body, and is named •i. The

local environment β is extended to map x to the name of the right hand side. The view

for the body may thus contain dependencies on ◦i.

• (i 7→ (•i, ∅, {◦i})) defines the computation that evaluates the let. The value of the let is

that of the its body (•i). Note that the evaluation of a let links to its right hand side with

an eager edge rather than a demand edge, reflecting the fact that Eager Evaluation will

force the right hand side to be evaluated, but Lazy Evaluation will not.

Once again, we can observe all computations defined in E [[E]]β ◦i γ will descend from ◦i

while all computations defined in E [[E ′]]β[x7→◦i] •i γ will descend from •i and (i 7→ (•i, ∅, {◦i}))

only gives a definition for i. We can thus see that the least upper bound will always be well

defined.



58 Chapter 5. A Cost Model for Non-Strict Evaluation

5.4.5 Integers and Primitive Operations

[n]

i(INT)
n

E [[n]]β i γ = (i 7→ n)

[x      x’]

i

(OP)
n’’

<node referenced by x>

<node referenced by x’>

if value of x is n, value of x’ is n’
and n’’ = n     n’

E [[x⊗ x′]]β i γ = (i 7→ (•i, {β x, β x′}, ∅)) t (O[[⊗]] •i bβ xcγ bβ x′cγ)

The meaning of an integer constant is simply a value node containing that integer. A prim-

itive operation depends on its arguments, and takes its value from the node produced by the

O[[−]] function. O[[−]] gives meanings to primitive operators as follows:

O[[⊗]] i v v′ =







(i 7→ (v ⊗̃ v′)) if v 6= ⊥ ∧ v′ 6= ⊥

() otherwise

If evaluation of one of the integer arguments does not terminate then the computation that

produces the result cannot take place. The cost graph will thus be open, indicating that the pri-

mop application depends on a computation that cannot take place under any evaluation strategy.

5.4.6 An Example

Suppose β = (y 7→ i) and E = λx.y x, then

E [[E]]β i′ γ = (i′ 7→ λj k γ′.(k 7→ (•k, {◦k}, ∅), ◦k 7→ (i, ∅, ∅)) t F(◦k)•kj γ′)

This example demonstrates the denotations of functions, application, and variables. The

cost view defines only one node, which creates the function. Note that the function does not

itself have a dependency on i, because evaluating the function does not require evaluation of i;

however, any cost view produced by application of the function will contain a dependency on i,

because applying the function does require evaluation of i.

5.5 An Operational Semantics

As we claimed in our introduction, cost graphs are independent of evaluation strategy, but relate

closely to the costs incurred by a real implementation. We demonstrate this by means of an



5.5. An Operational Semantics 59

[let x = <rhs> in <body>]

[<rhs>] [<body>[  i/x]]

i

(LET)

[<func> var]

[<func>]

i

i
[<body>[var/x]]

(APP)

[var]
<node referenced by var>

i(VAR)

i i i

[\x.x]

i(LAM)
fun

if i \x.<body>*

[n]

i(INT)
n

[x iop x’]

i

(OP)
n’’

<node referenced by x>

<node referenced by x’>

if value of x is n, value of x’ is n’
and n’’ = n iop n’

E [[x]]β i γ = (i 7→ (β x, ∅, ∅))
E [[λx.E]]β i γ = (i 7→ λj . E [[E]]β[x7→j])
E [[E x]]β i γ = (i 7→ (•i, {◦i}, ∅)) t E [[E]]β ◦i γ t (b◦icγ (β x) •i γ)

E [[let x = E in E ′]]β i γ = (i 7→ (•i, ∅, {◦i})) t E [[E]]β ◦i γ t E [[E ′]]β[x7→◦i] •i γ
E [[n]]β i γ = (i 7→ n)

E [[x⊗ x′]]β i γ = (i 7→ (•i, {β x, β x′}, ∅)) t (O[[⊗]] •i bβ xcγ bβ x′cγ)

Figure 5.15: The semantics of expressions, summarised graphically and formally

operational semantics. This operational semantics is parameterised by an evaluation strategy Ψ

allowing it to model any blend of lazy and eager evaluation.

For each unit of computation done by the operational semantics, a closure is added to a com-

putation trace. In Section 5.6.4 we prove that the closures in the computation trace map directly

onto a subset of the work predicted by the programWork function defined in Section 5.2.5.

5.5.1 An Operational Semantics for Cost

We define a transition relation ‘−→’ between program states, parameterised by an evaluation

strategy ‘Ψ’. Figure 5.16 describes the form of states while Figure 5.17 gives the rules defining

‘−→’.

The semantics we present is very similar to the low-level semantics that we presented in

Section 4.2. The key differences are the following:

• We evaluate expressions in place, placing the result in a specified location. The command

‘EB i’ instructs the virtual machine to evaluate E and to place the result in a closure with

name ‘i’. One notable consequence of this is that we do not need “update frames”—

thunks are simply replaced by their values.

• Our states contain a computation trace T rather than a heap Γ. A computation trace is

very similar to a heap, but contains mappings from computation names to closures, rather

than from heap identifiers to closures. A computation trace contains a closure for every



60 Chapter 5. A Cost Model for Non-Strict Evaluation

State S ::= T ; c; s program state with computation trace, command and stack

Command c ::= E B i evaluate E to produce a closure with name i
| }i demand the value of i
| Oi return i to the top of the stack

Trace T ::= {ij 7→ Kj}
n
0 computation trace mapping names to closures

Closure K ::= (|V |) value closure
| 〈(i, d, e)〉 indirection to i, demand edges d, eager edges e.
| E thunk—an unevaluated expression
| i∠l suspended stack frame, returning i to l. From abortion.

Stack s ::= [ ] empty stack
| E B i : s Eager return - evaluate E at i, then return to s
| (l, i) : s Local frame - do l at i, then return to s

LocalFrame l ::= @ i Apply returned function to argument i.
| n⊗ Perform operation ⊗ on n and returned value.
| ⊗i Perform operation ⊗ on returned value and i.

Figure 5.16: Syntactic forms for states

computation that has taken place, and thus will contain more closures than would be

necessary in a heap.

The evaluation strategy is dictated by Ψ. When evaluating a let expression, the virtual

machine may choose to apply either rule (LAZY) or rule (SPEC1), depending on whether the

current computation name i is in the set Ψ.

Like the denotational semantics, the operational semantics uses strings of • and ◦ tokens to

name its computations and thus also its closures. This makes it easier to relate the operational

semantics to the denotational semantics. These names could be replaced by arbitrary identifiers

without affecting the operational behaviour.

We can extend this semantics with a set of additional rules (given in Fig.5.18) that define

abortion transitions. These transitions behave like the abortion semantics of Section 4.2.3,

adapted to take account of cost.

5.5.2 How Commands Relate to the Cost Graph

Evaluation, as defined by the operational semantics of Figure 5.17, is a depth-first exploration

of the cost graph for the program being evaluated. The evaluation strategy Ψ determines which

edges are followed by this exploration.

The Program State

The computation trace T records all computations that have been visited/performed so far.

Value closures represent value computations that have been performed and dependent closures



5.5. An Operational Semantics 61

(VAL) T ; V B i; s −→Ψ T [i 7→ V ];Oi; s

(VAR) T ; i′ B i; s −→Ψ T [i 7→ 〈(i′, ∅, ∅)〉];}i′; s

(DEM1) T [i 7→ (|V |)];}i; s −→Ψ T [i 7→ (|V |)];Oi; s

(DEM2) T [i 7→ 〈(i′, d, e)〉];}i; s −→Ψ T [i 7→ 〈(i′, d, e)〉];}i′; s

(DEM3) T [i 7→ E];}i; s −→Ψ T ; E B i; s

(APP1) T ; E i′ B i; s −→Ψ T [i 7→ 〈(•i, {◦i}, ∅)〉]; E B ◦i; ((@ i′, •i) : s)

(APP2) T [i′ 7→ (|λx.E|)];Oi′; ((@ i′′, i) : s) −→Ψ T [i′ 7→ (|λx.E|)]; E[i′′/x]B i; s;

(OP1) T ; j ⊗ k B i; s −→Ψ T [i 7→ 〈(•i, {j, k}, ∅)〉];}j; ((⊗k, •i) : s)

(OP2) T [j 7→ (|n|)];Oj; ((⊗k, i) : s) −→Ψ T [j 7→ (|n|)];}k; ((n⊗, i) : s)

(OP3) T [k 7→ (|n′|)];Ok; ((n⊗, i) : s) −→Ψ T [k 7→ (|n′|)]; n ⊗̃n′ B i; s

(LAZY) T ; (let x = E in E ′)B i; s −→Ψ T [i 7→ 〈(•i, ∅, {◦i})〉, ◦i 7→ E];
E ′[◦i/x]B •i; s

if i /∈ Ψ

(SPEC1) T ; (let x = E in E ′)B i; s −→Ψ T [i 7→ 〈(•i, ∅, {◦i})〉]; E B ◦i;
((E ′[◦i/x]B •i) : s)

if i ∈ Ψ

(SPEC2) T ;Oi′; (E B i : s) −→Ψ T ; E B i; s

Figure 5.17: Operational semantics for costed evaluation

represent dependent computations that have been performed. Thunks represent computations

that have been put off until later, and suspensions represent areas of the cost graph that have

been partially explored.

The current command c says what the program is doing currently, and the stack s records

parent nodes whose edges have not yet been completely explored. In the illustrations given in

this section, solid circles represent computations that have been performed and dashed circles

represent computations that have not yet been performed. As a program evaluates, it converts

dashed circles to solid circles.

Evaluation Commands

Evaluation commands explore new nodes, and do the described work. The evaluation command

E B i does the work corresponding to the computation i and records that it has done this by

adding a closure to T . The evaluation command will then proceed to explore any children that

the node has. If there are several children, then it will explore the leftmost child, and add a stack

frame to s to remind it to explore the other children later. This is illustrated by Figure 5.19, in

which rule (APP1) explores its function evaluation child.



62 Chapter 5. A Cost Model for Non-Strict Evaluation

(!EXP) T ; E B i; s −→Ψ T [i 7→ E];}i; s

(!SPEC) T ;}i; E B j : s −→Ψ T ; E B j; s

(!ABORT) T ;}i; (l, j) : s −→Ψ T [j 7→ i∠l];}j; s

(!RESUME) T [j 7→ i∠l];}j; s −→Ψ T ;}i; (l, j) : s

Figure 5.18: Operational semantics for costed abortion

[<func> var]

[<func>]

i

i
[<body>[var/x]]

(APP1) i

if i \x.<body>*

Figure 5.19: Evaluation commands walk over the cost graph, doing work

Return Commands

Return commands return to a partially explored node stored on the stack and explore its unex-

plored children. This is illustrated in Figure 5.20 in which rule (APP2) in which the program

returns to a function application frame, and evaluates the body of the function.

Thunks

Thunks represent parts of the cost graph that the virtual machine has chosen to not explore until

later. This is illustrated by Figure 5.21 in which rule (LAZY) creates a thunk to represent the

fact that it has not explored the area of the cost graph representing the right hand side of the let.

Demand Commands

Demand commands attempt to find a value for a closure. They follow value edges until they

find a value or a previously unexplored part of the cost graph (a thunk). If a previously unex-

plored area is found, then they used an evaluation command to explore it. This is illustrated by

Figure 5.22.

5.5.3 Work Done by a Program

We consider the work done by a program to be the evaluation transitions it has performed; return

transitions and demand transitions are considered to be free. As we saw in Section 5.5.2, every

evaluation transition performed is recorded in the computation trace T as either a value closure

or a dependent closure. We can thus define the function workDone which maps a state of the



5.6. Denotational Meanings of Operational States 63

[<func> var]

[<func>]

i

i
[<body>[var/x]]

(APP2) i

if i \x.<body>*

Figure 5.20: Return commands return to a previously unexplored edge

[let x = <rhs> in <body>]

[<rhs>] [<body>[  i/x]]

i

(LAZY)

i i

Thunk

Figure 5.21: Thunks represent areas of the cost graph that the virtual machine chose to not
explore until later

operational semantics to the set of computations that it has performed so far:

workDone : Trace →Work

workDone(T ) = {i | (i 7→ (|V |)) ∈ T ∨ (i 7→ 〈(i′, d, e)〉) ∈ T}

In Section 5.6.5 we prove that the work done so far, as described by workDone, will be a

subset of that which can take place during a complete program evaluation, as predicted by

programWork (Section 5.2.5).

5.6 Denotational Meanings of Operational States

We can give a denotational meaning to states of the operational semantics. The meaning of a

state is the complete cost view for the program that the operational semantics is evaluating. This

cost view will define a superset of the computations described in the computation trace.

In Section 5.6.4, we prove that this meaning is preserved by −→ transitions. This demon-

strates that our denotational semantics accurately models the cost graph explored by our opera-

tional semantics.

In Section 5.6.5 we will use this result to prove that the work done by a program executed

using strategy Ψ will always be a subset of the work described by programWork for that strat-

egy. This demonstrates that our denotational semantics correctly predicts the cost of evaluating

a program using a given strategy, as defined by the operational semantics.



64 Chapter 5. A Cost Model for Non-Strict Evaluation

(IND1) i

i

(IND2) i’
V

i

(IND3)

i

Figure 5.22: Demand commands follow value edges until they find either a value, or a previ-
ously unexplored part of the cost graph

5.6.1 Costed Meaning of a Runtime Value:

The operational semantics uses substitutions to replace variables with names. We handle this

by treating computation names like local variables, and extending β to map all names onto

themselves:

E [[i′]]β i γ = (i 7→ (i′, ∅, ∅))

5.6.2 Costed Meaning of a Stack:

We define a semantic function S[[−]] that gives a meaning to a stack, given the complete cost

view γ and the name i of the computation that produced the return value:

S[[−]] : Stack → CV → Name → CV

S[[(E B j) : s]]γ i = E [[E]]∅ j γ t S[[s]]γ j

S[[(@ k, j) : s]]γ i = bicγ k j γ t S[[s]]γ j

S[[(n⊗, j) : s]]γ i = (O[[⊗]] j n bicγ) t S[[s]]γ j

S[[(⊗k, j) : s]]γ i = (O[[⊗]] j bicγ bkcγ) t S[[s]]γ j

S[[[ ]]]γ i = ()

The cost view for a stack is the least upper bound of the cost views for all evaluations defined

on the stack. This least upper bound is guaranteed to exist for any stack that can be produced

during Optimistic Evaluation.

5.6.3 Costed Meaning of a Computation Trace:

We define a semantic function T [[−]] that gives a meaning to a computation trace:

T [[−]] : Trace → CV → CV

T [[i1 7→ K1, . . . , in 7→ Kn]]γ = E [[K1]]∅ i1 γ t . . . t E [[Kn]]∅ in γ

The cost view for a computation trace is the least upper bound of the cost views for all of the

closures in the trace. The semantic function E [[−]] is extended to give meanings to indirections,



5.6. Denotational Meanings of Operational States 65

value closures, and stack suspension closures as follows:

E [[〈(j, u)〉]]β i γ = (i 7→ (j, u))

E [[(|λx.E|)]]β i γ = E [[λx.E]]β i γ

E [[j∠f ]]β i γ = S[[(f, i) : []]]γ j

Thunks are expressions, and so are dealt with by the rules given in Section 5.3.

5.6.4 Costed Meaning of a State:

We define a semantic functionM[[−]] that gives meanings to program states:

M[[−]] : State → CV

M[[T ; E B i; s]] = µγ.T [[T ]]γ t (S[[s]]γ i) t E [[E]]∅ i γ

M[[T ;}i, s]] = µγ.T [[T ]]γ t (S[[s]]γ i)

M[[T ;Oi, s]] = µγ.T [[T ]]γ t (S[[s]]γ i)

The complete cost view for a state is the least upper bound of the cost views for the computation

trace, the stack, and the current expression. This least upper bound is guaranteed to exist for

any state that can be produced during Optimistic Evaluation.

Theorem 5.6.1 (Soundness)

The meaning of a state as defined byM[[−]], is the complete cost view for the program that the

virtual machine is evaluating.

∅; E; [ ] −→∗ T ; c; s ⇒ M[[T ; c; s]] = P [[E]]

We can easily observe thatM[[∅; E; [ ]]] = P [[E]], so this amounts to proving that the mean-

ing of a state is preserved by the transition rules for ‘−→’:

T ; c; s −→ T ′; c′; s′ ⇒ M[[T ; c; s]] =M[[T ′; c′; s′]]

A proof of this is given in Appendix B.

5.6.5 Work that Will be Done by a State

We can define a function pendingWork that maps a program state to the work that the program

has yet to do, but which it will do before it finishes. pendingWork takes as its arguments a



66 Chapter 5. A Cost Model for Non-Strict Evaluation

program state, and the strategy that is being used to evaluate the program:

pendingWork : State → Strategy →Work

pendingWork(T ; c; s, Ψ) = W{{C{{c}} ∪ S{{s}}}}Ψ
M[[T ;c;s]]

This definition makes use of the functions C{{−}} and S{{−}} that find the pending computa-

tions of a command and a stack respectively. The pending computations are those computations

that the program is planning to produce values for in the future. C{{−}} is defined as follows:

C{{E B i}} = {i}

C{{}i}} = {i}

C{{Oi}} = ∅

For convenience, we restrict ourselves to a subset of our language in which there are no primitive

integer operations.7 S{{−}} is thus defined as follows:

S{{E B i : s}} = {i} ∪ S{{s}}

S{{(@k, i) : s}} = {i} ∪ S{{s}}

S{{[]}} = ∅

Theorem 5.6.2 (Correct Work Done)

If the definitions given in this Chapter are correct, then we would like it to be the case that,

for any state that can arise in the operational semantics, the work done so far, unioned with the

pending work is a subset of the work predicted by programWork :

∅; E B ε; [ ] −→∗ T ; c; s ⇒

workDone(T ) ∪ pendingWork(T ; c; s, Ψ) ⊆ programWork(M[[T ; c; s]], Ψ)

In Appendix C we prove that this theorem does indeed hold. A corollary of this theorem is that

the work done by a completed state is a subset of the work predicted by the cost graph:

∅; E B ε; [ ] −→∗ T ;Oi; [ ] ⇒

workDone(T ) ⊆ programWork(M[[T ; c; s]], Ψ)

The relation is a subset relation rather than equality because abortion can cause a program

to not do work that it was planning to do. We would like to be able to prove that this relation

will be an equality if no abortion transitions are applied. Unfortunately, we have not yet been

able to produce a proof of this property for the (DEM2) rule.8

7Primitive integer operations complicate the proof for (!ABORT) and (RESUME) in Appendix C.
8We think we almost have a proof, but it is not yet in a good enough state for us to publish it.



CHAPTER 6

Deriving an Online Profiler

In this chapter, we explain how the cost model described in Chapter 5 can be used to justify and

verify the design of an online profiler for Optimistic Evaluation.

• We start, in Section 6.1, by categorising the work done by a program. We give definitions

of wasted work and saved work, allowing us to formally state how much of the work

done by a program execution was unnecessary, and how much work was done for free.

From these concepts, we are able to develop the concept of goodness—a measure of the

performance difference between the current evaluation strategy and Lazy Evaluation.

• We continue, in Section 6.2, by formalising the concept of blame given in Section 3.3.4.

• In Section 6.3, we explain how the concept of blame can be used as the basis for an online

profiler which bounds the worst case performance of Optimistic Evaluation relative to

Lazy Evaluation.

• Finally, in Section 6.4, we show how we can reduce the overhead of online profiling by

only profiling a small proportion of ventures.

This chapter aims to act as a bridge between the formal cost model of Chapter 5 and the

low-level implementation of Chapter 9. This chapter is thus considerably less mathematically

rigorous than Chapter 5, but considerably more mathematically rigorous than Chapter 9.

67



68 Chapter 6. Deriving an Online Profiler

6.1 Categorising Work

Not all work is equal.

Some of the work done by a program may be wasted—meaning that it would not have been

done by Lazy Evaluation. Optimistic Evaluation will waste work whenever it speculatively

evaluates an expression that would not be evaluated under Lazy Evaluation.

Similarly, some of the work done by a program may be saved—meaning that Optimistic

Evaluation has managed to perform the work without incurring the costs that Lazy Evaluation

would have incurred. When Optimistic Evaluation speculates the right hand side of a let, it

saves the work done to create a thunk. If work has been done, and has not been saved, then we

say the work has been done-at-a-cost.

The goodness of a program state is the difference between the amount of work that was

wasted and the amount of work that was saved. Equivalently, it is the difference between the

amount of time that Optimistic Evaluation has taken, and the amount of time that would be

taken by Lazy Evaluation to do the same amount of useful work. If the goodness is positive,

then the current evaluation strategy is outperforming Lazy Evaluation, while negative goodness

indicates that the current evaluation strategy is doing worse than Lazy Evaluation.

The aims of the online profiler can be expressed in terms of goodness:

1. It imposes a lower bound on the worst case goodness of a program state, thus bounding

the worst case performance of Optimistic Evaluation relative to Lazy Evaluation.

2. Given the first constraint, it attempts to maximise average goodness and thus maximise

average performance.

6.1.1 Wasted Work

The wasted work of a program state is the work that has been done so far, but which would not

be performed at any point by Lazy Evaluation of the same program. We can formally define the

wasted work of a program state by taking the set of all computations performed by the program

execution so far, and subtracting all computations that would be performed by Lazy Evaluation

of the program:

wastedWork : State →Work

wastedWork(T ; c; s) = workDone(T ) \ lazyWork(T ; c; s)

We illustrate this definition graphically in Figure 6.1.



6.1. Categorising Work 69

Computations performed so far

Computations that would be performed by
Lazy Evaluation 

Wasted Work Useful Work Work still needing to be done
done so fardone so far

Work that has not been done
and is not needed

Figure 6.1: A computation is wasted if it would not have been performed by Lazy Evaluation

We define lazyWork , the work done by Lazy Evaluation, using the programWork function

from Section 5.2.5:

lazyWork : State →Work

lazyWork(T ; c; s) = programWork(M[[T ; c; s]], ∅)

6.1.2 Saved Work

If a program is evaluated to completion, then the work done by Optimistic Evaluation will

always be a superset of the work done by Lazy Evaluation. However this does not mean that

Optimistic Evaluation will always perform worse than Lazy Evaluation. Optimistic Evaluation

may have been able to do some computations for free that would have taken time under Lazy

Evaluation. We refer to the set of computations that have been performed for free as the saved

work.

In our simplified model, saved work arises when a let expression is speculated (using rule

(SPEC1)). By speculating a let expression, Optimistic Evaluation avoids the cost of building

a thunk and so we consider it to have saved the computation for that let evaluation. With

reference to the definitions of Section 5.5.3, we can define the saved work of a program to be

the intersection of the work done so far with the set Ψ of all computations that will be speculated

if encountered.

savedWork : State → Strategy →Work

savedWork(T ; c; s) Ψ = workDone(T ) ∩ Ψ

Operationally, we can obtain the set of saved work by adding a saved work field F to states.

F contains the names of all computations that have been saved so far. The F field is ignored by



70 Chapter 6. Deriving an Online Profiler

Computations performed so far

Computations that will be speculated, and thus
saved, if they are performed 

Work done so far Work saved Work that might be saved in 
so farthat was not saved

Work that has not been done
and would not be saved

the future

Figure 6.2: A computation is saved if has been speculated

all rules except (SPEC1), which adds its computation name to the set F :

(SPEC1 ) T ; (let x = E in E ′)B i; s; F −→Ψ

T [i 7→ 〈(•i, ∅)〉]; E B ◦i; (E ′[◦i/x]B •i) : s; F ∪ {i}

if i ∈ Ψ

The saved work of such an extended state is simply its F field. We can observe that this is

equivalent to the previous definition.

6.1.3 Goodness

The goodness of a program state is a measure of how well Optimistic Evaluation is performing

relative to Lazy Evaluation. It is defined to be the difference between the amount of work that

the program has done-at-a-cost1and the amount of work that would be done-at-a-cost by Lazy

Evaluation to do the same amount of useful work. This is the amount of work that has been

saved, minus the amount of work that has been wasted:

goodness : State → Strategy → Z

goodness(T ; c; s; Ψ) =
∣

∣

∣ savedWork(T ; c; s) Ψ

∣

∣

∣
−

∣

∣

∣ wastedWork(T ; c; s)
∣

∣

∣

To understand why this definition makes sense, it is helpful to consider the goodness of an

individual computation. From the definitions given in the previous sections, we can see that

every computation performed by the program is either wasted or not wasted, and either saved

or not saved (Figure 6.3):

1Recall that a computation is considered to be done-at-a-cost if it has been done and its cost was not saved.



6.1. Categorising Work 71

Saved

Wasted

Saved and wasted Saved but not wastedWasted but not saved

Neither wasted nor saved

Work done so far

Figure 6.3: Each computation done so far can be wasted, saved, both, or neither

Wasted but not saved: This computation was not needed, and took time to perform. The good-

ness of the computation is thus −1.

Saved but not wasted: This computation was done for free, but would have taken time under

Lazy Evaluation. The goodness of the computation is thus 1.

Wasted and saved: This computation was not needed, but took no time to perform. The good-

ness of the computation is thus 0.

Neither wasted nor saved: This computation took one unit of time, and would have taken one

unit of time under Lazy Evaluation. The goodness of the computation is thus 0.

We can see that saved and wasted computations cancel each other out, leading to the defini-

tion of goodness given above.

6.1.4 Using Goodness

By calculating goodness at runtime, an online profiler can keep track of how well Optimistic

Evaluation is doing. If the goodness is negative, then Optimistic Evaluation is wasting more

work that it is saving, and so the profiler should decrease the level of speculation in an attempt

to reduce the amount of waste taking place. If the goodness is positive, then speculation is

saving more work than it is wasting, and so the profiler can increase the level of speculation

in an attempt to save more work. If the goodness falls below a user-specified cutoff point then

evaluation will be made entirely lazy, ensuring that the goodness cannot decrease any further.

A possible relationship between goodness and speculation level is illustrated by Figure 6.4.



72 Chapter 6. Deriving an Online Profiler

Goodness

L
ev

el
 o

f 
Sp

ec
ul

at
io

n

cutoff goodness full goodness

initial level

max level

max goodness

Figure 6.4: The level of speculation depends on the current estimate of goodness, ensuring
that goodness should never fall below a pre-determined cutoff point.

6.1.5 Underestimating Goodness

It is not necessary for a profiler to know the exact goodness of a program state. All that is re-

quired is that the profiler is able to produce a safe underestimate of goodness. If the goodness is

underestimated, then the profiler will be overly cautious and evaluate the program more lazily

than necessary. In the worst case, Optimistic Evaluation will decide that speculation is entirely

counterproductive and will revert to Lazy Evaluation. The online profiler is only required to

ensure that the program does not run significantly slower than it would under Lazy Evaluation.

It is not required to ensure that performance is within a particular bound of the optimal evalu-

ation strategy2. Thus, while an overestimate of goodness would be unsafe, an underestimate is

acceptable.

Although it is acceptable for the profiler to underestimate goodness, it is desirable for it to

underestimate goodness by as little as possible, so as to avoid being unnecessarily cautious.

6.2 Blame

If we discover that some work was wasted, it is useful to know why the wasted work was done.

In this section, we present a semantics in which every wasted computation is blamed on a

speculation—thus formalising the concept of blame introduced in Section 3.3.3. We go on, in

Section 6.2.5 to show that blame can be used as the basis for an online profiler.

6.2.1 An Informal Overview of Blame

Every computation performed by a program is blamed on either the root venture, or exactly

one speculation. If a computation is blamed on the root venture, then that means that the

2By which we mean the optimal blend of lazy and strict evaluation. The term ‘Optimal Evaluation’ is more
commonly used to refer to something else—as we discuss in Section 13.9.2.



6.2. Blame 73

[y] [z]

1 1

10

[p]

2
[let x]

[let y]

[let z]

[let p]

5 5

<rest of program>

[x]

[root]

Figure 6.5: All computations are part of the local work for exactly one venture

computation was definitely not wasted. If a computation is blamed on a speculation, then this

means that the computation may have been wasted, and the profiler has chosen to blame the

work on that speculation. The sum of all work blamed on speculations is guaranteed to be an

overestimate of the wasted work of the program state.

Our profiler passes blame between ventures as the program runs. If a venture x is found to

be needed by a venture y then any blame that had been attributed to x will be passed to y. It is

thus the case that a speculation can only be blamed for work if it is not yet known to be needed.3

6.2.2 Ventures

In terms of a cost graph, a venture is a computation that produces a value for the right hand

side of a let. A venture is a speculation if was performed before it was known to be needed.

The local work of a venture is the work that can be reached directly from that venture, without

having to go through any other ventures. We say that a venture i demands a venture i′ if any of

the computations in the local work of i demand i′.

These concepts are illustrated in Figure 6.5, which extends the cost graph of Section 5.2. In

this figure, each venture is marked with a circle and a loop is drawn around the local work for

each venture.

6.2.3 Relating Blame to a Cost Graph

We can illustrate the allocation of blame to ventures using a blame forest. A blame forest

consists of a number of disconnected blame trees, each of which is rooted at either a speculation

or the root venture. If a speculation has no edges linking to it then its blame is the number of

computations reachable from it; otherwise its blame is zero.

3This is the reason why a thunk venture cannot be blamed for work; a thunk venture is needed by the venture
that demanded the value of the thunk.



74 Chapter 6. Deriving an Online Profiler

blamed for 12 computations blamed for 2 computations so far

[y][z]15

[p]

6[r]

1

10

5 5

21

[q]

4 1

[s]

Cost graph for program

5

11

[y][z]15

[p]

[r]

1

10

5 5

[q]

4 1

[s]

Blame forest for work done so far

5

Figure 6.6: A blame forest contains a subset of the nodes and edges of the cost graph

The computations and edges in a blame forest are a subset of those for the cost graph of the

program. The computations are those that have been done so far, while the edges are a subset

of those in the cost graph, chosen such that no node has more than one node linking to it. As a

program executes, we can maintain a blame forest describing the profiler’s current allocation of

blame to speculations. Whenever a computation is done, it is added to the blame forest, together

with as many of its value and demand edges as can be added without causing any node to have

more than one edge linking to it.

In Figure 6.6 we illustrate a typical blame forest, together with its corresponding cost graph.

We can see that every node and edge in the blame forest is also present in the cost graph. In

Figure 6.7 we illustrate the effect of adding a new computation node to a blame forest. In this

example the new node depends on the root node, s, of a blame tree, causing that blame tree to

be subsumed by the blame tree containing the new node. Operationally, the blame attributed to

s is passed to p.

The work blamed on speculations is a superset of the wastedWork of the program state.

This follows from the fact that every computation done so far is blamed on either a speculation

or the root venture, and the fact that a computation can only be blamed on the root venture

if it is reachable from the root venture by value and demand links. If the profiler also has an

accurate measure of saved work then it can use the blame forest to produce an underestimate of

the goodness of the current state.



6.2. Blame 75

blame = 2

[p]

5
4 1

[s]

5 [z]

[p]

5
4 1

[s]

5

blame = 4

blame = 7

no blame
add new node

Figure 6.7: When a new node is added to the blame forest, it may cause one blame tree to be
subsumed by another one

6.2.4 Per Let Goodness

Our main motivation for blaming computations on ventures is that it allows us to assign a good-

ness to each individual let in the program. The goodness of a let is the amount of work saved

by the let, minus the work blamed on ventures spawned by that let. We define a GoodnessMap,

Π, to be a finite, partial, mapping from let identifiers to integer goodness values.

The sum of all goodness in the goodness map is guaranteed to be an underestimate of the

goodness of the program state.

6.2.5 An Operational Semantics for Blame

Figure 6.8 gives the rules for an operational semantics that keeps track of blame. This semantics

is based on the low-level semantics of Section 4.2 and so maintains a heap Γ rather than a

computation trace T . States are now of the following form:

Γ; c; s; B; Π

where:

• Γ is a heap, mapping heap identifiers to closures, as before. We extend the type of closures

to include costed indirections. A costed indirection holds the result of a speculation that

has work blamed on it. If a blame forest is drawn for the program state, then each blame

tree corresponds to a costed indirection in the heap.

Costed indirections are written as:

B〈α〉x



76 Chapter 6. Deriving an Online Profiler

Evaluate a value constant:
(VAL) Γ; V ; s; B; Π −→ Γ[α 7→ V ];Oα; s; B + 1; Π

where α is fresh

Demand the value of a closure:
(VAR) Γ; α; s; B; Π −→ Γ;}α; s; B + 1; Π

(DEM1) Γ[α 7→ (|V |)];}α; s; B; Π −→ Γ[α 7→ (|V |)];Oα; s; B; Π

(DEM2) Γ[α 7→ 〈(α′)〉];}α; s; B; Π −→ Γ[α 7→ 〈(α′)〉];}α′; s; B; Π

(DEM3) Γ[α 7→ E];}α; s; B; Π −→ Γ; E; (#α : s); B; Π

(UPD) Γ;Oα; (#α′ : s); B; Π −→ Γ[α′ 7→ 〈(α)〉];Oα; B; Π

Function Application:
(APP1) Γ; E α; s; B; Π −→ Γ; E; (@α : s); B + 1; Π

(APP2) Γ[α 7→ (|λx.E|)];Oα; (@α′ : s); B; Π −→ Γ[α 7→ (|λx.E|)]; E[α′/x]; s; B; Π

Lazy Evaluation of a let:
(LAZY) Γ; (let x = E in E ′); s; B; Π −→ Γ[α 7→ E]; E ′[α/x]; s; B + 1; Π

if goodToLim(Π(x)) ≤ specDepth(s)
where α is fresh

Speculative Evaluation of a let:
(SPEC1) Γ; (let x = E in E ′); s; B −→ Γ; E; (({x}E ′, B + 1) : s); 0

Π Π[x 7→ Π(x) + 1]
if goodToLim(Π(x)) > specDepth(s)

(SPEC2) Γ;Oα; (({x}E,B ′) : s); B −→ Γ[α′ 7→ B〈α〉x]; E[α′/x]; s; B′;
Π Π[x 7→ Π(x)−B]

where α′ is fresh

Demand the value of a costed indirection:
(CST) Γ[α 7→ B′〈α′〉x];}α; s; B −→ Γ[α 7→ 〈(α′)〉];}α′; s; B + B′

Π Π[x 7→ Π(x) + B ′]

Figure 6.8: Operational semantics with blame



6.2. Blame 77

where B is the amount of work blamed on the speculation, α is a heap reference for the

result of the speculation, and x is the identifier for the let that spawned the speculation.

• s is a stack. Stack frames are similar to those used in the low-level semantics of Sec-

tion 4.2; however speculative return frames are extended to contain the blame accumu-

lated so far by the enclosing speculation. Stack frames are thus as follows:

Stack s ::= [ ] Empty stack

| ({x}E,B) : s Speculative return

| #α : s Thunk update

| @α : s Lazy return

• B an integer count of the amount of work that has been blamed on the current speculation

so far.

• Π is a goodness map, recording the goodness that is currently assigned to each let in the

program.

The semantics ensures that Π(x) is always the total amount of work saved by ventures

spawned by x, minus the total amount of work blamed on speculations spawned by x.

If the current speculation demands the result of a costed indirection in the heap (rule (CST)),

then the costed indirection is replaced by a simple indirection and its blame is transferred to the

current speculation. Referring to the blame forest, this is equivalent to adding an edge linking

the current speculation to the blame tree represented by the costed indirection, as illustrated by

Figure 6.7.

Whenever the cost semantics of Section 5.5 would add a new node to the computation trace,

the semantics of Figure 6.8 will increment the current blame B, blaming the current speculation

for the work.

Whenever a speculation starts, rule (SPEC1) adds one unit of goodness to the goodness

count for the spawning let. This reflects the fact that the venture saved one computation by

avoiding building a thunk. As discussed in Section 3.3.5, rule (SPEC1) blames the enclosing

venture for the work needed to build a thunk, even though a thunk has not been built.

Whenever a speculation completes, rule (SPEC2) subtracts B units of goodness from the

goodness count for x. This records the fact that B computations have been blamed on a venture

spawned by x. If the blame for these computations is later transferred elsewhere, then (CST)

will add B to the goodness count for x; thus ensuring that the goodness of a let accurately

reflects the blame currently attributed to ventures spawned from that let.

3By which we mean the blame tree that was current before the frame was pushed.



78 Chapter 6. Deriving an Online Profiler

6.2.6 Directing Evaluation with Goodness

Rather than using a speculation configuration Σ or an evaluation strategy Ψ to chose when

to speculate a let expression, the semantics of Figure 6.8 instead uses the goodness map Π.

We assume the existence of a goodness weighting function, goodToLim, that maps goodness

counts to speculation depth limits. This is equivalent to defining the speculation configuration

Σ as follows:

Σ(x) = goodToLim(Π(x))

goodToLim can be any function, provided that there is some minimum goodness MINGOODNESS

such that goodToLim will be zero for any goodness below MINGOODNESS , and provided that

there is no goodness for which goodToLim will be greater than MAXDEPTH . That is:

∀z. (z ≤ MINGOODNESS ⇒ goodToLim(z) = 0)

∀z. goodToLim(z) ≤ MAXDEPTH

6.3 Bounding Worst Case Performance

The blame semantics of Section 6.2 ensures that no new speculations will be started for a let

if the goodness of that let is less than MINGOODNESS . However this is not sufficient to

impose a lower bound on the goodness that can be attributed to a let: a venture may start while

the goodness of a let is high, and then do a large amount of wasted work, causing a large

amount of goodness to be subtracted from the let.

If we are to place a lower bound on the goodness that can be assigned to a let then we must

not only place restrictions on when new speculations can be created, but also place restrictions

on the amount of work that can be blamed on the active speculations.

In this section we explain how such a limit can be imposed, and how this allows us to

guarantee a bound on the worst case performance of Optimistic Evaluation.

6.3.1 Bounded Speculation with Blame

In Section 4.2.4 we gave a semantics for bounded speculation, which ensures that no more than

MAXTIME steps of speculative evaluation can be performed before abortion takes place. We

can refine this semantics so that it instead places a limit on the amount of blame that can be

assigned to active speculations. The rules for this refined semantics are given in Figure 6.9.

The rule (RUN) performs an evaluation step only if that evaluation step will not cause more

than MAXBLAME units of work to be blamed on active speculations. This rule makes use of



6.3. Bounding Worst Case Performance 79

(RUN)
Γ; c; s; B; Π −→ Γ′; c′; s′; B′; Π′

Γ; c; s; B; Π y Γ′; c′; s′; B′; Π′

if B′ + activeBlame(s′) ≤ MAXBLAME

or specDepth(s′) = 0

(ABORT)
Γ; c; s; B; Π Ã Γ′; c′; s′; B′; Π′

Γ; c; s; B; Π y Γ′; c′; s′; B′; Π′

if rule (RUN) could not be applied

Figure 6.9: Operational semantics of blame bounded speculation

a function activeBlame that sums the blame for all active ventures recorded on the stack:

activeBlame(({x}E,B) : s) =







0 if specDepth(s) = 0

B + activeBlame(s) otherwise

activeBlame(#α : s) = activeBlame(s)

activeBlame(l : s) = activeBlame(s)

activeBlame([]) = 0

Recall that the blame field B in a speculative return frame contains the blame accumulated so far

for the enclosing venture. We thus do not count the blame attached to the outermost speculative

return frame as this will be the blame accumulated so far by the root venture—which is not a

speculation.

If rule (RUN) cannot be applied, then rule (ABORT) will apply abortion transitions until the

(RUN) rule can be applied again.

It is important that we limit blame rather than evaluation steps or local work. If we limited

evaluation steps, then it would be possible for a speculation to accumulate a lot of blame by

demanding the results of previous ventures. When the venture completed, this blame would be

subtracted from the goodness of the spawning let. It is also important that the side condition

is on the blame after the transition rather than the blame before the transition. It is possible

for a venture to accumulate a large amount of blame in one step using the (CST) rule, thus

testing the blame before a transition would allow a venture to accumulate significantly more

than MAXBLAME units of blame.

6.3.2 Abortion

The bounded speculation semantics presented in Section 6.3.1 makes use of the abortion re-

lation given in Figure 6.10. The rules in Figure 6.10 are largely the same as those given in

Section 4.2.3, but have been extended to keep track of blame.



80 Chapter 6. Deriving an Online Profiler

abort a speculation:

(!EXP) Γ; E; s; B; Π Ã Γ[α 7→ E];}α; s; B; Π

(!RET) Γ;Oα; s; B; Π Ã Γ;}α; s; B; Π

(!SPEC) Γ;}α; ({x}E,B ′) : s; Ã Γ[α′ 7→ B〈α〉x]; E[α′′/x]; s;
B; Π B′; Π[x 7→ Π(x)−B −Babort]

where α′ is fresh

(!UPD) Γ;}α; #α′ : s; B; Π Ã Γ[α′ 7→ 〈(α)〉];}α; s; B; Π

(!ABORT) Γ;}α; l : s; B; Π Ã Γ[α′ 7→ α∠l];}α′; s; B; Π
where α is fresh

resume a suspended evaluation:

(RESUME) Γ[α 7→ α′∠l];}α; s; B; Π −→ Γ;}α′; l; #α : s; B; Π

Figure 6.10: Operational semantics : abortion with blame

The only rule to have changed significantly is (!SPEC), which blames any work accumulated

so far on the let that spawned that venture. The abortion system also blames the let for Babort

units of work, representing the work done to perform the abortion itself.

6.3.3 Worst Case Performance

We can tell from rule (SPEC) in the semantics of Section 6.2.5, and the restrictions on the

definition of badToLim given in Section 6.3.1, that a new speculation can only be created for a

let if the goodness for that let is less than MINGOODNESS .

The minimum goodness that can be attributed to a let is thus MINGOODNESS minus the

maximum amount of goodness that can be subtracted from that let by speculations that were

started before the goodness of the let reached MINGOODNESS .

We saw in Section 6.3.1 that the maximum amount of blame that can be attributed to active

speculations is MAXBLAME . If every one of these ventures is aborted, then the cost of abor-

tion would be MAXDEPTH ×Babort.4 It is thus the case that the minimum goodness that can

be attributed to any let is MINGOODNESS −MAXBLAME − (MAXDEPTH ×Babort).

There are a finite number of let expressions in a program. It is thus the case that a bound on

the goodness attributable to any one let will also give a bound on the total goodness attributed

4Recall that MAXDEPTH is the maximum number of speculations that can be active, as defined by Sec-
tion 6.2.6.



6.4. Burst Profiling 81

to all lets. In Section 6.2.3 we showed that this will be an underestimate of the goodness of the

program state.

In Section 6.1.3 we argued that the goodness of a program state is an accurate measure of

the performance difference between Optimistic Evaluation and Lazy Evaluation. We thus have

a bound on the worst case performance of Optimistic Evaluation, relative to Lazy Evaluation.

This is exactly what the profiler is intended to do!

6.3.4 Variants on the Worst Case Bound

The user has quite a lot of control over the worst case performance bound. If MINGOODNESS

and MAXSPEC are fixed constants then the minimum goodness will be lower if the number

of let expressions in the program is increased. This anomaly can be fixed by arranging for

MINGOODNESS and MAXSPEC to be inversely proportional to the number of let expres-

sions in the program.

MINGOODNESS and MAXSPEC do not have to be constants either. Indeed, it can be

useful for MINGOODNESS to be expressed as a proportion of the total runtime of the program,

causing the worst case performance to be a fixed percentage slower than Lazy Evaluation, rather

than taking a fixed amount of extra time.

6.4 Burst Profiling

It is not practical to profile a program all of the time; the overhead would be too great. In this

section we formalise the concept of burst profiling, as introduced in Section 3.4. Burst Profiling

profiles a program for only a small proportion of its runtime, but still allows goodness to be

accurately estimated.

6.4.1 Periods

Burst profiling divides the runtime of a program up into a series of distinct periods. Each period

starts at a boundary point and lasts until the next boundary point. Any speculations that start

during a period are considered to belong to that period. This is illustrated in Figure 6.11 in

which speculations are rectangles, and the shading of a speculation indicates the period that it

belongs to.

A random selection of periods is profiled. When a period is profiled, all speculations that

start during that period will be profiled (Figure 6.12). If every period has a probability p of

being profiled, then it follows that every speculation also has a probability p of being profiled.

Given that the goodness of the program is the sum of the goodness of the all speculations, it



82 Chapter 6. Deriving an Online Profiler

Time Elapsed

St
ac

k

end B / start C end C/start Dend A / start B end D/start E

B C D

Figure 6.11: Every speculations belongs to exactly one profile period

Time Elapsed

St
ac

k

Profile start Profile end

Figure 6.12: Only those speculations that start during a profiled period will be profiled.

follows that the measured goodness should, on average, be p times the goodness that would be

measured if profiling was always enabled.

The burst profiler aims to calculate the following:

• An overestimate of the number of computations that took place during profiled periods

and were wasted (as defined by Section 6.1.1)

• An exact count of the number of computations that took place during profiled periods and

were saved (as defined by Section 6.1.2)

From these, it aims to underestimate the goodness of the profiled part of the program’s

execution. By dividing this goodness by the number of computations profiled, it is possible

to calculate the relative goodness of the program. If we assume that profiled computations

behave, on average, in the same way as unprofiled computations, then the relative goodness of

the profiled computations should be a good estimate of the relative goodness of the program

execution. The profiler can thus estimate the goodness of the program execution by multiplying

the relative goodness by the total number of computations performed.

6.4.2 Operational Semantics

Figure 6.13 gives the rules for burst profiling. This semantics is a combination of the rules from

the blame profiling semantics of Section 6.2 and the unprofiled semantics of Section 4.2. The

evaluation relation −→ is parameterised by a profiling switch p. If p is ‘on’ then the profiling

rules are used, while, if p is ‘off’ then the unprofiled rules are used.



6.4. Burst Profiling 83

Evaluate a value constant:
(VAL) Γ; V ; s; B; Π −→p Γ[α 7→ V ];Oα; s; B + 1; Π

where α is fresh

Demand the value of a closure:
(VAR) Γ; α; s; B; Π −→p Γ;}α; s; B + 1; Π

(DEM1) Γ[α 7→ (|V |)];}α; s; B; Π −→p Γ[α 7→ (|V |)];Oα; s; B; Π

(DEM2) Γ[α 7→ 〈(α′)〉];}α; s; B; Π −→p Γ[α 7→ 〈(α′)〉];}α′; s; B; Π

(DEM3) Γ[α 7→ E];}α; s; B; Π −→p Γ; E; #α : s; B; Π

(UPD) Γ;Oα; #α′ : s; B; Π −→p Γ[α′ 7→ 〈(α)〉];Oα; B; Π

Function Application:
(APP1) Γ; E α; s; B; Π −→p Γ; E; @ α : s; B + 1; Π

(APP2) Γ[α 7→ (|λx.E|)];Oα; @ α′ : s; B; Π −→p Γ[α 7→ (|λx.E|)]; E[α′/x]; s; B; Π

Lazy Evaluation of a let:
(LAZY) Γ; (let x = E in E ′); s; B; Π −→p Γ[α 7→ E]; E ′[α/x]; s; B + 1; Π

if goodToLim(Π(x)) ≤ specDepth(s)
where α is fresh

Unprofiled Speculative Evaluation of a let:
(SPEC1N) Γ; (let x = E in E ′); s; B; Π −→off Γ; E; ({x}E ′ : s); B + 1; Π

if goodToLim(Π(x)) > specDepth(s)

(SPEC2N) Γ;Oα; ({x}E : s); B; Π −→p Γ; E[α/x]; s; B; Π

Profiled Speculative Evaluation of a let:
(SPEC1P) Γ; (let x = E in E ′); s; B; −→on Γ; E; (({x}E ′, B + 1) : s); 0;

Π Π[x 7→ Π(x) + 1]
if goodToLim(Π(x)) > specDepth(s)

(SPEC2P) Γ;Oα; (({x}E,B ′) : s); B −→p Γ[α′ 7→ B〈x〉x
′

]; E[α′/x]; s; B′;
Π Π[x 7→ Π(x)−B]

where α′ is fresh

Demand the value of a costed indirection:
(CSTN) Γ[α 7→ B ′〈α′〉x];}α; s; B; Π −→p Γ[α 7→ B′〈α′〉x];}α′; s; B; Π

if ¬profiled(s)

(CSTP) Γ[α 7→ B′〈α′〉x];}α; s; −→p Γ[α 7→ 〈(α′)〉];}α′; s;
B; Π B + B′; Π[x 7→ Π(x) + B ′]

if profiled(s)

Figure 6.13: Operational semantics for Burst Profiling



84 Chapter 6. Deriving an Online Profiler

The stack s can contain two types of speculative return frame, one for a speculation that is

being profiled and one for a speculation that is not being profiled. These are the speculative

return frames from Sections 6.2 and 4.2 respectively:

Stack s ::= [ ] empty stack

| ({x}E,B) : s speculative return (profiled)

| {x}E : s speculative return (unprofiled)

| #α : s Thunk update

| @α : s lazy return

The rules (CSTN) and (CSTP) make use of a function profiled that looks at the stack and deter-

mines whether the current speculation is being profiled:

profiled : Stack → B

profiled([ ]) = true

profiled({x}E : s) = false

profiled(({x}E,B) : s) = true

profiled(#α : s) = profiled(s)

profiled(@α : s) = profiled(s)

The rules behave as follows:

• Most of the rules behave just like they did in the blame profiled semantics of Section 6.2.

As we explain in Section 9.1.1 the blame counter B is implemented using a counter which

increments automatically as the program executes. The virtual machine thus increments

the current blame counter B even when the current speculation is not being profiled.

• When a speculation starts, the virtual machine has a choice of two rules to apply. (SPEC1P)

is used if the current period is profiled, otherwise (SPEC1N) is used. Rule (SPEC1P) be-

haves like (SPEC1) in the profiled semantics of Section 6.2, while (SPEC1N) behaves

like (SPEC1) in the original unprofiled semantics of Section 4.2.

If an unprofiled speculation, y, is nested inside a profiled speculation, x, then the x will

be blamed for any local work done by the y. This can cause the profiler to overestimate

wasted work, but that is allowed.

• When a speculation completes, the virtual machine again has a choice of two rules. If

the speculation was profiled, then it ends with (SPEC2P), otherwise it will end with

(SPEC2N). Again, these are the rules from Section 6.2 and Section 4.2.



6.4. Burst Profiling 85

Time Elapsed

St
ac

k

profile endprofile start costed

?

Figure 6.14: If an unprofiled speculation uses a costed indirection then there is nowhere for
the cost to be passed to

(CSTN) Γ[α 7→ B ′〈α′〉x];}α; s; −→p Γ[α 7→ 〈(α′)〉];}α′; chainProf (B, s);
B; Π B′; Π

if ¬profiled(s)

Figure 6.15: Chain profiling uses this revised version of (CSTN)

• To demand a costed indirection, the evaluator applies (CSTN) or (CSTP). (CSTP) is ap-

plied if the current speculation is profiled, otherwise (CSTN) is applied. These rules are

discussed further in Section 6.4.3.

6.4.3 Profile Chaining

If some speculations are profiled and others are not, what should happen when the result of a

profiled speculation is used by an unprofiled speculation. This situation is illustrated by Fig-

ure 6.14.

If a profiled speculation, x, demands the result of an unprofiled speculation, y, then we can

transfer blame from y to x, as described in Section 6.2.3. However, if x is not profiled, there

will be no blame counter for blame to be transferred into. In the semantics of Figure 6.13 we

deal with this problem by ignoring any demands made by unprofiled speculations. While this

strategy is entirely safe, it turns out (see results in Section 12.3.7) that there are performance

advantages to adopting a strategy that we call chaining.

If a profiled speculation, x, demands the result of an unprofiled speculation, y then it seems

unfair to continue to blame y for wasting its work when the work was needed by x. What we

would like to be able to do is to pass this blame to x. Since we cannot pass work to an unprofiled

speculation, we need to turn x into a profiled speculation. We can do this by replacing (CSTN)

with the rule given in Figure 6.15.

This new rule uses a function chainProf that converts the current speculation into a profiled

speculation. chainProf is defined as follows:



86 Chapter 6. Deriving an Online Profiler

chainProf : N→ Stack → Stack

chainProf (B, [ ]) = error ! no frame to profile

chainProf (B, {x}E : s) = ({x}E,B) : s

chainProf (B, ({x}E,B ′) : s) = error ! already profiled

chainProf (B, #α : s) = #α : chainProf (B, s)

chainProf (B, @α : s) = @α : chainProf (B, s)

chainProf walks down the stack until it finds the return frame for the current unprofiled specu-

lation. We know that such a stack frame must exist because (CSTN) is only applied if profiled(s)

is false. When chainProf finds this frame, it converts it into a profiled speculation frame. The

current blame B is stored in this frame, causing the blame counter to be restored when the

speculation completes.

Since the current speculation is now profiled, (CSTN) can now blame it for the work attached

to x. Note that we take care to avoid crediting the newly profiled speculation with saving work.

This is because the work saved by the speculation did not take place during a profiled period,

and so should not be included in the saved work count described in Section 6.4.1.

We describe our implementation of profile chaining in more detail in Section 9.4.1. We

discuss its performance impact in Section 12.3.7.



Part III

Implementation

87



CHAPTER 7

The GHC Execution Model

Optimistic Evaluation is implemented as an extension of the GHC compiler. Thus, in order

to explain how Optimistic Evaluation is implemented, it is necessary to first explain how the

GHC execution model works and how it relates to the semantic models we have presented. This

chapter only gives a very brief overview of the workings of GHC; the real GHC implementation

is significantly more complex than that described here. Those wishing to discover more about

the workings of GHC are encouraged to read the many papers that have been written about

it [PHH+93, PMR99, San95b, PP93, PL91, Pey92, Pey91]. A more detailed tutorial on the

compilation of non-strict functional languages in general can be found in [PL92].

In this chapter, we describe the way that GHC works by comparing it to the semantics of

Section 4.2, with the parts specific to speculative evaluation removed. This semantics is a very

close match to the way that GHC actually works.

• In Section 7.1 we describe the structure of the GHC heap, and explain how it relates to

the heap used by the formal semantics of Section 4.2.

• In Section 7.2 we describe the structure of the GHC stack, and explain how it corresponds

to the stack used by the formal semantics of Section 4.2.

• In Section 7.3 we describe the code generated by GHC, and explain how it corresponds

to the commands and evaluation rules used by the formal semantics of Section 4.2.

88



7.1. The Heap 89

Closures start here

info ptr

payload

payload

payload

info ptr

payload

payload

payload

info ptr

payload

payload

Dynamic HeapStatic Info Table

type = cons

size = 3

tag = 2

Static Info Table

type = thunk

size = 2

entry code

entry code

addresses 
increase
downwards

Figure 7.1: Structure of Heap Closures

7.1 The Heap

In the formal semantics of Section 4.2, the heap Γ is a function mapping heap references α to

closures K. In GHC, the heap is a continuous block of memory.1 A closure K is a sequence of

words in the heap, and a heap reference α is a pointer to the start of the closure that it references.

Figure 7.1 illustrates a typical GHC heap. In this figure, objects in the dynamic heap (clo-

sures) are drawn with bold outlines while static objects are drawn with dotted outlines. All

closures in GHC have the same basic form in the heap, irrespective of whether they represent

values, thunks or something else; the first word of the closure is the info pointer, and the other

words are known as the payload. The info pointer serves two purposes:

• It points to the end of the info table. The info table is a static structure that contains useful

information about the closure.

• It points to the beginning of the entry code. This is the code that should be executed in

order to force the closure to evaluate to a value. If the closure is already a value then this

code will be a stub that returns immediately to the caller.

The info table contains a number of fields, including the following:

• type: What kind of thing the closure is. E.g. a function, thunk or constructed value.

• size: How many words there are in the closure payload.

• layout: Information for the garbage collector (we will omit this in most of our diagrams)

It the following subsections, we explain how each closure type described in Section 4.2 is

represented in the GHC heap.

1Actually, it is divided into sub-blocks, but such details are unimportant.



90 Chapter 7. The GHC Execution Model

True =

Cons 3 [] =

True_info

Cons_info

3

tail ptr

[]_info[] =

Figure 7.2: Heap Representation of Constructed Values

7.1.1 Constructed Values

(|C α0 . . . αn|)

Figure 7.2 illustrates the way that GHC represents a constructed value in the heap: the info table

describes the static constructor C and the payload is arguments α0 . . . αn. The entry code for

a constructor will simply return to the caller; there is no need for any work to be done as the

constructor is already fully evaluated.

In this figure, and in the other figures used in this chapter, we write a number (e.g. 3) as

shorthand for a pointer to a closure representing that number.

7.1.2 Function Closures

(|λx.E|)

In the formal semantics, a function closure is a value λx.E that has been formed by substituting

heap references for the free variables of a statically defined function.2

Figure 7.3 illustrates the way that GHC represents a function closure in the heap: the info

table describes the static function, and the closure payload contains the heap references that

have been substituted for the free variables of that function. A function closure is a value3 , and

so the entry code will do nothing; however the info table also contains a pointer to the body

code for the static function, which can be used to apply the function to arguments.4

Function calling conventions are discussed in Section 7.3.2.

2The operational semantics would have been a closer match for the real implementation if it had used environ-
ments rather than substitutions. We chose not to do this because it made the semantics generally more complicated.

3i.e. a weak head normal form
4This is a simplification. The real implementation is more complex than this; however the difference is unim-

portant.



7.1. The Heap 91

x. f x y

x. f x 2

info ptr

2  (=y)

x. f x 1

info ptr

1  (=y)

return

type = fun

size = 1

arity = 1

fun code ptr function body code

Figure 7.3: Heap Representation of Functions

f (Just x) y

f (Just 1) 2

info ptr

1    (=x)

2    (=y)

f (Just 3) 4

info ptr

3    (=x)

4    (=y)

entry code

type = thunk

size = 2

Figure 7.4: Heap Representation of Thunks

7.1.3 Thunks

E

In the formal semantics, a thunk is an expression E that has been formed by substituting heap

references for the free variables of a static expression.

Figure 7.4 illustrates the way that GHC represents thunks in the heap. The info table de-

scribes the static expression, while the payload contains the heap references that have been

substituted for its free variables. The entry code for a thunk will read the bindings for its free

variables from the closure payload and then evaluate the expression, as we describe in Sec-

tion 7.4.2.

7.1.4 Indirections

〈(α)〉

Indirections take the form illustrated in Figure 7.5. The first word points to the standard info ta-

ble for indirections and the second word is α (the indirectee pointer). When a thunk is evaluated

to a value, its closure will be overwritten with an indirection to that value.



92 Chapter 7. The GHC Execution Model

thunk_info

arg

value_info

arg 1

IND_info

indirectee

Before evaluation

After Evaluation

arg 2

Figure 7.5: Overwriting a thunk with an indirection

7.1.5 Blackholes

GHC has a special kind of closure that it calls a blackhole. A blackhole represents a thunk that

is currently being evaluated. We see in Section 7.4.2 that a thunk is overwritten with a blackhole

when it is entered and see in Section 7.4.2 that this blackhole is overwritten with an indirection

to a value once the thunk has been fully evaluated.

The heap representation of a blackhole is very simple. The info pointer points to the standard

black hole info table and there is no payload.

7.2 The Stack

In the formal semantics, the stack can contain frames of the following forms:

{Pi}
n
0 Case Match

@α Application

#α Thunk update

⊗α Primop, awaiting first argument

n⊗ Primop, awaiting second argument

Figure 7.6 illustrates the way that GHC implements its stack. The GHC stack is very similar

in structure to the GHC heap; it is a continuous block of memory containing a sequence of stack

frames. Each stack frame corresponds directly to a stack frame in the semantics. The structure

of a stack frame is very similar to that of a heap closure; the first word points to an info table

describing the stack frame, and the rest of the words carry the data associated with the stack

frame. The stack pointer Sp points to the start of the topmost stack frame. Local variables may

be stored in the stack space above Sp.5

5In the real implementation, Sp points to the topmost occupied word in the stack and thus local variables are
below Sp. However we find that it is easier to describe the implementation if we instead say that Sp points to the
topmost stack frame.



7.2. The Stack 93

info ptr

payload

payload

payload

info ptr

payload

payload

payload

info ptr

payload

Dynamic StackStatic Info Table

type = return 

size = 3

layout = ...

Static Info Table

type = update

size = 1

layout = ...

entry ptr

entry ptr
Topmost stack frame

stacks grow
upwards

Base of stack

Other frames

local x

local y

Local vars

Sp

addresses increase
downwards

Figure 7.6: Structure of Stack Frames

In the following sections, we explain how each stack frame described in Section 4.2 is

represented in the GHC stack.

7.2.1 Case Return Frames

{Pi}
n
0

For any given case return frame, all of the alternatives {Pi} must correspond to constructors

from the same data-type. GHC divides data-types into two categories. Large data-types are

those that have more than a given number of constructors (typically more than 8), while small

data-types are those that have less than that number of constructors. Small data-types are typi-

cally the most common, due largely to the fact that lists and booleans are both small data-types.

GHC has two return conventions for constructors, known as direct returns and vectored

returns. Direct returns are used for large data-types, while vectored returns are used for small

data-types.

Direct Returns

Direct returns are illustrated in Figure 7.7. Each case alternative is compiled into a separate

block of code. The entry code for the case return frame will examine the constructor tag of the

value returned and jump to the block of code for whichever case alternative is appropriate.



94 Chapter 7. The GHC Execution Model

info ptr

2

3

  C x −> x + 2 

| D x −> x + 3

  C x −> x + y 

| D x −> x + z

Dynamic stack frame Static info Alternatives

x + y

x + z

code

code

type = ret

size = 2

if tag = C
goto alt_1

else
goto alt_2s

Figure 7.7: Direct Returns

vtbl ptr

2

3

  C x −> x + 2 

| D x −> x + 3

  C x −> x + y 

| D x −> x + z

Dynamic stack frame Static vtbl Alternatives

alt_1

alt_2

x + y

x + z

code

code

type = ret_vec

size = 2

no entry codes

Figure 7.8: Vectored Returns

Vectored Returns

Vectored returns are illustrated in Figure 7.8. Rather than having a single entry point, the info

table has a vector of pointers to the alternatives. If the return code knows the constructor of the

value it is returning, then it can retrieve the relevant return address from this vector and return

do it directly—avoiding the extra test and branched required for a direct return.

For reasons of simplicity, the rest of this chapter assumes that all returns are direct returns.

7.2.2 Application Frames

@α

Application frames are illustrated by Figure 7.9. GHC allows an application frame to contain

more than one argument. A set of standard info tables are provided, each holding a different

number of arguments. An application frame will have the info table appropriate for the number

of argument being passed, and will have the passed arguments as its payload. We discuss the

entry code for an application frame in Section 7.4.3.



7.3. Evaluating Expressions 95

ap_1_info

ap_2_info

1

1

2

(@ 1)  :s

s s

(@1):(@2):s

Figure 7.9: Application Frame

update_info blackhole_info

(updatee) junk

junk

#    : s

s

   (heap object)

Figure 7.10: Update Frame

7.2.3 Update Frames

#α

Figure 7.10 illustrates the way that GHC implements update frames. The first word of the stack

frame points to a standard info table shared by all update frames, and the second word holds α

(the updatee pointer).

7.2.4 Primitive Operation Frames

These frames are implemented in exactly the same way as direct return case frames.

7.3 Evaluating Expressions

In the formal semantics, the state contains a command c which tells the virtual machine what it

should be doing. In the GHC implementation, the command is represented by the instruction

pointer, which points to a block of code that will carry out that command:

• For an evaluation command E, the instruction pointer will point to a block of code that

will evaluate E, given the local bindings on the stack.

• For a return command Oα, the instruction pointer will point to some code that will return

α to the topmost stack frame.



96 Chapter 7. The GHC Execution Model

module ::= {defn} module with definitions

defn ::= code label: {absc} code block within a module
| data label: {literal} data block

absc ::= lval := rval assignment
| branch rval label conditional branch
| jump rval unconditional jump

rval ::= literal explicit constant
| label code label
| primop {rval i}n0 primitive operation applied to args
| lval

lval ::= reg a register
| global data label
| lval[offset] indirect with offset

reg ::= Sp the stack pointer
| Hp the heap pointer
| Node the node pointer

Figure 7.11: Abstract C

• For a demand command }α, the instruction pointer will point to a some code that will

find the value of α.

If, in the semantics, the following transition would take place:

Γ; c; s −→ Γ′; c′; s′

Then, for any GHC runtime state that corresponds to (Γ, c, s), executing the code pointed to by

the instruction pointer will cause the GHC runtime state to transform into one that corresponds

to (Γ′; c′; s′).

7.3.1 Abstract C

GHC compiles each static expression in the source program into a block of code that will eval-

uate instances of that expression. For example x + y will compile into a block of code that will

evaluate expressions of the form x + y given that the stack contains the heap references that x

and y are bound to.

Rather than compiling directly to native machine code, GHC compiles static expressions

to a low level intermediate language called abstract C. A simplified form of abstract C is pre-



7.4. Implementing the Evaluation Rules 97

sented in Figure 7.11. Most of this should be fairly self-explanatory. The Node register is a

distinguished register used in various calling and return conventions. The Sp register always

points to the topmost stack frame , and the Hp register always points to the next free word in

the heap.6

7.3.2 Calling Conventions

Several standard calling conventions are used, which we outline below:

• When we jump to the entry code for a closure, Node points to the closure.

• When we jump to the body code for a function, Node points to the function closure and

all function arguments are provided on the stack, above Sp.

If the function has no free variables then Node need not be set.

• When we return to a stack frame, Node points to the value being returned, and Sp points

to the stack frame being returned to.

7.4 Implementing the Evaluation Rules

Every expression is compiled into code that will evaluate that expression according to the Lazy

Evaluation subset of the rules given in Section 4.2. In the following subsections, we explain

how each of these rules is implemented in GHC.

7.4.1 Evaluate a Value Constant

A value V compiles to code that builds a representation of that value in the heap, and returns

it to the topmost return frame. For example, the lambda expression λxy.x + y + p + q might

compile to the following code (rule (VAL)):

6We see in Section 10.1.2 that we need to regularly check that the Hp and Sp register do not point past the
ends of the heap or stack respectively. We ignore such details in this chapter.



98 Chapter 7. The GHC Execution Model

Code for λxy.x + y + p + q:

Hp[0] := 2574 info this is function 2574

Hp[1] := p save free variables

Hp[2] := q

Node :=Hp

Hp :=Hp + 3

jump Sp[0] return it

The compiler will also generate an info table describing the function:

Info table for λxy.x + y + p + q:

data :

2574 body address of body code

2 arity (two arguments)

FUN type (a function)

2 size (two free vars)

code 2574 info :

jump Sp[0] already a value

code 2574 body :

code to evaluate the function body

Similarly, the constructed expression C x y might compile to the following code:

Code for C x y:

Hp[0] := C info create constructed value in the heap

Hp[1] := x

Hp[2] := y

Node :=Hp

Hp :=Hp + 3

jump Sp[0] return it

The info table for C (C info) will have been created when the declaration for the constructor

was compiled.



7.4. Implementing the Evaluation Rules 99

7.4.2 Demand the Value of a Closure

A variable x compiles to code that demands the value of the closure referenced by that variable.

It does this by jumping to the entry code for the closure (rule (VAR)):

Code to evaluate x:

Node := x load x into Node

jump Node[0] enter the closure

The entry code for a closure will behave like one of the rules (DEM1), (DEM2), (DEM3),

depending on the type of closure.

If the closure is a value, then the entry code will return a pointer to itself (rule (DEM1)):

Entry code for a value (|V |) (direct return):

jump Sp[0] return Node (which points to us)

If the closure is an indirection, then the entry code will enter the indirectee (rule (DEM2)):

Entry code for an indirection 〈(x)〉:

Node :=Node[1] load x into Node

jump Node[0] enter x

If the closure is a thunk, then the entry code will push an update frame, save any bindings

from the thunk, overwrite the thunk with a black hole, and then evaluate the thunk body (rule

(DEM3)):



100 Chapter 7. The GHC Execution Model

Entry code for a thunk E:

Sp :=Sp− 2 push an update frame onto the stack

Sp[0] := update info

Sp[1] :=Node

Sp[−2] :=Node[1] save local bindings from the thunk

Sp[−1] :=Node[2]

. . .

Node[0] := blackhole info overwrite the thunk with a blackhole

code to evaluate E

In the semantics, we represent blackholing by removing the binding from the heap.

When control eventually returns to the update frame, it will overwrite its updatee with the

value returned to it (rule (UPD)):7

Return code for an update frame (update info):

Sp[1][0] := ind info overwrite updatee with an indirection

Sp[1][1] :=Node

jump Sp[0] return

7The real GHC implementation is rather complex here as an update frame can be returned to with either a direct
return or a vectored return.



7.4. Implementing the Evaluation Rules 101

7.4.3 Function Application

A function application E x compiles to code that will evaluate E to a function, and then apply

this function to x. The generated code will push a function application frame, and then execute

the code to evaluate E (rule (APP1)):8

Code to evaluate E x:

Sp :=Sp− 2 push an application frame

Sp[0] := ap 1 info

Sp[1] := x

code for E

When a function closure is returned to the application frame, the return code will check that

the function expects the number of arguments provided (in this case one). If it does, then the

return code will jump to the body code for the function. This corresponds to rule (APP2):

Return code for an application frame with one argument (ap 1 info):

branchif (Node[0][arity] 6= 1) arity stuff check the arity

Sp :=Sp + 2 pop the frame

jump Node[0] call the function

Once the info pointer for the application frame has been popped, the arguments will be in

their correct positions ready for a function call; there is no need for the arguments to be copied.

We do not discuss what the code at arity stuff does. Interested readers are encouraged to

refer to Marlow and Peyton Jones [MP03]. We also omit a lot of other details that make the real

implementation more efficient, but also significantly more complex.

8This function application model is known as eval/apply [MP03].



102 Chapter 7. The GHC Execution Model

7.4.4 Case Expression

A case expression case E of {Pi}
n
0 compiles to code that will evaluate the scrutinee E and

then match the result against the alternatives in P . It does this by pushing a case return frame

and then executing the code for E (rule (CASE1)):9

Code for case E of {Pi}
n
0 :

Sp :=Sp− (1 + env size 1234) push a case return frame

Sp[0] := expr1234 ret info

Sp[1] :=?;Sp[2] :=? . . . (vars live in {Pi}
n
0 )

code to evaluate E

When a reference to a constructed value is returned to the case return frame, it will select

one of its alternatives and jump to the code for that alternative (rule (CASE2)). The alternative

is selected by referring to the constructor tag in the closure’s info table. For a direct return, the

code will resemble the following:10

Return code for a case frame (expr1234 ret, direct return):

Sp :=Sp + (1 + env size 1234) pop the case frame

branchif (Node[0][tag ] = 1) 1234 alt 1 jump to the correct alternative

branchif (Node[0][tag ] = 2) 1234 alt 2

...

In this case the constructor alternatives will have been compiled to the blocks 1234 alt 1,

1234 alt 2, . . . .

7.4.5 Exceptions

If an exception is raised, a special RTS routine is called. This routine walks down the stack,

tearing frames off as it goes. The behaviour of this routine is very similar to that described by

rules (EXN1),(EXN2),(EXN3), and (EXN4).

9In this example, we write ? to represent the location of a free variable.
10Recall that the first word of a closure (Node[0]) points to the info table.



7.4. Implementing the Evaluation Rules 103

7.4.6 Lazy Evaluation of a Let

A let expression let x = E in E ′ compiles to code that will build a thunk for E in the heap,

and then execute the code for E ′:

Code for let x = E in E ′:

Hp[0] := 4573 info Create a thunk in the heap

Hp[1] :=? (free variables)

Hp[2] :=?

. . .

Sp[−1] :=Hp save address as a local var

Hp :=Hp + (1 + env size 4573) move Hp to next free word

code for E ′

We will also generate an info table and entry code for the thunk. The entry code will behave

as described is Section 7.4.2, and the info table will be as described in Section 7.1.3.

GHC has various special cases for compiling let expressions. In particular, if the right hand

side of a let is already a value then GHC will build a representation of this value in the heap

rather than building a thunk that will evaluate it. The code generated will thus resemble that

given in Section 7.4.1, followed by the code for E ′.

7.4.7 Summary

Code blocks are generated for the following things:

• Alternatives of a case

• Right hand side of a let expression (thunk)

• Function body

Heap is allocated in the following places:

• Creating a value (rule (VAL))

• Creating a thunk for a let (rule (LAZY))



104 Chapter 7. The GHC Execution Model

7.5 Other Details

7.5.1 Garbage Collection

The GHC heap is garbage collected. At periodic intervals, the garbage collector sweeps through

the heap and throws away any closures that are no longer reachable. In order to determine

what is reachable, the garbage collector needs to know which fields in a closure’s payload are

pointers, rather than literal values. This information is encoded in a special layout field in the

closure info table.

7.5.2 Lazy Blackholing

As with any garbage collected system, one must take care to ensure that a closure is considered

to be garbage if it is not reachable by program execution. In particular, it is important that

pointers held in a thunk closure are not considered to be reachable while the thunk is being

evaluated. This is the purposes of GHC’s blackholing [Jon92].

The simplest approach to blackholing is eager blackholing. This is the strategy described in

Section 7.4.2. With eager blackholing, a thunk blackholes itself as soon as it is entered.

The standard GHC implementation takes an alternative approach, known as lazy blackhol-

ing [MP98]. Lazy blackholing does not blackhole a thunk when it is entered. Instead, it waits

until garbage collection time, and then blackholes every thunk that is pointed to by an update

frame on the stack. The motivation for this is that, by only blackholing thunks at garbage

collection time, it reduces the number of blackholing operations that must be done.

Unfortunately, as we explain in Section 8.4, lazy blackholing turns out to interact very badly

with Optimistic Evaluation. We thus disable it in our version of GHC.



CHAPTER 8

Switchable Let Expressions

Now that we have explained how the GHC execution model works, we can explain how Opti-

mistic Evaluation extends this:

• We begin, in Section 8.1 by describing the way that we implement switchable let expres-

sions.

• In Section 8.2, we describe Flat Speculation: an alternative implementation technique

that we have also implemented.

• In Section 8.3, we describe Semi-Tagging: an implementation technique that improves

the performance of case expressions. While the idea of semi-tagging has been proposed

before [PMR99], it is far more effective under Optimistic Evaluation than under Lazy

Evaluation.

• Finally, in Section 8.4, we explain why lazy blackholing interacts badly with Optimistic

Evaluation.

Online profiling and abortion are discussed in Chapters 9 and 10 respectively.

105



106 Chapter 8. Switchable Let Expressions

info ptr

2 (= y)

3 (= z)

Dynamic stack frame Static info

type = specret

size = 2

s

{x}(f x 2 3) : s {x}(f x y z)

entry code

depth limit ptr 23

Speculation Configuration

Figure 8.1: Speculative return frame

8.1 Speculative Evaluation of a Let

Section 7.4 described the implementation of GHC by comparing it to the a restricted form of

the semantics of Section 4.2. That subset corresponds to Lazy Evaluation, and differs from the

full semantics in the following ways:

• It omits the rules (SPEC1) and (SPEC2) that implement speculative evaluation.

• It omits the speculation configuration parameter Σ from the evaluation relation.

• It omits the side condition on rule (LAZY) that causes the rule to only be applied if the

speculation configuration says it should.

• It does not include speculative return frames {x}E.

• It does not make use of the speculation depth function specDepth.

In the subsections that follow, we describe the way in which we have added each of these

features to GHC.

8.1.1 Speculation Return Frames

In Section 7.2 we described how GHC represents case return frames, application frames, and

update frames. Rules (SPEC1) and (SPEC2) make use of an additional kind of return frame,

which we call a speculative return frame, written:

{x}E

The representation of a speculative return frame is very simple (see Figure 8.1); the info table

contains the code for E, and a pointer to a depth limit variable (see Section 8.1.3). The payload

of the stack frame contains bindings for any free vars in E.



8.1. Speculative Evaluation of a Let 107

8.1.2 The specDepth Function

Rules (LAZY) and (SPEC2) make use of a function specDepth that counts the number of active

speculations (defined in Section 4.2.2). While it would be possible to implement specDepth

as a function that walks down the stack and counts the number of speculative return frames

found, this would not be efficient. Instead, we maintain a global register, SpecDepth, that we

increment and decrement whenever we push or pop speculation frames.

Speculative return frames are not just there to provide something to return to. The abortion

and profiling systems both rely on the fact that there will always be a speculation frame on the

stack if speculation is taking place. It is thus important that we avoid optimisations that might

prevent a speculation frame being be pushed when speculation starts. Consider the following

example:
let

x = case f y of

True → True

False → g y

in

E

A naive compiler might think that it could wait until the call to g before pushing a return frame

for the let. Unfortunately, this would cause the call to f to take place with no speculative return

frame on the stack. If the call to f did not terminate then the abortion system would not realise

that it was part of a speculation and so would not abort it.

8.1.3 The Speculation Configuration

In the formal semantics, the speculation configuration Σ is a function that maps let identifiers

to speculation depth limits. In the implementation, the depth limit for each let is represented

as a static global variable. The info table for a speculative return includes a pointer to the depth

limit for the let.

One might wonder why the depth limit is not itself in the info table. This is because the info

table has to live in code space, in order to be placed directly before the entry code, while the

depth limit needs to be placed in data space so that it can be written to by the online profiler

without causing the instruction cache to be flushed.1

1Many operating systems require the use of a system call such as mprotect to make code writable.



108 Chapter 8. Switchable Let Expressions

(LAZYX) Γ; let x = E in E ′; s −→Σ Γ[α 7→ E];Oα; ({x}E ′ : s)
if Σ(x) ≤ specDepth(s)
and α is fresh

Figure 8.2: An alternative lazy rule for let expressions

8.1.4 Rules (LAZY), (SPEC1) and (SPEC2)

Rule (SPEC1) evaluates the right hand side of a let speculatively, while rule (LAZY) builds a

thunk for it. The virtual machine choses which rule to apply based on the current speculation

depth and speculation configuration.

For convenience, our implementation of Lazy Evaluation behaves as if (LAZY) were re-

placed with the rule (LAZYX) from Figure 8.2. (LAZYX) pushes a speculative return frame but

immediately returns to it.2 While the end result is the same, this approach turns out to make

implementation easier. In particular, it makes it easier for the lazy and speculative code to

share one version of the code for the let body, E ′. One can observe that (LAZYX) followed by

(SPEC2) is equivalent to (LAZY).

The first thing a let does is push a return frame, incrementing SpecDepth so as to keep

it consistent with the number of speculation frames on the stack. The let then compares

SpecDepth with its depth limit to see whether it should evaluate speculatively or lazily (rules

(SPEC1) and (LAZYX)):

Code to evaluate let x = E in E ′ (expression id is 3562):

Sp :=Sp − (1 + env size) push a speculative return frame

Sp[0] := 3562 ret info

Sp[1] :=?; Sp[2] :=?; . . . (save vars live in E ′)

SpecDepth :=SpecDepth + 1 increment SpecDepth

branchif (SpecDepth > 3562 limit) 3562 lazy branch to lazy code

jump 3562 spec or speculative code

The lazy code builds a thunk for the right hand side of the let and then immediately returns

to the speculative return frame (rule (LAZYX1)):

2Note that unlike every rule presented previously, this rule can return a reference to something other than a
value. This has knock-on effects throughout the runtime system, as one can no longer assume that a returned
reference always points to a value.



8.1. Speculative Evaluation of a Let 109

Code for the lazy branch of a let (3562 lazy:

Hp[0] := 3562 thunk info build a thunk in the heap

Hp[1] :=?; Hp[2] :=?; . . . (save vars live in E)

Node :=Hp

Hp :=Hp + (1 + env size)

jump Sp[0] return the thunk3

The speculative code (3562 spec) will be the code to evaluate E (rule (SPEC1)).

When control returns to the speculative return frame, it will pop itself off the stack, decre-

ment SpecDepth, and evaluate the body of the let (rule (SPEC2)):

Return code for a speculative return frame ‘{x}E’:

Sp :=Sp + (1 + env size) pop the frame

SpecDepth :=SpecDepth− 1 decrement SpecDepth

code to evaluate E ′ (x is in Node)

In the real implementation, there are additional complexities involving heap/stack checking

and direct/vectored returns; however these are not particularly interesting and so we do not

discuss them here.

8.1.5 Not All Let Expressions are Speculated

As with normal let expressions (Section 7.4.6), if the right hand side of a let is already a value,

we simply build a representation of that value in the heap and continue. There is no need to

have separate lazy and speculative versions in this case.

Our current implementation also avoids speculating recursive let expressions, because, if

the right hand side of a let is speculated, then there is no thunk to which the binder can be

bound during evaluation of the right hand side. In such cases, the code generated will be the

same as for Lazy Evaluation.

3This will actually be a direct jump to 3562 ret info.



110 Chapter 8. Switchable Let Expressions

SpecDepth > depthlimit

thunk info ptr

free var 1

free var 2

evaluate rhs (free vars on stack)

eventually return to stack top

let x = <rhs> in <body>

evaluate body (x in Node)

Shared return point

evaluate rhs (free vars in heap)

Speculative Lazy

Speculative Branch

create thunk:

No Yes

Figure 8.3: Flow diagram for evaluation of a let expression

8.1.6 Avoiding Code Explosion

The entire process of evaluating a let is summarised by Figure 8.3. Note that the code to

evaluate the right hand side E is duplicated, but the code to evaluate the body E ′ is shared.

The reason for the duplication of the right hand side is to allow the compiler to specialise

the two blocks of code relative to the environment in which they are used. In particular the lazy

code will expect to find its free variables in the payload of a closure pointed to by Node, while

the speculative code will expect to find its free variables on the stack and in registers.

It is important that the size of a duplicated expression is kept small, otherwise there can be

a potentially exponential increase in code size. Consider for example the following program:

let x = (let y = (let z = E1 in E2) in E3) in E4

If we were to duplicate every let right hand side, then we would compile E1 8 times. If we had

another layer of nesting, then the inner expression would be compiled 16 times (Figure 8.4).

While such programs are not often written by programmers, they can often appear as the result

of inlining, or other compiler optimisations. Even without nested let expressions, duplicat-

ing the right hand side of every let can almost double the code size if there are a lot of let

expressions with large right hand sides. This is clearly undesirable.



8.2. Flat Speculation 111

lazy

lazy

spec

lazy

spec

lazy

spec

lazy
spec
lazy
spec
lazy
spec
lazy
spec

spec

lazy

spec

lazy

spec

lazy

spec

lazy
spec
lazy
spec
lazy
spec
lazy
spec

Figure 8.4: Uncontrolled duplication of code leads to an explosion in code size

In practice, it is only worth duplicating an expression if it is very small indeed (e.g. an

integer addition). For larger expressions, we use an expression lifting transformation to convert

the right hand side of the let into function call. For example, if E is a large expression and has

free variables y and z then we will make the following transformation:

let x = E in E ′

⇓

let x = f y z in E ′

where f y z = E

We generate a new function f whose body is E and whose arguments are the free variables

of E. We transform the let expression so that its right hand side is a call to this function (and

thus a small expression). This transformation can be considered to be a special case of lambda

lifting [Joh85] for functions with no arguments.

In the extreme case, we can apply this transformation to the right hand side of every let

expression, resulting in the evaluation scheme described in Section 8.2.

8.2 Flat Speculation

If the transformation described in Section 8.1.6 is applied to every let expression, then all let

expressions will be of the following form:

let x = f y1 . . . yn in E ′

This allows us to implement switchable let expressions very differently, using a technique

that we call Flat Speculation. We have implemented both Flat Speculation and the technique

described in Section 8.1; we compare their performance in Section 12.7.1.



112 Chapter 8. Switchable Let Expressions

8.2.1 Evaluating a Let Expression Speculatively

Under Flat Speculation, the code generated by the compiler for a let expression assumes that

the let will always be evaluated speculatively. A let expression thus compiles to the following

code:

Code to evaluate let x = f y1 . . . yn in E ′ (expression id is 3562):

Sp :=Sp − (1 + env size) push a speculative return frame

Sp[0] := 3562 ret info

Sp[1] :=?;Sp[2] :=?; . . . (save vars live in E ′)

SpecDepth :=SpecDepth + 1 increment SpecDepth

Sp[−1] := y1; Sp[−2] := y2; . . . put arguments on the stack

jump f body call f

The info table for the speculative return frame will contain three extra fields:4

• rhsfun: The function that this let calls (in this case f )

• argcount: The number of arguments the function required

• jmpaddr: The address of the jump instruction in memory.

8.2.2 Evaluating a Let Expression Lazily

If the profiler decides to switch the let to being evaluated lazily, then it will overwrite the call to

f with a call to the standard function app lazy N, where N is the number of arguments passed

to f . This code modification is extremely simple; all the profiler has to do is find the address of

f in the jump instruction and overwrite it with the address of the appropriate ap lazy function.

While this write to code will probably cause an instruction cache flush and thus considerable

cost, these writes are extremely rare, and so the amortised cost is negligible.

The ap lazy function finds the info table for the speculative return frame on the top of the

stack and uses the rhsfun field to build a special function application thunk using a standard

info table ap N info, where N is the number of function arguments:

4It actually has some others as well, which we do not discuss here.



8.2. Flat Speculation 113

Code for ap lazy 2:

Hp[0] := ap 2 info create a function application thunk

Hp[1] :=Sp[0][rhsfun] (the function f )

Hp[2] :=Sp[−2] (arguments)

Hp[3] :=Sp[−1]

Node :=Hp

Hp :=Hp + 4

jump Sp[0] return this thunk

The entry point for a function application thunk is very simple. It simply pushes an update

frame, copies its arguments onto the stack, blackholes the thunk, and then jumps to the function

entry point:

Code for ap 2 ret:

Sp :=Sp− 2 push an update frame

Sp[0] := update info

Sp[1] :=Node

Sp[−2] :=Node[2] put the arguments onto the stack

Sp[−1] :=Node[3]

Node[0] := blackhole info blackhole the thunk

jump Node[1] jump to f

8.2.3 Chunky Entry Points

If the profiler wants the let to be speculated only up to a certain depth,5 then it will overwrite the

call to f with a call to the standard function app chunky N, where N is the number of function

arguments. The ap chunky function tests the current speculation depth against the depth limit

for the let (referenced from the info table) and then decides whether to call f or ap lazy N:

5This is the usual case for the system described in Section 8.1.



114 Chapter 8. Switchable Let Expressions

Code for ap chunky 2:

branchif (SpecDepth > Sp[0][limit ][0]) ap lazy 2 evaluate lazily

jump Sp[0][rhsfun] evaluate speculatively

In flat speculation, the depth limit for a let is a member of the following set:6

{0, 1, . . . ,MAXDEPTH } ∪ {∞}

If the depth limit is ∞ then the let will always be speculated and the code for the let will

jump directly to f . If the depth limit is 0 then the let will never be speculated and the code

for the let will jump to ap lazy N. For all other depth limits, the code for the let will jump to

ap chunky N.

8.3 Semi-Tagging

A typical program will evaluate a large number of expressions of the following form:

case x of {Pi}
n
0

Not only are such expressions frequently written by the programmer, but they are also gen-

erated as a result of desugaring other expressions within the compiler. For example, record

field selection and addition of boxed integers both reduce to case expressions that scrutinise a

variable.

8.3.1 Scrutinising Variables in Normal GHC

In Section 7.4.4 we saw that GHC normally implements such expressions by pushing a return

frame and then entering the closure referenced by x.

Normal GHC code for case x of {Pi}
n
0 :

Sp :=Sp− (1 + env size) push a case return frame

Sp[0] := 1234 ret info

Sp[1] :=?; Sp[2] :=?; . . .

Node := x enter closure for x

jump Node[0]

6Infinity is represented internally as MAXDEPTH + 1.



8.3. Semi-Tagging 115

If x refers to a value, then the entry point for x will immediately return to the case return

frame. In such cases the whole process of pushing an return frame and entering x will have

been pointless.

8.3.2 Scrutinising Variables with Semi-Tagging

If x will usually be a value, then it may be more efficient to test whether x is a value before

entering it. This leads to the following code:

Value-testing code for case x of {Pi}
n
0 :

Sp :=Sp− (1 + env size) push a case return frame

Sp[0] := 1234 ret info

Sp[1] :=?; Sp[2] :=?; . . .

Node := x

branchif (ISVALUE(x)) 1234 ret info return immediately if a value

jump Node[0] otherwise enter x

For a constructed value this code will perform two branches: one to test whether it is eval-

uated, and then one in 1234 ret info to see what constructor it is. We can combine these two

together by treating a thunk as if it was a constructed value with the tag UNEVAL.

Semi-Tagged code for case x of {Pi}
n
0 :

Node := x

branchif (Node[0][tag] = UNEVAL) 1234 normcase normal case evaluation

branchif (Node[0][tag] = 1) 1234 alt 1 direct case alternative

branchif (Node[0][tag] = 2) 1234 alt 2

If the value is not evaluated, then we jump to 1234 normcase which contains the code from

Section 8.3.1. This technique will cause a moderate increase in code size as the compiler must

generate tag-branching code both inline, and in the return frame. The real implementation also

has to take care to ensure that both blocks of branching code place local variables in the same

locations.



116 Chapter 8. Switchable Let Expressions

tagaddress

pointer

Figure 8.5: Semi-tagging uses the least significant bits of the address to store tag information

If x is not a value, then semi-tagging will be slower than GHC’s normal implementation;

however, if x is a value, then semi-tagging will be faster. Optimistic Evaluation increases the

likelihood that x will be evaluated and so makes semi-tagging a more appealing idea. Indeed,

we give results in Section 12.5 that demonstrate that, although semi-tagging is not worthwhile

under Lazy Evaluation, it is worthwhile under Optimistic Evaluation.

8.3.3 Storing the Tag in the Address

The simplest way to implement semi-tagging is to store the constructor tag in the info table of

every constructor and every thunk. However this still requires an indirect read from the closure

info table in order to find the tag. A slightly more efficient approach is to encode the tag in the

address of the closure (Figure 8.5). Closure info tables are always aligned to word boundaries

and so, on a 32 bit architecture, the bottom two bits of the address will thus always be zero. If

the closure data-type has three or fewer constructors then these bits can be used to encode the

constructor:

00 unevaluated or unknown

01 a value with constructor 1

10 a value with constructor 2

11 a value with constructor 3 or greater

If the data-type has more than three constructors then we must look at the tag in the info

table in order to distinguish between constructors with identifiers greater than 3.

These tags impose very little additional overhead. There is no need to clear the tags in a

closure pointer before reading from it or entering it. If one is reading a field from a constructed

value then one will know what constructor it is and so be able to adjust the offset to take account

of that. Similarly, one will only enter a closure if one has already tested that its tag is UNEVAL;

however the UNEVAL tag is 00, and so the address will be untagged.

All that is required is that we maintain the following invariants:

• When a value is returned, Node is correctly tagged

• When a closure is entered, Node is untagged

• All pointers are either untagged or correctly tagged



8.4. Problems with Lazy Blackholing 117

update_info

updatee

return info

update_info

updatee

return info

update_info

updatee

return info thunk_info

payload

s

Figure 8.6: Lazy blackholing can cause several update frames to reference the same closure

8.4 Problems with Lazy Blackholing

In Section 7.5.2 we described the concept of lazy blackholing, and remarked that it interacted

poorly with Optimistic Evaluation. In this Section we explain why.

8.4.1 Finite Depth Looping

Consider the following program:7

let x =

let y = case x of

Just z → Cons 1 z

in Just y

in . . .

What happens if y is speculated, but x is not speculated? If blackholing is lazy, then the thunk

for x will repeatedly enter itself, pushing a series of update frames onto the stack for the same

closure. This is illustrated in Figure 8.6.

If this looping continues indefinitely, then the program will eventually run out of stack,

causing the runtime system to spot the long-running looping computation and abort it. In this

case, the duplicate update frames will never be entered and so nothing particularly bad happens.

7Note that the let for x is recursive, and thus cannot be speculated (Section 8.1.5); however the let for y is not
recursive, and so can be speculated.



118 Chapter 8. Switchable Let Expressions

Just_info

pointer to y

Cons_info

1

pointer to y

x

Figure 8.7: This is what we would expect x to evaluate to

Just_info

pointer to y

Cons_info

1

pointer to y

x Cons_info

1

pointer to y

Cons_info

1

pointer to y

Figure 8.8: Lazy blackholing can cause loss of sharing

However, if chunky evaluation is used then y will only be speculated to a finite depth. At some

point, the inner evaluation of x will decide not to speculate y and will instead return the value

Just y. The program will return through several update frames, each of which attempts to

update the same value.

This can cause several problems:

• Various parts of the GHC runtime (particularly the generational garbage collector [SP93])

can no longer assume that a thunk will only be overwritten with an indirection once.

• There can be a loss of sharing (Section 8.4.2).

• Values may be overwritten with indirections to themselves (Section 8.4.3).

8.4.2 Loss of Sharing

If the program was evaluated lazy, then we would expect x to eventually evaluate to the structure

illustrated in Figure 8.7, however, if we are speculating y and are blackholing lazily, then we

may end up with the structure illustrated in Figure 8.8. Rather than having one closure for y we

have several.

Every time x is entered, it will create a new speculation for y. This speculation will enter x

again. When an evaluation of x returns, the speculation for y will evaluate to a cons containing

the previous closure for y, rather than itself.

8.4.3 Indirection Loops

Consider the situation illustrated in Figure 8.9. The frame at the top of the stack is an update

frame, however another update frame has already overwritten the updatee with an indirection.

What would happen if a garbage collection were to take place at this point?



8.4. Problems with Lazy Blackholing 119

update_info

updatee

value_info

payload

IND_info

indirectee

stack

s

Figure 8.9: If garbage collection strikes here, we could be in trouble.

update_info

updatee value_info

payload

stack

s

Figure 8.10: Short-circuiting indirections causes problems

When garbage collecting, normal behaviour is to replace any pointer to an indirection with

a pointer to the indirectee. If we do this with the state in Figure 8.9, then we end up with the

state illustrated in Figure 8.10.

When control returns to the update frame it will overwrite the value with an indirection to

another value. If the new value is the same as the old value then the update frame will overwrite

it with an indirection to itself—causing chaos. If the old value is a static value, then it may be

in read-only memory, in which case the program will fail with a segmentation fault.

These problems could probably be fixed. One plausible solution would be for the garbage

collector to remove from the stack any update frame whose indirectee is not a thunk. However

solving all of the problems with lazy blackholing adds considerable complexity to our imple-

mentation for very little performance benefit. We have thus made the decision to remove lazy

blackholing from GHC, reverting instead to eager blackholing. The performance implications

of this decision are analysed in Section 12.7.5.



CHAPTER 9

Online Profiling

In this chapter we describe our implementation of online profiling, explaining how the im-

plementation described in Chapter 8 can be extended so that it implements the burst profiling

semantics given in Section 6.4.2.

• We start, in Section 9.1, by describing the way in which the runtime state can be extended

to support online profiling.

• In Section 9.2, we explain how we can extend the compiler to generate code that can

profile itself.

• In Section 9.3, we discuss ways that heap residency can be controlled.

• Finally, in Section 9.4, we explore various technical details.

9.1 Runtime State for Profiling

The burst profiling semantics of Section 6.4.2 extends the runtime state in several ways:

• The runtime state contains a blame count B.

• The runtime state contains a goodness map Π.

• The heap can contain costed indirections B〈α〉x.

• The stack can contain profiled speculation frames ({x}E,B).

120



9.1. Runtime State for Profiling 121

In the subsections that follow, we describe how we have added each of these features to

GHC, causing it to implement the full blame profiling semantics of Section 6.4.2. The burst

profiling semantics also introduces additional rules, which we describe in Section 9.2.

9.1.1 The Blame count B

In the formal semantics of Section 6.4.2 the program state contains an integer count B, repre-

senting the amount of work that should be blamed on the current venture.

Heap usage as a measure of Work

In Section 3.3.2 we said that work could be measured using any reasonable measure of execution

cost. It turns out that the heap allocation is a convenient measure of work. This is for the

following reasons:

• It allows much finer grain measurements than would be possible with any OS time counter.

This is very important, given that a typical speculation is quite small (See Section 12.4.5).

• It can be calculated very cheaply, by simply looking at the Hp register.

• The heap usage of a speculation seems to be a reasonable approximation to its time usage

(See Section 12.4.2).

• It makes it easier for the profiler to bound heap usage as well as wasted time (See Sec-

tion 9.3).

• It is easy to arrange that all recursive function calls allocate heap, and thus that any long-

running computation must allocate heap.

If the processor provides suitable instructions then work can instead be measured as an exact

cycle-count. We discuss this in Section 9.4.4.

Representing Blame using Heap Usage

We represent the blame counter B as the difference between the heap pointer Hp and a base

variable BlameBase:

B = Hp−BlameBase

To add work to B, we subtract it from BlameBase. To save B, we simply calculate B and

store it as an integer. To set B to a particular value B ′, we set BlameBase to Hp−B ′. When

heap is allocated, B will increase automatically, reflecting the fact that work has been done.



122 Chapter 9. Online Profiling

Goodness

D
ep

th
 L

im
it

min goodness saturation goodness

initial depth limit

max depth limit

Figure 9.1: The speculation level for a let is a function of its recorded goodness

9.1.2 The Goodness Map Π

In the formal semantics, the goodness map Π is a function that maps each let identifier x to its

integer goodness. In the implementation, the goodness map Π is implemented in the same way

as the speculation configuration (Section 8.1.3). A static goodness counter variable is created

for every let, and the info table for a speculative return contains a pointer to this variable.

Rather than applying goodToLim to the goodness every time a speculation depth limit is

needed, the depth limit variables are updated only when the goodness might have changed.

Figure 9.1 illustrates a typical goodToLim function. This function is parameterised by four

constants:

min goodness: How bad the goodness can get before the depth limit becomes zero and evalu-

ation becomes entirely lazy.

saturation goodness: The level of goodness beyond which the speculation level stops increas-

ing.

max depth limit: The maximum speculation depth limit that is allowed.

initial depth limit: The speculation limit corresponding to zero goodness. This is the specula-

tion level that every let has when a program starts.1

The limit function does not have to be the shape illustrated in Figure 9.1. This is just one

choice in a large design space. We have chosen to use this shape because it can be implemented

efficiently. We discuss the effect of the tuning parameters in Section 12.3.5.

1Unless a persistent speculation configuration is used—see Section 9.4.3.



9.1. Runtime State for Profiling 123

info ptr 

B (blame)

   (indirectee)

info ptr 

payload 1

payload 2

x (source)

costed indirection
indirectee closure(B)<  >x

info table for source let

Figure 9.2: Heap representation of a costed indirection

9.1.3 Costed Indirections B〈α〉x

In the formal semantics, a costed indirection describes the result of a previous venture:

B〈α〉x

where B is the blame associated with the venture, α is a reference to the result produced by the

venture, and x is the identifier for the let that spawned the venture.

Figure 9.2 illustrates the way that we represent a costed indirection in the heap. The first

word points to a standard info table shared by all costed indirection closures, the second word

contains α (a pointer), the third word contains B (an integer), and the fourth word contains

a pointer to the info table for the let that spawned the venture (x). We see how such costed

indirections are created in Section 9.2.2.

9.1.4 Profiled Speculation Frames ({x}E,B)

In the formal semantics, a profiled speculation frame is a stack frame of the following form:

({x}E,B)

where x is the identifier for the let that spawned the venture, E is the body code for the let,

and B is the blame accumulated so far for the enclosing venture.

Figure 9.3 illustrates the way that profiled speculation frames are represented on the stack.

The stack layout is the same as that of an unprofiled speculation frame, except that the info

pointer points to the generic info table profile info rather than to the info table for the let.

The info table for the let is stored on a separate profile stack, together with the blame B. While

this representation is somewhat awkward, it allows the profiler to transform speculation frames

between their profiled and unprofiled states without disturbing the rest of the stack. We see the

usefulness of this in Sections 9.2.1 and 9.4.1.

Throughout the rest of this chapter, we will assume that the profile stack is a continuous

block of memory with a register ProfTop pointing to the topmost frame. In practice it may be

better to implement it as a linked list with cells allocated from the general heap.



124 Chapter 9. Online Profiling

s

profile info

2 (free var)

3 (free var)

stack

profile stack

specret info ptr

B (blame)

p

({x}(f x 2 3),B) : s Static info

type = specret

size = 2

{x}(f x y z)

entry code

depth limit ptr

23

goodness ptr 53

other stuff ...

s

Figure 9.3: A profiled speculation frame contains its profiling information on a special profiling
stack.

9.2 Implementing the Evaluation Rules

The evaluation rules for the profiling semantics of Section 6.4.2 are significantly more complex

than those for the unprofiled semantics of of Section 4.2. In particular:

• Every rule that does work increments the blame count B

• The evaluation relation is parameterised by a profiling flag p.

• New rules are added to describe profiled speculation of a let.

• New rules are added for demanding the value of a costed indirection.

In the subsections that follow, we describe how these features can be added to the imple-

mentation described in Chapter 8.

9.2.1 Starting a Profiled Speculation

The semantics of Section 6.4.2 has three rules that describe evaluation of a let:

• (LAZY) describes lazy evaluation of a let

• (SPEC1N) describes unprofiled speculation of a let

• (SPEC1P) describes profiled speculation of a let

As in Section 8.1.4, we replace rule (LAZY) with the rule (LAZYX) from Figure 9.4. This

allows us to extend the code from Section 8.1.4 so that it performs a three way branch:2

2See Section 9.4.2 for a more efficient way to implement this branch.



9.2. Implementing the Evaluation Rules 125

(LAZYX) Γ; (let x = E in E ′); s; B; Π −→p Γ[α 7→ E];Oα; ({x}E ′ : s); B; Π
if goodToLim(Π(x)) ≤ specDepth(s)

and α is fresh

Figure 9.4: An alternative lazy rule for let expressions

Code to evaluate let x = E in E ′:

Sp :=Sp − (1 + env size) push a speculative return frame

Sp[0] := 3562 ret info

Sp[1] :=?; Sp[2] :=?; . . . (save vars live in E ′)

SpecDepth :=SpecDepth + 1 increment SpecDepth

BlameBase :=BlameBase− thunkcost add thunk cost to B

branchif (PROFILING) maybe profile three-way branch

branchif (SpecDepth > 3562 limit) 3562 lazy

jump 3562 spec

If profiling is disabled, then the let will behave exactly as described in Section 8.1.4, except

that it will add thunkcost to the current blame, to take account of the work the let does to

allocate a thunk.3 In the semantics, thunkcost is always 1; we explore the performance effect

of different values for thunkcost in Section 12.3.3.

If profiling is enabled, then the let code will call the special runtime system function

maybe profile. If the let should be speculated, then maybe profile jumps to profile start,

otherwise it jumps directly to the lazy code (in this case 3562 lazy). It finds a pointer to this

function in the info table for the let, which has conveniently been left on the top of the stack.

We also take this opportunity to update the depth limit using the current goodness value:4

Code for maybe profile:

Sp[0][limit ][0] := goodToLim(Sp[0][goodness ][0]) update depth limit

branchif (SpecDepth ≤ Sp[0][limit ][0]) profile start profile this speculation

jump Sp[0][lazycode] evaluate the let lazily

3Recall that we can add work to the current blame by subtracting it from BlameBase (Section 9.1.1).



126 Chapter 9. Online Profiling

profile

s

specret info

2 (free var)

3 (free var)

stack

{x}(f x 2 3) : s

conversion

s

profile info

2 (free var)

3 (free var)

stack

profile stack

specret info

B (blame)

({x}(f x 2 3),B) : s

profile stack

ps ps

Figure 9.5: Speculation frames are converted into costed speculation frames

The function profile start converts the end state of rule (SPEC1N) into the end state of

rule (SPEC1P), thus causing the speculation to be profiled. It does the following things:

• Adds thunkcost to the local goodness. This represents the work saved by not performing

a thunk.

• Converts the unprofiled speculation frame ‘{x}E’ into the profiled speculation frame

‘({x}E,B)’. This is illustrated in Figure 9.5.

• Sets the current blame B to zero.

• Jumps to the speculative code for the let (taken from the info table).

Code for profile start:

Sp[0][goodness ][0] := add thunkcost to goodness

Sp[0][goodness ][0] + thunkcost

ProfTop :=ProfTop− 2 Convert to profiled frame

ProfTop[0] :=Sp[0] (specret info)

ProfTop[1] :=Hp−BlameBase (B)

Sp[0] := profile info (overwrite stack info table)

BlameBase :=Hp set B to zero

jump ProfTop[0][speccode] start speculating

4Recall that the goodness field of an info table contains a pointer to a variable that contains the goodness, rather
than the goodness itself (Section 9.1.2).



9.2. Implementing the Evaluation Rules 127

(SPEC2X) Γ;Oα; (({x}E,B ′) : s); −→p Γ[α′ 7→ B〈α〉x];Oα′; ({x}E : s);
B; Π B′; Π[x 7→ Π(x)−B]

where α′ is fresh

Figure 9.6: An Alternative rule for completing a profiled speculation

9.2.2 Completing a Profiled Speculation

When a profiled speculation finishes, control will return to the generic profile info entry

point. This code will behave as described by rule (SPEC2X) in Figure 9.6. We can observe that

rule (SPEC2X) followed by rule (SPEC2N) is equivalent to rule (SPEC2P).

Rule (SPEC2X) wraps the returned reference in a costed indirection, restores the saved value

of B, converts the profiled speculation frame back into an unprofiled speculation frame, updates

the goodness counter, and then returns the newly created costed indirection to the unprofiled

speculation frame:

Return code for profile info:

Hp[0] := blamedesc info create a costed indirection B〈α〉x

Hp[1] :=Node α (indirectee)

Hp[2] :=Hp−BlameBase B (blame)

Hp[3] :=ProfTop[0] x (source)

Node :=Hp

Hp :=Hp + 4

BlameBase :=Hp−ProfTop[1] restore blame to saved value

Sp[0] :=ProfTop[0] Convert to unprofiled frame

ProfTop :=ProfTop + 2

Sp[0][goodness ][0] := subtract B from goodness

Sp[0][goodness ][0]−Node[2]

jump Sp[0] return to unprofiled frame

9.2.3 Demanding a Costed Indirection

The entry code for a costed indirection behaves like rules (CSTN) and (CSTP). To decide which

of these rules to apply, the entry code must determine whether the current venture is being



128 Chapter 9. Online Profiling

profiled. It does this by comparing the number of frames on the profile stack with SpecDepth.

If we assume the existence of a profile stack base register ProfBot then we can obtain the

number of frames on the stack by dividing the size of the stack by the size of a stack frame. The

branch can be written as follows:

Entry code for a costed indirection:

branchif ((ProfBot−ProfTop)/2 < SpecDepth) not profiled

costind cstn

jump costind cstp profiled

If the current venture is not being profiled, then the entry code jumps to costind cstn,

which behaves like rule (CSTN). Note that this code is identical to that used for a normal indi-

rection (Section 7.4.2):

Code for costind cstn:

Node :=Node[1] demand indirectee α

jump Node[0]

If the current venture is being profiled, then the the entry code jumps to costind cstp,

which behaves like rule (CSTP). Any blame in the costed indirection is transferred into the

current venture. This blame is added to the goodness for the costed indirection’s source, and

the costed indirection is converted into a normal indirection. Once this is done, the costed

indirection enters the indirectee α.

Code for costind cstp:

BlameBase :=BlameBase−Node[2] add B ′ to current blame

Node[3][goodness ][0] := add B ′ to goodness

Node[3][goodness ][0] + Node[2]

Node[0] := ind info convert to a normal indirection

Node :=Node[1] enter indirectee

jump Node[0]

In Section 9.4.1 we extend this implementation to support profile chaining.



9.3. Heap Profiling 129

9.3 Heap Profiling

The theory presented in Chapters 5 and 6 assumes that any difference in performance between

Optimistic Evaluation and Lazy Evaluation is due to different amounts of work being done

during evaluation. This neglects the effect of heap residency: the amount of reachable data that

is present in the heap.

9.3.1 Why Heap Residency is Important

Garbage collection can take up a large proportion of a program’s runtime (Section 12.6.4). It is

thus important that we take account of any effects that Optimistic Evaluation might have on the

cost of garbage collection. If the heap residency increases moderately, then the effects are not

particularly dramatic; most modern garbage collectors reduce their collection frequency as the

heap residency increases, ensuring that garbage collection takes up a fairly constant proportion

of runtime [App87, Wil92]. However this approach breaks down if the heap size increases

beyond the available physical memory. In this case, the program will slow down dramatically

because the garbage collector must wait for the virtual memory system to fetch pages from disk.

9.3.2 Bounding Extra Heap Residency

We have implemented a crude mechanism that bounds the extent to which Optimistic Evalua-

tion can increase the heap residency of a program. The garbage collector disables speculation

completely if the heap residency rises above a user-defined limit, MAXHEAP . In the worst

case, all heap allocation up to that point will have been due to speculation, and thus the max-

imum heap residency over the complete program run will be the residency that the program

would have had under Lazy Evaluation, plus MAXHEAP .

The safety of this technique relies on the fact that Optimistic Evaluation cannot cause any

further increases in residency once speculation has been disabled. If the right hand side of a

let is evaluated speculatively, then every closure reachable from the result must either have

been allocated during the speculation or have been reachable from the free variables of the

expression evaluated. If the let had instead been evaluated lazily, then the thunk produced

would have contained these same free variables. It thus follows that any extra closures made

reachable by a speculation must have been allocated during that speculation.

Although this approach is effective, it is somewhat brutal. Speculation can be disabled even

if it has not caused any increase in heap residency at all. It also incumbent on the user to set

MAXHEAP to an appropriate value, given the available memory on their machine. We believe

that it should be possible to produce a better solution than this; however we leave the design of

such a system for further work.



130 Chapter 9. Online Profiling

9.3.3 Blaming A Let for Extra Heap Residency

Rather than waiting for the mechanism described in Section 9.3.2 to disable speculation com-

pletely, it can be beneficial to punish let expressions that seem to be increasing heap residency.

One way to do this is to arrange that, whenever the garbage collector sees a costed indirec-

tion in the heap, it multiplies the attached blame by an appropriate scaling factor5 and subtracts

it from the goodness of the let that produced it. It should be noted that this technique is purely

a heuristic and is not guaranteed to detect all additional heap residency. To see why, consider

the following example:

let x = allocate lots of heap in

let y = (case x of P z → True) in

(x, 4)

When x is speculated, it allocates a large number of closures in the heap, all of which are

reachable from its result. When y is speculated, it will demand x and take the blame for x’s

allocation. When the next garbage collection takes place, the garbage collector will not see any

costed indirections: x’s costed indirection will have been converted into a normal indirection,

and y’s costed indirection will not be reachable. The garbage collector will thus not be aware

that speculation has increased the heap residency.

We can envisage several ways in which this heuristic could be improved. One way would

be to arrange that, when a costed indirection is demanded, it is not converted into a normal

indirection (Section 9.2.3), but is instead converted into a special form of indirection that records

the fact that it was the result of a speculation. This would allow the garbage collector to calculate

the amount of heap that was reachable only through the results of speculations (c.f. [RR96b]).

9.3.4 Heap Wasted by Laziness

If a let is evaluated lazily rather than speculatively then it may continue to hold onto free

variables that would not have been referenced by the result of a speculative evaluation. It is very

difficult to accurately measure the effect that this has [RR96a], however we have experimented

with a rough approximation.

We extended the garbage collector to credit a let with a fixed amount of saved work every

time a thunk for that let was garbage collected. The motivation for this idea was that, if there

are a large number of thunks in the heap for a particular let, then it may mean that these thunks

form a chain that would not have appeared under speculative evaluation (see Section 12.6). The

profiler thus adds some saved work to the let that produced the thunks in an attempt to stop the

chain growing longer. We discuss the performance of this technique in Section 12.6.5.

5Which we discuss in Section 12.6.5



9.4. Further Details 131

(CSTN) Γ[α 7→ B ′〈α′〉x];}α; s; −→p Γ[α 7→ 〈(α′)〉];}α′; chainProf (B, s);
B; Π B′; Π

if ¬profiled(s)

Figure 9.7: Chain profiling uses this revised version of (CSTN)

9.4 Further Details

In this section we explore various ways in which the implementation described in Sections 9.1

and 9.2 can be extended.

9.4.1 Profile Chaining

In Section 6.4.3 we presented the concept of profile chaining. Profile chaining replaces the

(CSTN) rule with the rule given in Figure 9.7. Under this rule, if a costed indirection is used

by an unprofiled speculation, it applies the function chainProf to the stack, converting the

innermost speculation frame into a profiled speculation frame.

The function chainProf is implemented as a runtime system function that walks down the

stack and converts the innermost speculation frame into a profiled speculation frame in the

manner described in Section 9.2.1.

If profile chaining was implemented exactly as described in the semantics then it could cause

a very large number of ventures to be profiled. Consider for example the following program:

f x =

let y = x + 1 in

if y > 1000 then 4 else f y

If speculation of y is ever profiled, then chaining will cause every subsequent speculation of y

to also be profiled. This will cause the program to run very slowly.

We avoid this problem by maintaining a limit on the number of chaining operations that any

given unit of blame can pass through before chaining stops. A chain count field is added to

every costed indirection and every profiled speculation frame. Every time a costed indirection

is created, it will take on the chain count of the profiled speculation that created it. Every time

chainProf is applied, the chain count for the newly profiled speculation will be one greater than

that of the costed indirection that it used. If the chain count rises above a defined chain limit

then no further chaining operations will be applied and the costed indirection will revert to the

behaviour described in Section 9.2.3.

We describe the performance effect of varying the chain limit in Section 12.3.7.



132 Chapter 9. Online Profiling

9.4.2 Encoding the Profile Flag in SpecDepth

In Section 9.2.1 we used the following three way branch to decide how a let should be evalu-

ated:

Code for a three way branch:

branchif (PROFILING) maybe profile three-way branch

branchif (SpecDepth > 3562 limit) 3562 lazy

jump 3562 spec

In the common case of a let being speculated and unprofiled, this code will involve two

branches. We can reduce this to one branch by encoding the profiling flag inside the speculation

depth, giving a combined SpecDepthProf register:

SpecDepthProf =







specDepth(s) if p is off

specDepth(s) + PROFILE ON if p is on

where PROFILE ON is a large constant, greater than the maximum allowable speculation

depth. Given this encoding, we can retrieve the speculation depth and profile flag as follows:

specDepth(s) = SpecDepthProf mod PROFILE ON

p =







on if SpecDepthProf > PROFILE ON

off otherwise

This encoding makes it possible for us to combine the test for speculation and profiling as

follows:

Branch code for a burst-profiled let expression:

branchif (SpecDepth ≤ 3562 limit) 3562 spec

branchif (SpecDepth < PROFILE ON ) 3562 lazy

jump maybe profile

This code will detect the most common case, speculated and unprofiled, with only one

branch.



9.4. Further Details 133

9.4.3 Warming up the Profiler

Variable-Frequency Profiling

Rather than having a fixed profiling frequency, it can be beneficial for the profiler to vary its

profiling frequency. Indeed our implementation varies its profiling frequency according to how

confident it is about its speculation configuration. The profiler starts out with no confidence

in its speculation configuration and so profiles every period. If a profiled period causes no

significant changes to the speculation configuration then the profiler will increase its confidence

and reduce its profiling frequency. If however a profiled period causes a significant change to

the speculation configuration (e.g. it found lots of wasted work) or a speculation was aborted,

then the profiler will fall back to profiling every period.

Warming up Gradually

Continuing this philosophy, no let is allowed to execute speculatively in an unprofiled period

until it has been observed to behave well when being speculated during a profiled period. All

lets start with a depth limit of zero. A let is not given a positive depth limit until the first time

it is profiled. When the let is first profiled, the maybe profile function will set the depth limit

to the value corresponding to its goodness (See Section 9.2.1).

Persistent State

One way to reduce warm-up times is to make the speculation configuration for a program persis-

tent. When a program completes, its speculation configuration is written into a file in the users

home directory (e.g. /home/rje33/.opteval/[progname]). If the program is run again, then

this speculation configuration will be reloaded and the warmup time can be avoided.

We implemented this persistent state scheme in a previous implementation of Optimistic

Evaluation and found that it had relatively little effect on long-running programs, but signifi-

cantly improved the performance of programs that run for a very short time.6

9.4.4 Representing Blame as a Cycle Count

Rather than measuring work by heap usage, another alternative is to measure the number of

elapsed processor cycles. Some Intel processors provide an instruction called rdtsc [int97]

that allows a program to discover the number of processor cycles that have elapsed since the

processor was turned on.

6Unfortunately, it also upset several referees, who complained that, by using persistent state, our profiler could
not really be considered to be an “online profiler”. We thus decided to avoid giving benchmark results that used
this feature, and did not include this feature in subsequent implementations.



134 Chapter 9. Online Profiling

We have produced a version of our profiler that measures work using rdtsc rather than with

heap allocation. There are several difficulties with this approach. One particular problem is that

it can be hard to distinguish between cycles that constitute the work done by a speculation,

and cycles that took place in another process, if a context switch took place during the spec-

ulation. Another problem is that the number of cycles required for a speculation is extremely

unpredictable, making it quite hard for to debug the implementation or to track changes to its

performance. We discuss the performance of rdtsc profiling in Section 12.7.2.



CHAPTER 10

Abortion

In this chapter we describe our implementation of abortion:

• In Section 10.1 we describe the way in which the runtime system decides when a venture

should be aborted.

• In Section 10.2 we describe how a venture is aborted.

10.1 When to Abort

It is important that our runtime system limits the amount of time that a speculation can run for

before it is aborted. In this section we describe the way in which our implementation does this.

10.1.1 Sample Points

In Section 6.3.1 we presented a bounded speculation semantics that places a limit on the amount

of blame that can be accumulated by active speculations. In Section 6.3.3 we argued that this

semantics allows us to bound the worst case performance of a program.

The semantics of Section 6.3.1 assumes that all speculations are being profiled; however

the periodic profiling scheme described in Chapter 9 will only profile a small proportion of

speculations. We work around this problem by ensuring that all long-running speculations are

profiled. At periodic sample points, the runtime system walks down the stack and converts all

unprofiled speculation frames into profiled speculation frames. This uses the same mechanism

as described in Section 9.2.1. All profiled speculation frames created in this way will start off

being blamed for no work and will accumulate blame from that point onwards.

135



136 Chapter 10. Abortion

The runtime system also uses this opportunity to check that the sum of all blame attributed

to active profiled speculations is less than MAXBLAME , using a literal implementation of the

activeBlame function from Section 6.3.1.

10.1.2 Heap/Stack Checks

One detail of GHC that we have ignored so far is heap and stack checks. As we described in

Section 7.3.1, the GHC runtime maintains a Hp register that points to the next free word in the

heap. Whenever the program wishes to create a closure in the heap, it allocates it a range of

addresses starting at Hp and then adds the size of the closure to Hp, so that Hp points to the

next free word once again. Unfortunately, heap is not an infinite resource; it is thus important

that a program check that there is heap available before it allocates a new closure. The same

issues apply to the stack pointer Sp; it is essential that the program checks that there is stack

available before it attempts to push a new frame onto the stack.

In the code we gave in Chapters 7, 8, and 9 we omitted such heap and stack checks for rea-

sons of simplicity. However, a real program will include heap and stack checks at the beginning

of the entry code for every closure, return frame, or function. The stack check will compare

Hp and Sp against the limit registers HpLim and SpLim. If the heap and stack pointers are

within safe limits, then the program will continue; however, if the heap and stack pointers are

outside safe limits then the program will call into the runtime system so that more heap or stack

can be allocated.

It is at these points that the runtime system ensures that all active speculations are profiled,

and checks to see if abortion should take place.

10.1.3 Paused States

Before the program calls into the runtime system, it first puts its state into a standard form

known as a paused state. A paused state is one that can be correctly resumed by entering the

closure pointed to by the Node register (known as the current closure). In the formal semantics,

a paused state is a state of the following form:

Γ;}α; s

where α is a reference to the current closure.

If a heap/stack check is at the beginning of the entry code for a closure, then the program is

already in a paused state, and so the program can call into the runtime system directly.

Things are slightly more complicated if the heap/stack check is at the beginning of the

entry code for a return frame. If Lazy Evaluation is implemented in the manner described

in Section 8.1.4 then it is not safe to simply replace a return command Oα with a closure



10.2. How to Abort 137

s

caseret info

Node closure

s

Node suspend_info

payload 1

payload 2

    pointer

caseret_info

payload 1

payload 2

closure

{{P }i 0
n

{{P }i 0
n

Figure 10.1: Moving a stack frame into a suspension closure

demanding command }α as α may reference a thunk that should not be evaluated. We thus

push a special frame onto the stack that will return α when it is returned to, and set Node to

point to a generic value closure that will return immediately when entered.

If a heap/stack check is at the beginning of the entry code for a function then the program

can pause itself by pushing a function application frame containing its arguments and setting

Node to point to the function that was just entered.

10.2 How to Abort

In this section we describe how the runtime system actually goes about aborting a speculation.

The implementation described here has much in common with the implementation that already

existed in GHC for the implementation of asynchronous exceptions [MPMR01]. In the subsec-

tions that follow, we describe our implementation of abortion by comparing it to the abortion

semantics of Section 6.3.2.

10.2.1 Pause a State: (!EXP) and (!RET)

As we described in Section 10.1.3, a program will pause itself before entering the runtime

system. The abortion system thus does not need to implement an equivalent of (!EXP) or

(!RET).

10.2.2 Suspend a Stack Frame: (!ABORT)

If the topmost stack frame is not a speculation frame or an update frame, then the contents of

the stack frame is transferred into a suspension closure in the heap. Figure 10.1 illustrates the

way that a suspension closure α∠l is implemented. The info table is the standard info table



138 Chapter 10. Abortion

s

info A

payload 1

payload 2

info B

payload 3

payload 4

Node

info A

payload 1

payload 2

info B

payload 3

payload 4

closure ptr

suspend_info

s

Node

enter node

suspend_info

closure ptr

info A

payload 1

payload 2

info B

payload 3

payload 4

closure ptr

ap_stack_info

ap_stack_info

closure ptrupdate_info

updatee

update_info

updatee

closure 

closure 

Figure 10.2: Entering a suspension closure causes its contents to be copied onto the stack.

suspend info, the second word points to the returned closure α, and the rest of the payload

contains the stack frame l.

The real implementation is rather more complex than this. In particular, it will group sev-

eral sequential stack frames together into one suspension closure rather than creating a new

suspension for every frame.

10.2.3 Resume a Suspended Stack Frame: (RESUME)

If a suspension closure α∠l is entered, then the entry code for the suspension closure will push

an update frame, copy its suspended stack frame l back onto the stack, and then enter the closure

α. Abortion may create chains of suspension closures, linked together by their α fields. When

the suspension at the start of the chain is entered, this will cause all of the suspensions in the

chain to copy their frames back onto the stack. This is illustrated by Figure 10.2.

10.2.4 Abort an Update Frame: (!UPD)

If the topmost stack frame is an update frame then the abortion system behaves like rule (!UPD).

The closure referenced by the updatee α′ is overwritten with an indirection to the current closure

α. This is illustrated by Figure 10.3.



10.2. How to Abort 139

s

update info

Node closure x’

s

updatetee x

thunk_info

payload

Node closure x’

IND_info

indirectee

{#x

Figure 10.3: Aborting an update frame

If this is the outermost speculation frame we wish to abort:
(!END) Γ;}α; ({x}E,B ′) : s; Ã Γ;Oα; ({x}E,B ′) : s;

B; Π B; Π[x 7→ Π(x) + Babort]

If we wish to abort other speculation frames on the stack:
(!MORE) Γ;}α; ({x}E,B ′) : s; Ã Γ[α′ 7→ B〈α〉x, α′′ 7→ E[α′/x]];}α′′; s;

B; Π B′; Π[x 7→ Π(x) + B + Babort]
where α′ and α′′ are new

Figure 10.4: Alternative rules for aborting a speculation frame

10.2.5 Abort a Profiled Speculation: (!SPEC)

The way the abortion system treats a speculation frame depends on whether the speculation

frame is the last speculation frame that needs to be aborted. The abortion system behaves as if

rule (!SPEC) was replaced with rules (!END) and (!MORE) from Figure 10.4. Neither of these

rules change the behaviour of abortion. Rule (!SPEC) is equivalent to (!END) followed by rule

(SPEC2) from the semantics of Section 6.4.2. Similarly, rule (!MORE) is equivalent to rule

(!SPEC) followed by rule (!EXP).

If the topmost stack frame describes the outermost speculation that needs to be aborted then

the abortion system will behave like rule (!END). It will subtract Babort from the goodness and

then return to the body of the speculated let. This will cause the program to continue with

whatever it was planning to do once the speculation had finished.

If there are other speculation frames below this one that also need to be aborted then the

abortion system will behave like rule (!MORE). It will update the goodness and create a costed

indirection in the same way as would be done if the speculation had completed normally (Sec-



140 Chapter 10. Abortion

s

specret info

Node closure 

s

Node lazysusp_info

payload 1

payload 2

  ’ (closure ptr)

specret_info

payload 1

payload 2{{x}E

E[   ’/x]{ info ptr 

B

   (indirectee)

x (source)

costed indirection

(B)<  >x’=

Figure 10.5: Aborting a speculative return frame

tion 9.2.2). It will then add Babort to the blame to take account of the work done during abortion.

Finally, it will create a thunk α′′ in the heap, and set this to be the current closure.

When α′′ is entered, it will push an update frame onto the stack and then evaluate the body

E[α′/x] of the let. We illustrate the structure of α′′ in Figure 10.5. The closure α′′ is very

similar to a suspension frame, as described in Section 10.2.2. The info pointer points to the

special info table lazy susp info, the second word holds the costed indirection reference α′

and the other words hold the speculative return frame {x}E.

If lazy susp info is entered, it will push an update frame, copy the speculation frame back

onto the stack, and then return α′ to it. The behaviour is thus the same as if α′′ was a thunk

whose body was E[α′/x]. Note that, unlike a stack suspension, α′′ will not demand the value of

α′.

Every time a speculation frame is removed from the stack, the speculation depth is reduced.

We thus take case to decrement SpecDepth whenever we remove a speculation frame from

the stack, and to increment SpecDepth whenever we restore a speculation frame back onto

the stack. In particular, the code for a lazy suspension must increment SpecDepth before

copying its speculation frame back onto the stack, even though it returns to the speculation

frame immediately.



CHAPTER 11

Debugging

Debugging has long been recognised as one of the greatest weaknesses of lazy functional lan-

guages [Wad98]. Conventional (strict, imperative) languages almost invariably use the “stop,

examine, continue” paradigm (Section 11.1), but this approach does not work well for Lazy

Evaluation. This difficulty has led to fascinating research in novel debugging techniques (Sec-

tion 13.7).

In this chapter, we argue that conventional debugging techniques have perhaps been dis-

missed too quickly. We demonstrate that Optimistic Evaluation, combined with transient tail

frames allow conventional debugging techniques to be successfully applied. Optimistic Eval-

uation significantly reduces the number of thunks built, and thus also their confusing affect

on debugging, while transient tail frames allow tail-calls to be visible to the debugger without

affecting space complexity (Section 11.3).

We have implemented these ideas in HsDebug, an addition to the GHC tool set (Sec-

tion 11.5). Our debugger is, by design, “cheap and cheerful”. Its results are not as predictable,

nor as user-friendly, as those of (say) Hat [WCBR01]—but they come cheap. HsDebug can

debug an entirely un-instrumented program, and it can do a lot better if the compiler deposits

modest debug information (much like a conventional debugger). Furthermore, an arbitrary sub-

set of the program can be compiled with debug information—in particular, the libraries need

not be.

141



142 Chapter 11. Debugging

11.1 How the Dark Side Do It

A debugger has long been one of the standard tools that is provided with any strict, impera-

tive, programming language implementation. The vast majority of these debuggers follow a

“stop, examine, continue” model of debugging, as used by GDB [SP91]. Such debuggers are

characterised by the following features:

• The programmer can request that execution stop at a breakpoint. A breakpoint may cor-

respond to a point in the source code of the program. Alternatively, it may be the point at

which some logical property becomes true.

• When a program is in its stopped state, the programmer can examine the state of the

program. From this state, the programmer is able to obtain an understanding of how the

program came to be in the state that it is.

• The programmer can call functions within the program and can directly manipulate the

program state.

• Once the programmer has finished examining the state and adjusting their breakpoints,

they can request that execution continues until the next breakpoint is hit.

One of the most important pieces of information that a debugger allows the programmer

to observe is the call stack. In a strict language, the nesting of frames on the call stack will

correspond directly to the nesting of function calls in the program source code. Consider the

following program:
f x = let y = 3 ‘div’ x in Just y

g = case f 0 of Just y → h y

If this program is executed eagerly, then the call stack will be as illustrated in Figure 11.1.

When the division by zero error occurs, the stack will clearly show that this took place inside

the evaluation of y, in the call to f made from g. It is likely that the stack will also hold the

argument that f was called with.



11.2. Failing to Debug Lazy Programs 143

divZeroError

div

y

f

g

Figure 11.1: Strict Evaluation

f

g h something deep within h

y div divZeroError

Figure 11.2: Lazy Evaluation with Tail Call Elimination

11.2 Failing to Debug Lazy Programs

What happens if we try using this style of debugging for a non-strict functional language such

as Haskell [Pey03]? If the same program given earlier were to be evaluated in a typical lazy

language implementation, then the call stack would be as illustrated in Figure 11.2. Lazy Eval-

uation has scrambled the execution order and tail call elimination has removed stack frames that

would have provided useful information. The result is a mess that is very difficult to debug.

This clash between “stop, examine, continue” debugging and non-strict languages is con-

sidered to be so severe that, as far as we know, nobody has ever made a serious attempt to

implement such a debugger for a non-strict language. In many ways, this rejection of con-

ventional debugging models has been a good thing, as it has led to the development of several

extremely powerful alternative approaches (see Section 13.7). However, we believe that conven-

tional debugging techniques should not be written off. In the sections that follow, we explain a

series of tweaks to Lazy Evaluation that have allowed us to produce an effective “stop, examine,

continue” debugger for Haskell.

11.3 Eliminating Tail Call Elimination

One simple way to increase the amount of information available from stacks is to disable tail-

call elimination. This provides us with extra stack frames that tell us more about the call chain

that has taken place. This idea is not new; strict languages that implement tail call elimination

often allow it to be disabled when a program is being debugged. For example, the CMU Com-



144 Chapter 11. Debugging

tail call

tail call

tail call

tail call

tail call

case return

case return

case return

case return

Figure 11.3: Tail call frames disappear if we have too many

mon Lisp [Mac92] environment disables tail call elimination if the debug level is set greater

that “2”.

While turning off tail call elimination makes debugging easier, it will also cause some pro-

grams to use massively more stack space than they would otherwise use. A tail recursive loop

that would normally consume no stack space will now push a stack frame on every iteration.

Fortunately, there is no need for a program to fail with an “out of stack” error if it has a

stack full of tail call return frames. The only purpose of tail call return frames is decorative; it

is thus perfectly okay to delete them. Our solution is thus to delete all tail frames every time we

run out of stack or perform a garbage collection. Figure 11.3 illustrates this concept.

It is important that we delete tail frames at a garbage collection, even if we are not short on

stack. This is because our tails frames record all the arguments passed to a call, and so may

be holding onto heap objects that would otherwise not be reachable. There are many ways in

which this could be refined: for example, we could arrange to only delete tail frames if stack use

or heap residency were above a pre-determined threshold, or we could arrange to only delete a

selected subset of the tail frames.

11.4 Optimistic Evaluation

Disabling tail call elimination makes debugging significantly easier, but it does not quite bring

us to the point at which a “stop, examine, continue” debugger becomes usable. Lazy Evaluation

will still scramble the evaluation order, causing expressions to be evaluated on stacks that are

different to the stack in which the expression was defined.

Fortunately, Optimistic Evaluation causes a program to be evaluated largely eagerly, and so

significantly reduces the scrambling effect of Lazy Evaluation. When a program is being de-

bugged, it is likely that the programmer cares less about speed and more about clarity, compared

to a normal execution. Optimistic Evaluation thus uses different default tuning parameters when



11.5. HsDebug 145

running in debug mode, causing it to have worse performance, but also causing it to use Lazy

Evaluation less often.

Although we have implemented our debugger on top of Optimistic Evaluation, the same

techniques could also be applied to Eager Haskell (Section 13.2).

11.5 HsDebug

HsDebug is a “stop, examine, continue” debugger for Haskell. It has been implemented as part

of GHC and currently lives on the Optimistic Evaluation branch in the GHC public CVS. While

HsDebug has a long way to go before it becomes as powerful a tool as GDB, it is already very

useful. The current feature set includes the following:

• Any program compilable with GHC can be debugged

• Breakpoints can be set in any Haskell function

• The original arguments of all calls on the stack can be inspected

• Closures on the heap can be pretty printed

• Functions and thunks can be pretty printed—giving their source location, and free vari-

ables.

• Exceptions can be intercepted

• The program can be single-stepped

All in all, HsDebug feels very similar to GDB and should feel familiar to anyone who is

already comfortable with GDB. HsDebug is currently very rough round the edges, and source

level debugging is currently incomplete, but it has already shown itself to be a useful tool.

Programs compiled for HsDebug run slightly slower than normal. This is partly due to

the need to turn off some of the more confusing code transformations and partly due to the

extra overhead of pushing and removing tail frames. We discuss performance further in Sec-

tion 12.7.4.

We give a log from a real HsDebug session in Appendix D.



Part IV

Conclusions

146



CHAPTER 12

Results

How well does Optimistic Evaluation work in practice? What is the performance effect of

adjusting the many tunable parameters? In this chapter we attempt to answer these questions.

• We start, in Section 12.1, by explaining how the tests described in this chapter were

carried out.

• In Section 12.2 we analyse the performance of our fastest version of Optimistic Evalua-

tion.

• In Section 12.3 we look at the online profiler, and explore the performance effect of

several changes that can be made to it.

• In Section 12.4 we present various statistics that give an insight into the way that Opti-

mistic Evaluation works.

• In Section 12.5 we look at semi-tagging, and analyse its effect on both Optimistic Evalu-

ation and Lazy Evaluation.

• In Section 12.6 we look at the effect of Optimistic Evaluation on heap usage.

• Finally, in Section 12.7, we collect together various statistics that do not seem to belong

anywhere else.

147



148 Chapter 12. Results

Figure 12.1: Sizes of Benchmark Programs

12.1 How the Tests were Carried Out

In this section we explain how we carried out our tests. Section 12.1.1 discusses the benchmark

programs we used, while Section 12.1.2 explains the way in which we ran them.

12.1.1 The Benchmarks

The benchmarks programs we chose are a selection of the programs from the NoFib [Par92]

benchmark suite. NoFib is the standard benchmark suite for Haskell compilers and the programs

from this set have been used to evaluate the performance of a number of other systems. Most of

the programs we use are from the real subset of the suite, with a few taken from the spectral

subset. For some graphs we have also added the GHC compiler itself. While GHC is not part

of NoFib, it is probably the biggest and most widely used Haskell program in existence and so

it is an interesting program to test.

Figure 12.1 shows the size of each of our benchmark programs. GHC is huge, at around

150,000 lines of code. anna is also fairly large, at 9,000 lines of code. The other programs are

significantly smaller, with an average of 935 lines of code each. Despite their small sizes, many

of these programs are quite realistic; indeed several of them are the kernels of large applications.

The default runtimes for the NoFib programs are very variable and typically very short. We

extended the input data for our chosen programs so that they all run for around fifteen seconds.

This gives our online profiler sufficient time to warm up and so gives a fairer impression of

performance. We could have achieved similar performance on smaller benchmarks by using a

persistent speculation configuration, however we chose not to do this for the reasons outlined in

Section 9.4.3.

The programs we used as benchmarks were selected before any performance results had

been obtained for them. Programs were selected according to the ease with which we could



12.2. Performance 149

make them run for around fifteen seconds, and not based on any other criteria.1

12.1.2 The Testing Procedure

All tests were run on a machine with a 750Mhz Pentium III processor and 256Mbytes of mem-

ory. We ran each test once as a warm-up and then five more times. The published results are the

average of the five test runs. In order to makes the performance more consistent, we disabled

pre-emptive thread switching (using the -C0 flag to the runtime system).

All runtimes were measured using the gettimeofday system call under Linux. When tests

were run we ensured that no other software was running on the machine.

Performance results are given as a relative runtime. This is the runtime of a benchmark,

expressed as a percentage of the runtime of the same benchmark with a different evaluator. In

most cases, runtimes will be expressed relative to our best performing version of Optimistic

Evaluation. If runtimes are expressed relative to a different evaluator, then this will be stated in

the subtitle of the graph.

12.2 Performance

12.2.1 Runtime

Figure 12.2 shows the effect that Optimistic Evaluation has on run time. The height of a column

in the graph represents the amount of time that that benchmark took to run under Optimistic

Evaluation, expressed as a proportion of the time that the benchmark took to run under normal

GHC. The GHC compiler that we compare against is the version that our implementation of

Optimistic Evaluation forked from. Both compilers were run with all optimisations enabled,

including a strictness analyser.

These results are very encouraging. The average speedup is just under 20% and several

programs speed up by 40% or more. Perhaps more critically, no program slows down by more

than 7%; indeed only one program slows down by more than 1% and only three programs slow

down at all. We explore the reasons for these slowdowns in Section 12.2.2.

As one would expect, the results depend on the nature of the program. If a program has a

strict inner loop that the strictness analyser solves, then we have little room for improvement.

Similarly, if the inner loop in inherently lazy, then there is nothing we can do to improve things,

and indeed the extra overhead of having a branch on every let will slow things down. In the

case of rsa Optimistic Evaluation had virtually no effect because rsa spends almost all of its

time inside a library written in C.

1The only exception to this is fem which we decided not to use because its performance was very variable
when evaluated using normal GHC.



150 Chapter 12. Results

Figure 12.2: Benchmark run-time relative to normal GHC

The observed performance improvement is significantly greater than the error margin of

the recorded runtimes. Of the 5 runs done for each program, the maximum recorded deviation

from the mean runtime was below 1% in all but 5 benchmarks, and the geometric mean of the

maximum deviations was only 0.56%.

12.2.2 The Overheads of Optimistic Evaluation

Optimistic Evaluation imposes considerable overheads on evaluation. The greatest of these is

the cost of doing a test and branch on every let expression, but the cost of profiling is also sig-

nificant. Figure 12.3 shows the overhead imposed by these features. For each benchmark, the

respective column shows the extent to which that program slows down if it is compiled for Op-

timistic Evaluation, but is evaluated with a speculation configuration that evaluates everything

lazily. For convenience, the origin of this graph is placed at 100%. The height of a column is

thus the additional time taken.

As one would expect, all programs run more slowly than under normal GHC. The program

that runs slowest is parser; slowing down by over 30%. Given this poor baseline, the profiler

did well to achieve only a 7% slowdown for parser in Figure 12.2.

12.2.3 Code Size

Figure 12.4 shows the effect that Optimistic Evaluation has on code size. Programs increase in

size significantly (36% on average). This is partly due to the need to generate lazy and eager



12.3. Profiling 151

Figure 12.3: Performance Overhead of Optimistic Evaluation, when Evaluating Entirely Lazily

Figure 12.4: Increase in Code Size due to Optimistic Evaluation

versions of expressions, partly due to the effect of semi-tagging, and also partly due to various

aspects of the implementation that we have not described in this thesis (in particular, the way

we deal with vectored returns). We believe that this code bloat can be significantly reduced, but

have yet to demonstrate this.

12.3 Profiling

12.3.1 What Happens if We Turn Profiling Off?

Figures 12.5 and 12.6 illustrate the performance effect of turning off profiling. The height of

each column represents the amount of time taken when profiling is turned off, relative to the

amount of time taken when it is turned on. Although profiling is turned off, abortion is still

enabled; the evaluator thus behaves similarly to Eager Haskell (see Section 13.2).

As one can see, profiling is not always a win. Two programs speed up significantly if

profiling is turned off; these are programs for which the profiler was being overly cautious.



152 Chapter 12. Results

Similarly, four programs speed up slightly; these are programs for which the profiler was not

needing to do much and so was just wasting time.

At the other end of the spectrum, some programs slow down massively if the profiler is not

enabled. constraints slows down by a factor of over 150, while fulsom, hpg and infer also

slow down by large amounts.

Figure 12.7 shows the performance of unprofiled Optimistic Evaluation relative to normal

GHC. Although the average performance is a 34% slowdown, most of this is due to four pro-

grams. If we exclude the four slowest programs then we get an average speedup of 13%.

12.3.2 How Often should We Profile?

Although our idealised model considers profiling to be random, our implementation is actually

periodic.2 The rate of profiling is governed by a variable called the skip count. The skip

count is the number of unprofiled periods that take place between consecutive profiled periods

(Illustrated by Figure 12.8). If the skip count is zero, then all periods are profiled.

As we explained in Section 9.4.3, our profiler profiles a program at a variable rate. The

profiler thus has two variables that can be adjusted:

• Max Skip Count: The maximum allowed value for the skip count.

• Skip Count Increment: The amount that is added to the skip count if a profiled period

passes without any adjustment needing to be made to the speculation configuration.

Figure 12.9 shows the effect of varying the maximum skip count. The vertical axis is the

geometric mean of the relative runtimes of all the benchmark programs. Runtimes are taken

relative to the case in which the maximum skip count is 200 (the default value). We can see

from this graph that very low skip counts cause the program to run very slowly, because a large

proportion of time is taken up with profiling. If the program is profiled constantly (skip count

of zero) then the average performance is reduced by over 25%.

Figure 12.10 gives more detail. In this graph a separate curve is drawn for each benchmark.

There are too many benchmarks for it to be practical to give a key; however this graph should

give an impression of the general spread of results. We can see from this graph that most

programs have fairly consistent performance once the maximum skip count is greater than 32.

The exceptions are bspt and parser which can slow down by as much as 11% for some values.

Figure 12.11 shows the effect of varying the skip count increment. The vertical axis is again

the geometric mean of the relative runtimes of all the benchmark programs, this time taken

relative to the case in which the skip count increment is 3. There is less of a definite pattern

here; no reasonable value of skip count increment varies the performance by more than 2.5%.

2Given that the profiling frequency is constantly varying, we believe that it is unlikely that any program will
have a long term correlation with the profiler’s sampling behaviour.



12.3. Profiling 153

Figure 12.5: Performance Effect of Turning Profiling Off : Zoomed Out

Figure 12.6: Performance Effect of Turning Profiling Off : Zoomed In

Figure 12.7: Performance of Unprofiled Optimistic Evaluation, relative to Normal GHC



154 Chapter 12. Results

Time Elapsed

Skip Count = 4
Profiled Periods Unprofiled Periods

Figure 12.8: The Skip Count is the number of unprofiled periods that take place between con-
secutive profiled periods

Figure 12.9: Performance Effect of Adjusting the “max sample period” Tunable—geometric
mean

12.3.3 What should the Thunk Cost Be?

The thunk cost is the cost of building a thunk, as estimated by the profiler. The profiler will add

this amount to the goodness of a let every time Optimistic Evaluation avoids building a thunk

for that let (see Section 9.2.1). The thunk cost is expressed in bytes of heap allocation (see

Section 9.1.1 for the reasons why).

Figure 12.12 shows the effect of varying the thunk cost. If the thunk cost is too low, then

too little speculation takes place, and performance is reduced. However, if the thunk cost is too

high, then too much speculation takes place, too much work is wasted, and performance again

suffers. Note that Optimistic Evaluation outperforms Lazy Evaluation even with a thunk cost

of zero. This is because a let that is always used will never accumulate any long-term badness

and so will still be speculated.

Figure 12.13 gives the curves for the individual benchmark programs. One can see that,

while some programs follow the trend in Figure 12.12 some are unaffected, or even speed up

as the thunkcost is increased. These are programs that are almost entirely strict, for which the

profiler is being overly conservative.



12.3. Profiling 155

Figure 12.10: Performance Effect of Adjusting the “max sample period” Tunable—all bench-
marks

Figure 12.11: Performance Effect of Adjusting the “profiling backoff” Tunable—geometric mean

Figure 12.12: Performance Effect of Adjusting the “thunk cost” Tunable—geometric mean



156 Chapter 12. Results

Figure 12.13: Performance Effect of Adjusting the “thunk cost” Tunable—all benchmarks

Figure 12.14: Performance Effect of Adjusting the “abortion cost” Tunable—geometric mean

12.3.4 What should the Abortion Cost Be?

The abortion cost, Babort, is the cost incurred in aborting a venture, as estimated by the profiler.

The profiler will add this amount to the wasted work of a let every time a venture for that let

is aborted. As with the thunk cost, the abortion cost is expressed in bytes of heap allocation.

Figure 12.14 shows the effect of varying the abortion cost. If the abortion cost is very low

then too much abortion takes place and programs slow down. Once the abortion cost is greater

than around 100 there is relatively little effect. Figure 12.15 shows us that, while most programs

are largely insensitive to the abortion cost, provided that it is above 100, a few programs can

vary their performance by up to 20%. We are not sure why some programs vary so much. A

limited investigation suggests that such programs often have a critical point where punishment

for an abortion may cause an important let to stop being speculated.



12.3. Profiling 157

Figure 12.15: Performance Effect of Adjusting the “abortion cost” Tunable—all benchmarks

Figure 12.16: Performance Effect of Adjusting the “max depth limit” Tunable—geometric mean

12.3.5 What should the Maximum Allowed Speculation Depth Be?

The “max depth limit” is the maximum depth to which any let is allowed to speculate. This

value is one of the parameters used to determine how goodness is mapped to a depth limit

(Section 9.1.2).

Figure 12.16 shows the effect that the maximum depth limit has on performance. If the

maximum depth limit is too low then speculation is overly constrained and performance suffers.

The exact choice of maximum depth limit does not seem to matter much so long as it is greater

than 8.

12.3.6 What should the Initial Speculation Depth Be?

The “initial depth limit” is the depth limit that every let has when a program starts, before any

profiling has taken place. Figure 12.17 shows the effect that this has on performance. If the

initial depth limit is zero, then no speculation can ever take place, and performance suffers.

Other choices of initial depth limit make relatively little difference as the depth limit will be



158 Chapter 12. Results

Figure 12.17: Performance Effect of Adjusting the “initial depth limit” Tunable—geometric mean

Figure 12.18: Performance Effect of Adjusting the “chain length” Tunable—geometric mean

quickly corrected by the profiler.

12.3.7 What should the Chain Limit Be?

In Section 9.4.1 we presented the idea of profile chaining, in which an unprofiled venture can

be turned into a profiled venture if it demands a costed indirection. In that section, we also

discussed the idea of a chain limit which is a bound on the number of chaining operations that

any unit of blame can pass through. Figure 12.18 and 12.19 show the effect of varying the chain

limit. While a limit of 5 gives the best performance, it is hard to tell whether this is just an

artifact of our selection of benchmarks; indeed there is no consistent pattern followed by all

benchmarks.

12.3.8 How Quickly should We Abort?

Figures 12.20 and 12.21 illustrate the effect of varying the MAXBLAME value, as described in

Section 10.1. If abortion takes place too quickly then performance suffers, but the exact value



12.4. Metrics 159

Figure 12.19: Performance Effect of Adjusting the “chain length” tunable—all benchmarks

Figure 12.20: Performance Effect of Adjusting the MAXBLAME Tunable—geometric mean

makes little difference, provided it is greater than around 4000. As with most other variables,

the majority of benchmarks show little variation, however a few are quite sensitive to the choice

of MAXBLAME value.

12.4 Metrics

In this section we present various statistics that provide an insight into the way that Optimistic

Evaluation works.

12.4.1 Goodness as an Estimate of Performance

The online profiler estimates the performance of Optimistic Evaluation using a metric called

goodness (see Chapter 6); but is this estimate accurate? Figure 12.22 compares the real speedup

of each of our benchmarks with the total goodness, as measured by the profiler. The speedup is

calculated relative to the fully lazy evaluator of Figure 12.3.



160 Chapter 12. Results

Figure 12.21: Performance Effect of Adjusting the MAXBLAME Tunable—geometric mean

Figure 12.22: Goodness compared to Real Speedup

We can see from Figure 12.22 that, while the goodness is far from being a perfect measure

of performance, it is usually pretty reasonable. The only programs whose performance estimate

is off by a large amount are infer, atom and prolog. It is reassuring that in all these cases,

goodness underestimated, rather than overestimated performance. These results suggest that

our current profiler is estimating performance reasonably well, but that there is still room for

improvement.

12.4.2 Heap Allocation as an Estimate of Work

The profiler uses heap allocation as an estimate of work done (Section 9.1.1), but is it a good

estimate? Figure 12.23 gives the allocation rates for each of our benchmarks, expressed in

bytes allocated per second of runtime. If heap allocation is a good estimate of runtime then

we would expect the allocation rate to be the same for all benchmarks. In practice it varies by

around a factor of five. Given that each of these allocation rates is the average allocation rate for

an entire program run, it is likely that the local allocation rate varies significantly more. This



12.4. Metrics 161

Figure 12.23: Rate of allocation

Figure 12.24: Abortions per second

suggests that, although measuring blame with heap allocation seems to work well in practice,

cycle counting (Section 12.7.2) is probably the more reliable approach.

12.4.3 How Common is Abortion?

Figure 12.24 gives figures for the rate of abortion for each of our benchmarks. The benchmark

that aborts most frequently is constraints, which aborts around 40 times a second. Most

programs abort significantly more rarely, with a mean of around 10 abortions per second.

12.4.4 How Much Speculation Takes Place?

Figure 12.25 shows the proportion of let evaluations that are speculated for each of our bench-

marks. We can see that no benchmark speculates less than 30% of its let evaluations, and that,

on average, a program will speculate 62% of its let evaluations.



162 Chapter 12. Results

Figure 12.25: Percentage of let evaluations that are speculated

Figure 12.26: Distribution of Blame

12.4.5 What is the Distribution of Speculation Sizes?

Figures 12.26 and 12.27 show the distribution of blame and localwork (Section 3.3.3). In these

graphs, each group of columns represents a range of possible sizes, and each column represents

the proportion of speculations that had blame or local work within that range, for a particular

benchmark. We can see from these graphs that very few speculations allocate more than 64

bytes locally, or accumulate more than 128 bytes of blame. We can also see that a significant

proportion of speculations allocate more than 32 bytes locally.

12.4.6 What Proportion of Speculations are Used?

Figure 12.28 shows the proportion of speculations that turn out to be needed, grouped by the

amount of work that was blamed on them. We can see that the vast majority of speculations are

used, but that the profiler allows very cheap speculations to be used more rarely than others.

One might worry that the last benchmark seems to only need a small proportion of its spec-

ulations. This benchmark is symalg, which only performs a total of 425 speculations. This is



12.4. Metrics 163

Figure 12.27: Distribution of Local Work

Figure 12.28: Proportion of Speculations that were Needed

not sufficient to allow the profiler to warm up, or to waste more than a tiny amount of work.

12.4.7 How much Chunky Evaluation Takes Place?

Figure 12.29 shows the distribution of speculation depths at which speculations took place.

The horizontal axis is the speculation depth (see Section 8.1.2) while the vertical axis is the

proportion of speculations that took place at that depth. Each curve represents the behaviour of

a particular benchmark. We can see from this graph that the vast majority of speculations take

place at depths less than 10, but also that a significant proportion of speculations take place at

depths greater than 3.

12.4.8 How Long do Profile Chains Get?

Figure 12.30 shows the distribution of chain lengths (see Section 9.4.1) for the different bench-

marks. These tests were done with a chain limit of 4. As we can see, many chains never last

for longer than one link, but once a chain has grown to length 2, it has a very good chance of



164 Chapter 12. Results

Figure 12.29: Distribution of Speculation Depths at which Speculations Take Place

Figure 12.30: Distribution of Chain Lengths

lasting to length 4 (or beyond if the chain limit is greater).

12.5 Semi-Tagging

12.5.1 What is the Performance Effect of Semi-Tagging?

Figure 12.31 shows the performance effect of semi-tagging on both Optimistic Evaluation and

Normal GHC. We can see that, while semi-tagging only improves the performance of Lazy

Evaluation by an average of 2%, it improves the performance of Optimistic Evaluation by an

average of 7%. Indeed, semi-tagging has a greater performance benefit for Optimistic Evalu-

ation on every benchmark except anna, fulsom, and symalg. A significant proportion of the

speedup from Optimistic Evaluation is due to the fact that it allows semi-tagging to be more

effective.



12.5. Semi-Tagging 165

Figure 12.31: Performance Effect of Semi-Tagging for both Optimistic Evaluation and Normal
GHC

Figure 12.32: Percentage of Semi-Tagging Attempts that Find a Value



166 Chapter 12. Results

12.5.2 How Often does Semi-Tagging Succeed?

Figure 12.32 shows the success rate of semi-tagging for both Lazy Evaluation and Optimistic

Evaluation. As this graph shows, Optimistic Evaluation dramatically increases the proportion of

case scrutinees that turn out to be values. This explains the performance results in Figure 12.31.

12.6 Heap Usage

In this Section, we explore the effect of Optimistic Evaluation on heap usage.

12.6.1 Space Leaks

Some programs are extremely inefficient when executed lazily because they contain a space

leak. People often post such programs on the haskell mailing list, asking why they are per-

forming badly. One recent example was a simple word counting program [Mau02]. The inner

loop (slightly simplified) was the following:

count :: [Char] -> Int -> Int -> Int -> (Int,Int)

count [] _ nw nc = (nw, nc)

count (c:cs) new nw nc =

case charKind c of

Normal -> count cs 0 (nw+new) (nc+1)

White -> count cs 1 nw (nc+1)

Every time this loop sees a character, it increments its accumulating parameter nc. Under Lazy

Evaluation, a long chain of addition thunks builds up, with length proportional to the size of

the input file. By contrast, the optimistic version evaluates the addition speculatively, so the

program runs in constant space. Optimistic Evaluation speeds this program up so much that we

were unable to produce an input file that was both small enough to allow the lazy implementa-

tion to terminate in reasonable time, and large enough to allow the optimistic implementation

to run long enough to be accurately timed!

12.6.2 Heap Residency

Figure 12.33 illustrates the effect that Optimistic Evaluation has on heap residency: the maxi-

mum amount of data live in the heap during the program run. As this graph illustrates, while

Optimistic Evaluation often reduces heap residency, the effect is not particularly pronounced.

This suggests that, for the programs we have benchmarked, the performance improvements

achieved by Optimistic Evaluation are not due to removal of space leaks.



12.6. Heap Usage 167

Figure 12.33: Effect of Optimistic Evaluation on Heap Residency

Figure 12.34: Effect of Optimistic Evaluation on Heap Allocation

This is what one would expect: the programs in the NoFib suite have been written by expert

programmers, who can be assumed to have taken care to avoid space leaks when writing their

programs. It thus seems likely that the programs that we have benchmarked do not contain any

space leaks that Optimistic Evaluation could remove. This does not however mean that removal

of space leaks in unimportant; while expert programmers may be able to avoid space leaks,

they are a common problem for novice programmers. It might be interesting to see the effect of

Optimistic Evaluation on a corpus of programs written by inexperienced programmers and see

if the improvements are more pronounced.

Unlike most of our other graphs, Figure 12.33 shows absolute heap residency rather than

relative residency. This is to avoid programs like rsa and sphere distorting the overall picture,

despite the fact that their heap residency is negligible.

12.6.3 Heap Allocation

Figure 12.34 illustrates the effect that Optimistic Evaluation has on heap allocation: the total

amount of storage allocated during the program run, including memory that was reclaimed



168 Chapter 12. Results

Figure 12.35: Proportion of Time Spent Garbage Collecting

by the garbage collector. As the graph illustrates, Optimistic Evaluation reduces the memory

allocation of every benchmark program we tested. This is because it avoids allocating many of

the thunks that Lazy Evaluation would create in the heap.

12.6.4 Proportion of Time spent Garbage Collecting

Figure 12.35 shows the proportion of time spent in the garbage collector. As this graph illus-

trates, many benchmarks spend a large proportion of their runtime in the garbage collector; thus

the amount of time spent garbage collecting is very important. We can also see from this graph

that Optimistic Evaluation has relatively little effect on the amount of time spent garbage col-

lecting; indeed it increases it by around 1% on average. This backs up the conclusions drawn

form Figure 12.33: the performance benefits of Optimistic Evaluation on this benchmark set do

not come from avoiding space leaks.

12.6.5 Heap Profiling

We implemented two heap profiling schemes, which we described in Section 9.3. Figures 12.36

and 12.37 illustrate the effect of a profiler extension that punishes a let every time a costed

indirection for that let is garbage collected. The horizontal axis is the factor by which the

blame of a costed indirection is multiplied before being subtracted from the goodness of its let.

We can see that this extension does not gain much on average (only around 1.5%), but that it

can improve the performance of one program (clausify) by 20%.

Figure 12.38 illustrates the performance of the second profiling extension described in Sec-

tion 9.3. This scheme adds a “lazy gc cost” to the goodness of a let every time the garbage

collector collects a profiled thunk created for that let. This extension was found to always

cause a performance reduction, with the reduction increasing as the “lazy gc cost” increased.



12.6. Heap Usage 169

Figure 12.36: Performance Effect of Adjusting the “garbage collection cost” Tunable—
geometric mean

Figure 12.37: Performance Effect of Adjusting the “garbage collection cost” Tunable—all
benchmarks

Figure 12.38: Performance Effect of Adjusting the “lazy gc cost” Tunable—geometric mean



170 Chapter 12. Results

Figure 12.39: Performance of Flat Speculation

Figure 12.40: Performance of RDTSC Profiling

12.7 Miscellanea

12.7.1 How Good is Flat Speculation?

In Section 8.2 we described an implementation technique called Flat Speculation. It is not fair to

compare our implementation of Flat Speculation directly with our main implementation because

it was forked from an earlier version of GHC, it relied on persistent speculation configurations

(Section 9.4.3), it used a different profiler, it used a different semi-tagging mechanism, and it

was not stable enough to run the larger benchmarks. One can however obtain a rough idea of

its performance from Figure 12.39, which compares the performance of Flat Speculation to the

performance of the GHC compiler that it forked from. This graph shows an average speedup of

around 20% (excluding wordcount)—suggesting that Flat Speculation is roughly comparable

to our primary implementation technique.



12.7. Miscellanea 171

Figure 12.41: Effect of Strictness Analysis on Performance

12.7.2 How Good is RDTSC Profiling?

Figure 12.40 shows the performance of rdtsc profiling, as described in Section 9.4.4. The av-

erage performance improvement was 16%, compared to 20% for the heap allocation approach;

however our implementation of rdtsc profiling is less mature than our implemenation of heap

profiling, and we believe that similar performance should be attainable with further work.

12.7.3 What Effect does Strictness Analysis Have?

Figure 12.41 shows the effect of strictness analysis on both Lazy Evaluation and Optimistic

Evaluation. Somewhat surprisingly, strictness analysis seems to bring about roughly the same

performance gains under Optimistic Evaluation as it does under Lazy Evaluation. We are con-

fused by this result: we would expect strictness analysis to have less effect under Optimistic

Evaluation as the two techniques would be trying to avoid the same thunks. We find it particu-

larly interesting that there are some benchmarks for which strictness analysis has a greater effect

on Optimistic Evaluation than on Lazy Evaluation. We believe that this unexpected result may

be due to the effect that strictness analysis has on the GHC optimiser: often quite complicated

transformations may be made to a program, based on strictness information.

12.7.4 How Expensive are Transient Tail Frames?

In Section 11.3 we discussed transient tail frames, and explained how they make debugging

easier. Figure 12.42 shows the performance overhead that transient tail frames cause. The

average slowdown is 69%. This overhead can be significantly reduced if only part of a program

is compiled with transient tail frames.

One program runs over 10 times slower.3 This program contains a simple function that calls

itself recursively with a large number of arguments. When this function executes normally, it



172 Chapter 12. Results

Figure 12.42: Performance Overhead of Transient Tail Frames

does not need to push anything on the stack at all; however when it executes with tail frames

enabled, it has to push a large frame on the stack for every recursive call. We believe that it

should be possible to extend our implementation of tail frames to avoid being caught out by

functions such as this. One approach would be to detect such functions statically and only push

tail frames for them if explicitly requested by the programmer. Alternatively, we could use a

static analysis to discover which arguments could have differed from the previous recursive call,

and only include these in the tail frame. Another possible fix would be to push tail frames onto

a special circular stack, and thus only remember the last N calls, thus avoiding the overhead of

removing them during garbage collection.

12.7.5 Is Lazy Blackholing Worth the Extra Complexity?

In Section 8.4 we discussed Lazy Blackholing and explained why it causes problems for Opti-

mistic Evaluation. Figure 12.43 shows the performance effect of turning off Lazy Blackholing

for Optimistic Evaluation: it actually speeds programs up by an average of 1%. These results

suggest that lazy blackholing is not worth the considerable extra complexity it entails.

The results with lazy blackholing enabled were obtained using an implementation that in-

cluded sufficient fixes to allow all the benchmark programs to run; however it is possible that

bugs such as those described in Section 8.4 may account for some of the observed performance

difference.

3We previously [EP03a] reported that the worst performance we had managed to provoke for transient tail-
frames was a factor of 3 slowdown. This was at an early stage in the development of HsDebug, when we had not
tested many programs.



12.7. Miscellanea 173

Figure 12.43: Performance of Eager Blackholing relative to Lazy Blackholing



CHAPTER 13

Related Work

In this chapter, we describe previous work that has similarities to the work presented in this

thesis.

• In Section 13.1 we discuss Static Hybrid Evaluation Strategies. These are evaluation

strategies that, like Optimistic Evaluation, attempt to combine lazy and eager evaluation;

however, unlike Optimistic Evaluation, the choice of how to evaluate each let is made at

compile time, rather than at runtime.

• In Section 13.2 we discuss Eager Haskell. Eager Haskell is an evaluation strategy that,

like Optimistic Evaluation, uses speculative evaluation to improve the performance of

non-strict programs. The main difference from our work is that, while we use an online

profiler to decide which let expressions to speculate, Eager Haskell speculates all let

expressions.

• In Section 13.3 we discuss Speculative Evaluation for Multiprocessor Parallelism. Var-

ious language implementations have used speculative evaluation to increase the number

of concurrent tasks in a program and so find work for idle processors to do. While Op-

timistic Evaluation tries to speculate small expressions, parallel speculation strategies try

to speculate large expressions. This leads to very different approaches.

• In Section 13.4 we discuss Speculative Evaluation for Uniprocessor Parallelism. If a

processor has a large number of instruction units then a compiler may perform speculative

operations on instruction units that would otherwise be idle. While these ideas could be

applied to non-strict languages, we are not aware of any work that does this.

174



13.1. Static Hybrid Strategies 175

• In Section 13.5 we discuss previous work that is similar to the cost model that we pre-

sented in Chapter 5. While many previous cost models have been presented, we are not

aware of any other model that is high level, composable, and able to model any hybrid of

lazy and eager evaluation.

• In Section 13.6 we discuss previous work that has used profiling. While much such

work exists, we are not aware of any previous work that has used profiling to direct the

evaluation of non-strict programs.

• In Section 13.7 we discuss previous debuggers for non-strict languages and compare them

to the debugger described in Chapter 11. While many such debuggers have been written,

no previous work implements the stop-examine-continue model that our debugger uses.

• In Section 13.8 we discuss previous work that has attempted to reduce the amount of

space that non-strict programs require.

• Finally, in Section 13.9 we discuss evaluation strategies that are not hybrids of lazy and

eager evaluation.

13.1 Static Hybrid Strategies

Much previous work has attempted to combine Lazy Evaluation with Eager Evaluation, how-

ever most of this work has focused on static analyses or static annotations, rather than a dy-

namic, adaptive strategies.

In the subsections that follow, we discuss Strictness Annotations (Section 13.1.1), Strictness

Analysis (Section 13.1.2) and Cheapness Analysis (Section 13.1.3).

13.1.1 Strictness Annotations

Strictness annotations are perhaps the simplest way of combining lazy and eager evaluation.

Rather than letting the language implementation decide which expressions should be evaluated

eagerly, the programmer gives this information explicitly in their program.



176 Chapter 13. Related Work

The ‘seq’ function

Haskell includes a seq ‘function’ that can be used to force the immediate evaluation of an

expression.

seq : a→ b→ b

seq forces evaluation of its first argument and then returns its second argument. seq is the

cause of much controversy in the Haskell community [Voi02, Mar02] due to the fact that it

breaks several laws that would otherwise hold for Haskell programs.

Most other non-strict languages have similar constructs, for example Clean [BvEvLP87,

NSvEP91] has a special let! construct that evaluates its right hand side eagerly. Both Haskell

and Clean also allow data types to include strictness information, causing an implicit seq to be

applied to any closure whose value is placed in a strict field.

Laziness Annotations

Many strict languages allow one to use annotations to introduce laziness. At the simplest level,

one can implement Lazy Evaluation in a strict language by representing a thunk as an object

with an evaluate method. At a slightly higher level, many strict languages provide syn-

tactic sugar that makes it easy to embed Lazy Evaluation; for example the lazy keyword in

O’Caml [LRVD98] or delay and force in Scheme [KCR98].

In practice, a typical non-strict program will only make essential use of laziness in a small

proportion of its expressions; it is thus fairly easy for a programmer to mark these expressions

as being lazy. Many people argue that laziness annotations are good style; if a program relies on

Lazy Evaluation, this should be a deliberate policy decision and thus should be made explicit in

the program text.

13.1.2 Strictness Analysis

Most compilers for non-strict languages make use of a static analysis called Strictness Analysis

to determine which expressions should be evaluated eagerly. Strictness Analysis attempts to

find expressions that are certain to be evaluated under Lazy Evaluation and which can thus be

evaluated eagerly without risking poor performance or non-termination. There has been a lot of

work done on Strictness Analysis [Myc81, BHA86, MN92, WH87] and the technology is now

very mature.



13.1. Static Hybrid Strategies 177

Online Profiling vs Static Analysis

A strictness analyser has to be very careful because it risks a lot if it makes a mistake. If

Strictness Analysis were to mistakenly decide to evaluate an expensive unneeded expression

eagerly then the program could waste the total cost of all evaluations of that expression. Without

abortion or adaption there is no way for the system to recover from a bad decision. Strictness

Analysis is thus forced to be very conservative.

By contrast, Optimistic Evaluation risks a lot less if it makes a mistake. If Optimistic Evalu-

ation mistakenly decides to evaluate an expensive unneeded expression eagerly, then the profiler

and abortion mechanism ensure that only a relatively small amount of work can be wasted be-

fore the expression will revert to being evaluated lazily. This allows Optimistic Evaluation to

be a lot more aggressive than Strictness Analysis.

Strictness Analysis can make Programs Slower

It should be noted that Strictness Analysis is not guaranteed to improve the performance of a

program. Consider for example the following program:1

f 0 = []

f n = n : f(n− 1)

g [] = 0

g (x : xs) = 1 + g(xs)

main = g (f 1000000000)

The recursive calls to f are needed, and thus a strictness analyser may make them eager. How-

ever, if f is evaluated eagerly then f 1000000000 will build up an enormous structure in the

heap and so evaluation of main will require a lot of space. By contrast, if f was evaluated

lazily then the list producer f and the list consumer g would run in lock-step, causing main

to run in constant space. If heap space is increased then garbage collection time can increase

(Section 9.3.1) and so Strictness Analysis is likely to make this program run more slowly.

As we explained in Section 9.3.2, we have implemented a crude mechanism which we

believe should prevent this problem occurring with Optimistic Evaluation; however we believe

that further work is required in this area.

1This particular program can be simplified by deforestation [Wad90a, Wad84, GLP93], however not all such
programs can.



178 Chapter 13. Related Work

13.1.3 Cheapness Analysis

Cheapness Analysis [Myc80, Fax00] is another static analysis in the same vein as Strictness

Analysis. Like Strictness Analysis, Cheapness Analysis examines the static text of a program

and attempts to find expressions that can be safely evaluated eagerly. The key difference is that

while Strictness Analysis looks for expressions that are guaranteed to be needed, Cheapness

Analysis looks for expressions that are guaranteed to be cheap.

How it works

Is x+1 cheap to evaluate? It depends on whether x is already evaluated. If x is an argument to a

function then we may need to examine all calls to the function—and that is not straightforward

in a higher-order program. Faxén solves this problem using a sophisticated whole-program

flow analysis. Unfortunately, being a whole-program analysis, it causes problems for separate

compilation. These problems are probably soluble—for example by compiling multiple clones

of each function, each suitable for a different evaluation pattern—but they further complicate

the implementation. This is why we were not able to implement cheap eagerness in GHC for

comparison purposes.

Dynamic Cheap Eagerness

A further development, Dynamic Cheap Eagerness [Fax01], uses a more complicated analysis

to find cheap recursive functions and arrange for them to call themselves eagerly up to a certain

depth. The effect is very similar to the speculation depth limits used by Optimistic Evalua-

tion, however the limits are determined at compile time by a static analysis, rather than being

determined at runtime by a profiler.

Performance

Faxén reports some promising speedups, generally in the range 0-25% relative to his baseline

compiler, but these figures are not directly comparable to ours. As Faxén is careful to point

out, (a) his baseline compiler is a prototype, (b) his strictness analyser is “very simple”, and

(c) all his benchmarks are small. The improvements from Cheapness Analysis may turn out to

be less persuasive if a more sophisticated strictness analyser and program optimiser were used,

which is our baseline. (Strictness Analysis does not require a whole-program flow analysis, and

readily adapts to separate compilation.)



13.1. Static Hybrid Strategies 179

Worst Case Performance

How cheap is cheap? Cheap Eagerness uses a fairly arbitrary threshold for deciding whether an

expression is cheap. Importantly, this threshold is considerably greater than the cost of building

a thunk. If Cheap Eagerness eagerly evaluates a lot of cheap expressions that are not needed

then performance can be considerably worse than Lazy Evaluation. This problem is made worse

by Dynamic Cheap Eagerness: although the body of a recursive function may be cheap, this cost

must be multiplied by the number of times that the function is allowed to call itself recursively.

It is of course possible to improve the worst case performance by reducing the threshold

below which an expression is considered to be cheap, and by reducing the depth to which a

recursive function is allowed to be called. However such a change will reduce the amount of

eager evaluation that can take place and will make the average performance worse.

13.1.4 Other Static Optimisations

There exist many other static optimisations that can improve the performance of non-strict pro-

grams. A particularly interesting example is the GRIN project [Boq99]. GRIN does a lot of

clever optimisations, but perhaps its most interesting optimisation is its thunk inlining transfor-

mation. GRIN performs a whole-program flow analysis for a program, attempting to discover

which thunks can be evaluated at any particular point. Consider for example the following

program:
f x = x + 1

g y = let p = y + 1 in

let q = y + 2 in

(fp) + (fq)

GRIN’s flow analysis will realise that, inside the body of f , x must be either p or q. It will thus

translate this program into something rather like the following program:

f x case x of

ThunkP y → y + 1 + 1

ThunkQ y → y + 2 + 1

g y let p = ThunkP y in

let q = ThunkQ y in

(fp) + (fq)

We can see that the code for the thunks y + 1 and y + 2 has been inlined at the point at which

the thunks might be demanded. This optimisation, together with the further optimisations that



180 Chapter 13. Related Work

it enables, can significantly reduce the cost of Lazy Evaluation.

Another interesting static optimisation is Wansbrough’s usage analysis [Wan02, WP99].

This uses an analysis similar to that used for linear types [Wad90b, Bak95, TWM95] to detect

thunks that can only be used at most once. If a thunk can be used at most once then the

implementation can avoid the cost of pushing and later entering an update frame (Section 7.4.2).

13.2 Eager Haskell

Eager Haskell [Mae02b, Mae02a] was developed simultaneously, but independently, from our

work. Its basic premise is identical: use Eager Evaluation to improve the performance of non-

strict programs, together with an abortion mechanism to back out when eagerness turns out to

be over-optimistic. The critical difference between Eager Haskell and Optimistic Evaluation is

that while Optimistic Evaluation uses an online profiler to decide which expressions should be

evaluated eagerly, Eager Haskell evaluates everything eagerly.

13.2.1 Code Generation

The code generated by Eager Haskell is largely the same as would be generated for a conven-

tional strict language such as ML [MTHM97]. let expressions never evaluate lazily, and so

there is no need to generate any code for lazy thunks or to generate branches at the beginning

of let expressions.

13.2.2 Abortion

What distinguishes Eager Haskell from a conventional strict language implementation is its

abortion mechanism. Like Optimistic Evaluation, Eager Haskell uses abortion to back out of

speculations that turn out to be too expensive; however the abortion mechanism in Eager Haskell

is very different to that used by Optimistic Evaluation.

Optimistic Evaluation considers abortion to be a tool of last resort, using profiling as its pri-

mary mechanism for preventing wasteful speculation. As we showed in Section 12.4.3, abortion

is a rare event, taking place only if a speculation has been running for a very long time. If spec-

ulations spawned by a let are frequently aborted then it is likely that the profiler will avoid

speculating that let in the future.

By contrast, Eager Haskell uses abortion as its primary mechanism for coping with wasteful

speculations. This leads to very different design choices. Abortion in Eager Haskell is frequent

and periodic: once a given amount of heap has been allocated, all execution will be aborted. The

Eager Haskell abortion mechanism does not care how long any active speculations have been

running for, or even whether the program is speculating at all—abortion is purely periodic.



13.2. Eager Haskell 181

The mechanism used for implementing abortion itself is also very different from that of

Optimistic Evaluation. While Optimistic Evaluation manages abortion in the runtime system,

Eager Haskell instead puts the abortion code for an expression in the expression code itself.

Once the abortion flag is set, any subsequent function call will return a suspension instead

of evaluating its body. If a case expression finds that its scrutinee is a suspension then it

will return a suspension itself. Similarly, a function application will return a suspension if the

function being applied evaluates to a suspension. Abortion continues right back to the root of

the stack. Once abortion has completed, evaluation is restarted by forcing the suspension for

the root computation.

Eager Haskell has gone to considerable effort to make abortion very efficient. The abortion

check at the entry to a function is cunningly combined with a stack check, making it essentially

free. Similarly, various tricks are employed to allow large chunks of stack to be aborted and

restored without having to be repeatedly copied between the heap and stack. Eager Haskell’s

abortion mechanism is thus considerably more efficient than that used by Optimistic Evaluation.

13.2.3 Chunky Evaluation

Eager Haskell’s periodic abortion gives it a form of chunky evaluation, but with chunk sizes

being limited by abortion frequency rather than by speculation depth. To see the effect that

this has, consider a tree structure in which the first child of a node is always unneeded, but the

second child is always needed. Optimistic Evaluation will quickly learn to evaluate the second

child of a node chunkily but to evaluate the first child lazily. By contrast, Eager Haskell will

always evaluate the tree in a depth first manner. It will follow the first child of a node and may

be aborted before it has a chance to evaluate the second child.

13.2.4 Worst Case Performance

Eager Haskell is able to guarantee that, in the worst case, it will be only a constant factor slower

than Lazy Evaluation; however the constant factor involved is quite large: Maessen reports that

the constraints program from the NoFib suite slows down by a factor of over 100 [Mae02a].

Bad behaviour such as this occurs when there are many expressions that are expensive and

unused; Eager Haskell will evaluate them all eagerly, and is thus likely to spend a considerable

proportion of its time doing unnecessary work.

Increasing the abortion frequency will reduce the amount of wasted work, but it will also

increase the overheads, as the proportion of runtime taken up by abortion increases. It is thus the

case that, in order to achieve good performance on average, one must accept bad performance

in the worst case.

The worst case performance of Eager Haskell relative to Lazy Evaluation is arguably unim-

portant. Rather than seeing Eager Haskell as a new way to evaluate existing Haskell programs,



182 Chapter 13. Related Work

it is perhaps better to see Eager Haskell as a new language which is largely compatible with

Haskell, but which has different semantics. If a program is written with Eager Haskell in mind

then it is not hard to ensure that Eager Haskell will evaluate it efficiently. In particular, Eager

Haskell has support for laziness annotations that can be used by a programmer to mark ex-

pressions that should not be speculated. One might argue that annotating expressions that are

potentially expensive and unnecessary is good programming style, regardless of the evaluation

strategy being used.

13.2.5 Average Performance

The average performance of Eager Haskell is considerably better than its worst case perfor-

mance but is, at least at present, inferior to that of Optimistic Evaluation. In Maessen’s the-

sis [Mae02b] he claims an average slowdown of 60% relative to GHC, compared with an aver-

age speedup of around 20% for Optimistic Evaluation.

It is likely that Eager Haskell could be made significantly faster. Unlike us, Maessen wrote

his compiler from scratch; it is thus considerably more primitive than ours and has many ways

in which it could be made significantly faster. It seems reasonable to assume that, for suitably

written programs, a more advanced implementation of Eager Haskell should be able to approach

the speed of a high-performance strict functional languages such as O’Caml [LRVD98].

In some benchmarks Eager Haskell achieves performance that is better than Optimistic Eval-

uation; however one has to bear in mind that Optimistic Evaluation incurs considerable over-

heads in its switchable let expressions and online profiler; both of which are essential if the

worst case behaviour is to be bounded.

13.3 Speculative Evaluation for Multiprocessor Parallelism

The parallel programming community has been making use of speculation to exploit multiple

processors for a long time [Bur85]. There, the aim is to make use of spare processors by

arranging for them to evaluate expressions that are not (yet) known to be needed. There is a

large amount of work in this field, of which we can only cite a small subset.

13.3.1 Basic Principles

Optimistic Evaluation and Speculative Evaluation for Multiprocessor Parallelism look superfi-

cially very similar: both systems evaluate expressions without knowing that they are needed.

However there are important differences.

Under Optimistic Evaluation, every cycle spent in a speculative evaluation is a cycle that

could instead have been spent doing useful work. It is thus vitally important that the expression



13.3. Speculative Evaluation for Multiprocessor Parallelism 183

being speculated is actually needed. By contrast, speculative evaluation for multiprocessor

parallelism will typically perform speculative evaluations on processors that would otherwise

be idle. While such systems would prefer it if the expressions being speculated were needed,

the issue is far less pressing.

There is a similar dichotomy regarding the sizes of speculative evaluations. In Optimistic

Evaluation, each speculative evaluation saves the fairly-constant amount of work that would

be required to build a thunk, but potentially wastes the amount of work spent performing the

speculative evaluation. Optimistic Evaluation thus aims to perform a large number of small

speculations. By contrast, in a parallel setting, each speculative evaluation wastes the fairly-

constant amount of work required to fork a new process, but potentially-saves the amount of

work spent performing the speculative evaluation. Parallel systems thus aim to perform a small

number of large speculations.

These two differences cause multiprocessor speculation systems to be designed in very dif-

ferent ways to Optimistic Evaluation.

13.3.2 Making Speculation Efficient

A lot of work in the parallel community focuses on making parallel speculation efficient; how-

ever most of this work is inapplicable to Optimistic Evaluation.

One interesting example is Local Speculation. Local Speculation [MJG93, Cha98] does

some speculations on the local processor when it would otherwise be waiting. This avoids

the overhead of transferring work to another processor and allows shorter speculations to be

worthwhile.

Another strand of work attempts to aggregate tiny threads into larger, compound threads

that can be spawned together and thus share their thread startup costs [Tra88, SCG95]. In some

ways this is closer to our work: Lazy Evaluation is a bit like parallel evaluation scheduled on a

uniprocessor, while Eager Evaluation instead aggregates the thread for the right hand side of a

let into the thread for the body. However the issues addressed are very different; as Schauser

puts it “the difficulty is not what can be put in the same thread, but what should be ... given

communication and load-balancing constraints”. Furthermore, such thread partitioning systems

are static, whereas our approach is dynamic.

13.3.3 What To Speculate

Which expressions should be evaluated speculatively?

The simplest answer is to evaluate everything speculatively. This is the approach taken by

leniently evaluated dataflow languages such as Id [Nik91] and pH [NA01]. A lenient language

will evaluate let x = E in E ′ by starting a new task for E and then evaluating E ′. Eager



184 Chapter 13. Related Work

Haskell (See Section 13.2 has its roots in the world of lenient languages, and can be seen as

being rather like a sequential implementation of pH.

Another approach is to provide an explicit language construct that lets the user specify

which expressions should be speculated. MultiLisp [Osb89, Hal85] allows expressions of the

form (future E) that specify that the expression E should be evaluated in parallel with the

current task, in the hope that its value turns out to be useful [FF95].

Clearly some speculative tasks are more likely to be useful than others. There has thus been

considerable work on assigning priorities to tasks. At the simplest level, one can give specula-

tive tasks lower priorities than mandatory tasks, ensuring that a speculative task never prevents

a mandatory task from running. Extensions of this include systems in which the priority of a

task takes into account user assigned priorities [Bur85], or the depth of speculation [Mat93], or

its reachability from other tasks [Par91, PD89].

We are not aware of any work in the parallel speculation community that uses online pro-

filing to decide which expressions should be speculated; however it is possible that an online

profiler might be useful for this purpose.

13.3.4 Abortion

Abortion is not essential in a parallel speculation system. If an unnecessary speculative task

does not terminate then the worst that can happen is that it blocks execution of lower priority

speculative tasks—it cannot cause the whole program to not terminate. Nevertheless, it is still

desirable for a speculative task to be aborted if it is certain that its result will not be needed. One

common approach is to use a garbage collector to find speculative tasks whose result closures

are not reachable from any other task [BH77, HK82, GP81].

13.4 Speculation for Uniprocessor Parallelism

Modern processors typically have a large number of instruction units which can execute in

parallel. If a compiler is not able to find mandatory work for all instruction units, then it may

choose to perform speculative work on instruction units that would otherwise be idle. Unlike

speculative evaluation for multiprocessors, such systems aim to find small speculative tasks,

and, unlike Optimistic Evaluation, all work that we are aware of selects such tasks at compile

time.

Although we believe that these techniques could work well for non-strict languages, we are

not aware of any work that has done this.



13.4. Speculation for Uniprocessor Parallelism 185

13.4.1 Speculation in Imperative Languages

Much work on uniprocessor speculation focuses on automatically extracting parallelism from

imperative programs. Rather than speculatively evaluating pure expressions, one instead spec-

ulatively performs imperative commands. The issues involved here are more complex than for

purely functional languages, as illustrated by the following program:

do C

if (B){

do C’

}

A compiler may be able to improve performance by executing the commands C and C ′ simulta-

neously. In order for this to be sound, it must be the case that C does not change any state read

by C ′ (data speculation) and that C ′ would actually be executed by normal sequential evaluation

(control speculation). If either of these requirements turn out to be false, then the speculative

execution of C ′ must be reverted, undoing any imperative actions it may have performed.

13.4.2 Scheduling Instructions

A compiler can schedule speculative tasks statically by interleaving speculative instructions

with mandatory ones. There has been particular interest in doing this for Intel’s IA64 [ia600]

processor, which has a large number of instruction units and no dynamic instruction reorder-

ing [LCH+03].

Simultaneous Multithreading architectures [TEL95, Gwe99, Eme99] allow multiple threads

to run simultaneously on one processor, all of which have access to the same instruction units.

Speculative Multithreading architectures [Kri99, MG99] extend this by providing hardware sup-

port for thread reversion and sequential dependencies between threads. Such architectures make

it much easier for a compiler to exploit multiple instruction units because the interleaving of

tasks is done dynamically by the processor, rather than statically by the compiler. Considerable

work has been done on compiling programs efficiently for such architectures [BF02, PO03].

While offline profiling has been used to assist in the scheduling of uniprocessor paral-

lelism [BF02], we are not aware of any work that uses online profiling; indeed it seems unlikely

that online profiling would be worthwhile.



186 Chapter 13. Related Work

13.4.3 IO Speculation

Some programs spend a large proportion of their time waiting for pages to be loaded from disk.

The performance of such programs can be improved by speculatively executing the instructions

that should be performed once the page has loaded [CG99, FC03]. In this case, the hope is that

the speculative task will request pages that the mandatory task will need when it awakes, thus

allowing several pages to be fetched in parallel and reducing the effects of IO latency.

13.4.4 Branch Prediction

Perhaps the best known example of control speculation is branch prediction [Smi81]. Branch

Prediction is a feature of most modern processors that speculatively evaluates the side of a

branch that the processor believes is most likely to be used. Although Branch Prediction is

normally carried out at runtime by the processor, it is also possible to do it using offline profil-

ing [FF92] or statically in the compiler [BL93].

13.5 Models of Cost

There has been much previous work on cost models. In this Section we discuss several previous

models of cost and compare them to the model that we presented in Chapter 5

13.5.1 PSL Computation Graphs

Perhaps the most similar cost model to ours is the PSL Computation Graphs of Greiner and

Blelloch [GB99, GB96]. Computation graphs are used to analyse the cost of evaluating a pro-

gram using a data-driven parallel evaluation strategy. Nodes represent unit cost computations,

and edges represent sequential dependencies: If a node x contains a link to a node y then this

means that y cannot start until x has finished.

Every computation graph has two distinguished nodes, known as the source and minimum

sink. The source represents the start of the evaluation, while the minimum sink represents the

computation that produces the result of the computation. When drawn graphically, subgraphs

are drawn as triangles in which the top corner links to the source and the bottom left corner is

linked to by the minimum sink. Unlike cost graphs, computation graphs contain only serialisa-

tion information: they do not contain values.

Figure 13.1 gives a computation graph for evaluation of the expression E E ′, given that E

evaluates to λx.E ′′. This graph contains subgraphs for the evaluation of E, E ′ and E ′′. We can

see that when the evaluation starts, the virtual machine will do one unit of work (represented by

a black circle) and then start evaluation of both the function E and the argument E ′. Once the

function has been evaluated to a value, the virtual machine will do another unit of work, and



13.5. Models of Cost 187

E

E E’

E’

E’’

Figure 13.1: A PSL Computation Graph for E E ′, given that E evaluates to λx.E ′′

i

[let y = E’ in (E y)]

[E x]

[E]

[E’]

[E’’[  i/x]]

i

i

ii

Figure 13.2: A Cost Graph for let y = E ′ in E y, given that E evaluates to λx.E ′′

then start evaluation of the function body E ′′. The graph for the function body will be generated

with x bound to the minimum sink of E ′. From this graph, one can see that E and E ′ can be

done in parallel, but that some computations within E ′′ may need to wait for E ′ to complete.

For comparison, Figure 13.2 shows a cost graph for the same program. We can see that there

are some similarities between cost graphs and Computation Graphs, but there are also significant

differences. Cost graphs describe what computations must take place; while computation graphs

describe when computations can take place. The root node of a cost graph corresponds to both

the source and minimum sink of a computation graph. The correspondence between the two

approaches is illustrated by Figure 13.3 which shows the nodes from Figure 13.2 but with edges

similar to those used by a computation graph.

Unlike cost graphs, computation graphs do not distinguish between eager edges and demand

edges. Indeed, such a distinction does not make sense in their model as (i), their semantics

assumes that all computations in the computation graph are executed at some point, and (ii),

their semantics is data-driven rather than demand driven: a computation is assumed to start as

soon as all the computations linking to it have finished. It is not obvious whether computation

graphs could be easily adapted to describe a mixed eager/lazy evaluation strategy.

Another important difference between computation graphs and cost graphs is that a com-



188 Chapter 13. Related Work

i

[let y = E’ in (E y)]

[E x]

[E]

[E’]

[E’’[  i/x]]

i

i

ii

Figure 13.3: Half-way between a Cost Graph and a Computation Graph

putation graph cannot be infinite. This makes sense for computation graphs as it is assumed

that every computation in the computation graph will be performed at some point; however it

makes them unsuitable for our purposes, in which infinite-cost evaluations must be represented.

Greiner and Blelloch present the semantics of computation graphs using a big-step operational

semantics which explicitly performs all computations. It is not clear whether this semantics

could be easily adapted to cope with infinite graphs.

13.5.2 Circuit Semantics

Circuit Semantics [Dan98, BD96] represent programs using directed graphs similar to those

commonly drawn in electronics. Contrary to what the name might suggest, these graphs are

acyclic. The basic idea is similar to that of PSL Computation Graphs in that links represent

sequential dependencies between computational steps.2

Circuits are described only very informally, their main purpose being to graphically justify

a step-counting semantics for data-driven parallel evaluation. This semantics is then used to

compare the intensional expressiveness of various parallel operators.

13.5.3 Step Counting Models

Many previous models of cost work by instrumenting an evaluation semantics to include a count

of the number of steps taken by evaluation. Such models are sometimes referred to as profiling

semantics. Sands [San95a] gives an operational semantics for cost and uses it to prove various

theorems about cost equivalence. Roe [Roe90] gives a denotational semantics that uses time-

stamps to calculate the number of parallel steps required to calculate an expression using Le-

nient Evaluation. Rebon [RPHL02] and Rosendahl [Ros89] uses step counting to place bounds

on the time and space complexity of a program. Santos [San95b] uses a step-counting seman-

tics to define an ordering on expression costs which he uses to prove the efficiency of a number

2And indeed, both concepts have emerged from Carnegie Mellon University, so the similarity is unsurprising.



13.6. Profiling 189

of optimisations. Sansom [San94] uses a step-counting semantics to define the behaviour of an

offline execution profiler.

Unlike our Cost Graphs, such models are strongly tied to a particular evaluation strategy

and are usually not composable.

13.5.4 Other Cost Models

The cost graphs that we produce are in some ways similar to the graphs used by graph re-

duction [Wad71, ET96], but graph reduction systems consider a graph to be an intermediate

data-structure used in evaluation. They do not attempt to define a unique graph that represents

the work done by an evaluation.

Wadler [Wad88] uses Strictness Analysis to determine that part of the result of a lazy ex-

pression that will be needed, and thus determine the cost of evaluating that expression.

13.5.5 Other Graphs

Our cost graphs bear similarities to the evaluation order independent structures produced by

various lazy debuggers [NS97, WCBR01], however we are using these structures for a very

different purpose.

Our cost graphs are also very similar to Dynamic Dependence Graphs [AH90]. Dynamic

Dependence Graphs are specific to a particular evaluation strategy, and we are not aware of any

formal model for them.

13.6 Profiling

Much work has been devoted to profilers and the way in which they can be used to direct

optimisations; indeed there are entire workshops dedicated to the subject [FDD01, RV04]. It is

only practical for us to cite a small subset of this work.

13.6.1 Sampled Profiling

The idea of profiling a program for only a small proportion of its execution has been around for

a long time. One of the best known examples is GProf [GKM83], which looks at a program at

a number of sample points and gathers statistics that tell the programmer where their program

is spending its time. Many other sampling profilers exist, including Digital’s DCPI [ABD+97],

and Mortonosi’s cache behaviour profiler [MGA93]. Other work avoids the overhead of profil-

ing almost completely by using a separate processor to profile a program while it runs [ZS01].

The idea of having code that can actively switch between profiled and unprofiled modes is

also well known. Arnold and Ryder [AR01] describe a system in which normal and profiled ver-



190 Chapter 13. Related Work

sions are compiled for every code block. Normally, the program will run in an unprofiled mode,

but the runtime system can switch the program into profiled mode during profiling periods.

13.6.2 Feedback Directed Optimisation

Feedback Directed Optimisation [FDD01] is a widely used technique in static compilers. A pro-

gram is run in a special profiling mode, recording statistics about the behaviour of the program.

These statistics are then used by the compiler to make optimisation choices when compiling a

final version of the program. Many commercial compilers use this technique. In principle we

could do the same, compiling the configuration Σ into the program; we have not done so as this

would make it harder for us to adapt our evaluation strategy at runtime.

13.6.3 Online Profiling

Online Profiling is used in many existing language implementations, including several imple-

mentations for the Java [GM96] language [Sun01, BCF+99, Arn02]. One of the first imple-

mentations to use such techniques was for Self [H9̈5]. These systems use similar techniques to

Optimistic Evaluation, but do not apply them to laziness.

13.7 Debuggers for Non-Strict Languages

In Chapter 11 we described HsDebug: a debugger that is built on top of Optimistic Evaluation.

There has been much prior work on debugging of non-strict languages.

13.7.1 Tracing

Most previous work on debugging of Lazy programs has focused on tracing. Systems such as

Freja [NS97, NS96, Nil01], Buddha [Pop98] and Hat [SR97, WCBR01] augment a program so

that it creates a trace as it executes. This trace gives a history of the evaluation that took place.

For each value (e.g. 5), a link can be provided to the redex that evaluated to produce that value

(e.g. 3 + 2)) and to the larger evaluation that this evaluation was part of (e.g. f(3)).

Once such a trace has been built up, it can be explored in many different ways. Hat allows

one to look at any object on the heap and find out how it came to be created. Other work

allows evaluations to be observed in the order in which they would have taken place under

Eager Evaluation, creating a similar environment to a traditional debugger [NF92, NF94].

Hat and Buddha run the program to completion before exploring the debug trace. While this

simplifies the implementation, it makes debugging of IO awkward. In a traditional debugger,

one can step over IO actions and observe the effect that the actions have on the outside world.

This is made significantly more difficult if all actions take place before debugging starts; indeed,



13.7. Debuggers for Non-Strict Languages 191

Pope [Pop98] says that it is assumed that Buddha will only be applied to the sub-parts of a

program that do not perform IO operations. Freja does better in this respect by building its trace

while debugging.

One drawback of trace based debugging approaches is performance. If every evaluation is

to be logged, then a very large amount of information must be recorded. Not only does the

recording of such information take time—it also takes space. Freja works round this problem

by only storing a small amount of trace information and then re-executing the program if more

is needed, however this is quite tricky to implement, particular when IO is involved. There has

also been considerable work on reducing the amount of trace information generated for redex

trails [SR98].

HsDebug is definitely less powerful and less elegant than trace based debuggers. It is how-

ever simpler and faster, and does not require extra space.

13.7.2 Cost Centre Stacks

Cost Centre Stacks [MJ98, San94] extend a program so that it maintains a record of the call

chain that the current expression would have, were it being evaluated strictly. The information

obtainable from a cost centre stack is thus very similar to that available from the real stack

under Optimistic Evaluation, or the trail created by Freja. Cost Centre Stacks were developed

for use in profiling; however it is plausible that a debugger could be written that made use of

them. Such a debugger could show the user the current cost-centre stack rather than the actual

execution stack, providing the user experience of strict evaluation, without having to actually

evaluate the program strictly. We believe that this approach may be worth exploring.

13.7.3 HOOD

HOOD [Gil00] can be seen as an extension of traditional “printf” debugging. The programmer

adds annotations to the program that allow intermediate program states to be observed. HOOD

goes a lot further than “printf” debugging by allowing lazy values and functions to be observed

only to the extent to which they have been used. A sophisticated viewer application [Rei01] al-

lows the programmer to view and manipulate traces resulting from an execution. While HOOD

is extremely powerful, the need to add manual annotations can make it awkward to use.

13.7.4 Time Travel Debugging

Time Travel Debuggers extend the “stop, examine, continue” model further by allowing the pro-

gram to run backwards to a breakpoint as well as forwards. Often one will find that the reason

for something going wrong is that part of the program state has become invalid. In such a case,

it can be extremely useful to run the program backwards from the point at which something



192 Chapter 13. Related Work

went wrong, to the point at which the state became invalid. Examples of time travel debuggers

include the excellent O’Caml debugger [LRVD98] and the now sadly defunct SML/NJ debug-

ger [TA95, TA90]. Many of the features of Time Travel Debugging can also be achieved by

Tracing, and vice versa.

13.8 Reducing Space Usage

As we remarked in Section 12.6, some non-strict programs suffer from poor performance due to

space leaks. In this section we discuss previous work that has attempted to prevent such space

leaks.

13.8.1 Stingy Evaluation

Stingy Evaluation [vD89] is an evaluation strategy designed to reduce space leaks such as the

one described in Section 12.6. When evaluating a let expression, or during garbage collection,

the evaluator does a little bit of work on the expression, with the hope of evaluating it, and

avoiding having to build a thunk. As with Eager Haskell, all expressions are eagerly evaluated,

however the amount of evaluation done before abortion is significantly smaller, with only very

simple evaluations allowed. Often this small amount of work will not be useful, causing some

programs to run slower. Stingy evaluation was implemented in the LML [AJ89] compiler.

A more modest approach to the same problem is presented by Wadler [Wad87] who uses the

garbage collector to evaluate any record selector whose record constructor has become a value.

This avoids space leaks that can otherwise result if a record constructor contains links to other

closures that are not of interest to the selector. Sparud [Spa93] solves many cases of the same

problem by generating particularly clever code for pattern matches.

13.8.2 Heap Profiling

Rather than attempting to remove space leaks automatically, it is perhaps preferable to provide

the programmer with a profiler which allows the programmer to understand why the space leak

is occurring and which will show them how they might go about fixing it; this is the approach

taken by heap profilers [RR96b, RR96a, RW92]. These profilers are extremely sophisticated

and provide information that makes it fairly easy for a programmer to see which unevaluated

thunks are causing them to leak memory. Given this information, the programmer can add

annotations to their program to cause the offending expressions to be evaluated strictly.



13.9. Other Approaches to Evaluation 193

13.9 Other Approaches to Evaluation

This thesis explores the space between Lazy Evaluation and Eager Evaluation. However there

any many other evaluation strategies which do not fall into this space. In this Section, we discuss

two such evaluation strategies: partial evaluation, and optimal evaluation.

13.9.1 Partial Evaluation

Partial Evaluation [CD93, JGS93, PEP97], also known as Program Specialisation is an evalu-

ation technique that can perform evaluation steps underneath lambda expressions. Consider the

following example:
f x y = case x of

Red → y + 1

Green → y + 4

g y = f Green y

A partial evaluator might partially evaluate g’s call to f , giving the following definition for g:

g y = y + 4

Partial evaluation at compile time is used in many optimising compilers for mainstream lan-

guages such as C. It is also frequently done at runtime by dynamically optimising compilers for

languages such as Java.

13.9.2 Optimal Lambda Reduction

Optimal Lambda Reduction [Lév78, Lév80, Lam90] is a fascinating approach to evaluation that

aims to maximise the amount of work that is shared by different applications of a function.

Consider the following lambda expression (taken from [Lam90]):

(λg.(g(g(λx.x))))

(λh.(

(λf.(f(f(λz.z))))

(λw.(h(w(λy.y))))))

If we are to evaluate this using normal graph reduction, then there are two possible redexes

in this expression.

Outer: Apply (λg.(g(g(λx.x)))) to the term beginning λh. . . .

Inner: Apply (λf.(f(f(λz.z)))) to the term beginning λw. . . .



194 Chapter 13. Related Work

If we perform the outer reduction, then, when g is applied twice, the inner reduction will

have to be applied twice to reduce the function body. This is because, while graph reduction

allows the sharing of terms, it does not allow the sharing of function bodies between functions

that have been applied to different arguments.

Performing the inner reduction wastes work too. In this case, the two applications of f will

mean that we have to perform the application of h twice. We can’t do the application of h before

doing the other two reductions as the value of h isn’t known until we have performed the outer

reduction. In this case, conventional graph reduction will duplicate work, irrespective of the

evaluation order chosen.

The essential problem here is that conventional graph reduction copies the body of a function

when the function is applied to an argument. This prevents the sharing of any reductions that

might take place in this function body.

Optimal Lambda Reduction gets round this problem by arranging for the bodies of functions

to be shared even after the function has been applied to several different arguments. This is

accomplished using a complex system of fan ins and fan outs that arrange that variables in a

function body be seen as being bound to different things depending on where the function body

is being observed from.

While Optimal Reduction does minimise the number of beta reductions, it also introduces a

large amount of book-keeping complexity that significantly reduces its efficiency. Asperti and

Chroboezek [AC97] have shown that it is possible to create an implementation of Optimal Re-

duction that is capable of outperforming implementations of strict and lazy languages for some

example programs. However the programs they use are quite unusual, and do not resemble the

kinds of programs that people typically write. It is hard to know whether Optimal Reduction is

capable of giving real performance increases for real programs. Asperti and Chroboezek sug-

gest that the availability of Optimal Reduction could cause people to change their programming

style to favour styles of programming that would otherwise be impractically inefficient - just as

Lazy Evaluation has done in the past.



CHAPTER 14

Conclusions

In this chapter, we summarise the work described in this thesis, draw attention to its strengths

and shortcomings, and discuss further work.

Performance

Optimistic Evaluation improves the performance of the Haskell programs we tested by an av-

erage of 20% relative to the best performing compiler previously available. Moreover, it does

this without slowing any programs down by more than 7%. To put this into context, recall that

Strictness Analysis improves performance by around 13% (Section 12.7.3), and that Optimistic

Evaluation achieves its 20% speedup relative to a compiler that already uses Strictness Analysis.

We believe that it should be possible to improve the performance of Optimistic Evaluation

further. In particular, we believe that we could achieve better performance if we designed a new

compiler specifically for Optimistic Evaluation, rather than extending GHC.

Worst Case Behaviour

Despite being an adaptive evaluation technique, the behaviour of Optimistic Evaluation is well

understood. Not only has it been demonstrated to be efficient on average, but, with the aid of

a new denotational semantics, we have shown that we can bound its worst case behaviour with

respect to a simplified cost model.

This does not mean that it is impossible that any program will go slower than predicted by

this bound; our formal cost model is only approximate, and our profiler further approximates

this model. However we are confident that neither of these approximations will ever be wrong

195



196 Chapter 14. Conclusions

by more than a reasonable constant factor, and so believe that it is unlikely that any program

can slow down by an unreasonably large amount.

While Optimistic Evaluation can make some programs go slower, its worst case behaviour

is better than that of either Strictness Analysis or Cheapness Analysis, both of which are widely

accepted. Perhaps more relevantly, we are not aware of any other dynamically optimising lan-

guage implementation of similar complexity whose worst case behaviour is understood as well

as that of Optimistic Evaluation.

Predictability

One criticism that could be levied against Optimistic Evaluation is that its performance is fairly

unpredictable. Minor changes to a program, or even to its input data, can cause the profiler

to react in a different way, causing performance to change. This problem is not unique to

Optimistic Evaluation, but is a problem common to the majority of dynamically optimising

language implementations.

While Optimistic Evaluation can cause programs to execute significantly faster than they

would under Lazy Evaluation, we believe that it is unwise for a programmer to rely on this.

If it is absolutely essential for the efficient execution of a program that a particular expression

be evaluated eagerly, then we believe that the programmer should mark this with a strictness

annotation.

Complexity

While Optimistic Evaluation does give good performance results, it has to go to a lot of effort to

achieve this. Optimistic Evaluation is a very complex evaluation strategy to implement. Spec-

ulation, abortion, profiling, and semi-tagging are all complex ideas, all have knock-on effects

throughout the runtime system, and all are difficult to debug when they go wrong. Although

we had originally planned to merge Optimistic Evaluation into the main branch of GHC, it now

seems likely that we will not do this—it is simply too difficult to maintain.

Non-Strict Languages

Perhaps the biggest weakness of Optimistic Evaluation is that it is an implementation technique

for non-strict languages. During the course of this research, we have come to the conclusion

that, although non-strict languages seem superficially appealing, they are not, in general, a

good idea. While Lazy Evaluation is often useful, we do not believe that it is wise to make it

the default evaluation strategy for all expressions. Although much has been written about the

supposed expressive beauty of non-strict languages, most non-strict programs we have investi-

gated contain only a small number of expressions for which laziness is useful, and it is usually



197

obvious which expressions these are. We now believe that, if a program makes essential use of

laziness, then this should be a deliberate design decision, and the way in which laziness is used

should be stated explicitly in the program text.

This does not however make Optimistic Evaluation completely redundant. Optimistic Eval-

uation obtains many of its biggest wins when applying chunky evaluation to infinite data struc-

tures — a technique that is equally applicable in languages with explicity laziness. In addition,

Non-Strict languages are just one example of a general class of problems in which a computer

may find itself having to decide whether or not to do some work that may or may not turn out

to be useful. We thus believe that, even if it turns out that non-strict languages are a bad idea,

the basic principles of Optimistic Evaluation still have practical value.

Summary

We have achieved what we set out to do: we have designed and implemented an evaluation

strategy that significantly improves the performance of non-strict programs. If one wishes to

evaluate non-strict programs fast, and one is prepared to expend considerable effort to do this,

then we believe Optimistic Evaluation is a good technique to use. The biggest question is

perhaps whether one should be implementing a non-strict language in the first place.



APPENDIX A

Proof that Meaning is Preserved

In this Appendix, we prove the property referred to in Section 4.4:

Γ; c; s −→Σ Γ′, c′; s′ ⇒ M[[Γ, c, s]] =M[[Γ′, c′, s′]]

We proceed casewise, showing that the property holds for all rules defining −→. For each rule,

we show that the left hand side (LHS ) of the rule has the same meaning as the right hand side

(RHS ) of the rule.

A.1 Evaluation Preserves Meaning

Case: (VAL)

LHS =M[[Γ; V ; s]]

=M[[Γ[α 7→ (|V |)]; V ; s]] fresh α and Theorem 4.3.3

= µρ(H[[Γ[α 7→ (|V |)]]]ρ t S[[s]]ρ E [[V ]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ[α 7→ (|V |)]]]ρ t S[[s]]ρ E [[α]]ρ) ε defn of E [[−]] andH[[−]]

=M[[Γ[α 7→ V ];Oα; s]]

= RHS

Case: (VAR)

LHS =M[[Γ; α; s]]

=M[[Γ;}α; s]] defn ofM[[−]] and C[[−]]

= RHS

198



A.1. Evaluation Preserves Meaning 199

Case: (DEM1)

LHS =M[[Γ[α 7→ (|V |)];}α; s]]

=M[[Γ[α 7→ (|V |)];Oα; s]] defn ofM[[−]] and C[[−]]

= RHS

Case: (DEM2)

LHS =M[[Γ[α 7→ 〈(α′)〉];}α; s]]

= µρ(H[[Γ[α 7→ 〈(α′)〉]]]ρ t S[[s]]ρ E [[α]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t (α 7→ E [[α′]]ρ) t S[[s]]ρ E [[α]]ρ) ε defn ofH[[−]]

= µρ(H[[Γ]]ρ t (α 7→ E [[α′]]ρ) t S[[s]]ρ E [[α
′]]ρ) ε defn of E [[−]]

=M[[Γ[α 7→ 〈(α′)〉];}α′; s]] defn ofM[[−]]

= RHS

Case: (DEM3)

LHS =M[[Γ[α 7→ E];}α; s]]

= µρ(H[[Γ[α 7→ E]]]ρ t S[[s]]ρ E [[α]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t (α 7→ E [[E]]ρ) t S[[s]]ρ E [[α]]ρ) ε defn ofH[[−]]

= µρ(H[[Γ]]ρ t (α 7→ E [[E]]ρ) t S[[s]]ρ E [[E]]ρ) ε defn of E [[−]]

= µρ(H[[Γ]]ρ t S[[#α : s]]ρ E [[E]]ρ) ε defn of S[[−]]

=M[[Γ; E; #α : s]] defn ofM[[−]]

= RHS

Case: (RESUME)

LHS =M[[Γ[α 7→ α′∠l];}α; s]]

= µρ(H[[Γ[α 7→ α′∠l]]]ρ t (S[[s]]ρ E [[α]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t (α 7→ E [[α′∠l]]) t (S[[s]]ρ E [[α]]ρ)) ε defn ofH[[−]]

= µρ(H[[Γ]]ρ t (α 7→ E [[α′∠l]]) t (S[[s]]ρ E [[α
′∠l]]ρ)) ε defn of E [[−]]

= µρ(H[[Γ]]ρ t (S[[#α : s]]ρ E [[α
′∠l]]ρ)) ε defn of S[[−]]

= µρ(H[[Γ]]ρ t (S[[#α : s]]ρ (L[[l]]ρ ρ(α′)))) ε defn of E [[−]]

= µρ(H[[Γ]]ρ t (S[[l : #α : s]]ρ ρ(α′))) ε defn of S[[−]]

=M[[Γ;}α′; l : #α : s]] defn ofM[[−]]

= RHS



200 Chapter A. Proof that Meaning is Preserved

Case: (UPD)

LHS =M[[Γ;Oα; #α′ : s]]

= µρ(H[[Γ]]ρ t S[[#α′ : s]]ρ E [[α]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t (α′ 7→ E [[α]]ρ) t S[[s]]ρ E [[α]]ρ) ε defn of S[[−]]

= µρ(H[[Γ[α′ 7→ 〈(α)〉]]]ρ t S[[s]]ρ E [[α]]ρ) ε defn ofH[[−]]

=M[[Γ[α′ 7→ 〈(α)〉];Oα; s]] defn ofM[[−]]

= RHS

Case: (APP1)

LHS =M[[Γ; E α; s]]

= µρ(H[[Γ]]ρ t S[[s]]ρ E [[E α]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t S[[s]]ρ (E [[E]]ρ ρ(α)) ) ε defn of E [[−]]

= µρ(H[[Γ]]ρ t S[[@α : s]]ρ E [[E]]ρ) ε defn of S[[−]]

=M[[Γ; E; @α : s]] defn ofM[[−]]

= RHS

Case: (APP2)

For convenience, let us define:

ρ′ = (α 7→ λv.E [[E]]ρ[x7→v])

LHS =M[[Γ[α 7→ (|λx.E|)];Oα; @ α′ : s]]

= µρ(H[[Γ[α 7→ (|λx.E|)]]]ρ t S[[@ α′ : s]]ρ E [[α]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t ρ′ t S[[@ α′ : s]]ρ E [[α]]ρ) ε defn of E [[−]] andH[[−]]

= µρ(H[[Γ]]ρ t ρ′ t S[[s]]ρ (ρ(α) ρ(α′)) ε defn of S[[−]] and E [[−]]

= µρ(H[[Γ]]ρ t ρ′ t S[[s]]ρ (λv.E [[E]]ρ[x7→v] ρ(α′)) ε defn of ρ and ρ′

= µρ(H[[Γ]]ρ t ρ′ t S[[s]]ρ (E [[E]]ρ[x7→ρ(α′)]) ) ε beta reduction

= µρ(H[[Γ]]ρ t ρ′ t S[[s]]ρ E [[E[α′/x]]]ρ[x7→ρ(α′)]) ε Theorem 4.3.1

= µρ(H[[Γ]]ρ t ρ′ t S[[s]]ρ E [[E[α′/x]]]ρ) ε Theorem 4.3.2

=M[[Γ[α 7→ (|λx.E|)]; E[α′/x]; s]] defn ofM[[−]] andH[[−]]

= RHS



A.2. Abortion Preserves Meaning 201

Case: (LAZY)

LHS =M[[Γ; let x = E in E ′; s]]

=M[[Γ[α 7→ E]; let x = E in E ′; s]] new α and Theorem 4.3.3

= µρ (H[[Γ[α 7→ E]]]ρ t S[[s]]ρ E [[let x = E in E ′]]ρ) ε defn ofM[[−]]

= µρ (H[[Γ[α 7→ E]]]ρ t S[[s]]ρ E [[E
′]]ρ[x7→E[[E]]ρ]) ε defn of E [[−]]

= µρ (H[[Γ[α 7→ E]]]ρ t S[[s]]ρ E [[E
′[α/x]]]ρ[x7→E[[E]]ρ]) ε Theorem 4.3.1 and defn ofH[[−]]

= µρ (H[[Γ[α 7→ E]]]ρ t S[[s]]ρ E [[E
′[α/x]]]ρ) ε Theorem 4.3.2

=M[[Γ[α 7→ E]; E ′[α/x]; s]] defn ofM[[−]]

= RHS

Case: (SPEC1)

LHS =M[[Γ; let x = E in E ′; s]]

= µρ (H[[Γ]]ρ t S[[s]]ρ E [[let x = E in E ′]]ρ) ε defn ofM[[−]]

= µρ (H[[Γ]]ρ t S[[s]]ρ E [[E
′]]ρ[x7→E[[E]]ρ]) ε defn of E [[−]]

= µρ (H[[Γ]]ρ t S[[({x}E ′) : s]]ρ E [[E]]ρ) ε defn of S[[−]]

=M[[Γ; E; ({x}E ′ : s)]] defn ofM[[−]]

= RHS

Case: (SPEC2)

LHS =M[[Γ;Oα; ({x}E) : s]]

= µρ (H[[Γ]]ρ t S[[({x}E) : s]]ρ E [[α]]ρ) ε defn ofM[[−]]

= µρ (H[[Γ]]ρ t S[[s]]ρ E [[E]]ρ[x7→E[[α]]ρ]) ε defn of S[[−]]

= µρ (H[[Γ]]ρ t S[[s]]ρ E [[E[α/x]]]ρ) ε Theorem 4.3.1

=M[[Γ; E[α/x]; s]] defn ofM[[−]]

= RHS

A.2 Abortion Preserves Meaning

We can similarly prove that all the rules defining ‘Ã’ preserve the meaning of an expression

with respect toM[[−]]. Formally, we prove:

Γ; c; sÃ Γ′; c′; s′ ⇒M[[Γ; c; s]] =M[[Γ′; c′; s′]]



202 Chapter A. Proof that Meaning is Preserved

Case: (!EXP)

The proof for (!EXP) is almost identical to the proof for (VAL):

LHS =M[[Γ; E; s]]

=M[[Γ[α 7→ E]; E; s]] new α and Theorem 4.3.3

= µρ(H[[Γ[α 7→ E]]]ρ t S[[s]]ρ E [[E]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ[α 7→ E]]]ρ t S[[s]]ρ E [[α]]ρ) ε defn of E [[−]] andH[[−]]

=M[[Γ[α 7→ E];}α; s]]

= RHS

Case: (!RET)

The proof for (!RET) is trivial:

LHS =M[[Γ;Oα; s]]

=M[[Γ;}α; s]] defn ofM[[−]]

= RHS

Case: (!SPEC)

The proof for (!SPEC) is almost identical to the proof for (SPEC2):

LHS =M[[Γ;}α; ({x}E) : s]]

= µρ (H[[Γ]]ρ t S[[({x}E) : s]]ρ E [[α]]ρ) ε defn ofM[[−]]

= µρ (H[[Γ]]ρ t S[[s]]ρ E [[E]]ρ[x7→E[[α]]ρ]) ε defn of S[[−]]

= µρ (H[[Γ]]ρ t S[[s]]ρ E [[E[α/x]]]ρ) ε Theorem 4.3.1

=M[[Γ; E[α/x]; s]] defn ofM[[−]]

= RHS

Case: (!UPD)

The proof for (!UPD) is almost identical to the proof for (UPD):

LHS =M[[Γ;}α; #α′ : s]]

= µρ(H[[Γ]]ρ t S[[#α′ : s]]ρE [[α]]ρ) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t (α′ 7→ E [[α]]ρ) t S[[s]]ρE [[α]]ρ) ε defn of S[[−]]

= µρ(H[[Γ[α′ 7→ 〈(α)〉]]]ρ t S[[s]]ρE [[α]]ρ) ε defn ofH[[−]]

=M[[Γ[α′ 7→ 〈(α)〉];}α; s]] defn ofM[[−]]

= RHS



A.2. Abortion Preserves Meaning 203

Case: (!ABORT)

The proof for (!ABORT) is almost the reverse of the proof for (RESUME):
LHS =M[[Γ;}α; (l : s)]]

= µρ(H[[Γ]]ρ t (S[[l : s]]ρ ρ(α))) ε defn ofM[[−]]

= µρ(H[[Γ]]ρ t (S[[s]]ρ (L[[l]]ρ ρ(α)))) ε defn of S[[−]]

= µρ(H[[Γ]]ρ t (α′ 7→ L[[l]]ρ ρ(α)) t (S[[s]]ρ ρ(α′))) ε defn of E [[−]] for new α′

= µρ(H[[Γ]]ρ t (α′ 7→ E [[α∠l]]) t (S[[s]]ρ ρ(α′))) ε defn of E [[−]]

= µρ(H[[Γ[α′ 7→ α∠l]]]ρ t (S[[s]]ρ ρ(α′))) ε defn ofH[[−]]

=M[[Γ[α′ 7→ α∠l];}α′; s]] defn ofM[[s]]

= RHS

Soundness of Bounded Evaluation

Having shown that−→ andÃ are sound, it easy easy to see that y must also be sound as every

y transition corresponds to either an −→ transition or anÃ transition.



APPENDIX B

Proof that Costed Meaning is Preserved

In this appendix, we prove the property referred to in Section 5.6.4:

T ; c; s −→ T ′; c′; s′ ⇒ M[[T ; c; s]] =M[[T ′; c′; s′]]

We start with two important lemmas, and then proceed to show that the meaning of the state

is preserved by each rule defining ‘−→’.

B.1 Lemmas

Lemma B.1.1 (Following Indirections)

From the definitions of S[[−]], F(−) , and b−c we can observe that:

γ(i) = (i′, d, e) ⇒ S[[s]]γ i = S[[s]]γ i′

Lemma B.1.2 (Substitution)

From the definition of E [[−]] and the extension given in Section 5.6.1, we can observe that:

E [[E[i′/x]]]β i γ = E [[E]]β[x7→i′] i γ

204



B.2. Proof of Soundness for Evaluation Rules 205

B.2 Proof of Soundness for Evaluation Rules

Case: (VAL)

LHS =M[[T ; V B i; s]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[V ]]∅ i γ defn ofM[[−]]

= µγ. T [[T [i 7→ V ]]] t (S[[s]]γ i) defn of T [[−]]

=M[[T [i 7→ V ];Oi; s]] = RHS defn ofM[[−]]

Case: (VAR)

LHS =M[[T ; i′ B i; s]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[i′]]∅ i γ defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t (i 7→ (i′, ∅, ∅)) defn of E [[−]] and Section 5.6.1

= µγ. T [[T [i 7→ 〈(i′, ∅, ∅)〉]]]γ t (S[[s]]γ i′) defn of T [[−]] and Lemma B.1.1

=M[[T [i 7→ 〈(i′, ∅, ∅)〉];}i′; s]] = RHS defn ofM[[−]]

Case: (DEM1)

LHS =M[[T [i 7→ (|V |)];}i; s]]

=M[[T [i 7→ (|V |)];Oi; s]] = RHS defn ofM[[−]]

Case: (DEM2)

LHS =M[[T [i 7→ 〈(i′, d, e)〉];}i; s]]

=M[[T [i 7→ 〈(i′, d, e)〉];}i′; s]] = RHS defn ofM[[−]] and Lemma B.1.1

Case: (DEM3)

LHS =M[[T [i 7→ E];}i; s]]

= µγ. T [[T [i 7→ E]]]γ t (S[[s]]γ i) defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[E]]∅ i γ defn of T [[−]]

=M[[T ; E B i; s]] = RHS defn ofM[[−]]

Case: (APP1)

LHS =M[[T ; E i′ B i; s]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[E i′]]∅ i γ defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t (i 7→ (•i, {◦i}, ∅)) t E [[E]]∅ ◦i γ t F(◦i)•ii′ defn of E [[−]]

= µγ. T [[T [i 7→ 〈(•i, {◦i}, ∅)〉]]]γ t (S[[s]]γ i) t E [[E]]∅ ◦i γ t F(◦i)•ii′ defn of T [[−]]

= µγ. T [[T [i 7→ 〈(•i, {◦i}, ∅)〉]]]γ t (S[[s]]γ •i) t E [[E]]∅ ◦i γ t F(◦i)•ii′ Lemma B.1.1

= µγ. T [[T [i 7→ 〈(•i, {◦i}, ∅)〉]]]γ t (S[[(@ i′, •i) : s]]γ ◦i) t E [[E]]∅ ◦i γ defn of S[[−]]

=M[[T [i 7→ 〈(•i, {◦i}, ∅)〉]; E B ◦i; (@ i′, •i) : s]] = RHS defn ofM[[−]]



206 Chapter B. Proof that Costed Meaning is Preserved

Case: (APP2)

LHS =M[[T [i′ 7→ (|λx.E|)];Oi′; (@ i′′, i) : s]]

= µγ. T [[T [i′ 7→ (|λx.E|)]]]γ t (S[[(@ i′′, i) : s)]]γ i′) defn ofM[[−]]

= µγ. T [[T [i′ 7→ (|λx.E|)]]]γ t F(i′)i
i′′ γ t (S[[s]]γ i) defn of S[[−]]

= µγ. T [[T [i′ 7→ (|λx.E|)]]]γ t E [[E]](x7→i′′) i γ t (S[[s]]γ i) defn of F(−) and T [[−]]

= µγ. T [[T [i′ 7→ (|λx.E|)]]]γ t E [[E[i′′/x]]]∅ i γ t (S[[s]]γ i) Lemma B.1.2

=M[[T [i′ 7→ (|λx.E|)]; E[i′′/x]B i; s]] = RHS defn ofM[[−]]

Case: (LAZY)

LHS =M[[T ; let x = E in E ′ B i; s]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[let x = E in E ′]]∅ i γ defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t (i 7→ (•i, ∅, {◦i})) t E [[E]]∅ ◦i γ t E [[E ′]](x7→◦i) •i γ defn of E [[−]]

= µγ. T [[T [i 7→ 〈(•i, ∅, {◦i})〉, ◦i 7→ E]]]γ t (S[[s]]γ i) t E [[E ′]](x7→◦i) •i γ defn of T [[−]]

= µγ. T [[T [i 7→ 〈(•i, ∅, {◦i})〉, ◦i 7→ E]]]γ t (S[[s]]γ i) t E [[E ′[◦i/x]]]∅ •i γ Lemma B.1.2

=M[[T [i 7→ 〈(•i, ∅, {◦i})〉, ◦i 7→ E]; E ′[◦i/x]B •i; s]] = RHS defn ofM[[−]]

Case: (SPEC1)

LHS =M[[T ; let x = E in E ′ B i; s]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[let x = E in E ′]]∅ i γ defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t (i 7→ (•i, ∅, {◦i})) t E [[E]]∅ ◦i γ t E [[E ′]](x7→◦i) •i γ defn of E [[−]]

= µγ. T [[T [i 7→ 〈(•i, ∅, {◦i})〉]]]γ t (S[[s]]γ i) t E [[E]]∅ ◦i γ t E [[E ′]](x7→◦i) •i γ defn of T [[−]]

= µγ. T [[T [i 7→ 〈(•i, ∅, {◦i})〉]]]γ t (S[[s]]γ i) t E [[E]]∅ ◦i γ t E [[E ′[◦i/x]]]∅ •i γ Lemma B.1.2

= µγ. T [[T [i 7→ 〈(•i, ∅, {◦i})〉]]]γ t (S[[s]]γ •i) t E [[E]]∅ ◦i γ t E [[E ′[◦i/x]]]∅ •i γ Lemma B.1.1

= µγ. T [[T [i 7→ 〈(•i, ∅, {◦i})〉]]]γ t (S[[(E ′[◦i/x]B •i) : s]]γ ◦ i) t E [[E]]∅ ◦i γ defn of S[[−]]

=M[[T [i 7→ 〈(•i, ∅, {◦i})〉]; E B ◦i; (E ′[◦i/x]B •i) : s]] = RHS defn ofM[[−]]

Case: (SPEC2)

LHS =M[[T ;Oi′; E B i : s]]

= µγ. T [[T ]]γ t (S[[(E B i) : s]]γ i′) defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[E]]∅ i γ defn of S[[−]]

=M[[T ; E B i; s]] = RHS defn ofM[[−]]



B.3. Proof of Soundness for Abortion Rules 207

Case: (OP1)

LHS =M[[T ; j ⊗ k B i; s]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[j ⊗ k]]∅ i γ defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t (i 7→ (•i, {j, k}, ∅)) t (O[[⊗]] •i bjcγ bkcγ) defn of E [[−]]

= µγ. T [[T [i 7→ 〈(•i, {j, k}, ∅)〉]]]γ t (S[[s]]γ i) t (O[[⊗]] •i bjcγ bkcγ) defn of T [[−]]

= µγ. T [[T [i 7→ 〈(•i, {j, k}, ∅)〉]]]γ t (S[[s]]γ •i) t (O[[⊗]] •i bjcγ bkcγ) Lemma B.1.1

= µγ. T [[T [i 7→ 〈(•i, {j, k}, ∅)〉]]]γ t (S[[(⊗k, •i) : s]]γ j) defn of S[[−]]

=M[[T [i 7→ 〈(•i, {j, k}, ∅)〉];}j; (⊗k, •i) : s]] = RHS defn ofM[[−]].

Case: (OP2)

LHS =M[[T [j 7→ (|n|)];Oj; (⊗k, i) : s]]

= µγ. T [[T [j 7→ (|n|)]]]γ t (S[[(⊗k, i) : s]]γ j) defn ofM[[−]]

= µγ. T [[T [j 7→ (|n|)]]]γ t (O[[⊗]] i bjcγ bkcγ) t (S[[s]]γ i) defn of S[[−]]

= µγ. T [[T [j 7→ (|n|)]]]γ t (O[[⊗]] i n bkcγ) t (S[[s]]γ i) defn of b−c and T [[−]]

= µγ. T [[T [j 7→ (|n|)]]]γ t (S[[(n⊗, i) : s]]γ k) defn of b−c and T [[−]]

=M[[T [j 7→ (|n|)];}k; (n⊗, i) : s]] = RHS defn ofM[[−]]

Case: (OP3)

LHS =M[[T [k 7→ (|n′|)];Ok; (n⊗, i) : s]]

= µγ. T [[T [k 7→ (|n′|)]]]γ t (S[[(n⊗, i) : s]]γ k) defn ofM[[−]]

= µγ. T [[T [k 7→ (|n′|)]]]γ t (O[[⊗]] i n bkcγ) t (S[[s]]γ i) defn of S[[−]]

= µγ. T [[T [k 7→ (|n′|)]]]γ t (O[[⊗]] i n n′) t (S[[s]]γ i) defn of b−c and T [[−]]

= µγ. T [[T [k 7→ (|n′|), i 7→ (|n ⊗̃n′|)]]]γ t (S[[s]]γ i) defn of T [[−]] and O[[−]]

=M[[T [k 7→ (|n′|), i 7→ (|n ⊗̃n′|)];Oi; s]] = RHS defn ofM[[−]]

B.3 Proof of Soundness for Abortion Rules

Case: (!EXP)

LHS =M[[T ; E B i; s]]

= µγ. T [[T ]]γ t (S[[s]]γ i) t E [[E]]∅ i γ defn ofM[[−]]

= µγ. T [[T [i 7→ E]]]γ t (S[[s]]γ i) defn of T [[−]]

=M[[T [i 7→ E];}i; s]] = RHS defn ofM[[−]]

Case: (!SPEC)

LHS =M[[T ;}i; E B j : s]]

=M[[T ;Oi; E B j : s]] = RHS defn ofM[[−]]



208 Chapter B. Proof that Costed Meaning is Preserved

Case: (!ABORT)

LHS =M[[T ;}i; (f, j) : s]]

= µγ. T [[T ]]γ t (S[[(f, j) : s]]γ i defn ofM[[−]]

= µγ. T [[T ]]γ t (S[[(f, j) : []]]γ i) t (S[[s]]γ j) defn of S[[−]]

= µγ. T [[T [j 7→ i∠f ]]]γ t t (S[[s]]γ j defn of T [[−]]

=M[[T [j 7→ i∠f ];}j; s]] = RHS defn ofM[[−]]

Case: (!RESUME)

This is simply the inverse of the proof for (!ABORT).



APPENDIX C

Proof that programWork predicts workDone

C.1 Preliminaries

In this appendix, we provide the proof referred to in Section 5.6.5. That is, we prove:

∅; E B ε; [ ] −→∗ T ; c; s ⇒

workDone(T ) ∪ pendingWork(T ; c; s, Ψ) ⊆ programWork(M[[T ; c; s]], Ψ)

We prove this by induction over the number of −→ transitions that are applied. In the base

case, no −→ transitions are applied, and T ; c; s = ∅; E B ε; [ ]. The proof is thus trivial:

workDone(∅) ∪ pendingWork(∅; E B ε; [ ], Ψ)

= ∅ ∪ pendingWork(∅; E B ε; [ ], Ψ) defn of workDone

=W{{C{{E B ε}} ∪ S{{[ ]}}}}Ψ
M[[∅;EBε;[ ]]] defn of pendingWork

=W{{{ε}}}Ψ
M[[∅;EBε;[ ]]] defn of C{{−}} and S{{−}}

= programWork(M[[∅; E B ε; [ ]]]) defn of programWork

The proof of the inductive step is rather harder. We know from the proof in Appendix B that

programWork(M[[T ; c; s]], Ψ) will be preserved by evaluation transitions. The inductive step

thus amounts to showing that the union of workDone and pendingWork never increases. That

is:

∅; E B ε; [ ] −→∗ T ; c; s ∧ T ; c; s −→ T ′; c′; s′ ⇒

workDone(T ) ∪ pendingWork(T ; c; s)

⊆

workDone(T ′) ∪ pendingWork(T ′; c′; s′)

209



210 Chapter C. Proof that programWork predicts workDone

We proceed casewise by showing that, this property holds for every rule defining −→.

For convenience, we make the following standard definitions for each rule, where, in each

case, T ; c; s represents the old state, and T ′; c′; s′ represents the new state:

D = workDone(T ) the work done by the initial state

D′ = workDone(T ′) the work done by the final state

P = pendingWork(T ; c; s, Ψ) the pending work for the initial state

P ′ = pendingWork(T ′; c′; s′, Ψ) the pending work for the final state

γ = M[[T ; C; s]] = M[[T ′; c′; s′]] complete cost view (preserved by Appendix B

We now proceed to give the proof for each rule. Most of the the proofs follow the same

pattern and are fairly trivial. We give a detailed proof for the first rule, but give less detail in the

other rules.

C.2 Proof for Evaluation Transitions

Case: (VAL)

T ; V B i; s −→ T [i 7→ V ];Oi; s

In this case γ is defined as:

γ =M[[T, V B i; s]]

= µγ . T [[T ]]γ t (S[[s]]γ i) t E [[V ]]∅ i γ defn ofM[[−]]

= µγ . T [[T ]]γ t (S[[s]]γ i) t (i 7→ v) defn of E [[−]] for some value v

We can use this to prove that (VAL) preserves the union of workDone and pendingWork :

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn of pendingWork

= D ∪ {i} ∪ W{{S{{s}}}}Ψγ defn ofW{{−}} and γ

= D′ ∪ W{{S{{s}}}}Ψγ defn of workDone

= D′ ∪ P ′ = RHS defn of pendingWork

Case: (VAR)

T ; i′ B i; s −→ T [i 7→ 〈(i′, ∅, ∅)〉];}i′; s

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn of pendingWork

= D ∪ {i} ∪ W{{{i′} ∪ S{{s}}}}Ψγ defnW{{−}} and γ

= D′ ∪ P ′ = RHS defn of workDone and pendingWork



C.2. Proof for Evaluation Transitions 211

Case: (DEM1)

T [i 7→ (|V |)];}i; s −→ T [i 7→ (|V |)];Oi; s

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn of pendingWork

= D ∪ {i} ∪ W{{S{{s}}}}Ψγ defn ofW{{−}}

= D′ ∪ P ′ = RHS defn of workDone and pendingWork

Case: (DEM2)

T [i 7→ 〈(i′, d, e)〉];}i; s −→ T [i 7→ 〈(i′, d, e)〉];}i′; s

We are currently only able to prove that (DEM2) reduces the amount of work expected,

rather than that it preserves it, however we believe that, in the absence of abortion, (DEM2)

should preserve expected work just like all the other evaluation rules do.

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn of pendingWork

⊇ D ∪ W{{{i′} ∪ S{{s}}}}Ψγ defn ofW{{−}} and γ

= D′ ∪ P ′ = RHS defn of workDone and pendingWork

Case: (DEM3)

T [i 7→ E];}i; s −→ T ; E B i; s

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn of pendingWork

= D′ ∪ {i} ∪ W{{{i} ∪ S{{s}}}}Ψγ defn of workDone

= D′ ∪ P ′ = RHS defn of pendingWork andW{{−}}

Case: (APP1)

T ; E i′ B i; s −→ T [i 7→ 〈(•i, {◦i}, ∅)〉]; E B ◦i; (@ i′, •i) : s

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn of pendingWork

= D ∪ {i} ∪ W{{{◦i, •i} ∪ S{{s}}}}Ψγ defn ofW{{−}} and γ

= D′ ∪ P ′ = RHS defn of workDone and pendingWork

Case: (APP2)

T [i′ 7→ (|λx.E|)];Oi′; (@ i′′, i) : s −→ T [i′ 7→ (|λx.E|)]; E[i′′/x]B i; s

LHS = D ∪ W{{{i′, i} ∪ S{{s}}}}Ψγ defn of pendingWork

= D ∪ {i′} ∪ W{{{i} ∪ S{{s}}}}Ψγ defn ofW{{−}} and γ

= D′ ∪ P ′ = RHS defn of workDone and pendingWork



212 Chapter C. Proof that programWork predicts workDone

Case: (LAZY)

We give rule (LAZY) in more detail, as it is more interesting than most other rules:

T ; let x = E in E ′ B i; s −→ T [i 7→ 〈(•i, ∅, {◦i})〉, ◦i 7→ E]; E ′[◦i/x]B •i; s

i /∈ Ψ

In this case, γ is defined as:

γ =M[[T, let x = E in E ′ B i; s]]

= µγ . T [[T ]]γ t (S[[s]]γ i) t E [[let x = E in E ′]]∅ i γ defn ofM[[−]]

= µγ . T [[T ]]γ t (S[[s]]γ i) t (i 7→ (•i, ∅, {◦i}) t E [[E]]∅ ◦i γ t E [[E ′]]∅ •i γ defn of E [[−]]

We can use this to prove that (LAZY) preserves the union of workDone and pendingWork :

LHS = D ∪ P

= D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn of C{{−}}

= D ∪ {i} ∪ W{{{•i} ∪ S{{s}}}}Ψγ defn ofW{{−}} and γ, given i /∈ Ψ

= D′ ∪ P ′ = RHS defn of workDone and pendingWork

Case: (SPEC1)

T ; let x = E in E ′
B i; s −→ T [i 7→ 〈(•i, ∅, {◦i})〉]; E B ◦i; (E ′[◦i/x]B •i) : s

Rule (SPEC1) reuses the expansion of γ that we gave for (LAZY):

LHS = D ∪ P

= D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn of C{{−}}

= D ∪ {i} ∪ W{{{◦i, •i} ∪ S{{s}}}}Ψγ defn ofW{{−}} and γ, given i ∈ Ψ

= D′ ∪ P ′ = RHS defn of workDone and pendingWork

Case: (SPEC2)

T ;Oi′; E B i : s −→ T ; E B i; s

i ∈ Ψ

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn of pendingWork

= D′ ∪ P ′ = RHS defn of workDone and pendingWork



C.3. Proof for Abortion Transitions 213

C.3 Proof for Abortion Transitions

Case: (!EXP)

T ; E B i; s −→ T [i 7→ E];}i; s

LHS = D ∪ W{{{i} ∪ S{{s}}}}Ψγ defn of pendingWork

= D′ ∪ P ′ = RHS defn of workDone and pendingWork

Case: (!SPEC)

T ;}i; E B j : s −→ T ;Oi; E B j : s

As one would expect, (!SPEC) transitions can decrease the expected work set:

LHS = D ∪ W{{{i, j} ∪ S{{s}}}}Ψγ defn of pendingWork

⊇ D ∪ W{{{j} ∪ S{{s}}}}Ψγ defn ofW{{−}}

= D′ ∪ P ′ = RHS defn of workDone and pendingWork

Case: (!ABORT)

M[[T ;}i; (f, j) : s]] −→ T [j 7→ i∠f ];}j; s

LHS = D ∪ W{{{i} ∪ S{{(f, j) : s}}}}Ψγ defn of pendingWork

= D ∪ W{{{i, j} ∪ S{{s}}}}Ψγ defn of S{{−}} andW{{−}}

⊇ D ∪ {i} ∪ W{{{j} ∪ S{{s}}}}Ψγ defn ofW{{−}}

= D′ ∪ P ′ = RHS defn of workDone and pendingWork

Case: (!RESUME)

This is simply the inverse of the proof for (!ABORT).



APPENDIX D

Example HsDebug Debugging Logs

In this appendix, we present some example debugging sessions using HsDebug. All the text

shown is real output from HsDebug. The program being debugged in each case is the following:

1: module Main (main,last’) where

2:

3: import System ( getArgs )

4:

5: main :: IO ()

6: main = do

7: [countstr] <- getArgs

8: let count = read countstr

9: let xs = [4*2, 5 ‘div‘ 0] ++ replicate count 42

10: print (head xs, last’ xs)

11:

12: last’ (x:xs) = last’ xs

13: last’ [x] = x

This program is based on an example given in the online documentation for Hat [HAT]. We

have altered the program slightly so as to make its behaviour dependent on program input, thus

preventing GHC from optimising the entire program away.

All the examples shown are debugging a binary that has been compiled with the -O2 flag to

GHC, turning on all optimisations.

214



215

In all the examples, one can observe the following shortcomings in the current implementa-

tion of HsDebug:

• Source locations are sometimes a little wrong.

• Some function and closure names are messy ones made up by the compiler.

We intend to fix all of these problems, but we have not done so yet.

The log below shows how HsDebug can be used to find out where an exception is occurring:

bash-2.03$ hsdebug paperdemo2 3

(hsdebug) continue

Exception raised:

data: GHC.IOBase.PatternMatchFail.con <0>

["paperdemo." ++ 0x402c7e94]

(hsdebug) where

locals = ()

args = (0x8099a43)

#0: Main.lvl3 at paperdemo.hs:12

update : 402c74c8

args = ()

#1: Main.last’ at paperdemo.hs:12

args = ([])

#2: Main.last’ at paperdemo.hs:12

args = ([S# 42])

#3: Main.last’ at paperdemo.hs:12

args = ([S# 42, S# 42])

#4: Main.last’ at paperdemo.hs:12

args = ([S# 42, S# 42, S# 42])

#5: Main.last’ at paperdemo.hs:12

args = ([GHC.Real.lvl16.closure, S# 42, S# 42, S# 42])

#6: Main.last’ at paperdemo.hs:12

args = ([Main.a.closure, GHC.Real.lvl16.closure, S# 42, S# 42, S# 42])

#7: P4lu at inlined "print"

#8: xs.s4kR at paperdemo.hs:9

env = ([Main.a.closure, GHC.Real.lvl16.closure, S# 42, S# 42, S# 42])

#9: Main.main at inlined "print"

env = ("3")



216 Chapter D. Example HsDebug Debugging Logs

catch frame : GHC.TopHandler.topHandler.info

startup code

end of stack

(hsdebug)

The next log shows how breakpoints can be used to observe the execution of a program. In

this case we are placing a breakpoint on the entry to the last’ function:

bash-2.03$ hsdebug paperdemo 3

(hsdebug) b Main.last’

Breakpoint set at address 0x804929c

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([Main.a.closure, GHC.Real.lvl16.closure, S# 42,

S# 42, S# 42])

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([GHC.Real.lvl16.closure, S# 42, S# 42, S# 42])

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([S# 42, S# 42, S# 42])

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([S# 42, S# 42])

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([S# 42])

(hsdebug) c

breakpoint hit: Main.last’ (0x804929c)

args = ([])

(hsdebug) c

Exception raised:

data: GHC.IOBase.PatternMatchFail.con <0>

["paperdemo." ++ 0x402c7e94]

(hsdebug)

In these logs, we can note the following:



217

• The reference to demo.hs:9 should really be to demo.hs:10. This is a shortcoming of

our current source location information, which gives everything in the body of a let a

location corresponding to the start of the let.

• 4*2 and 5 ‘div‘ 0 have been hoisted up into top level closures by the compiler. The

compiler has called them a and lvl16. Such closures are not currently speculated by

Optimistic Evaluation.

• lvl33, P4lu and xs.s4kR are code blocks made up by the compiler. We intend to hide

these cryptic names in the future.

• The args line tells us the arguments that the function was called with. We can see that

the list of each call is the tail of the list of the previous call.

• Structures such as lists and integers are pretty printed automatically.

• When print is inlined, its arguments get mixed up with the body of print and so are

given the srcloc inlined "print". This is rather counter-intuitive, and we intend to

change this.

HsDebug has many features not covered in these logs. In particular, it can pretty print

closures in the heap and has special features to assist in debugging the GHC runtime system.



Bibliography

[ABD+97] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S. Leung, D. Sites,

M. Vandevoorde, C. Waldspurger, and W. Weihl. Continuous profiling: Where

have all the cycles gone. Technical report, Digitial Equipment Corporation Sys-

tems Research Center, July 1997.

[Abr90] Samson Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Research

Topics in Functional Programming, pages 65–116. Addison-Welsey, Reading,

MA, 1990.

[AC97] Andrea Asperti and Juliusz Chroboczek. Safe operators: Brackets closed forever

— optimizing optimal lambda-calculus implementations. Applicable Algebra in

Engineering, Communication and Computing, 8(6):437–468, 1997.

[AH90] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In Proceed-

ings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 246–256, White Plains, NY, June 1990.

[AJ89] Lennart Augustsson and Thomas Johnsson. The chalmers lazy-ML compiler. The

Computer Journal, 32(2):127–141, April 1989.

[AJ94] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and

T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 3,

pages 1–168. Clarendon Press, 1994.

[App87] Andrew W. Appel. Garbage collection can be faster than stack allocation. Infor-

mation Processing Letters, 25(4):275–279, 1987.

218



BIBLIOGRAPHY 219

[AR01] Matthew Arnold and Barbara G. Ryder. A framework for reducing the cost of

instrumented code. In Proceedings of the ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, 2001.

[Arn02] Matthew Arnold. Online Profiling and Feedback-Directed Optimization of Java.

PhD thesis, Rutgers, The State University of New Jersey, October 2002.

[Bak95] Henry G. Baker. ’use-once’ variables and linear objects — storage management,

reflection and multi-threading. ACM SIGPLAN Notices, pages 45–52, January

1995.

[BCF+99] Michael G. Burke, Jong-Doek Choi, Stephen Fink, David Grove, Michael Hind,

Vivek Sarkar, Mauricio J. Serrano, Vugranam C. Sreedhar, Harinin Srinivasan,

and Jahn Whaley. The Jalapeno dynamic optimizing compiler for Java. In Pro-

ceedings of the ACM Java Grande Conference, 1999.

[BD96] Stephen Brookes and Denis Dancanet. Circuit semantics and intensional expres-

sivity. http://www-2.cs.cmu.edu/ ddr/, August 1996.

[BF02] Anasue Bhowmik and Manoj Franklin. A general compiler framework for spec-

ulative multithreading. In Proceedings of the ACM Symposium on Parallel Algo-

rithms and Architectures, 2002.

[BH77] Henry G. Baker and Carl Hewitt. The incremental garbage collection of pro-

cesses. In Proceedings of the Symposium on AI and Programming Languages,

1977.

[BHA86] Geoffrey L. Burn, Chris Hankin, and Samson Abramsky. Strictness Analysis for

Higher-Order Functions. Science of Computer Programming, 7:249–278, 1986.

[BL93] Thomas Ball and James R. Larus. Branch prediction for free. In PLDI93

[PLD93], pages 300–313.

[Boq99] Urban Boquist. Code Optimisation Techniques for Lazy Functional Languages.

PhD thesis, Chalmers University of Technology, Sweden, April 1999.

[Bur85] F Warren Burton. Speculative computation, parallelism and functional program-

ming. IEEE Transactions on Computers, C-34(12):1190–1193, December 1985.

[BvEvLP87] TH Brus, MCJD van Eckelen, MO van Leer, and MJ Plasmeijer. Clean — a lan-

guage for functional graph rewriting. In G Kahn, editor, Proceedings of the 1997

Conference on Functional programming languages and computer architecture,

pages 364–384. LNCS 274, Springer Verlag, September 1987.



220 BIBLIOGRAPHY

[CD93] Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation. In

POPL93 [POP93].

[CG99] Fay Chang and Garth A. Gibson. Automatic I/O hint generation through spec-

ulative execution. In Proceedings of the 3rd USENIX Symposium on Operating

Systems Design and Implementation (OSDI’99), February 1999.

[Cha98] Manuel M. T. Chakravarty. Lazy thread and task creation in parallel graph reduc-

tion. In International Workshop of Implementing Functional Languages, Lecture

Notes in Computer Science. Springer Verlag, 1998.

[Dan98] Denis R. Dancanet. Intensional Investigations. PhD thesis, School of Computer

Science, Carnegie Mellon University, October 1998.

[Eme99] Joel S. Emer. Simultaneous multithreading: Multiplying alpha’s performance. In

Microprocessor Forum, 1999.

[EP03a] Robert Ennals and Simon Peyton Jones. HsDebug : Debugging lazy programs

by not being lazy (tool demo). In Proceedings of the ACM SIGPLAN Haskell

Workshop (Haskell’03), August 2003.

[EP03b] Robert Ennals and Simon Peyton Jones. Optimistic Evaluation: An adaptive eval-

uation strategy for non-strict programs. In Proceedings of the ACM SIGPLAN In-

ternational Conference on Functional Programming (ICFP’03), Uppsala, August

2003. ACM.

[EPM03] Robert Ennals, Simon Peyton Jones, and Alan Mycroft. A cost model for non-

strict evaluation. Unpublished; Likely to be submitted somewhere soon, 2003.

[ET96] Hartmut Ehrig and Gabriele Taentzer. Computing by graph transformation: A

survey and annotated bibliography. BEATCS: Bulletin of the European Associa-

tion for Theoretical Computer Science, 59, 1996.

[Fax00] Karl-Filip Faxén. Cheap Eagerness: Speculative evaluation in a lazy functional

language. In Proceedings of the ACM SIGPLAN International Conference on

Functional Programming (ICFP-00), 2000.

[Fax01] Karl-Filip Faxén. Dynamic Cheap Eagerness. In Proceedings of the 2001 Work-

shop on Implementing Functional Languages. Springer Verlag, 2001.

[FC03] Keir Fraser and Fay Chang. Operating system I/O speculation: How two in-

vocations are faster than one. In Proceedings of the USENIX Annual Technical

Conference, June 2003.



BIBLIOGRAPHY 221

[FDD01] ACM Workshop on Feedback Directed and Dynamic Optimization (FDDO), 2001.

[FF92] Joseph A. Fisher and Stefan M. Freudenberger. Predicting conditional branch

directions from previous runs of a program. In Proceedings of the Fifth Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems, in SIGPLAN Notices, 1992.

[FF95] Corman Flanagan and Matthias Felleisen. The semantics of future and its use in

program optimization. In Proceedings on the 22nd ACM Symposium on Princi-

ples of Programming Languages, pages 209–220, 1995.

[FPC93] ACM Conference on Functional Programming and Computer Architecture

(FPCA’93), Cophenhagen, 1993. ACM.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce Duba, and Matthias Felleisen. The essence

of compiling with continuations. In PLDI93 [PLD93], pages 237–247.

[GB96] John Greiner and Guy E. Blelloch. A provably time-efficient parallel implemen-

tation of full-speculation. In Proceedings of the 23rd ACM Symposium on Prin-

ciples of Programming Languages, pages 309–321, 1996.

[GB99] John Greiner and Guy E. Blelloch. A provably time-efficient parallel implemen-

tation of full-speculation. ACM Transactions on Programming Languages and

Systems (TOPLAS), 21:240–285, 1999.

[Gil00] Andy Gill. Debugging haskell by observing intermediate data structures. In

Proceedings of the ACM SIGPLAN Haskell Worshop, 2000.

[GKM83] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. An execution

profiler for modular programs. Software Practice and Experience, 3:671–685,

August 1983.

[GLP93] Andy Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to defor-

estation. In FPCA93 [FPC93], pages 223–232.

[GM96] James Gosling and Henry McGilton. The Java Language Environment: a White

Paper. Technical report, Sun Microsystems, 1996.

[GP81] Dale H. Grit and Rex L. Page. Deleting irrelevent tasks in an expression oriented

multiprocessor system. ACM Transactions on Programming Languages and Sys-

tems (TOPLAS), 3:49–59, January 1981.



222 BIBLIOGRAPHY

[Gus98] Jorgen Gustavsson. A type-based sharing analysis for update avoidance and op-

timisation. In Proceedings of the ACM SIGPLAN International Conference on

Functional Programming (ICFP’98), volume 34(1) of ACM SIGPLAN Notices,

Baltimore, 1998. ACM.

[Gwe99] Linley Gwennap. MAJC gives VLIW a new twist. Microprocessor Report,

13(12), 1999.

[H9̈5] Urs Hölzle. Adaptive optimization for Self: reconciling high performance with

exploratory programming. Ph.D. thesis, Computer Science Department, Stanford

University, March 1995.

[Hal85] Robert H Halstead. Multilisp - a language for concurrent symbolic computation.

ACM Transactions on Programming Languages and Systems, 7(4):501–538, Oc-

tober 1985.

[HAT] Hat - the haskell tracer. http://haskell.org/hat/.

[HK82] Paul Hudak and Robert M. Keller. Garbage collection and task deletion in dis-

tributed systems. In Proceedings of the ACM Symposium on Lisp and Functional

Programming, pages 168–178, August 1982.

[HO93] Kevin Hammond and John T. O’Donnell, editors. Functional Programming,

Glasgow 1993, Workshops in Computing. Springer Verlag, 1993.

[Hug89] R. John M. Hughes. Why functional programming matters. The Computer Jour-

nal, 32(2):98–107, April 1989.

[ia600] Intel. IA-64 Achitecture Software Developer’s Manual, 2000.

[int97] Intel. Using the RDTSC instruction for Performance Monitoring, 1997.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and

Automatic Program Generation. Prentice Hall International, 1993.

[Joh85] Thomas Johnsson. Lambda lifting: transforming programs to recursive equations.

In Jean-Pierre Jouannaud, editor, ACM Conference on Functional Programming

and Computer Architecture (FPCA’85), volume 201 of Lecture Notes in Com-

puter Science, Nancy, France, September 1985. Springer-Verlag.

[Jon92] Richard E. Jones. Tail recursion without space leaks. Journal of Functional

Programming, 2(1):73–79, January 1992.



BIBLIOGRAPHY 223

[KCR98] Richard Kelsey, William Clinger, and Jonathan Rees. Revised report on the algo-

rithmic language Scheme. SIGPLAN Notices, 33(9):26–76, September 1998.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.

Prentice Hall, Englewood Cliffs, NJ, second edition, 1988.

[Kri99] Venkata S. Krishnan. Speculative Multithreading Architectures. PhD thesis,

Department of Computer Science, University of Illinois at Urbana-CHampaign,

1999.

[Lam90] John Lamping. An algorithm for optimal lambda calculus reduction. In Confer-

ence Record of the 17th Annual ACM Symposium on Principles of Programming

Languages, 1990.

[Lau93] John Launchbury. A natural semantics for lazy evaluation. In POPL93 [POP93].

[LCH+03] Jin Lin, Tong Chen, Wei-Chung Hsu, Roy Dz-Ching Ju, Ton-Fook Ngai, Pen-

Chung Yew, and Sun Chan. A compiler framework for speculative analysis and

optimizations. In ACM Conference on Programming Languages Design and Im-

plementation (PLDI’03), San Diego, California, June 2003. ACM.

[Lév78] Jean-Jacques Lévy. Réductions correctes et optimales dans le lambda-calcul.

PhD thesis, Université de Paris, 1978.

[Lév80] Jean-Jacques Lévy. Optimal reductions in the lambda-calculus. In To H.B. Curry:

Essays on Combinatory Logic, Lambda Calculus and Formalism, 1980.

[LRVD98] Xavier Leroy, Didier Rémy, Jérôme Vouillon, and Damien Doligez. The Objec-

tive Caml system, documentation and user’s guide. INRIA, 1998. Available at

http://pauillac.inria.fr/ocaml/htmlman/.

[LS92] John Launchbury and Patrick Sansom, editors. Functional Programming, Glas-

gow 1992, Workshops in Computing. Springer Verlag, 1992.

[Mac92] Robert A. MacLachlan (ed). CMU Common Lisp users manual. Technical report,

School of Computer Science, Carnegie Mellon University, 1992.

[Mae02a] Jan-Willem Maessen. Eager Haskell: Resource-bounded execution yields effi-

cient iteration. In The Haskell Workshop, Pittsburgh, 2002.

[Mae02b] Jan-Willem Maessen. Hybrid Eager and Lazy Evaluation for Efficient Compila-

tion of Haskell. PhD thesis, Massachusetts Institute of Technology, June 2002.



224 BIBLIOGRAPHY

[Mai03] Harry Mairson. From Hilbert spaces to Dilbert spaces: context semantics made

simple. In Proceedings of the 23rd International Conference on Foundations of

Software Technology and Theoretical Computer Science, 2003.

[Mar02] Simon Marlow. State monads don’t respect the monad laws in haskell. Mes-

sage posted to the Haskell mailing list: http://haskell.org/pipermail/haskell/2002-

May/009622.html, May 2002.

[Mat93] James S. Mattson. An effective speculative evaluation technique for parallel su-

percombinator graph reduction. Ph.D. thesis, Department of Computer Science

and Engineering, University of California, San Diego, February 1993.

[Mau02] Luke Maurer. Isn’t this tail recursive? Message posted to the Haskell mailing

list: http://haskell.org/ pipermail/haskell/2002-March/009126.html, March 2002.

[MG99] Pedro Maruello and Antonio Gonzalez. Clustered speculative multithreaded pro-

cessors. In Proceedings of the International Conference on Supercomputing,

1999.

[MGA93] Margaret Martonosi, Anoop Gupta, and Thomas E. Anderson. Effectiveness of

trace sampling for performance debugging tools. In Proceedings of the ACM

SIGMETRICS Conference on Measurement and Modeling of Computer Systems,

pages 248–259, 1993.

[MJ98] Richard G. Morgan and Stephen A. Jarvis. Profiling large-scale lazy functional

programs. Journal of Functional Programming, 8(3), May 1998.

[MJG93] Jim S. Mattson Jr and William G. Griswold. Local Speculative Evaluation for

Distributed Graph Reduction. In Hammond and O’Donnell [HO93], pages 185–

192.

[MLP99] Andy Moran, Soeren Lassen, and Simon Peyton Jones. Imprecise exceptions, co-

inductively. In Proceedings of the 3rd International Workshop on Higher Order

Operational Techniques in Semantics, number 26 in Electronic Notes in Theoret-

ical Computer Science, pages 137–156. Elsevier, 1999.

[MN92] Alan Mycroft and Arthur Norman. Optimising compilation — lazy functional

languages. In Proceedings of the 19th Software Seminar (SOFSEM), 1992.

[MP98] Simon Marlow and Simon Peyton Jones. The new ghc/hugs runtime system.

Technical report, University of Glasgow, August 1998. From www.haskell.org.



BIBLIOGRAPHY 225

[MP03] Simon Marlow and Simon Peyton Jones. Making a fast curry:

Push/enter vs eval/apply for higher-order languages. Available at

http://research.microsoft.com/users/simonpj/, 2003.

[MPMR01] Simon Marlow, Simon Peyton Jones, Andrew Moran, and John Reppy. Asyn-

chronous exceptions in Haskell. In Proceedings of the ACM Conference on Pro-

gramming Languages Design and Implementation (PLDI’01), pages 274–285,

Snowbird, Utah, June 2001. ACM.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition

of Standard ML (Revised). The MIT Press, 1997.

[Myc80] Alan Mycroft. The theory and practice of transforming call-by-need into call-

by-value. In Proceedings of the 4th International Symposium on Programming,

1980.

[Myc81] Alan Mycroft. Abstract Interpretation and optimising transformations of applica-

tive programs. PhD thesis, Edinburgh University, 1981.

[NA01] Rishiyur S Nikhil and Arvind. Implicit Parallel Programming in pH. Morgan

Kaufman, 2001.

[NF92] Henrik Nilsson and Peter Fritzson. Algorithmic debugging for lazy functional

languages. In Maurice Bruynooghe and Martin Wirsing, editors, Proceedings

of the International Symposium on Programming Language Implementation and

Logic Programming (PLILP ’92), volume 631 of Lecture Notes in Computer Sci-

ence, pages 385–399, Leuven, Belgium, August 1992.

[NF94] Henrik Nilsson and Peter Fritzson. Algorithmic debugging for lazy functional

languages. Journal of Functional Programming, 4(3):337–370, July 1994.

[Nik91] Rishiyur Sivaswami Nikhil. Id (version 90.1) language reference manual. Tech-

nical Report CSG Memo 284-2, MIT Computation Structures Group, 1991.

[Nil01] Henrik Nilsson. How to look busy while being as lazy as ever: The imple-

mentation of a lazy functional debugger. Journal of Functional Programming,

11(6):629–671, November 2001.

[NS96] Henrik Nilsson and Jan Sparud. The evaluation dependence tree: an execution

record for lazy functional debugging. Technical report, Department of Computer

and Information Science, Linkoping University, 1996.



226 BIBLIOGRAPHY

[NS97] Henrik Nilsson and Jan Sparud. The evaluation dependence tree as a basis for

lazy functional debugging. Automated Software Engineering: An International

Journal, 4(2):121–150, April 1997.

[NSvEP91] Eric Nocker, Sjaak Smetsers, Marko van Eekelen, and Rinus Plasmeijer. Concur-

rent clean. In Leeuwen Aarts and Rem, editors, Proceedings of the International

Symposium on Parallel Architectures and Languages Europe (PARLE ’91), vol-

ume 505, pages 202–219. Springer-Verlag, 1991.

[Ong88] Chih-Hao Luke Ong. The Lazy Lambda Calculus: An Investigation in the Foun-

dations of Functional Programming. PhD thesis, Imperial College, London,

1988.

[Osb89] Randy B. Osbourne. Speculative computation in Multilisp. PhD thesis, MIT Lab

for Computer Science, December 1989.

[Par91] Andrew S. Partridge. Speculative Evaluation in Parallel Implementations of Lazy

Functional Languages. PhD thesis, University of Tasmania, October 1991.

[Par92] Will D. Partain. The nofib benchmark suite of Haskell programs. In Launchbury

and Sansom [LS92], pages 195–202.

[PD89] Andrew S. Partridge and Anthony H. Dekker. Speculative parallelism in a dis-

tributed graph reduction machine. In Proceedings of the Hawaii International

Conference on System Sciences, 1989.

[PEP97] ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program

Manipulation (PEPM ’97), volume 32 of SIGPLAN Notices, Amsterdam, June

1997. ACM.

[Pey91] Simon Peyton Jones. The spineless tagless G-machine: a second attempt. Tech-

nical report, Department of Computing Science, University of Glasgow, February

1991.

[Pey92] Simon Peyton Jones. Implementing lazy functional languages on stock hardware:

The spineless tagless G-machine. Journal of Functional Programming, 2(2):127–

202, April 1992.

[Pey01] Simon Peyton Jones. Tackling the awkward squad: monadic input/output, con-

currency, exceptions, and foreign-language calls in Haskell. In CAR Hoare,

M Broy, and R Steinbrueggen, editors, Engineering theories of software con-

struction, Marktoberdorf Summer School 2000, NATO ASI Series, pages 47–96.

IOS Press, 2001.



BIBLIOGRAPHY 227

[Pey03] SL Peyton Jones, editor. Haskell 98 Language and Libraries, The Revised Report.

Cambridge University Press, April 2003.

[PHH+93] Simon Peyton Jones, Cordelia Hall, Kevin Hammond, Will Partain, and Philip

Wadler. The Glasgow Haskell Compiler: a technical overview. In Proceedings of

Joint Framework for Information Technology Technical Conference, Keele, pages

249–257. DTI/SERC, March 1993.

[PL91] Simon Peyton Jones and John Launchbury. Unboxed values as first class citi-

zens. In Proceedings of the ACM Conference on Functional Programming and

Computer Architecture (FPCA’91), volume 523 of Lecture Notes in Computer

Science, pages 636–666, Boston, 1991. Springer Verlag.

[PL92] Simon Peyton Jones and David Lester. Implementing functional languages: a

tutorial. Prentice Hall, 1992.

[PLD93] ACM Conference on Programming Languages Design and Implementation

(PLDI’93). ACM, June 1993.

[PMR99] Simon Peyton Jones, Simon Marlow, and Alastair Reid. The stg runtime system

(revised). Technical report, Microsoft Research, February 1999. Part of the GHC

source package.

[PO03] Manohar K. Prabhu and Kunle Olukotun. Using thread-level speculation to sim-

plify manual parallelization. In Proceedings of the 9th ACM SIGPLAN symposium

on Principles and Practice of Parallel Programming, 2003.

[POP93] 20th ACM Symposium on Principles of Programming Languages (POPL’93).

ACM, January 1993.

[Pop98] Bernard Pope. Buddha: A declarative debugger for haskell. Technical report,

Department of Computer Science, University of Melbourne, Australia, June 1998.

[PP93] Simon Peyton Jones and Will Partain. Measuring the effectiveness of a simple

strictness analyser. In Hammond and O’Donnell [HO93], pages 201–220.

[PRH+99] Simon Peyton Jones, Alastair Reid, CAR Hoare, Simon Marlow, and Fergus Hen-

derson. A semantics for imprecise exceptions. In Proceedings of the ACM Confer-

ence on Programming Languages Design and Implementation (PLDI’99), pages

25–36, Atlanta, May 1999. ACM.

[PW93] Simon Peyton Jones and Philip Wadler. Imperative functional programming. In

POPL93 [POP93], pages 71–84.



228 BIBLIOGRAPHY

[Rei01] Claus Reinke. GHood — graphical visualisation and animation of haskell object

observations. In Proceedings of the ACM SIGPLAN Haskell Workshop, 2001.

[Roe90] Paul Roe. Calculating lenient programs’ performance. In Proceedings of the

Glasgow Worshop on Functional Programming, 1990.

[Ros89] Mads Rosendahl. Automatic complexity analysis. In Proceedings of the 4th

International Conference on Functional Programming Languages and Computer

Architecture, September 1989.

[RPHL02] Álvaro J. Rebón Portillo, Kevin Hammand, and Hans-Wolfgang Loidl. Cost anal-

ysis using automatic size and time inference. In Proceedings of the Workshop on

Implementing Functional Languages. Springer Verlag, 2002.

[RR96a] Niklas Röjemo and Colin Runciman. Lag, drag, void, and use: heap profiling

and space-efficient compilation revisited. In Proceedings of the ACM SIGPLAN

International Conference on Functional Programming (ICFP’96), pages 34–41.

ACM, Philadelphia, May 1996.

[RR96b] Colin Runciman and Niklas Röjemo. New dimensions in heap profiling. Journal

of Functional Programming, 6(4), September 1996.

[RV04] 4th Workshop on Runtime Verification, Barcelona, Spain, 2004.

[RW92] Colin Runciman and David Wakeling. Heap profiling a lazy functional compiler.

In Launchbury and Sansom [LS92], pages 203–214.

[San94] Patrick M. Sansom. Execution profiling for non-strict functional languages. Ph.D.

thesis, University of Glasgow, September 1994.

[San95a] David Sands. A naive time analysis and its theory of cost equivalence. Journal of

Logic and Computation, 5(4), 1995.

[San95b] André Santos. Compilation by transformation in non-strict functional languages.

Ph.D. thesis, Department of Computing Science, Glasgow University, September

1995.

[SCG95] Klaus E. Schauser, David E. Culler, and Seth C Goldstein. Separation constraint

partitioning: a new algorithm for partitioning non-strict programs into sequential

threads. In Proceedings of the 22nd ACM Symposium on Principles of Program-

ming Languages (POPL’95), pages 259–271. ACM, January 1995.



BIBLIOGRAPHY 229

[Ses97] Peter Sestoft. Deriving a lazy abstract machine. Journal of Functional Program-

ming, 7(3), 1997.

[Smi81] James E. Smith. A study of branch prediction strategies. In Proceedings of the

International Symposium on Computer Architecture, 1981.

[SP91] Richard M. Stallman and Roland H. Pesch. Using GDB: A guide to the GNU

source-level debugger, GDB version 4.0. Technical report, Free Software Foun-

dation, Cambridge, MA, 1991.

[SP93] Patrick M. Sansom and Simon Peyton Jones. Generational garbage collection for

haskell. In FPCA93 [FPC93], pages 106–116.

[Spa93] Jan Sparud. Fixing some space leaks without a garbage collector. In FPCA93

[FPC93], pages 117–124.

[SR97] Jan Sparud and Colin Runciman. Tracing lazy functional computations using

redex trails. In PLILP, pages 291–308, 1997.

[SR98] Jan Sparud and Colin Runciman. Complete and partial redex trails of functional

computations. Lecture Notes in Computer Science, 1467:160–??, 1998.

[Sun01] Sun Microsystems. The Java HotSpot Virtual machine, White Paper, 2001.

[TA90] Andrew P. Tolmach and Andrew W. Appel. Debugging standard ML without

reverse engineering. In Proceedings of the 1990 ACM Conference on LISP and

Functional Programming, Nice, pages 1–12, New York, NY, 1990. ACM.

[TA95] Andrew P. Tolmach and Andrew W. Appel. A debugger for standard ML. Journal

of Functional Programming, 5(2):155–200, 1995.

[TEL95] Dean Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithreading:

Maximizing on-chip parallelism. In Proceedings of the International Symposium

on Computer Architecture, 1995.

[Tra88] Ken Traub. Sequential implementation of lenient programming languages. Ph.D.

thesis, MIT Lab for Computer Science, 1988.

[TtGT01] Andrew Tolmach and the GHC Team. An external representation for the ghc core

language. Available at http://haskell.org, 2001.

[TWM95] David N Turner, Philip Wadler, and Christian Mossin. Once upon a type. In

Proceedings of the ACM Conference on Functional Programming and Computer

Architecture (FPCA’95), La Jolla, California, 1995. ACM.



230 BIBLIOGRAPHY

[vD89] Christina von Dorrien. Stingy evaluation. Licentiate thesis, Chalmers University

of Technology, May 1989.

[Voi02] Janis Voiglaender. ‘seq‘ breaks the foldr/buildr-rule. Message posted to the

Haskell mailing list: http://haskell.org/pipermail/haskell/2002-May/009653.html,

May 2002.

[Wad71] Christopher Wadsworth. Semantics and Pragmatics of the lambda calculus. PhD

thesis, University of Oxford, 1971.

[Wad84] Philip Wadler. Listlessness is better than laziness. Technical report, Programming

research group, Oxford University, January 1984.

[Wad87] Philip Wadler. Fixing a space leak with a garbage collector. Software - Practice

and Experience, 17(9):595–608, 1987.

[Wad88] Philip Wadler. Strictness analysis aids time analysis. In Proceedings of the ACM

Sympossium on Principles of Programming Languages, 1988.

[Wad90a] Philip Wadler. Deforestation: transforming programs to eliminate trees. Theoret-

ical Computer Science, 73:231–248, 1990.

[Wad90b] Philip Wadler. Linear types can change the world! In M. Broy and C. Jones,

editors, IFIP TC 2 Working Conference on Programming Concepts and Me thods,

Sea of Galilee, Israel, pages 347–359. North Holland, 1990.

[Wad95] Philip Wadler. Monads for functional programming. In J Jeuring and E Mei-

jer, editors, Advanced Functional Programming, volume 925 of Lecture Notes in

Computer Science. Springer Verlag, 1995.

[Wad97] Philip Wadler. How to declare an imperative. ACM Computing Surveys, 29(3),

1997.

[Wad98] Philip Wadler. Why no one uses functional languages. SIGPLAN Notices, August

1998.

[Wan02] Keith Wansbrough. Simple Polymorphic Usage Analysis. PhD thesis, Computer

Laboratory, University of Cambridge, March 2002.

[WCBR01] Malcom Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-

view tracing for haskell: a new hat. In Proceedings of the ACM SIGPLAN Haskell

Workshop, 2001.



BIBLIOGRAPHY 231

[WH87] Philip Wadler and John Hughes. Projections for strictness analysis. In G Kahn,

editor, Proceedings of the ACM SIGPLAN Conference on Functional Pro-

gramming Languages and Computer Architecture. Springer Verlag LNCS 274,

September 1987.

[Wil92] Paul R. Wilson. Uniprocessor garbage collection techniques. In Proceedings of

the International Workshop on Memory Management, Saint-Malo (France), 1992.

Springer-Verlag.

[WP99] Keith Wansbrough and Simon Peyton Jones. Once upon a polymorphic type. In

26th ACM Symposium on Principles of Programming Languages (POPL’99), San

Antonio, January 1999. ACM.

[ZS01] Craig B. Zilles and Gurindar S. Sohi. A programmable co-processor for profiling.

In Proceedings of the International Symosium on High Performance Computer

Architecture, January 2001.



Index

Symbols
◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Oα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Oi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

E B i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

}α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

}i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

E[α/x] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

E x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26, 34

λx.E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

x⊗ x′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 34

Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51, 59

Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25–27

β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 35

⊗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

⊗α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

⊗x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

⊗̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

n⊗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26, 27

B〈α〉x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

〈(α)〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

〈(i, d, e)〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

α∠l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

i∠l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

(|V |) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 50

> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Ã . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

−→ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 59

({x}E,B) . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

#x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26, 27

{x}E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

{Pi}
n
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26, 27

A
abortion . . . . . . . . . . . . . . . . . . . . . . . . . 7, 9, 30

abstract C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

activeBlame . . . . . . . . . . . . . . . . . . . . . . . . . 79

Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . 24

application. . . . . . . . . . . . . . . . . . . . . . . .24, 32

B
binder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

blackhole . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

blame . . . . . . . . . . . . . . . . . . . . . 16, 17, 72, 73

blame graph . . . . . . . . . . . . . . . . . . . . . . . . . . 73

blame tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

BlameBase . . . . . . . . . . . . . . . . . . . . . . . . 121

232



INDEX 233

body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 26

boundary point . . . . . . . . . . . . . . . . . . . . 20, 81

bounded speculation . . . . . . . . . . . . . . . . . . 78

branch prediction . . . . . . . . . . . . . . . . . . . . 185

burst profiling . . . . . . . . . . . . . . . . . . . . . 20, 81

C
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C x0 . . . xn . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

C[[−]] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 36

C{{−}} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

case return frame . . . . . . . . . . . . . . . . . . . . . 27

case E of P0 . . . Pn . . . . . . . . . . . . . . . . . . 24

chain count . . . . . . . . . . . . . . . . . . . . . . . . . 131

chain limit . . . . . . . . . . . . . . . . . . . . . .131, 157

chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

chainProf . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

cheapness analysis . . . . . . . . . . . . . . . . .3, 177

chunks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 9

chunky evaluation . . . . . . . . . . . . . . . . . . . . 10

Closure . . . . . . . . . . . . . . . . . . . . . . . . . . 26, 59

closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

Command . . . . . . . . . . . . . . . . . . . . . . . 26, 59

command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

complete view . . . . . . . . . . . . . . . . . . . . . . . . 50

computation trace . . . . . . . . . . . . . . . . . . . . . 59

Config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

control speculation. . . . . . . . . . . . . . . . . . .184

Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

cost graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

cost view . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

cost view producer . . . . . . . . . . . . . . . . . . . . 52

costed indirection . . . . . . . . . . . . . . . . . . . . . 75

current closure . . . . . . . . . . . . . . . . . . . . . . 136

current venture . . . . . . . . . . . . . . . . . . . . . . . 17

CV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

CVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

D
data speculation . . . . . . . . . . . . . . . . . . . . . 184

define . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

demand . . . . . . . . . . . . . . . . . . . . . . . . . . 26, 73

denotational semantics . . . . . . . . . . . . . 23, 32

depth limit . . . . . . . . . . . . . . . . . . . 11, 27, 106

depth limits . . . . . . . . . . . . . . . . . . . . . . . . . 107

direct return . . . . . . . . . . . . . . . . . . . . . . . . . . 93

do-notation. . . . . . . . . . . . . . . . . . . . . . . . . . .13

done-at-a-cost . . . . . . . . . . . . . . . . . . . . . . . . 68

E
E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 26

E [[−]] . . . . . . . . . . . . . . . . . . . . . . . . . 33, 35, 52

eager blackholing . . . . . . . . . . . . . . . . . . . . 104

entry code . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Env . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

environment . . . . . . . . . . . . . . . . . . . . . . . . . . 34

error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

evaluation strategy . . . . . . . . . . . . . . . . . . . . 51

exception . . . . . . . . . . . . . . . . . . . . . . . . . 24, 32

exn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Expression . . . . . . . . . . . . . . . . . . . . . . . 24, 32

F
F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

F(−) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

flat speculation. . . . . . . . . . . . . . . . . .111, 168

Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

function abstraction . . . . . . . . . . . . . . . . . . . 24

function application frame . . . . . . . . . . . . . 27

function application thunk . . . . . . . . . . . . 112

G
GHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



234 INDEX

goodness . . . . . . . . . . . . . . . . . 15, 68, 70, 160

goodness . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

goodness counter . . . . . . . . . . . . . . . . . . . . 122

goodness weighting function . . . . . . . . . . . 78

GoodnessMap . . . . . . . . . . . . . . . . . . . . . . . . 75

goodToLim . . . . . . . . . . . . . . . . . . . . . . 78, 122

H
H[[−]] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 36

Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26, 89

heap references . . . . . . . . . . . . . . . . . . . . . . . 26

heap residency . . . . . . . . . . . . . . . . . . . . . . 129

Hp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

I
i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

indirectee . . . . . . . . . . . . . . . . . . . . . . . . . 26, 91

indirection . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

info pointer . . . . . . . . . . . . . . . . . . . . . . . . . . 89

info table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

instruction pointer . . . . . . . . . . . . . . . . . . . . 95

K
K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

K[[−]] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

L
l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

L[[−]] . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33, 36

Large data-type . . . . . . . . . . . . . . . . . . . . . . . 93

layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 89, 104

lazy blackholing . . . . . . . . . . . . . . . . . . . . . 104

Lazy Evaluation . . . . . . . . . . . . . . . . . . . . . . . 2

lazyWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

let x = E in E ′ . . . . . . . . . . . . . . . . . . . . . . 24

local frame . . . . . . . . . . . . . . . . . . . . . . . 26, 27

local work . . . . . . . . . . . . . . . . . . . . .16, 17, 73

LocalFrame . . . . . . . . . . . . . . . . . . . . . . 26, 59

M
M[[−]] . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 64

MAXBLAME . . . . . . . . . . . . . . . . . . . . . . . 78

MAXDEPTH . . . . . . . . . . . . . . . . . . . . . . . 78

MAXHEAP . . . . . . . . . . . . . . . . . . . . . . . . 129

MAXTIME . . . . . . . . . . . . . . . . . . . . . . . . . .31

MINGOODNESS . . . . . . . . . . . . . . . . . . . . 78

minimum sink . . . . . . . . . . . . . . . . . . . . . . . 185

N
n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

O
O[[−]] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

online profiling . . . . . . . . . . . . . . . . . . . . . . . . 7

open graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

operational semantics . . . . . . . . . . . . . . . . . 23

overdefined . . . . . . . . . . . . . . . . . . . . . . . . . . 34

P
P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

P [[−]] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

partial evaluation . . . . . . . . . . . . . . . . . . . . 192

payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

pending computations . . . . . . . . . . . . . . . . . 65

pendingWork . . . . . . . . . . . . . . . . . . . . . . . . 65

periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

power set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

primitive operation . . . . . . . . . . . . . . . . . . . . 27

primop frame. . . . . . . . . . . . . . . . . . . . . . . . . 27

profile chaining . . . . . . . . . . . . . . 85, 131, 157

profile stack . . . . . . . . . . . . . . . . . . . . . . . . . 123

profiled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



INDEX 235

profiling semantics . . . . . . . . . . . . . . . . . . .187

ProfTop . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

program specialisation . . . . . . . . . . . . . . . 192

programWork . . . . . . . . . . . . . . . . . . . . . . . . 51

PSL Computation Graphs . . . . . . . . . . . . 185

R
relative goodness . . . . . . . . . . . . . . . . . . . . . 82

relative runtime. . . . . . . . . . . . . . . . . . . . . .149

reverted. . . . . . . . . . . . . . . . . . . . . . . . . . . . .184

rhsfun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

right hand side . . . . . . . . . . . . . . . . . . . . . . . . . 4

root venture . . . . . . . . . . . . . . . . . . . . . . . . . . 17

S
S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25, 26

s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

S{{−}} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

S[[−]] . . . . . . . . . . . . . . . . . . . . . . . . . 33, 36, 64

saved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

saved work . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

savedWork . . . . . . . . . . . . . . . . . . . .15, 16, 69

scrutinee . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

semi-tagging . . . . . . . . . . . . . . . . . . . . . . . . 114

seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

skip count . . . . . . . . . . . . . . . . . . . . . . . . . . 153

small data-type . . . . . . . . . . . . . . . . . . . . . . . 93

sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 185

Sp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92, 97

spawned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

SpecDepth . . . . . . . . . . . . . . . . . . . . . . . . 107

specDepth . . . . . . . . . . . . . . . . . . . . . . . . . . 107

speculated . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

speculating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

speculation . . . . . . . . . . . . . . . . . . . 4, 8, 17, 73

speculation configuration . . . . . . . . . . . . 7, 27

speculation depth . . . . . . . . . . . . . . . . . . . . . 27

speculation time . . . . . . . . . . . . . . . . . . . . . . 31

speculative evaluation . . . . . . . . . . . . . . . . . . 4

speculative evaluation strategy . . . . . . . . . . 4

speculative return frame . . . . . . . . . . 27, 106

Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26, 59

stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27, 92

stack frames . . . . . . . . . . . . . . . . . . . . . . . . . . 27

State . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26, 59

Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Strictness Analysis . . . . . . . . . . . . . . . . . . .175

strictness analysis . . . . . . . . . . . . . . . . . . . . . . 3

strictness annotations . . . . . . . . . . . . . . . . 174

suspended stack frame . . . . . . . . . . . . . . . . 26

suspension closure . . . . . . . . . . . . . . . . . . . 137

switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

T
T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

T [[−]] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

thunk . . . . . . . . . . . . . . . . . . 8, 24, 26, 62, 103

thunk cost . . . . . . . . . . . . . . . . . . . . . . 125, 155

thunk venture . . . . . . . . . . . . . . . . . . . . . . . . 17

Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

transient tail frames . . . . . . . . . . . . . . . . . . 141

type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

U
update frame . . . . . . . . . . . . . . . . . . . . . . 26, 27

updatee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

V
V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 53

value closure . . . . . . . . . . . . . . . . . . . . . . . . . 26

ValueExp . . . . . . . . . . . . . . . . . . . . . . . . 24, 32

variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vectored return . . . . . . . . . . . . . . . . . . . . . . . 93

venture . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 73



236 INDEX

W
W{{−}} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

wasted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

wasted work. . . . . . . . . . . . . . . . . . . . . . . . . .68

wastedWork . . . . . . . . . . . . . . . . . . . . . . 15, 68

Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

work set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

workDone . . . . . . . . . . . . . . . . . . . . . . . . . . . 63


