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Functional programming for the data centre

Jeffrey Epstein

Summary

We present a framework for developing Haskell programs to be run in a distributed com-

puting environment. The framework lets programmers create high-performance, reliable,

distributed applications while retaining Haskell’s traditional strengths in strong static

typing and purity. The framework introduces programmer-level abstractions appropriate

to several programming styles and types of applications, including a system for message-

passing between concurrent threads; communication by distributed queue; and resolution

of data dependency by proxies known as promises. We demonstrate the effectiveness of

the programming model by presenting several demonstration programs. We also show

that an implementation of the k-means algorithm written using the framework is able to

take advantage of a computing cluster environment to improve performance.
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Chapter 1

Introduction

With the age of steadily improving processor performance behind us, the way forward

seems to be to compute with more, rather than faster, processors. Demanding applications

are therefore often run in a data center, a network of connected commodity computers,

having independent failure modes and separate memories. When a data center is used for

storing and processing end users’ data or running users’ programs, it is termed a cloud.

Developing software for these distributed computing environments presents some unique

challenges:

• There is the obvious need to coordinate program control between many, possibly

heterogeneous computers. Most modern, popular programming languages do not di-

rectly address distributed concurrency. To the extent that they support concurrency

at all, it is usually of a shared-memory variety: that is, it presents the program-

mer with the abstraction of multiple concurrent threads accessing a pool of mutable

common data. This model is not appropriate for a distributed system, where the

cost of moving data from one processor to another becomes a dominant factor.

• An application in a distributed environment needs to tolerate failure. When pro-

gramming a system that spans hundreds or thousands of individual computers, some

of them are likely to be failing at any given moment. A failure of a single component

should not require restarting the whole calculation, or else it might never finish. At

the least, tools for detecting and responding to failure need to be available to the

programmer. Ideally, failure would be handled entirely automatically.

In this thesis, we address the above challenges. We present Cloud Haskell, a framework

for developing distributed applications in Haskell. The contributions of this report are:

• A proposal for a message-passing distributed programming API, which we call the

process layer (Chapter 2). Following the Erlang model, the interface provides a

7
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system for exchanging messages between concurrent threads and monitoring them

for failure, regardless of whether those threads are running on one computer or on

many. We provide a detailed discussion of the implementation of this API (Chapter

4).

• A proposal for a data-centric distributed programming API, which we call the task

layer (Section 2.4). Inspired by Skywriting, the interface is more abstract than the

process layer, and so lets the programmer leave details of fault recovery and data

locality to the framework.

• A new method for serializing closures to enable higher-order functions to work in a

distributed environment (Section 4.4). The need to start threads remotely demands

a representation of code objects and their environment. Our approach to closures

requires explicit indication of which parts of the function’s environment will be

serialized and thus gives the programmer greater control over his or her application’s

cost model.

• A demonstration of the effectiveness of our approach. This demonstration takes two

forms: a development walkthrough (Chapter 3) showing how our framework’s pro-

gramming model lets complex programs be expressed elegantly and deployed easily;

and performance measurements of the k-means clustering algorithm as implemented

with our framework (Chapter 5).



Chapter 2

Design

We present an overview of Cloud Haskell’s programming interface. This introduction is

suitable for programmers wishing to develop distributed applications. A complete set of

documentation is available online at http://www.cl.cam.ac.uk/~jee36/remote/. We

divide our discussion into a presentation of the framework’s process layer (Sections 2.1

through 2.3) and its task layer (Section 2.4).

Cloud Haskell is built using the Glasgow Haskell Compiler. The source code for the

project is available at http://github.com/jepst/CloudHaskell/.

2.1 Messages

Cloud Haskell’s process layer is a domain-specific language based on the abstractions of

messages and processes. This approach, termed message passing, was popularized for

high-performance computing by MPI [8] and for real-time applications by Erlang [1]. The

message passing model stipulates that concurrent threads have no implicit access to each

other’s data, but instead share data explicitly by sending and receiving messages. One

great advantage of this model is that it scales easily: you can develop an application

on a single computer, and, as fits your needs, you can later redeploy it to a cluster of

computers with no design changes. Even better, the message-passing model for thread

communication eliminates some of the classic concurrency pitfalls, such as race conditions.

Haskell is an ideal language for this problem space. As a purely functional language, data

is by default immutable, so the lack of shared mutable data will not be missed. Also,

critically, Haskell’s purity and monads let us control side effects.

The basic unit of concurrency in the process layer is the process, a concurrent thread

with the ability to send and receive messages. Processes are lightweight, having low

overhead to create and schedule, and are identified by a unique process identifier, which

can be used to send messages to them. A message is a finite, serializable data structure;

9



10 Section 2.1 — Messages

Process A Process B

Process C Process D

Figure 2.1: Processes A and B run on the same node and therefore share an address space, although they

do not share any variables with each other. They communicate exclusively by messages, here represented

by arrows. They can be easily reconfigured as Processes C and D, which run on separate nodes.

their transmission is asynchronous, reliable, and buffered. Cloud Haskell’s processes and

messages are adapted from the Erlang language, which adheres to a “share-nothing”

approach to distributed processes. Erlang has served as the initial inspiration as well as

a concrete model for our process layer.

A process needs to run somewhere, and we call that location a node. Like processes, each

node has a unique identifier. A node is created for every instance of the framework’s

runtime. One can imagine a node as representing a single computer, but in practice that

is not necessarily the case. In particular, nodes may be deployed on virtual machines,

typically as part of a cloud computing infrastructure. Alternatively, a single computer

can have multiple nodes. This design makes it possible to design and test distributed

applications before deploying to a production system, as shown in Figure 2.1.

Code running in a process executes in the ProcessM monad, which keeps track of the state

associated with that process, primarily its message queue. Think of the ProcessM type as

an indication that the function has access to the data structure representing a process,

and therefore can pass on this this data structure implicitly to other ProcessM-monadic

functions that it calls, while a function without the ProcessM type cannot. Therefore,

all functions dealing with the sending and receiving of messages, or the manipulation of

processes, are in the ProcessM monad.

The ProcessM monad is itself based on the IO monad, and is in fact an instance of MonadIO;

therefore, arbitrary IO functions can be called from within ProcessM code via liftIO .

2.1.1 Basic messaging

Consider some elementary functions for dealing with messages:

send : : ( Ser ia l izable a) ⇒ ProcessId → a → ProcessM ()

expect : : ( Ser ia l izable a) ⇒ ProcessM a
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Before examining the send and expect functions more closely, consider an example. Take a

simple process that accepts a “pong” message and responds by sending a corresponding

“ping” to the process that sent it. Using send and expect, the code for such a process

would be:

data Ping = Ping ProcessId

data Pong = Pong ProcessId

−− omitted : Ser ia l izable instances for Ping and Pong

ping : : ProcessM ()

ping = do { s e l f ← getSelfPid

; Pong partner ← expect

; send partner (Ping s e l f )

; ping }

The equivalent code in Erlang looks like this:

ping() →
receive

{pong, Partner} →
Partner ! {ping , s e l f ()}

end ,

ping() .

These two programs have nearly identical structure. Both ping functions are designed to

be run as processes. The programs look for a “pong” message, and ignore all others. The

“pong” message contains in its payload a process ID, to which the response message is

sent, this time containing the process ID of the ping process (given in both languages as

self , and in the Haskell version retrieved with a call to the getSelfPid function). Finally,

they wait for the next message by repeating with tail recursion.

Our general-purpose message-sending primitive, send, packages an arbitrary chunk of

data and transmits it (possibly over the network) to a process, which we indicate by

its ProcessID. Upon receipt, the incoming message will be placed in a message queue as-

sociated with the destination process. The send function corresponds to Erlang’s “!”

operator. If send cannot deliver the message to the destination process, it will throw an

exception, which can be caught with Haskell’s usual exception-handling facilities.

The simplest way of receiving a message is expect, which extracts a message from the

message queue associated with the current process. It will examine each message in the

queue, dequeuing and returning the first message of the correct type; in this case, of the

type Pong, which is inferred. If no message of the correct type is currently in the queue,

expect will block until such a message arrives.

The type signatures of send and expect require that the message must be an instance of

the Serializable type class. This requirement ensures that the message can be serialized
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and transmitted to another process. To be Serializable , it is both sufficient and necessary

that a data type be an instance of the type classes Typeable and Binary. Typeable lets

us query the value’s type at runtime, while Binary provides a mechanism for serializing

a data structure to a byte stream and reconstructing it from one. These instances are

provided for most of Haskell’s types and are easy to extend to user-defined data types:

the Typeable class can be automatically derived for most user-defined data types, and

instantiating Binary requires only writing get and put functions to convert between live

and serialized forms of data. In addition, Cloud Haskell includes generic implementations

of these functions, genericPut and genericGet, that work with any instance of Data. Here is

an example of a serializable user-defined list type:

data List a = Cons a ( List a) | Nil deriving (Typeable , Data)

instance Binary a ⇒ Binary ( List a) where

put = genericPut

get = genericGet

While all of Haskell’s primitive data types and most of the common higher-level data

structures are instances of Serializable , and therefore can be part of a message, some are

emphatically not. One example is MVar, a mutable concurrent variable. Since MVar allows

communication between threads on the assumption of shared memory, it is not helpful

to send it to a process that has no shared memory with the current process. Although

one can imagine a synchronous distributed variable that mimics the semantics of an MVar

(as in Glasgow Distributed Haskell [19]), such a variable would have a vastly different

cost model than MVar. Since neither MVar’s cost model nor its implementation could be

preserved in a distributed context, we felt it best to prohibit programmers from trying

to use it in that way. Nevertheless, MVars can be used within a single process: processes

are allowed to use Haskell’s forkIO function to create local threads that can share memory

using MVar. In this, Cloud Haskell differs from Erlang, which has no allowance for shared-

memory variables.

2.1.2 Messages and choice

In Section 2.1.1, we introduced the expect function, which lets us receive messages of a

particular type. But what if we want the process to be able to accept messages of multiple

types? We would like to be able to approximate the Erlang receive syntax:

math() →
receive

{add, Pid , Num1, Num2} →
Pid ! Num1 + Num2;

{divide , Pid , Num1, Num2} when Num2 6= 0 →
Pid ! Num1 / Num2;

{divide , Pid , , } →
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Pid ! div by zero

end,

math() .

This code accepts and responds to several different messages. It does this by pattern

matching on the values of the messages, which are (by convention) all tuples. Different

types of messages are differentiated by the atom in the first element of the tuple, which here

is either add or divide . Each pattern is tested in order against each incoming message; when

a pattern matches, the message is consumed and the corresponding action is executed,

which here sends a response to the originating process.

Haskell lacks an atom data type, but an idiomatic way of representing the different mes-

sages is to use type constructors. Our program will accept messages matching both

Add pid a b and Divide pid num den, and will respond by sending a value Answer Double, or

a DivByZero error. It is possible to create a message type that represents the union of all

of these variants, suitable for use with expect:

data MathOp = Add ProcessId Double Double

| Divide ProcessId Double Double

| Answer Double

| DivByZero

There are several problems with this approach: Remember that expect can select messages

only by type. Thus, a process receiving MathOp messages would need to be able to respond

to all variants, even those that do not make sense: presumably, only client processes

should receive Answer and DivByZero while only the calculating process should receive Add

and Divide. Moreover, putting all messages into a single sum type breaks modularity by

exposing details of the calculating process to the client; when we add a new mathematical

operation, every client will need to update its code, even if it does not use that operation.

Worse, a single process that offers more than one service could not keep them separate;

clients of either would be forced to see the interface of both.

To avoid this kind of false dependency, it is better to break the single MathOp type into

several types, each of which can be handled separately:

data AddT = Add ProcessId Double Double

data DivideT = Divide ProcessId Double Double

data DivByZeroT = DivByZero

In addition to the above types, the answer can be sent to the client simply as a message

of type Double — no wrapper required. But now we have a different quandary: although

expect can receive any type of message, it can receive only one type of message at a time,

and will block until a message of that type is put into the message queue. So there is no

way to handle the above message types without knowing the order in which the client is
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going to send Adds and Divides. What we need is an alternative to expect that provides

the notion of choice.

To do this, consider how to specify a pair consisting of a message type and its corre-

sponding action. We introduce match, which accepts a message handler function as a

parameter.

match : : ( Ser ia l izable a) ⇒ (a → ProcessM q) → MatchM q ()

When match tests an incoming message, it compares the type of the message against the

type a, the parameter of the message handler. Any message of that type will be considered

“matched”: it will be removed from the message queue, and the message handler will be

invoked.

The match function is in the MatchM monad, which is responsible for providing match

with the current state of the message queue, and then providing match’s caller with the

result of its test. The match function will typically be used with receiveWait, which mimics

Erlang’s receive syntax by evaluating a list of MatchMs in order. The value returned by

the selected message action is also the return value of receiveWait.

receiveWait : : [MatchM q () ] → ProcessM q

We mimic Erlang’s when clause, which allows message acceptance to be qualified by a

predicate, with matchIf, whose first parameter is a function that is allowed to examine the

incoming message without removing it from the queue.

matchIf : : Ser ia l izable a ⇒ (a → Bool) → (a → ProcessM q) → MatchM q ()

Now let’s use these tools to implement the math function in Haskell:

−− omitted : Ser ia l izable instances for AddT, DivideT , and DivByZeroT types

math : : ProcessM ()

math =

receiveWait

[ match (λ(Add pid num1 num2) →
send pid (num1 + num2)) ,

matchIf (λ(Divide num2) → num2 6= 0)

(λ(Divide pid num1 num2) →
send pid (num1 / num2)) ,

match (λ(Divide pid ) →
send pid DivByZero) ]

� math

The combination of receiveWait and match closely corresponds to Erlang’s receive syntax.

The MatchMs are tested in order against each message in the message queue. When a

matching message is found, the corresponding lambda function is invoked.
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Notice that matching by message type is not quite the same as matching by message

value. For example, if a particular match accepts messages of a certain type, then all

variants of that type must be handled. In the above example, this is acceptable, because

the AddT type has only a single variant, built with the Add constructor. If instead it were

a sum type with a second constructor, then the match call that deals only with the Add

constructor would raise a pattern match exception if a message with the other constructor

were received.

Clearly, receiveWait is more flexible than expect. In fact, expect is implemented in terms of

receiveWait. Its definition is:

expect : : ( Ser ia l izable a) ⇒ ProcessM a

expect = receiveWait [match return ]

Whether we use receiveWait or expect, we run the risk that the function will block until a

certain type of message arrives. What if we want to check the incoming message queue,

but not wait indefinitely? Erlang lets us do this with the receive . . . after syntax:

Pid ! {query , Stuff} ,

receive

{response , Answer} →
show answer(Answer)

after

50000 →
show error(”Timeout!”)

end

This code will wait at most 50 seconds to receive a response to its query; after 50 seconds,

it will stop waiting and display an error message. The corresponding function in Cloud

Haskell is receiveTimeout. Like receiveWait, it takes a list of matches, but it also takes a

timeout value. If the timeout is exceeded, the function returns Nothing.

receiveTimeout : : Int → [MatchM q () ] → ProcessM (Maybe q)

Thus we can translate the Erlang example into Haskell:

do { send pid (Query stuf f )

; ret ← receiveTimeout 50000000

[ match(λ(Response answer) →
return answer) ]

; case ret of

Nothing → showError ”Timeout!”

Just ans → showAnswer ans }

As with Erlang’s receive . . . after syntax, receiveTimeout can be called with a timeout value

of zero, which has the effect of checking for a matching message and returning immedi-
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ately if no match is found. Note that unlike Erlang, receiveTimeout takes its argument in

microseconds, for consistency with Haskell’s timeout function.

2.1.3 Messages through channels

As is clear from the type signature of send, any serializable data structure can be sent

as a message to any process. Whether or not a particular message will be accepted

(i.e. dequeued and acted upon) by the recipient is not determined until runtime. An

alternative to sending messages by process identifier is to use typed channels, which use

Haskell’s strong typing to make static guarantees that the sent message is of the right

type.

Each distributed channel consists of two ends, which we call the send port and receive port.

Messages are inserted via the send port, and extracted in FIFO order from the receive

port. Unlike process identifiers, channels are parameterized by type and may contain only

values of that type.

The central functions of the channel API are:

newChannel : : ( Ser ia l izable a) ⇒ ProcessM (SendPort a , ReceivePort a)

sendChannel : : ( Ser ia l izable a) ⇒ SendPort a → a → ProcessM ()

receiveChannel : : ( Ser ia l izable a) ⇒ ReceivePort a → ProcessM a

A critical point is that although SendPort can be serialized and copied to other nodes,

allowing the channel to accept data from multiple sources, the ReceivePort cannot be

moved or copied from the node on which it was created. Fixing the position of the

receiver greatly simplifies message routing, thereby ensuring that the programmer is able

to control the cost model of network communication. This restriction is enforced by

making SendPort, but not ReceivePort, an instance of Serializable .

We can now reformulate our ping example to use typed channels. The process must be

given two ports: a receive port on which to receive pongs, and a send port on which to

emit pings. Each Ping and Pong message now contains the send port on which its recipient

should respond; thus the Ping message contains the send port of a channel of pongs, and

the Pong message contains the send port of a channel of pings.

ping2 : : SendPort Ping → ReceivePort Pong → ProcessM ()

ping2 pingout pongin =

do { Pong partner ← receiveChannel pongin

; sendChannel partner (Ping pongin)

; ping2 pingout pingin }

There is an analogy between the expect function and its channel-based counterpart,

receiveChannel: both receive a message of a particular type. The channel-based coun-
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terpart of receiveWait is the mergePorts family of functions, which let us receive a message

from one of several channels.

mergePortsBiased : : Ser ia l izable a ⇒ [ ReceivePort a ] → ProcessM (ReceivePort a)

mergePortsRR : : Ser ia l izable a ⇒ [ ReceivePort a ] → ProcessM (ReceivePort a)

Given a list of ReceivePorts of the same message type, these functions will return a new

ReceivePort that, when read with receiveChannel, will provide a message taken from one of

the input ReceivePorts. You can visualize that the mergePorts functions take several “feeder”

ports and squeeze them together into a “merged” port. Even after producing the merged

ReceivePort, the original ports may continue to be used independently. Messages read from

the merged port are extracted from the queue of the feeder port, and so it is impossible

to receive the same message twice.

The functions mergePortsBiased and mergePortsRR differ in the order that the input ports are

queried, which is significant in the case that more than one port has a message waiting.

Each subsequent read from the port created by mergePortsBiased will query the feeder

ports in the order that they were provided to mergePortsBiased — so reading is “biased”

towards the first feeder port, possibly leading to starvation of later ports. When that is

not desirable, use mergePortsRR instead, which cycles through its feeder ports in “round-

robin” order, ensuring that, given enough reads, every feeder port will eventually have a

chance to contribute a message from its queue.

2.2 Processes

While we have already discussed how to send messages between processes, we have so

far neglected to mention where these processes come from. To start a new process in a

distributed system, we need a way of specifying where it will run. The question of where

is answered with our framework’s unit of location, the node. We also need a way to say

what will be run, that is, a way to identify the code to execute. The “what” in this case

is a closure, a data structure that identifies a function and contains its environment (that

is, its free variables). Therefore, Cloud Haskell includes spawn for starting new processes:

spawn : : NodeId → Closure (ProcessM () ) → ProcessM ProcessId

The spawn function takes a location (given by a NodeId) and closure identifying a ProcessM

-monadic function returning unit. The spawn function itself returns the process identifier

of the newly-created process.

The spawn function’s closure argument is parameterized by the return type of the under-

lying function; when the closure is invoked, a value of that type will be the result. In this

case, the closure refers to a function returning ProcessM (). Note that the parameters of

the function to be called are not part of type signature; their values are encoded within

the Closure data structure.
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But where do these mysterious Closures come from? Each remotely-callable function has

a corresponding closure generator function, named with a closure suffix; the closure

generator returns a closure suitable for use with spawn. The closure generators themselves

are created automatically by a compile-time call to the remotable function (built with

the Template Haskell metaprogramming facility [23]). Specifically, given a top-level user-

defined non-polymorphic function f :: A → B → C (where A and B are serializable, and

where C is not an arrow type), remotable will emit the closure generator f closure :: A →
B → Closure C. To provide a concrete example, suppose that the programmer has written

the following function:

processFile : : String → Int → [ FilePath ] → ProcessM ()

processFile s n f =. . .

To call processFile on a remote node, it suffices to write:

$( remotable [ ’ processFile ] )

doIt = spawn someNode ( processFi le closure ”hel lo” 3 [”pelda . txt”])

The $( ) brackets above identify a Template Haskell splice: remotable takes a list of user-

defined function names and in response it constructs their closure generators. In this

case, it emits the definition of processFile closure . Next, we call processFile closure

with the same arguments we would use as if we were calling processFile directly. The

closure generator serializes its arguments, encodes a function representation, and returns

a closure of type Closure (ProcessM ()) (based on processFile ’s original return type), which

we then give to spawn. Finally, spawn will invoke processFile on the node identified by

someNode. Thus, we can conveniently invoke functions through closures using syntax

highly reminiscent of a straightforward function call.

We have shown how to use spawn to start a process remotely, but what if you want to

perform a calculation remotely and then get its result? For that, we offer callRemote,

which, like spawn, takes a closure. Unlike spawn, callRemote will block until the called

function has completed, and then retrieve and return its result. In that way, the return

value of callRemote depends on the type of the closure:

callRemote : : ( Ser ia l izable a) ⇒ NodeId → Closure (ProcessM a) → ProcessM a

There are some restrictions on functions that can be called remotely. Clearly, all of

the remotely-callable function’s parameters must be Serializable . Its return type should

be either pure, or be in the IO, TaskM, or ProcessM monad. Only top-level functions

are remotely callable. A more serious restriction is that remote functions may not be

polymorphic, because the type of the function must be known statically in order for the

framework to deserialize its arguments.

We discuss the mechanism of remote function invocation in greater detail in Section 4.4.
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2.3 Fault monitoring

A key feature of a distributed system is fault tolerance, the ability to continue operating

normally in the face of the failure of some component, especially hardware. Applications

designed for execution on a single system do not need to worry about fault tolerance: the

hardware either works, or it doesn’t. But in a large enough distributed deployment, the

failure of a hardware component will be a routine occurrence.

Fault tolerance has two parts: fault monitoring, in which the failure of a component is

discovered; and fault recovery, in which appropriate corrective action is taken. These are

separable problems: detecting hardware failure is a concept general to most applications,

whereas recovering from failure is often very application-specific. For example, some

programs may have to “undo” partially applied actions or otherwise clean up after failure.

Cloud Haskell aims to accommodate most kinds of applications by providing mechanisms

for both fault monitoring and fault recovery. In this section, we concern ourselves only

with fault monitoring. Cloud Haskell’s fault recovery is integrated with its task layer and

is discussed in Section 2.4.1.

Erlang provides the immediate inspiration for Cloud Haskell’s fault monitoring interface,

and we closely follow its model. The framework lets one process monitor another. If

the monitored process fails, the monitoring process will be notified, whereupon it may

take application-specific action. Monitoring is thus a (non-symmetric) binary relation

between processes. This relation can also be considered to express dependency: that is,

the monitoring process depends on the monitored process.

We distinguish two ways that a process may fail. Besides the motivating case of hardware

failure, a process may fail by software error. In Cloud Haskell, a process that lets a

thrown exception propagate uncaught will be considered to have failed. This lets the

programmer apply the same process monitoring mechanism that deals with hardware

failures to common software errors, such as divide-by-zero.

Monitoring of hardware faults takes place at the node level. The node of the monitoring

process sends regular pings to the nodes of the monitored process; if the monitored node

fails to respond within a time limit, then the node, as well as all process on it, is judged to

have failed, and any process monitoring a process on the failed node will be duly notified.

Notification of a failure may take one of two forms: either the monitoring process will be

sent a message, or it will be sent an asynchronous exception. The form of notification

is specified when the process requests monitoring. If the monitoring process is sent an

asynchronous exception, it can handle the event by catching the exception using Haskell’s

usual exception primitives. If the monitor is notified by message, it can retrieve the

message using the the message handling functions described in Section 2.1.1.

Cloud Haskell provides functions for establishing and dissolving monitoring:
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data MonitorAction = MaMonitor | MaLink | MaLinkError

data SignalReason = SrNormal | SrException String | SrNoPing | SrInvalid

data ProcessMonitorException = ProcessMonitorException ProcessId SignalReason

monitorProcess : : ProcessId → ProcessId → MonitorAction → ProcessM ()

unmonitorProcess : : ProcessId → ProcessId → MonitorAction → ProcessM ()

The call monitorProcess monitor monitee action will notify the process monitor when the pro-

cess monitee ends. The action parameter describes how the monitor will be notified:

• MaMonitor – the monitoring process will be sent a message of type ProcessMonitorException

when the monitored process ends

• MaLink – the monitoring process will be sent as asynchronous exception of type

ProcessMonitorException when the monitored process ends

• MaLinkError – the monitoring process will be sent as asynchronous exception of type

ProcessMonitorException when the monitored process ends abnormally; that is, be-

cause of an uncaught exception or because its node is not responding to pings

The reason for the failure is given by the SignalReason field in ProcessMonitorException.

The unmonitorProcess function destroys the relation between two processes; after a call to

unmonitorProcess, the monitoring process will not be notified when the monitored process

ends. Multiple calls to monitorProcess will not result in repeated notifications, but a

corresponding number of calls to unmonitorProcess will be required to definitively dissolve

monitoring.

Cloud Haskell also provides higher-level convenience functions related to process moni-

toring:

l inkProcess : : ProcessId → ProcessM ()

spawnLink : : NodeId → Closure (ProcessM () ) → ProcessM ProcessId

withMonitor : : ProcessId → ProcessM a → ProcessM a

matchProcessDown : : ProcessId → ProcessM q → MatchM q ()

Here, linkProcess is an analogue to Erlang’s link function: it establishes bidirectional mon-

itoring of abnormal termination between the current process and the indicated process.

linkProcess can be defined in terms of monitorProcess. spawnLink is a variant of spawn that,

in addition to creating a new process, begins monitoring it, like Erlang’s spawn link.

The withMonitor function can be used to introduce a block within which the given process

is monitored. It accomplishes this by first calling monitorProcess, then invoking the user-

provided block, and finally calling unmonitorProcess. At the end of the transaction, the
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monitoring relationship between the two processes is the same as it was initially. Within

the provided block, the programmer should call receiveWait with matchProcessDown, which

is a variant of match (described in Section 2.1.2) specialized for receiving ProcessMonitorException

messages.

2.4 Tasks

The interface described thus far, concerned with direct manipulation of processes and

messages and accessible via the ProcessM monad, is called the process layer. The abstrac-

tions of the process layer are general but rudimentary. We now present a higher-level

Cloud Haskell interface which provides additional functionality, at the price of flexibility.

This interface, the task layer, is implemented in terms of the process layer.

The advantage of the higher-level task interface are:

• An automatic mechanism for fault recovery. Whereas the process layer puts the

burden of recovery from a hardware failure on the application developer, the task

layer will automatically restart failed calculations, in a way transparent to the user.

• Data-centric calculation model. While the process is an abstraction for location-

independent calculations, central to the task layer is the data that is produced from

such calculations, which can then be manipulated by the programmer regardless of

where the calculation was performed and even if it has finished yet.

While the process layer draws its inspiration primarily from Erlang, the design of the

task layer is influenced by the Skywriting/CIEL [16] [17] project. A key difference is that

although the CIEL system distinguishes a “coordination” language from a “calculation”

language, our task layer allows the programmer to both describe data flow and perform

calculations in a single language, i.e. Haskell.

2.4.1 Interface

Like the process layer, the task layer is a domain-specific language embedded in Haskell.

In fact, it is embedded in the DSL provided by the process layer. The central abstraction is

the promise (in Skywriting, known as a future), which represents the result of a calculation

that may or may not have yet completed. A promise works like a read-only reference: it

can be cheaply passed about, and an attempt to dereference the promise will block until

the value is available.

A calculation that produces the value of a promise is a task, which execute in the TaskM

monad. TaskM builds on the ProcessM monad, but also restricts the range of allowable
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avg : : [ Integer ] → TaskM Integer

avg xs = return (sum xs ‘ div ‘ fromIntegral ( length xs))

d i f f : : Promise Integer → Promise Integer → TaskM Integer

d i f f pa pb =

do { a ← readPromise pa

; b ← readPromise pb

; return (a − b) }

$( remotable [ ’ avg , ’ d i f f ] )

in i t ia lProcess ”MASTER” =

do { res ← runTask $

do { p1 ← newPromise ( avg closure [0 . .50])

; p2 ← newPromise ( avg closure [50..100])

; p3 ← newPromise ( d i f f c losure p1 p2)

; readPromise p3 }
; say (”Result : ” ++ show res ) }

in i t ia lProcess = receiveWait [ ]

Figure 2.2: An example program using the task layer.

actions to those for manipulating promises. In particular, the programmer cannot escape

the monad to execute arbitrary IO actions. These restrictions are necessary to ensure

that each task can be safely restarted in the event of failure; this would not be the case if

tasks could write to disk files, set MVars, or send messages. The guarantee of idempotency

is possible thanks to Haskell’s purity and monads; in a lesser language, such guarantees

would not be statically enforceable.

The newPromise function creates a new promise and starts a task that will calculate its

value:

newPromise : : ( Ser ia l izable a) ⇒ Closure (TaskM a) → TaskM (Promise a)

It accepts a closure, which identifies the function that will eventually provide a value for

the returned promise. The calculation given in the closure is started concurrently, and so

newPromise returns immediately. Promises are write-once: a promise acquires a value only

once, when its associated task returns. The promise returned from a call to newPromise

can be dereferenced with readPromise:

readPromise : : ( Ser ia l izable a) ⇒ Promise a → TaskM a

If the value wrapped by the promise is available on the current node, it will be returned

immediately. If the value is available on another node, it will be copied to the current node

and returned. If the task generating the promise has not completed yet, then readPromise
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Figure 2.3: The propagation of promises in the program from Figure 2.2. Initially, worker nodes are

idle (1) until the master task assigns avg tasks to them (2) (3), yielding the promises p1 and p2. Those

promises are passed to a call to diff (4), yielding promise p3. The diff task calls readPromise to

query the values of p1 and p2, which blocks until their values are finalized (5). Finally, the master task

evaluates promise p3 (6), yielding a final result. The worker nodes are again quiescent (7).

blocks until it has and returns its result. Because the value is not guaranteed to be

available until it is read, we can consider promises to ask like a form of explicit lazy

evaluation.

Although the allocation of tasks to nodes is decided by the framework, making the shape

of the network transparent to the programmer, the framework accepts hints about where

a given a task should run. This is useful for cases when the programmer knows that

two tasks will exchange a large amount of data, and can therefore benefit in performance

by reducing the network traffic between them. For such cases, we provide variants of

newPromise that accept locality suggestions:

newPromiseHere : : ( Ser ia l izable a) ⇒ Closure (TaskM a) → TaskM (Promise a)

newPromiseNear : : ( Ser ia l izable a , Ser ia l izable b) ⇒ Promise b →
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Closure (TaskM a) → TaskM (Promise a)

newPromiseAtRole : : ( Ser ia l izable a) ⇒ String → Closure (TaskM a) →
TaskM (Promise a)

These functions will try to run the task on, respectively, the current node; the same node

as another given promise; or on some node having the given role. In order to preserve the

property of determinism in tasks, the user application is not notified whether its locality

hint is honored or not; the actual allocation of tasks to nodes remains transparent.

In the example program in Figure 2.2, which calculates the difference between the averages

of two lists of integers, we see how the task layer shares with the process layer a mechanism

for creating and calling closures. We also introduce the runTask function, which introduces

a TaskM context from within the ProcessM monad. In Figure 2.3, we trace the execution of

this program. Like all programs built with Cloud Haskell’s task layer, it is implicitly fault-

tolerant. A fault in a worker node will be detected by the framework and any incomplete

calculations will be restarted, without any explicit direction from the programmer. This

is safe because of the idempotent guarantee enforced by the TaskM monad: tasks are

only allowed to perform pure calculations and manipulate promises. In other words, each

task is deterministic and may produce only one result, so restarting it cannot leave the

calculation in an indeterminate state. For now, this fault tolerance, however, does not

extend to the master node.

The task layer’s fault recovery relies on the process layer’s fault monitoring mechanism,

described in Section 2.3. The implementation of the task layer is described in Section 4.3.

2.4.2 MapReduce

MapReduce [5] is a well-known framework for distributed computations on large data sets.

It has served as a model for open-source frameworks, such as Hadoop. Cloud Haskell’s

task layer is sufficiently powerful that a MapReduce-like algorithm can be concisely im-

plemented in just a few lines of code. Here we give the complete implementation:

mapReduce : : ( Ser ia l izable i , Ser ia l izable k , Ser ia l izable m, Ser ia l izable r ) ⇒
MapReduce r i i k m r → r i → TaskM [ r ]

mapReduce mr inputs =

let chunks = (mtChunkify mr) inputs

in do { pmapResult ← mapM (λchunk → newPromise ((mtMapper mr) chunk) )

chunks

; mapResult ← mapM readPromise pmapResult

; let shuffled = (mtShuffle mr) (concat mapResult)

; pres ← mapM (λmid2 → newPromise ((mtReducer mr) mid2)) shuffled

; mapM readPromise pres }

mapReduce takes four user-specified functions as arguments:
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• mtChunkify – breaks up raw input into chunks, where each chunk is assigned to a

mapper

• mtMapper – convert a chunk of input data into an intermediary result

• mtShuffle – assign intermediary results to appropriate reducers, usually using a key

encoded in the intermediary result

• mtReducer – convert sets of intermediary results to final results

For example, imagine a distributed application for counting occurrences of words in a text

file. Such an application could use the default versions of mtShuffle and mtChunkify, and

would provide a mapper and reducer similar to the following:

mrMapper : : [ Line ] → TaskM [(Word, Int ) ]

mrMapper l ines =

return (concatMap (λl ine → map (λw → (w,1) ) (words l ine )) l ines )

mrReducer : : (Word, [ Int ]) → TaskM (Word, Int )

mrReducer (w,p) =

return (w,sum p)

The mapper simply breaks each group of lines into words, marking each word as having

a single occurrence. The words are then used as keys, so that all intermediary results for

a given word are sent to the same reducer. The reducer then need only sum the counts

of each word. The final result will be the total number of occurrences in the file.

This implementation of MapReduce is also used by our k-means demo application, de-

scribed in Section 5.1.
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A practical tour

We now construct a simple but nontrivial distributed application using Cloud Haskell’s

process layer API. We will also see how to deploy this application in a real-world envi-

ronment.

The program, based on a similar example packaged with the Hadoop framework, will

calculate and display an estimate of the value of π, and is implemented in Cloud Haskell’s

process layer. Internally, the program plots a sequence of evenly-distributed points on the

unit square, and counts how many of those fall within the unit circle; the ratio of points

within the circle to the total number of circles will give an estimate of π. It should be

noted that while this is an instructive example, it is by no means the most efficient way

to estimate π. This simple example does not use any of Cloud Haskell’s features for fault

tolerance.

Our application can run on an arbitrary number of nodes. One of these will be designated

the master node, and will coordinate the activities of the other nodes, which are the

workers. The program uses a Monte Carlo-like method to plot the points. To distribute

the calculation, the master node assigns each worker node a non-overlapping range from

the Halton sequence, a quasi-random number sequence. The workers plot and count the

points, and then transmit their findings to the master, which accumulates the total sum

from all workers. When each worker has reported, the master generates an estimate of π

from the returned values and displays it.

3.1 Code

The complete source code for this example can be found in the Cloud Haskell distribution

as Pi6.hs. Here we discuss excerpts of the code.

{−#LANGUAGE TemplateHaskell #−}
module Main where

27
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import Remote

We enable the GHC-specific Template Haskell extension, which are needed for automatic

closure generation. The Remote module contains Cloud Haskell.

haltonPairs : : Int → [ (Number,Number) ]

. . .

We elide the implementation of the haltonPairs function. It suffices to know that haltonPairs n

will generate an infinite list of coordinates in the range (0, 1) × (0, 1), starting with the

coordinate pair composed of the nth element of the second and third Halton sequences.

countPairs : : Int → Int → ( Int , Int )

countPairs offset count =

let range = take count ( haltonPairs offset )

numout = length ( f i l t e r outCircle range)

in (count−numout,numout)

where

outCircle (x , y) =

let fx=x−0.5

fy=y−0.5

in fx∗fx + fy∗fy > 0.25

Given a finite range in the Halton sequence, countPairs uses haltonPairs to generate the

corresponding coordinates and counts how many of them fall within the unit circle. It

returns a tuple of the number of points that fell within the circle and those that did not.

worker : : Int → Int → ProcessId → ProcessM ()

worker count offset master =

let (numin,numout) = countPairs offset count

in do send master (numin,numout)

logS ”PI” LoInformation (”Finished mapper from offset ”++show offset )

$( remotable [ ’ worker ] )

The worker function is invoked by the master node on each of the worker nodes. Its pa-

rameters count and offset identify a range in the Halton sequence. After calling countPairs,

it sends the result back to the master node and emits a log message.

in i t ia lProcess : : String → ProcessM ()

in it ia lProcess ”WORKER” =
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receiveWait [ ]

in i t ia lProcess ”MASTER” =

do { peers ← getPeers

; mypid ← getSelfPid

; let { workers = findPeerByRole peers ”WORKER”

; interval = 1000000

; numberedworkers = ( zip [0 , interval . . ] workers) }
; mapM (λ ( offset , nid) → spawn nid ( worker closure ( interval−1) offset

mypid)) numberedworkers

; (x , y) ← receiveLoop (0 ,0) ( length workers)

; let est = estimatePi ( fromIntegral x) ( fromIntegral y)

in say (”Done: ” ++ longdiv ( f s t est ) (snd est ) 20) }
where

estimatePi ni no | ni + no == 0 = (0 ,0)

| otherwise = (4 ∗ ni , ni+no)

receiveLoop a 0 = return a

receiveLoop (numIn,numOut) n =

let

resultMatch = match (λ (x , y) → return (x : : Int , y : : Int ))

in do { (newin ,newout) ← receiveWait [ resultMatch ]

; let { x = numIn + newin

; y = numOut + newout }
; receiveLoop (x , y) (n−1) }

in i t ia lProcess = error ”Role must be WORKER or MASTER”

The initialProcess function is the shared entry point of all nodes. It is given as a parameter

the role assigned to that node. In this application, as discussed above, we distinguish two

roles: that of master, and of worker.

Worker nodes are initially passive, and simply await instruction from the master node.

The master node calls the getPeers function to obtain a PeerInfo structure, which it queries

for worker nodes; peer discovery is covered in Section 3.2 and Section 4.2.4. We then iter-

ate over worker nodes, invoking worker closure on each. Then the master process retrieves

the workers’ results with receiveWait. Once all workers’ results have been harvested, the

master calculates an estimate of π in estimatePi and displays the result with say.

Because the master process uses all available worker nodes, and each worker is assigned

a fixed number of points to analyze, adding more nodes to the application will increase

the accuracy of the result.

main : : IO ()

main = remoteInit (Just ”config”) [Main. remoteCallMetaData ] in it ia lProcess



30 Section 3.2 — Deployment

Finally, main, the entry point of the program, needs to initialize the Cloud Haskell frame-

work with a call to Cloud Haskell’s remoteInit function. It takes three parameters: an

optional configuration file; a list of all the function lookup tables generated by remotable;

and the function for starting the first process.

3.2 Deployment

Now, we show how to run this program on a network. The behavior of the framework is

controlled by several key/value pairs called configuration options. A complete accounting

of configuration options is given in Appendix A.

Configuration options are specified on a per-node basis, usually in a configuration file

named config. Each node can have its own configuration file. A Cloud Haskell application

may be deployed onto a local area network, as we describe below, but it can also be hosted

on a third-party cloud environment, such as Amazon EC2.

Each NodeId contains routing information sufficient for another node to send messages

to processes on that node. While the structure of a NodeId is opaque to the application

itself, it is germane to a discussion of network configuration. A NodeId has the form

nid://velikan:44632/, where velikan is the hostname of the computer on which the

node is running and 44632 is TCP port on which that node is listening for messages.

ProcessIds have a similar structure: a process running on the node given above might be

identified as pid://velikan:44632/23/. Here, 23 is the locally unique process number.

The administrator of a Cloud Haskell deployment must ensure that the given address and

port are reachable and open.

In this example, we assume that the network consists of three hosts, named host1, host2,

and host3. The application’s executable must be available on each host.

Although we only have three hosts, we are not limited to three nodes, because a single

host can support an arbitrary number of nodes. In this deployment, we will run the

master node and one worker node on host1; two worker nodes on host2; and one worker

node on host3.

Next, we need to create a configuration file for each node. The only configuration option

that is strictly necessary is cfgRole. As a best practice, though, we assign values to other

configuration values, as well. Below, we give the recommended configuration files for the

five nodes in this example.

# config file for master node on host1

cfgRole MASTER

cfgHostName host1

cfgKnownHosts host1 host2 host3
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# config file for worker node on host1

cfgRole WORKER

cfgHostName host1

cfgKnownHosts host1 host2 host3

# config file for both worker nodes on host2

cfgRole WORKER

cfgHostName host2

cfgKnownHosts host1 host2 host3

# config file for worker node on host3

cfgRole WORKER

cfgHostName host3

cfgKnownHosts host1 host2 host3

The cfgKnownHosts option gives a list of hosts where to search for nodes, and all nodes

found on any of those hosts will be available to the application via getPeers.

What if we do not want a node to be used? For example, we may have two distinct Cloud

Haskell applications running on the same network, and maybe even sharing hosts. We

need to prevent the nodes designated for one application from being used by the other.

To clearly distinguish which nodes “belong” to which application, use the cfgNetworkMagic

option. Nodes with differing values of this option will refuse to communicate with each

other.

When a node starts, it begins listening on a port for incoming messages. The port

that a node listens on can be set manually with cfgListenPort , but if left unspecified,

the operating system will assign an arbitrary available port. Each node publicizes its

availability, including its port, on a node registration server, which is started automatically.

In addition, you can explicitly start a node registration server with the RegServ utility

included in the distribution. For troubleshooting network communication issues, the

distribution also includes a diagnostic program Diag, which provides information about

what nodes are currently visible.

Having created configuration files, we start the application. First, run the Pi6 program

on the worker nodes, as they need to be available when the master starts. Then, run the

master node. After a short time, it should emit text similar to this:

2011-05-28 17:24:46.158548 BST 0 pid://velikan:44632/7/ SAY Done:

31415071415071415071

This output is formatted by Cloud Haskell’s logging facility, described in Section 4.2.3.

From left to right, we see: the date and time that the message was produced; the priority

of the message; the identifier of the process that generated the message; the application
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component responsible for the message; and the text of the message, which here contains

a not particularly accurate estimate of π.

After producing this output, the master node terminates. The worker nodes do not

terminate, because they are still waiting for requests. In a real application, they could be

configured to end after processing has completed. In this case, they need to be terminated

manually.

A similar procedure can be used for deploying a Cloud Haskell application on Amazon

EC2. One important difference is that the hostnames of the cloud servers are assigned

when you request the virtual machine instances. Fortunately, there are scriptable inter-

faces to Amazon’s service and it is easy to generate a set Cloud Haskell configuration files

based on the dynamically-assigned host names. The awsgo script included in the Cloud

Haskell distribution provides a demonstration of this technique.

For testing purposes, it may be useful to run a distributed application on a single com-

puter, while keeping the semantics of multiple nodes. This program, like all Cloud Haskell

applications, can run as an arbitrary number of nodes on a single machine with only minor

adjustments to the configuration files.
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Implementation

In this chapter we discuss some interesting technical challenges that we faced in imple-

menting the framework. While this discussion is strategic, the finer points assume some

familiarity with Haskell’s facilities for concurrent programming and software transactional

memory [9].

4.1 Message handling

The central feature of Cloud Haskell’s process layer, described in Chapter 2, is the ProcessM

monad, and the central feature of the ProcessM monad is the ability to send and receive

messages. Here we describe our implementation of message transmission.

A process identifier contains a hostname, TCP port, and a unique local process number.

When sending a message to a process, the sending process connects to the given port,

identifies the target process by number, and sends the serialized message payload. At this

point the message has been received by the remote node. Once received, the message is

put into a message queue specific to that process, and so the message is delivered. The

message will stay in the queue until it is extracted with a matching call to receiveWait or

expect. The typed channels described in Section 2.1.3 share the underlying mechanism.

You might expect that we could skip the serialization step when sending a message to

a process on the same node. However, consider the command send somePid [undefined].

If we serialize this message, the use of undefined will cause an exception on the sender’s

side. If we skip serialization, lazy evaluation will mean that the exception will occur in

the receiving process, which may not be prepared for it. Thus, to preserve the semantics

of messaging, we use serialization to force full evaluation of all messages in the sending

process.

The message queue itself is implemented as a TChan, from Haskell’s software transactional

memory (STM) library. This library lets us compose atomic operations on the queue.

33
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In particular, each call to match in a receiveWait block atomically iterates through the

delivered messages and removes the first matching one. The ability to compose atomic

operations is also necessary when working with channels, especially in the mergePorts

family of functions, which needs to perform a blocking read operation on several feeder

channels simultaneously, from which only one message should be extracted. If a message

is received by more than one channel at the same time, it is precisely the transactional

feature of TChan that lets mergePorts “put back” one of the messages, preventing message

loss that could occur if more than one message were removed.

4.2 System processes

In addition to managing user-created process, the Cloud Haskell framework maintains

several additional processes for various services on each node. These processes are started

automatically by the framework and their presence is invisible to user applications. Nev-

ertheless, they underlie much of the functionality of the framework. The most important

of these system processes are the Spawner (Section 4.2.1), the ProcessMonitor (Section

4.2.2), the Logger (Section 4.2.3), and the Discovery process (Section 4.2.4).

4.2.1 Spawner

Cloud Haskell’s processes are built on Haskell’s lightweight forkIO threads. Those threads,

though, cannot be directly started across a network. To be able to start a process on a

remote node, we need to send a message containing the appropriate closure. Such messages

are sent to the Spawner process. The user application never needs to refer to the Spawner

process directly, since this message is sent by the spawn function, which will then block

until it receives the process identifier of the newly-created process from the remote node’s

Spawner. An illustration of the process is given in Figure 4.1.

4.2.2 Process monitor

As discussed in Section 2.3, when a process calls monitorProcess, a relation is created such

that one process will be notified when another terminates. The state of these relations

is administered by Cloud Haskell’s administrative ProcessMonitor process. Like other

system processes, user applications never interact with process directly, but only through

primitives exposed in the Cloud Haskell API.

In the simplest case, both the monitoring process and the monitored process are on the

same node. The call to monitorProcess will send a message to the ProcessMonitor, causing

it to update its state. When the monitored process ends, it will also send a message to

the ProcessMonitor, which will notify each of the monitoring processes in their preferred
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Figure 4.1: The Spawner process in action. The spawn function invoked on Node 1 sends a message

to the spawner process on Node 2. The Spawner process creates the new process. Finally, the Spawner

process sends the PID of the new process back to the parent process. That PID is returned by the user

application.
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Figure 4.2: Process monitoring on one node. Process A initiates monitoring of Process B by sending a

monitor request (1) to the local ProcessMonitor administrative process. From that point, Process A is a

registered monitor of Process B. When Process B terminates, ProcessMonitor will receive a message (2),

and will subsequently notify Process A, either by message or by asynchronous exception (3).

manner. Because all processes are running on the same node, we need to consider only

“soft” termination; that is, cases when the process ends normally or with an uncaught

exception, rathern than by catastrophic hardware failure. The flow of messages when

monitoring a local process is shown in Figure 4.2.

When the monitored process is on a different node from the monitoring process, though,

we also need to take into account the possibility of a “hard” failure; that is, caused by a

hardware failure. To that end, the ProcessMonitor interacts with another system process,

the NodeMonitor. When monitoring of a remote process is requested, the ProcessMonitor

sends a message to NodeMonitor requesting that it send regular pings to that node. If

the NodeMonitor finds that its pings are not being answered, it will send a message back



36 Section 4.2 — System processes

2

1

Process
Monitor

Node
MonitorProcess A

4

Process
Monitor

Node
Monitor Process B

3
5

6

Node 1 Node 2

Figure 4.3: Process monitoring between nodes. As in Figure 4.2, Process A initiates monitoring of

Process B by sending a monitor request (1) to the ProcessMonitor on Node 1. Because Process B is on a

different node, Node 1’s Process Monitor requests monitoring from Node 2’s ProcessMonitor (2). When

Process B terminates, Node 2’s ProcessMonitor will receive a message (3), and will subsequently notify

Node 1’s ProcessMonitor (4), which will finally notify Process A, either by message or by asynchronous

exception (6). Alternatively, if Node 2 fails completely, Node 1’s NodeMonitor administrative process

will fail to receive a ping from Node 2’s NodeMonitor, in which case it will send a message to Node 1’s

ProcessMonitor (5). The ProcessMonitor will then notify all local processes that were monitoring any

process on the downed node (6).

to its ProcessMonitor, which will then notify all processes monitoring any process on

the downed node. In addition, the case of a “soft” process termination is somewhat more

complicated than with a single node: the ProcessMonitors on both nodes must coordinate

their activity, so that the ProcessMonitor on the monitored process’s node waits for its

termination, and then sends a message to the ProcessMonitor on the monitoring process’s

node, which then passes on the notification to its user processes. This flow of messages

is shown in Figure 4.3. This complexity is hidden from the user: whether monitoring a

local or remote process, and whether this process ends by a “hard” or “soft” method,

the user application uses the same primitives and is notified in a similar way. The only

way a user application can distinguish these cases is by examining the SignalReason field

of its ProcessMonitorException message. This opacity is important to ensure that process

semantics are preserved regardless of the details of deployment.

The internal complexity of the ProcessMonitor is increased by the need to maintain the

semantics of monitorProcess, which should not return until monitoring has been engaged.

Otherwise, we could cause a race condition between a process’s termination and a request

to monitor it, with the result that the monitoring process would never be notified and

could deadlock. Therefore, monitorProcess must behave synchronously, but ProcessMonitor

may not, since it needs to continue servicing requests from other processes.

4.2.3 Logger

To aid debugging and development, Cloud Haskell provides a configurable facility for

logging. This lets programmers emit information messages to a system log, which can be

filtered by importance and subsystem. By default, log messages are printed to stdout, but
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the real value of this feature is in log forwarding: a node can be configured so that its

log messages are sent to another node. In a distributed application consisting of dozens

or hundreds of nodes, it would be prohibitive to check each node for error messages. The

ability to forward log messages means that all messages can be conveniently displayed on

a single computer. Log recording and forwarding is handled by the special Logger process.

type LogSphere = String

data LogLevel = LoSay | LoFatal | LoCritical | LoImportant | LoStandard |
LoInformation | LoTrivial

logS : : LogSphere → LogLevel → String → ProcessM ()

say : : String → ProcessM ()

The logS function emits a message to the Logger process, which then filters and forwards

it according to the node’s current settings. The parameters to logS let the programmer

indicate the importance of the message and the component that it applies to. By default,

messages issued with importance below LoStandard will be suppressed.

The say function, like logS, emits a message to the system log. The difference is that say

is intended for outputting messages to the user, rather than strictly technical debugging

messages. Therefore, messages output by say are not subject to filtering by importance.

In applications built with Cloud Haskell’s task layer, all log messages are forwarded to

the master node. In an application based on the process layer, the programmer must

configure logging explicitly.

4.2.4 Discovery

Before a distributed application can communicate with a remote node, it must first know

that it exists. From the programmer’s perspective, it suffices to call getPeers, which returns

a structure containing information about all known nodes. But how does getPeers get this

information? It uses two methods, and combines their results:

With static peer discovery, getPeers examines the nodes currently running on a fixed list of

hosts, specified by cfgKnownHosts. It does this by sending a message to the node registration

server of each host, with which each node must register when it starts, and unregister

just before it ends. The number of nodes returned by this process is not limited, but only

the specified hosts are searched. The list of hosts is static, and must be known when the

application starts.

On the other hand, with dynamic peer discovery, getPeers is able find nodes running on

hosts that are not mentioned in the application’s configuration. It accomplishes this by

sending a UDP broadcast message to all hosts on the local network. Any Cloud Haskell

nodes running on those hosts will respond by sending a message to the originating process.

Thus, new hosts can be connected to the network during the life of an application, and
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Figure 4.4: A schematic of the control flow in the task layer. The master process directs new promise

creation to a worker node. Each worker node is controlled by a node boss process, which manages the

creation of tasks and redemption of promises.

the application will be able to use them without having to restart. Because letting a

distributed application communicate with nodes that are not explicitly on its “white

list” can be a security problem, dynamic peer discovery can be disabled, as described in

Appendix A. Responding to dynamic peer discovery requests is handled by the special

Discovery process.

4.3 Tasks

It is easy to see that newPromise, described in Section 2.4, is based on spawn: it starts a

concurrent calculation from a closure. However, the task layer also has to manage the

values produced by such calculations, and ensure that they are accessible when another

task retrieves them with readPromise.

In addition to user-level tasks, there are two kinds of administrative processes in the task

layer: a single master process, which is responsible for allocating user tasks to nodes; and

node bosses, which manage the promises available on a node. Each node has exactly one

node boss. The relationship between the various administrative processes is shown in

Figure 4.4. The master process is started by a call to runTask, which should be called only

once per application. Node bosses are started by the master process when it discovers

available worker nodes, and automatically terminate when they detect that their master

process ends.

A call to newPromise sends a request containing a closure to the master process, which

allocates a new unique PromiseId, selects an available node, and sends a message to that

node’s node boss, which starts the task. At the same time, the master process stores the

closure, so that it can be restarted if necessary. The master process returns a promise to

the calling task. The implementation of a promise is:
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Figure 4.5: The propagation of promises in the presence of hardware failure. The program runs as in

Figure 2.3 until the second worker node fails (4). When diff is unable to contact it (5), it complains to

the master (6), who reissues the missing task on an available node (7). The diff task resumes where it

left off, waiting on the result of the second avg task (8). Afterwards, the program concludes normally

(9) (10).

data Promise a = Promise { psRedeemer : : ProcessId , psId : : PromiseId }

The psRedeemer field identifies the node boss responsible for starting the promise’s task,

and the psId field contains the unique promise identifier. When the task has completed,

it will store its result in a local result cache, which is shared by all tasks running on that

node. If a value in the promise cache is not read within a certain period of time, it will

be flushed to disk in order to conserve memory.

A call to readPromise proceeds as follows: first, it checks the local result cache, where the

value of the promise may already be stored, either from a previous call to readPromise, or
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where it will be deposited if the task is running on the same node. Otherwise, readPromise

attempts to contact the node boss identified in the promise itself, sending it the promise’s

PromiseId. The node boss will determine if the task has completed; if so, it will send its

value from its own result cache, and otherwise it will wait until such a result is available.

Upon receiving the value, readPromise returns it to the calling task.

What if the node boss named in the promise is not available? If readPromise cannot redeem

a promise, it will assume that the corresponding node has crashed, and will complain to

the master process. The master process, which has retained the closure originally used

to start the task, will restart it, and send its new node boss to the requester. If multiple

tasks complain about the same node boss, it will send them all to the same replacement,

ensuring that a closure is not restarted more than necessary. The process is graphically

represented in Figure 4.5.

4.4 Closures

In Section 2.2, we described the Cloud Haskell interface for creating and invoking closures.

We now describe the implementation of this mechanism.

Conceptually, we can imagine a Cloud Haskell closure as this data structure:

data Closure a = Closure functionrep environmentstore

where the type functionrep identifies a function; environmentstore stores its environment;

and a identifies the value returned by the function. Because we want to be able to start

processes on remote nodes, we need to be able to transmit closures, and so closures must

be serializable. We might be tempted to start by making all functions serializable:

−− wrong

instance Binary (a → b) where

put x =−− ??

get =−− ??

Unfortunately, we cannot write this instance in Haskell: there is no way to introspect into

a function at runtime. That is, we can neither get a serializable function representation,

nor a serializable form of its environment, both of which are necessary for creating a

closure. However, we can not avoid this problem: if we are to have a function capable of

starting new processes on remote nodes, we must be able to construct serializable closures.

One solution to the problem of the serialization of functions is to extend the runtime

system, so that any type at all can be serialized. This is the approach taken by most

languages that address this issue. Erlang, for example, can transparently produce a

closure for an arbitrary function. However, there are problems with this approach:
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• Ceding the task of environment serialization to the runtime means that the pro-

grammer loses an overview of what data is serialized and when. One might say that

it makes serializing data too easy. We can imagine a programmer accidentally trans-

mitting a huge chunk of data with an innocent-looking function call, just because

that function has a free variable bound to an entire database. If the function is

part of a third-party library, the programmer might not even have a way of knowing

exactly what is being invisibly serialized as part of its environment. While that

is acceptable in a strictly shared-memory arrangement, in distributed applications,

the cost of transmitting data is of paramount concern, and the programmer should

retain control of it.

• Some data types should never be serialized. As mentioned in Section 2.1.1, data

types specific to shared-memory concurrency should never be sent to a remote sys-

tem. In Cloud Haskell, we enforce that provision through restrictions on serializa-

tions. We can imagine a programmer extending those restrictions to other strictly

local data types, such as handles to local resources. Thus, we do not want to leave

decisions about serializability entirely up to the runtime.

• Similarly, some data types can be serialized more efficiently with manual interven-

tion, e.g. by stripping redundant structures. Again, the aim is to reduce the cost of

transmitting data.

Which functions can be safely serialized without extending the runtime system? Certainly,

those without free variables. We include such functions in a category of safely serializable

functions which we call freeless. We can also assume that functions whose only free

variables are parameters are serializable, since those parameters will be serialized with

them; thus, they too are freeless. Unfortunately, functions with no free variables are hard

to come by: even (+) is a value in Haskell, so a function like add a b = a + b has a free

variable. Fortunately, we know a priori that (+) is available at the point of deserialization,

and therefore does not need to be serialized; we know this, because (+) is part of Haskell.

So add is freeless, after all.

This train of thought leads us to the conclusion that we can serialize any value that we

know will be available at the point of deserialization. In Cloud Haskell, we require that

the same binary be running on all nodes. While this may seem an onerous demand, it

means that any top-level name can be safely serialized, since those values are guaranteed

to be present. We can extend this thought even further and give a precise definition

of freeless: a freeless function is one whose only free variables are parameters, top-level

names, or are freeless themselves.

How can we identify freeless functions? Rather than allow serialization of all freeless

functions, we allow serialization of a subset of them: specifically, those that are top-level
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functions. This approximation does not greatly hinder the framework’s flexibility and

ensures that the serialziation mechanism can be implemented entirely in library code.

We now turn to the issue of serializing a closure’s environment. Because of the restrictions

we have placed on serializable functions, we know that the only free variables we need to

serialize are a function’s parameters. The Data.Binary module gives us an encode function

that translates a serializable tuple of arguments into a string, and a corresponding decode

function that reverses that operation:

encode : : Binary a ⇒ a → ByteString

decode : : Binary a ⇒ ByteString → a

Now the environmentstore type in our definition of Closure is simply a ByteString. The

problem with this strategy is in deserialization: Haskell, as a statically typed language,

demands that we know the type of data beforehand. What type shall decode return,

then? Clearly, it must return the type of the arguments of the function to call, but this

is something we find out at runtime.

The solution is to require the represented function itself to deserialize its own parameters.

That is, for each function that may be called via a Closure, either that function must

simply accept a ByteString, which it gives to decode; or there must be a wrapper function

that statically knows the type of the underlying function, and calls decode on its behalf.

Next, we must find a suitable type to take the place of functionrep in the definition of

Closure. This type must be able to uniquely identify a remotely-callable function. Since

we have restricted remotely-callable functions to top-level functions, we have chosen to

use a string containing the function’s fully-qualified name (that is, module plus name) as

its representation, since all top-level functions must have unique names, unlike locally-

defined or lambda functions. The next task is to encode the environment; as already

shown, it is sufficient to encode a function’s parameters as a ByteString. Thus, the final

definition of Closure is:

data Closure a = Closure String ByteString

If we want to run a function of this signature:

module Foobar where

someFun : : [ Int ] → String → ProcessM ()

Then we can call spawn like this:

−− correct but cumbersome

let theclo = Closure ”Foobar .someFun” (encode ([3 ,4] ,”zmrzlina”))

in spawn someNode theclo

But how can the Spawner process connect the string ”Foobar.someFun” with the someFun

function? And wouldn’t it be nice if there were a more concise way of creating closures?



Chapter 4 — Implementation 43

Both of these questions are addressed by Cloud Haskell’s remotable function, which gen-

erates boilerplate wrappers and lookup tables required for creating and using closures. It

does this using the Template Haskell metaprogramming facility. The following Template

Haskell splice:

$( remotable [ ’someFun] )

will expand at compile time to this:

someFun closure : : [ Int ] → String → Closure (ProcessM () )

someFun closure a1 a2 = Closure ”Foobar . someFun impl” (encode (a1 , a2))

someFun impl : : ByteString → ProcessM ()

someFun impl a =

do { (a1 , a2) ← l i f t I O (decode a)

; someFun a1 a2 }

remoteCallMetaData : : RemoteCallMetaData

remoteCallMetaData =

putReg someFun impl ”Foobar . someFun impl”

In the above expansion, someFun closure is the user-visible closure generator; it is simply

a shorthand for the manual closure construction shown in the previous example. The

programmer will use someFun closure to create closures suitable for use with spawn. Note

that someFun closure returns a Closure (ProcessM ()), as it is derived from an original

function of type ProcessM (); thus, remotable provides static guarantees matching the type

of closure to the type of the underlying function.

The function directly named by someFun closure is someFun impl; this is because a remotely-

invoked function is given a ByteString containing its encoded environment, which it will

then decode. Since the framework would not otherwise be able to statically know the type

of the user-defined function, it generates a wrapper function to deserialize the environment

and call the underlying user function.

Finally, we need a way to call someFun impl by name. Haskell does not provide a run-

time name lookup service, so we must make one ourselves. To wit, remoteCallMetaData

provides a mapping from names to functions. At initialization, this function generates a

table of type Map String Dynamic that is used by the Spawner when invoking closures; we

use Haskell’s Dynamic type to wrap functions of arbitrary type. Each module that uses

remotable has its own remoteCallMetaData, and all such tables must be passed to remoteInit

when initializing the framework.

In the end, we simply call our function by using syntax very similar to a normal function

call:

spawn someNode (someFun closure [3 ,4] ”zmrzlina”)
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Note that because the entire procedure of function lookup and closure invocation is per-

formed in normal type-safe library code, it is impossible for a segmentation fault or other

uncontrolled error to result. For example, if due to a version mismatch between nodes, the

function expressed in a closure cannot be found, the error will be caught in library code

and logged. Similarly, if a closure contains the wrong type of parameters, the decoding

function will fail in a controlled way.
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Evaluation

5.1 Clustering

In addition to the detailed analysis of an example Cloud Haskell application presented

in Section 3.1, we now briefly present another example application. This program im-

plements the well-known k-means algorithm. The algorithm is used to identify natural

clusters within sets of data points; its input is a set of data points and an integer k, and

its output is an assignment of each point to one of k clusters.

The k-means algorithm is implemented in terms of MapReduce. Each node is assigned a

role of either mapper or reducer; the data points are divided evenly between the mappers.

Each mapper then calculates the distance between each of its data points and the (initially

random) centroid of each cluster, and on that basis assigns each point to the best cluster.

The new assignments are collected by the reducer nodes, which take the average of all

points assigned to a given cluster, yielding new cluster centroids. The new centroids are

sent back to the mappers and used to repeat the algorithm, until either the centroids

stabilize or until the maximum number of iterations is reached.

The k-means algorithm is computationally demanding, data intensive, and easily parti-

tioned, and so provides a useful test case for Cloud Haskell. The output from successive

iterations of the algorithm using a sample data set is shown in Figure 5.1. The source

code for two k-means implementations is included in the distribution: one implementation

based on the process layer, and the other based on the task layer. We feel that these two

implementation demonstrate the power and flexibility of the Cloud Haskell API, as well

as the contrasting elements of the two interfaces.

5.2 Performance

One goal of a distributed system is to be able coordinate compute- and data-intensive

algorithms among many nodes without incurring a performance overhead. Here we discuss

45
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1. 2.

3. 4.

5.

Figure 5.1: The allocation of two-dimensional points to clusters in successive iterations of the k-means

algorithm, k = 4. Initially, the center point of each cluster is chosen randomly. With each iteration, the

clusters move closer to convergence.

the performance of our implementation of the k-means algorithm, introduced in Section

5.1.

We tested two versions of the k-means algorithm: the process layer-based Cloud Haskell

implementation; and the Apache Mahout implementation for the Hadoop framework. We

deployed both implementations of k-means on an Amazon EC2 cluster. Each virtual

machine in the cluster was an Amazon instance of type m1.small, which is a single core

machine with 1.7 GB of memory, and was running Ubuntu 10.04 (image ami-311f2b45).
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Figure 5.2: The run-time of the k-means algorithm. We compare the algorithm as implemented with
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Figure 5.3: The speedup of the k-means algorithm in Cloud Haskell, compared with execution on a

single mapper. The results are based on the same tests from Figure 5.2.

We deployed the Hadoop version using Amazon’s Elastic MapReduce interface, while the

Cloud Haskell version was deployed using a hand-written script based on scp.

We used as input one million randomly generated, evenly distributed 100-dimensional

data points, and extracted k = 10 clusters. The number of iterations was fixed at five.

The results of the tests are summarized in Figure 5.2. In Figure, Figure 5.3, we show the

speedup achieved by adding additional mapper nodes to a Cloud Haskell deployment.
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The results show that Cloud Haskell has performance roughly comparable with that of the

Hadoop framework, and in some cases superior. Although the Hadoop implementation

performs better with fewer nodes, the Cloud Haskell version overtakes it as more nodes are

added, and retains this lead. The greatest bottleneck in Cloud Haskell’s performance is

acquiring and loading the data; we hope to address this issue with improved file handling

in future versions.
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Conclusion

The Cloud Haskell project has successfully shown that a distributed programming lan-

guage can be embedded in a strongly-typed language like Haskell. We believe that Cloud

Haskell represents a promising beginning for distributed computing in Haskell. We have

shown that Haskell is a good fit for this problem space, thanks to its strong static typing,

purity, and monads. We have also shown that Cloud Haskell presents useful abstractions

that make it relatively easy to construct complex distributed applications.

Cloud Haskell is already being used in other projects, including a distributed hash table

being developed at Heriot-Watt University. It is pleasing to see the interest within the

academic community in continuing our work.

6.1 Related work

As should be clear, the most direct inspiration for this project comes from Erlang [1], from

which we borrow the process-oriented message-passing architecture and fault-monitoring

interface. In the scientific computing community, a widely-used solution for distributed

parallelism is the Message Passing Interface (MPI) [8]. Unlike Cloud Haskell, MPI aims

to be language independent, with interfaces for Fortan, C, C++ and other languages.

While language independence makes it more accessible, it also reduces its integration

with any single language, whereas many of Cloud Haskell’s features are tightly coupled

with Haskell’s type system.

Our task layer was inspired by the CIEL execution engine [17] and Skywriting lan-

guage [16] of Murray et al. We improve on the CIEL model by allowing programmers to

write their entire program in one language, rather than using one language for calcula-

tions and another for process coordination. The key feature we have taken from CIEL,

futures/promises, has been used in functional languages before, including Scheme [15], and

also for distributed programming: Schwendner [21] has developed a distributed Scheme

based on futures, although without fault tolerance or message-passing.

49
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This is not the first attempt at a distributed computing framework in Haskell. Glasgow

Distributed Haskell [19], though, takes a very different approach from Cloud Haskell, by

attempting to reproduce the semantics of shared-memory programming in a distributed

environment. We feel that a distributed programming model should reflect the cost model

of the underlying hardware, and therefore we present an interface very different from tra-

ditional concurrent programming. In particular, Cloud Haskell does not provide mutable

distributed variables as part of its interface.

MapReduce [5], with its open-source implementation Hadoop1, is the best-known dis-

tributed computing framework, but suffers from rigidity. In particular, it is insufficiently

expressive for writing iterative algorithms. Dryad [11] improves on MapReduce by allow-

ing the data flow of an algorithm to be expressed as a directed acyclic graph, but in both

frameworks, the data flow must be fully specified before computation begins. The need

for data-dependent control flow was one of the motivations for CIEL.

Haskell’s traditional shared-memory concurrency mechanism is known as Concurrent

Haskell [13], and is based on lightweight threads. Threads communicate through mu-

table variables or channels, which are similar to Cloud Haskell’s distributed channels.

Haskell has also been extended for parallel vectorization, in the form of Data Parallel

Haskell [4].

The Go language2 and Concurrent ML [20] have both been designed with concurrency in

mind, although they do not specifically address distributed computing. Like Concurrent

Haskell, they use lightweight processes and communication over typed channels.

Java has its own system for executing functions on remote computers: Remote Method

Invocation (RMI) [18]. Although its serialization mechanism is built into the language

through introspection, it gives the programmer a high degree of control: the programmer

must manually indicate which data types are serializable and may override the serializa-

tion protocol for particular types. It thus avoids the usual disadvantages of automatic

serialization.

CORBA provides the Interface Description Language (IDL) [25] to specify language-

independent remotely-callable services. Web services often use the SOAP standard to

encode remote procedure calls. However, neither of these systems deal with the problem

of transmitting functions that capture their environment.

The Emerald language [14] is an object-oriented language with mobile objects, i.e., its

objects can be serialized and migrated to other systems. Because its stack frames are

objects as well, functions that capture their environment can be automatically migrated.

Acute [22] and HashCaml [2] are designed with type-safe serialization in mind. The

attach type representations to serialized data, ensuring safety even if the structure of a

type changes between versions.

1http://hadoop.apache.org/
2http://golang.org/
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The Clean [24] language also addresses the problem of function serialization, and in fact

allows data of arbitrary type to be transmitted between programs, even if those programs

do not have all their types in common. The mechanism that it uses to accomplishes

this, an external type library written at compile time, requires extensive integration with

the language and is not directly adaptable to a distributed environment, but suggests

interesting avenues of research.

6.2 Future work

In this section, we discuss some ideas for future directions that work with Cloud Haskell

could take.

Experience building applications with Cloud Haskell shows that the mostly sorely needed

feature is integration with a distributed file system. This absence is most felt when

programming with the task layer, where the only way to move data is by promises, which

have the disadvantage of being slow: creating a promise requires coordination with the

master node, and dereferencing a large number of promises means that a worker node may

spend a lot of time waiting, since there is no anticipatory pre-fetching of promise values.

Additionally, our serialization system is slow when dealing with huge blocks of data. It

would be useful to integrate an existing file system, such as the Hadoop Distributed File

System used by Skywriting.

Another problem in Cloud Haskell’s task layer is the fragility of the master node. Cur-

rently, the task layer has no provision for redundancy of the master node, meaning that

if that node fails, the whole application must restart. In a real-world production environ-

ment, this is clearly unacceptable. Production-ready distributed systems usually provide

a redundant master node. Even better, a future version of Cloud Haskell could eliminate

the master node entirely, and make communication between nodes strictly peer-to-peer.

The task layer’s allocation algorithm is fairly naive. Each new task is assigned to a

node in a round-robin fashion, disregarding the actual capabilities of a node and the

requirements of the task. It would be worthwhile to develop a more advanced scheduler

that could monitor the actual processor and memory load of nodes. The scheduler might

also consider the dependencies of tasks, as does Quincy [12].

Cloud Haskell could benefit from dynamic software updates [10], as Erlang does. So,

when a new version of code is released, it could be transmitted to every host in the

network, where it will replace the old version, without having to restart the application.

We decided not to go in this direction with our framework, partly because code update is

a problem that can be separated from other aspects of building a distributed computing

framework, and partly because solving it is especially difficult in a language that compiles

to machine code, as does Haskell. Erlang, on the other hand, uses a bytecode interpreter

and so retains more control over loading and execution.
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A consequence of not supporting over-the-wire code updates is that upgrading a running

distributed application requires stopping, upgrading, and restarting all nodes, a poten-

tially time-consuming and error-prone procedure. One problem that can arise during an

upgrade is type inconsistency between versions, when the structure of a message changes.

Depending on the change made, a message might fail to deserialize, resulting in an error

message. Even worse, type changes might not be detected by the deserializer, resulting in

silently mangled values. The solution is to include a type fingerprint, containing a hash

of the representation of the encoded type, with each message.

Type ambiguity arises not only between versions, but also between disparate systems.

Cloud Haskell currently has no provision for making sure that an Int on one machine

is the same as an Int on another. If a programmer intends to build an application for

deployment on a heterogeneous network, then numeric types of explicit width should be

used in messages, such as Int32, in place of the platform-dependent Int . Message encoding

should also take into account endian-ness.

Well-known algorithms, such as distributed consensus [6] could be used to assign roles

to nodes dynamically. Virtual synchrony [3] could be used to achieve a single view of

the shape of the network, rather than let individual nodes reach their own determination

about the availability of their peers, which can lead to confusing results in the case of a

network bisection.

The message serialization mechanism we have chosen, Data.Binary, has limitations. In

particular, some user-defined data types cannot be serialized, such as some existential

data types and GADTs. Also, recursive data structures, such as circular linked lists,

require special attention during serialization. Future work might look at ways to generalize

message serialization to these types.

Our method of closure serialization prevents some function types from being invoked

remotely. For example, it is impossible to call a function like reverse :: [a] → [a], because

the remote side cannot infer from its type how to deserialize its parameters. In Cloud

Haskell, polymorphic functions cannot be called through closures. An improvement in

the closure mechanism might change this.



Appendix A

Configuration reference

Each configuration option can be set in two ways: on the command line of a Cloud Haskell

executable, or in a configuration file. The name and location of the configuration file, if

used, is determined by the application, but is usually config, located in the current

directory. The location of the configuration file can also be specified by the RH CONFIG

environment variable. If an option is specified both on the command line and in the

configuration file, the value given on the command line takes precedence.

The syntax for setting a configuration option differs slightly depending on where you are

setting it. On the command line, use a hyphen to introduce the option, followed by the

name of the option, then an equals sign, and finally, the value, enclosed in quotation

marks if necessary:

./MyApplication -cfgRole=SOMEROLE

When setting a configuration option in the configuration file, give each setting on a sep-

arate line, where each line consists of the name of the option and its value, separated

by whitespace. Quoting the value is not necessary. Lines prefixed with a hash (#) are

comments:

# My configuration file

cfgRole SOMEROLE

Here is a summary of the user-visible configuration options.

Name Default Description

cfgRole NODE The user-assigned role of this node deter-

mines what its initial behavior is and how

it presents itself to its peers.
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cfgKnownHosts A whitespace-delimited list of hosts where

nodes may be running. You may specify each

host by name or IP address. The getPeers

function will query the node registry running

on these hosts when returning information

about known nodes.

cfgHostName The hostname, used as a basis for creating

the name of the node. If unspecified, the OS

will be queried. Since the hostname is part

of the node’s name, the computer must be

accessible to other nodes using this name.

cfgListenPort 0 The TCP port on which to listen to for new

incoming messages. If 0, the framework will

let the operating system assign a port.

cfgLocalRegistryListenPort 38813 The TCP port for communication with the

local node registry. This value must be com-

mon among all nodes in your application’s

network.

cfgPeerDiscoveryPort 38813 The UDP port on which local peer discov-

ery broadcasts are sent and received. If 0,

peer discovery broadcasts are disabled, and

so only nodes on hosts listed in cfgKnownHosts

will be found. This value must be common

among all nodes in your application’s net-

work.

cfgNetworkMagic MAGIC The unique identifying string for this net-

work or application. The value must not con-

tain spaces. The uniqueness of this string en-

sures that multiple applications running on

the same physical network won’t accidentally

communicate with each other.

cfgRoundtripTimeout 10000000 Time in microseconds to wait for a response

from a system service on a remote node. If

the network has high latency or congestion,

it may be necessary to increase this value to

avoid incorrect reports of node inaccessibil-

ity.

cfgMaxOutgoing 50 A limit on the number of simultaneous out-

going connections per node.
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cfgPromiseFlushDelay 5000000 Time in microseconds before an promise’s

value is flushed to disk. If 0, values are never

flushed to disk.

cfgPromisePrefix rpromise- Prepended to the filename of flushed promise

values. This value may contain a full or rel-

ative pathname.
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