
Department of
Computing Science

Catamorphism-Based Program

Transformations for Non-Strict

Functional Languages

László Németh

A thesis submitted in partial fulfilment of the requirements for
the degree of Doctor of Philosophy in Computing Science at

the University of Glasgow

November 2000

c© László Németh 2000

Abstract

In functional languages intermediate data structures are often used as glue to connect

separate parts of a program together. These intermediate data structures are useful because

they allow modularity, but they are also a cause of inefficiency: each element need to be

allocated, to be examined, and to be deallocated.

Warm fusion is a program transformation technique which aims to eliminate intermediate

data structures. Functions in a program are first transformed into the so called build-cata

form, then fused via a one-step rewrite rule, the cata-build rule. In the process of the

transformation to build-cata form we attempt to replace explicit recursion with a fixed

pattern of recursion (catamorphism).

We analyse in detail the problem of removing — possibly mutually recursive sets of —

polynomial datatypes.

We have implemented the warm fusion method in the Glasgow Haskell Compiler, which has

allowed practical feedback. One important conclusion is that catamorphisms and fusion

in general deserve a more prominent role in the compilation process. We give a detailed

measurement of our implementation on a suite of real application programs.

Contents

Abstract ii

1 Introduction 1

1.1 Contributions . 2

1.2 Structure of the thesis . 3

2 State of the Art in Intermediate Data Structure Removal 5

2.1 Wadler’s schema deforestation . 7

2.2 The rules and strategies approach . 9

2.3 Listlessness and deforestation . 10

2.4 Cheap deforestation . 12

2.5 Supercompilation . 13

2.6 Warm Fusion . 13

2.7 Warm Fusion (almost) without inlining . 14

2.8 Hylo Fusion . 15

2.9 Deforestation for free . 16

2.10 Generic program transformation . 16

3 The Theory of Warm Fusion 18

3.1 Preliminaries . 19

3.2 Catamorphisms . 20

3.3 Build . 25

3.4 The correctness of buildify . 25

iii

Contents iv

4 The Practice of Warm Fusion I: The Basics 27

4.1 Informal introduction to warm fusion . 27

4.1.1 Buildify informally . 29

4.1.2 Catify informally . 32

4.2 Definitions . 36

4.3 Overview of the method . 37

4.3.1 The preprocessing stage . 38

4.3.2 First stage of fusion . 39

4.3.3 Buildify detailed . 41

4.3.4 Catify detailed . 42

4.3.5 The second stage . 44

4.3.6 Cleaning up . 44

4.4 Discussion . 44

4.4.1 Do catas deserve a special treatment or should they be ordinary Core
bindings? . 45

4.4.2 When should catas, maps and builds be derived? 46

4.4.3 When to transform functions to build-cata form 48

4.4.4 Buildify-catify vs catify-buildify . 48

4.5 First-order fusion . 49

4.5.1 Deriving maps . 49

4.5.2 Deriving catas: implementing the cata evaluation rule 51

4.5.3 Cata-Core rules . 54

4.5.4 Buildify . 55

4.5.5 Catify . 60

5 The Practice of Warm Fusion II: Extensions 64

5.1 Functions with more than one argument . 64

5.1.1 Avoiding more than one argument 65

5.1.2 Higher-order catas . 67

5.1.3 Buildify . 69

Contents v

5.1.4 Catify . 70

5.1.5 Higher-order fusion . 73

5.1.6 Static argument transformation . 74

5.2 Mutually recursive datatypes . 74

5.2.1 Deriving maps . 76

5.2.2 Deriving catas . 78

5.2.3 New Cata-Core rules . 79

5.2.4 Buildify . 80

5.2.5 Catify . 81

5.3 The dynamic rewrite system . 84

5.3.1 The details . 84

5.4 Standardising argument ordering . 86

5.5 Two practical issues . 88

5.5.1 Separate compilation . 88

5.5.2 List comprehensions . 91

6 Measuring Warm Fusion 99

6.1 Measuring warm fusion . 99

6.2 What we want to measure . 100

6.3 How to measure it? . 101

6.4 A detailed example . 102

6.5 The benchmarks . 117

6.6 A short analysis of the benchmarks . 117

6.7 Summary . 120

6.7.1 The control run . 120

6.7.2 Normalised run . 121

6.7.3 Buildify only . 123

6.7.4 Catify only . 124

6.8 Conclusions . 129

7 Conclusions and Further Work 136

Contents vi

7.1 Further Work . 137

7.1.1 Automatically deriving code from types 137

7.1.2 Special abstract machine for fused programs 138

7.1.3 Transparency of transformations . 138

7.1.4 More aggressive inlining . 139

7.1.5 Fusion for datatypes with embedded functions 139

7.1.6 Fegaras style folds . 140

7.1.7 Monadic maps, folds and fusion . 140

7.1.8 Warmer fusion . 141

A The Framework 142

A.1 The compiler (pre-warm fusion) . 142

A.2 The simplifier . 144

A.3 The compiler (post-warm fusion) . 146

List of figures

2.1 The idea of program transformation . 6

2.2 Wadler’s algebraic deforestation rules . 8

4.1 Overview of the fusion transformation . 39

4.2 Rules for the interaction of catamorphisms and Core 55

5.1 Cata-Core rules in the presence of mutually recursive datatypes 79

5.2 Semantics of Haskell list comprehensions . 92

5.3 Traditional list comprehension desugaring scheme 93

5.4 Optimal list comprehension desugaring scheme 98

A.1 Glasgow Haskell Compiler passes . 149

A.2 Syntax of the Core language . 150

vii

List of tables

2.1 Summary of deforestation efforts . 7

6.1 Programs of the imaginary subset . 117

6.2 Programs of the spectral subset . 118

6.3 Programs of the spectral subset: the Hartel Benchmarks 119

6.4 Programs of the real subset . 119

6.5 Control run: imaginary subset . 121

6.6 Control run: the Hartel Benchmarks . 121

6.7 Control run: spectral subset . 122

6.8 Control run: the real subset . 123

6.9 Normalise: imaginary subset . 123

6.10 Normalise: the Hartel Benchmarks . 124

6.11 Normalise: spectral subset . 125

6.12 Normalise: the real subset . 126

6.13 A datatype making buildify too successful 126

6.14 Buildify only: imaginary subset . 127

6.15 Buildify only: the Hartel Benchmarks . 127

6.16 Buildify only: spectral subset . 128

6.17 Buildify only: the real subset . 129

6.18 Catify only: imaginary subset . 130

6.19 Catify only: spectral subset . 131

6.20 Catify only: the Hartel Benchmarks . 132

6.21 Catify only: the real subset . 132

viii

List of tables ix

6.22 Buildify, catify and the cata-build rule: imaginary subset 133

6.23 Buildify, catify and the cata-build rule: spectral subset 134

6.24 Buildify, catify and the cata-build rule: the Hartel Benchmarks 135

6.25 Buildify, catify and the cata-build rule: the real subset 135

A.1 Local transformations . 145

Acknowledgements

I would like to thank my supervisor, Simon Peyton Jones for his support, encouragement,

and for answering my endless stream of questions about GHC. I would also like to thank

my previous supervisor, Phil Wadler who encouraged me to apply to Glasgow.

I spent my second year at the Oregon Graduate Institute (Portland, Oregon). It was a

terrible year — both personally and professionally — but this was not entirely their fault.

The country, the climate, Rock Creek, and myself also had prominent roles in it. The person

I need to thank from this period is John Launchbury who said ’yes’ to a question which, at

that time, seemed very important to me.

As a consequence of my time in the US (and probably the winter months in Glasgow)

I developed a taste for living in sunny places. Thanks to Limsoon Wong of Kent Ridge

Digital Laboratories, Singapore for giving me the opportunity to work in Singapore for

three months and to discover the pleasures of eating a real mango and laksa. For similar

reasons (a fine mixture of sunshine and wild night life), I would like to thank Wai Wong of

the Hong Kong Baptist University for the six months I worked there. It was a refreshing

break from hacking GHC: I was hacking HOL instead.

I would also like to thank my long-suffering officemates, flatmates and all sorts of other

people I met for bearing with me during long, dark periods of depression. I know I hurt

a lot of them so besides my thanks I would also like to apologise. Special thanks go to

Mark Shields, office and flatmate, who actually saved my life. Joy Goodman read the first

draft of this thesis and corrected many of my mistakes. Manuel Chakravarty released his

haskell.sty for LATEX just in time to let me typeset the code appearing in this thesis.

The friendship of István Fekete helped me many times. For help of a very different kind, I

would like to thank Anikó Szemethy, Ildikó Balogh, Susan (sorry, I forgot your surname),

Lori Weeden, Julie Wilson, Tanya Widen, Christina Endemann, Miriam Elze, Kata Tiry,

Swee Chua, Laura Thompson, Chen Nee See, Julie Mullaly and a few others whose name

escapes me.

I thank my mother and my family, who never fail to love, support or believe in me although

I never managed to explain what I was doing during all these years.

This work was supported by the Overseas Students Award Scheme (no.: ORS/96017017),

the University of Glasgow, Department of Computing Science grant and several travel grants

from OTKA.

Chapter 1

Introduction

When writing a program, especially in a functional language like Haskell, the programmer

is faced with the tension between abstraction and efficiency. A program that is easy to

understand and maintain often fails to be efficient, while a more efficient solution often

compromises clarity. To allow programmers write readable code, while getting reasonable

performance, the transformational approach to program development was advocated by

Burstall and Darlington [BD77] as early as in 1977, although the basic ideas had been

presented in previous papers by the same authors [DB76].

The transformational approach is performed in phases: first an initial, maybe inefficient,

but clear and easy to understand program is written. The second phase, possibly divided

into subphases, consist of transforming the initial program into a more efficient one. The

approach is often adopted in compilers for various programming languages: the first phase

is the program supplied by the user — which is considered the specification — the second

phase is performed automatically by the compiler.

Program transformations come in two flavours:

• Non-automatic transformations, which are either performed on paper, often referred

as program derivation, or assisted by the computer, but requires the intervention of

the user to select which transformation to perform or to provide new transformations

when needed.

• Automatic transformations, that can be entirely automated and are suitable to be

incorporated into a compiler.

In this thesis we study a completely automatic program transformation method.

One particular cause of inefficiency in functional programs is the presence of intermediate

1

1.1. CONTRIBUTIONS 2

data structures. Consider the following Haskell program1 (with suitable definitions for sum,

map, and upto) to compute the sum of the squares from 1 to n:

foo = sum .map square . upto 1

In this case the intermediate list [1, 2, . . . , n] connects the functions upto and map square .

Another intermediate list [1, 4, . . . , n2] connects map square with sum. If strict evaluation is

used, the program requires space proportional to n, since the intermediate lists needs to be

completely built. Under lazy evaluation space is not a problem: each list is generated as it is

needed and consumers and producers behave as coroutines, but even under lazy evaluation

each element requires time to be allocated, to be examined, and to be deallocated.

A somewhat more complex and error prone, but more efficient definition is:

foo = bar 1

bar l u = case l ≤ u of

True → l2 + bar (l + 1) u

False → 0

Intermediate data structure removal algorithms attempt to automatically turn the former

defintion to the later one. In general, intermediate data structures can be of any type: trees,

booleans and so on. In this thesis, we describe a transformation technique to remove these

intermediate data structures from functional programs.

1.1 Contributions

This dissertation explores in detail a non-trivial intermediate data structure removal algo-

rithm that allows programmers to use a compositional style of programming in non-strict

functional languages without paying a substantial performance penalty. We make the fol-

lowing contributions:

• We present and analyse (Section 4.5) a non-trivial intermediate data structure removal

algorithm to be included as part of a production quality functional language compiler.

• We formulate the algorithms in the properly typed framework of the second-order

polymorphic lambda calculus and relate the implementation to theory via parametric-

ity proofs.

1In the literature, usefulness of deforestation like program transformations are always demonstrated with
this simple example.

1.2. STRUCTURE OF THE THESIS 3

• We extend earlier work by allowing the algorithms to work on non-recursive and

mutually recursive data structures (Section 5.2).

• We present a previously unpublished, simple transformation, normalise in Section 5.4,

which simplifies several stages of our transformations.

• We apply the same technique of intermediate data structure removal to both recursive

and non-recursive types. The techniques are the same in theory, but in the implemen-

tation such uniformity is rare.

• We demonstrate how the technique of warm fusion simplifies the compilation process,

namely desugaring, by eliminating the need for special, optimal translations for list

comprehensions.

• We prove two important properties, confluence and termination of the rewrite system

(Section 5.3), of the transformations.

• We demonstrate the usefulness of the transformations by providing detailed, quantita-

tive measurements of improvements on a large set of programs including hand crafted

benchmarks and real programs (Chapter 6).

1.2 Structure of the thesis

This thesis is the culmination of work done in two very different communities in computer

science: on one hand compiler writers and on the other hand theorists. The language of

both of these communities is well established, but unsurprisingly quite different. In a way

of helping the theorist or the fellow compiler writer who does not have much knowledge of

the Glasgow Haskell Compiler (GHC 3.03), Appendix A provides a brief introduction to

the compiler, its passes and defines the internal language of the compiler, the so called Core

Language. This contains everything required to read the rest of the thesis and it is assumed

to be known to the reader. For those wishing to pursue further study extensive references

are provided.

Chapter 2 reviews earlier work on program transformation and puts this thesis into the

entire picture. It also introduces some more terminology, which will be trivial to anyone

with a reasonable knowledge of compiler technology but may be new to a theorist.

Chapter 3 is for the compiler writer and serves as background material to the theory of

intermediate data structure removal. It contains the essential definitions and theorems on

which this thesis is built and references to the proofs. It is not an introduction however to

category theory or the categorical treatment of datatypes in general.

1.2. STRUCTURE OF THE THESIS 4

Chapter 4 is the core of the thesis. It starts off with an informal introduction to the

ideas of the two transformations. Then it formally presents — as rewrite rules in the

second-order lambda calculus — several transformations and includes many examples to

help understanding. It also contains a discussion of fundamental design decisions regarding

the implementation.

Chapter 5 is devoted to two important extensions: fusion for higher-order catamorphisms,

which extends the techniques in Chapter 4 to functions with more than one, non-static

argument, and fusion in the presence of mutually recursive datatypes. Section 5.3 presents

the ’dynamic’ rewrite system which is used in Chapter 4 and the first two sections of the

current chapter. Section 5.4 details a surprisingly simple transformation, standardisation of

function arguments, which simplifies most of the material presented in this thesis. The rest

of the chapter discusses two related issues: separate compilation and optimal compilation

of list comprehensions.

In Chapter 6 we provide detailed quantitative measurements of the gains of the implemen-

tation of the intermediate data structure removal algorithm.

Finally, Chapter 7 concludes and suggests further work.

Parts of this work have been previously presented in Németh and Peyton Jones [NPJ98].

Chapter 2

State of the Art in Intermediate

Data Structure Removal

Program transformation is a technique for program development that can be used both

to generate programs from formal specifications and to generate new programs from old

ones. In this thesis, we will exclusively be concerned with the later meaning. Generation

of new programs from old programs can be completely manual, often referred to as pro-

gram derivation, or fully automatic which requires no intervention from the user of the

program transformation system. In the context of this thesis we will use the term program

transformation to denote fully automatic instances only.

Program transformation has been based either on the schemata approach [Coo66, WS72,

MFP91, MH95, Jeu95] whereby new programs are derived by instantiating a fixed set

of equivalences between program schemata, or the rules and strategies approach [BD77]

whereby new programs are derived by sequences of applications of rules that replace pro-

gram fragments by new, equivalent program fragments. The applications of the rules (such

as the unfold, fold, instantiate etc.) are controlled by strategies (such as tupling, loop fusion,

abstraction, accumulation etc.) A third largely unexplored approach is program transfor-

mation by proof transformation [BC85]. The advantage of the schemata based approach

is that once the dictionary of program equivalences is produced, the transformation only

requires matching the program, or its fragments, against fixed set of rules in the dictionary.

Its disadvantage is that if there is no rule in the dictionary no transformation at all is pos-

sible. Producing a good dictionary however is quite hard. As for the rules and strategies

approach, its flexibility is a major attraction, but complex strategies may require applica-

tion of a long sequence of rules, so transformation can be computationally expensive. The

transformations discussed in this thesis is a mixture of the two approaches since application

of the cata-build rule resembles the schemata approach, while the two transformations

5

6

P0 P1 · · · Pn
✲ ✲ ✲

V

❅
❅

❅
❅

❅
❅❘

❇
❇
❇
❇
❇
❇❇◆

�
�

�
�

�
�✠

Figure 2.1 The idea of program transformation

buildify and catify is closer in spirit to the rules and strategies approach.

The motivation for deriving a new program, P2, from and old one, P1, is typically that

we want to improve some aspect of P1 while preserving its semantics: we want Sem(P1) =

Sem(P2) for some given semantic function. More precisely, we want the equivalence induced

by Sem to be a congruence with respect to the operations used for building programs.

The fundamental idea of program transformation is depicted in Figure 2.1. Given an initial

program P0, which we consider as the specification, we want to derive a program Pn, with

the same semantic value V , that is, Sem(P0) = Sem(Pn) for some given semantic function

Sem. This is often done in more than one step, by constructing a sequence < P0, . . . , Pn >

of programs such that Sem(Pi) = Sem(Pi+1) for 0 ≤ i < n.

A given a cost function C which indicates the space or time requirements of the execution

of a program should satisfy the inequation: C(P0) ≥ C(Pn). However, in the course of

program transformation we may allow ourselves to perform a transformation step which

results in a program Pi, for some i > 0, such that C(Pi−1) ≤ C(Pi), that is to locally

increase the associated cost, or we may even allow a Pi, such that C(P0) ≤ C(Pi), that is

Pi is worse than what we started with, because subsequent transformations may lead to a

program version whose cost is smaller than the one of P0. We shall see in Chapter 6 that

some of our transformations do have this property. Unfortunately, no general theory of

program transformations that deals with this situation in a satisfactory way exists.

While preserving semantics and improvement with respect to some cost function are es-

sential requirements of any optimisation, there is often a third one: it must be worth the

effort for both the compiler writer and the user [ASU86], meaning that, it must not require

excessive amounts of time to implement it and it must be sufficiently efficient to not unduly

affect compilation times. This second aspect is quantified in Chapter 6.

A summary of the discussed methods is shown in Table 2.1.

2.1. WADLER’S SCHEMA DEFORESTATION 7

Method Data types Language Condition Implementation

Schema deforesta-
tion [Wad81]

list higher order syntactic condi-
tion: only for
expression written
in terms of the
basic combinators:
map, foldl , generate

NA

Listless trans-
former [Wad86]

list first order preorder traversal no

Deforestation
[Wad90]

polynomial first order
(+ non-
recursive,
higher order
macros)

functions in treeless
form

prototype

Chin’s extensions
[Chi92b]

polynomial higher order accepts all functions
but deforestation
does not take place
for non-treeless
terms. Higher-
order functions are
removed

??

Higher order
deforestation
[Mar95]

polynomial higher order ?? yes, GHC

Supercompilation
[Tur86]

polynomial higher order ?? NA

Cheap deforesta-
tion [GLPJ93]

list higher order fixed set of functions
(from the Standard
Prelude)

yes, GHC

Warm Fusion
[LS95] and this
thesis

polynomial higher order syntactic condition yes, GHC

Hylo Fusion
[Hu96, OHIT97]

polynomial higher order structural hylomor-
phisms

in progress,
GHC

Table 2.1 Summary of deforestation efforts

2.1 Wadler’s schema deforestation

Wadler [Wad81] proposed a simple deforestation algorithm by using a small set of combi-

nators. His combinators — transliterated into the more convenient Haskell notation — are

known as map, foldl , and generate.

2.1. WADLER’S SCHEMA DEFORESTATION 8

map f (map g xs) = map (f . g) xs
foldl f a (map g xs) = foldl h a xs

where
h a ′ x = f a ′ (g x)

map f (generate p g1 g2 x) = generate p h g2 x
where

h b ′ = f (g1 b ′)
foldl f a (generate p g1 g2 x) = h a x

where
h a ′ b ′ | p b ′ =a ′

h a ′ b ′ | otherwise =h (f a ′ (g1 b ′)) (g2 b ′)

Figure 2.2 Wadler’s algebraic deforestation rules

map, or as we will call this function in later chapters, the type functor for the datatype of

lists is defined by

map :: ∀αβ.(α → β) → [α] → [β]

map f [] = []

map f (x : xs) = f x : map f xs

List consumption is expressed via foldl , which is the catamorphism for the so called snoc

lists:

foldl :: ∀αβ.(α → β → β) → β → [α] → β

foldl f z [] = z

foldl f z (x : xs) = foldl f (f z x) xs

Finally, generate is used to express list production:

generate :: ∀ αβ.(α → Bool) → (α → β) → (α → α) → α → [β]

generate p f g n | p n = []

generate p f g n = f n : generate p f g (g n)

The corresponding set of algebraic rules is given in Figure 2.2. This deforestation scheme, as

given, is limited to lists, but in theory it is relatively easy to extend to any other algebraic

datatype. In practice, however, the number of rules will soon become too large to be

implementable.

Wadler’s method is clearly subsumed by the topic of this thesis the warm fusion method.

2.2. THE RULES AND STRATEGIES APPROACH 9

2.2 The rules and strategies approach

The basic idea is very simple [BD77]. Given the program as a set of recursive equations,

the transformational rules are as follows:

1. Definition Rule. It consists of adding to the current program a set of mutually exclu-

sive, that is two different left-hand sides do no have common instances, and exhaustive,

that is for any element in the domain of any function f , there is at least one left-hand

side that matches, recursive equations. Left-hand sides of the newly introduced equa-

tions are assumed to be unique, that is none of the equations is an instance of the

left-hand side of any previously defined equation.

2. Unfolding Rule (aka inlining). It consists of replacing the occurrence of the left-hand

side of an equation with its right-hand side.

3. Folding Rule. The inverse of the Unfolding Rule: it consists of replacing an instance

of the right-hand side of an equation by the corresponding instance of its left-hand

side.

4. Instantiation Rule. It consists of the introduction of an instance of an already existing

equation.

5. Where-abstraction Rule. We replace the equation f(. . .) = . . . e . . . by f(. . .) =

. . . z . . .where z = e, provided that z does not occur in the equation. Under call-by-

value this has the advantage that the evaluation of e is performed only once.

6. Algebraic Replacement Rule. We derive a new equation by using algebraic properties,

for instance to get f = a+ b from f = b+a by appealing to the associativity property

of +.

It was shown in [Cou90] that any sequence of the application of these six rules preserves

partial correctness of the original program, that is if the transformed program terminates

it computes the same value. In a non-automatic transformation system a separate proof

of termination must be provided, while an automated system should ensure that total

correctness is preserved for example by restricting the sequence of the rules. As we noted,

the Unfolding Rule is the inverse of the Folding Rule, therefore an infinite sequence of

the application of the transformation rules is possible unless we keep track of the entire

transformation history and use strategies to control the application of the rules.

Amongst the many strategies proposed, the best known are the Composition Strategy [BD77,

PK82, Par90] and its variant Deforestation [Wad90], the Tupling Strategy [BD77, PK82,

2.3. LISTLESSNESS AND DEFORESTATION 10

Par90, Chi93, CK93, HIT96b, HITT97], and the Generalisation Strategy [BM75, BD77,

PS87, Par90].

The Tupling Strategy aims to avoid multiple access to data structures by tupling functions

together which traverse the same data structure.

The Generalisation Strategy, as its name suggest can generalise:

• expressions to variables

• functions to functions by implicit definition

The aim of the Composition Strategy is to eliminate intermediate data structures that arise

in expressions like f (g (x)), or equivalently in the compositional style f . g , because the value

produced by g is immediately consumed by f . A variant on the composition strategy is

Wadler’s deforestation technique [Wad90]. The transformation studied in this thesis shares

the goal of the Composition Strategy, but it also uses techniques previously only used in

the schemata based approach (Bird-Meertens formalism [Bir86, Bir87, Bir89, Mee86] or

Squiggol).

In the following, we will discuss those techniques which had been influential in the devel-

opment of the method which forms the core of this thesis. A thorough exposition to the

rules and strategies approach to the transformation of functional and logic programs can

be found in the paper [PP96b] by Pettorossi. An even higher level discussion of future

directions in program transformation is given in [PP96a].

2.3 Listlessness and deforestation

Wadler’s early work on listlessness [Wad84, Wad86] is a refinement of the Composition

Strategy. His listless transformer converts programs written in a functional language into

imperative ’listless programs’. By defining a listless form in a very restrictive way (it requires

a semantic condition, preorder traversal, to be verified) he proves that listless functions must

evaluate in constant bounded space.

The definitive work [Wad90], which coined the term deforestation, improves on listlessness

in many ways. Firstly, the definition of a treeless form is much simpler, purely syntacti-

cal. This eases the work of both the compiler writer and perhaps more importantly the

user, because it makes it easy to characterise what sort of expressions will be optimised.

Secondly, deforestation applies to all terms composed solely of treeless functions, whereas

2.3. LISTLESSNESS AND DEFORESTATION 11

the corresponding listless algorithm applies only when the semantic condition can be ver-

ified. Thirdly, the treeless transformer is entirely source-to-source, therefore it is easier to

make it part of the compilation by transformation [KH89] process. Fourthly, the concept

of blazing is introduced to mark terms of certain types (integers, booleans) which need not

be removed.

While working in a first-order language Wadler recognised that his transformation need to

be extended to accommodate higher-order functions. He proposed non-recursive, higher-

order macros which allowed him for example to deforest the function map f . upto.

The comparison of listless and treeless forms is somewhat difficult. In some ways, the

treeless form is more general (it allows the definition of functions like reflect), but in other

ways it is less general (it does not apply to terms which traverse the data structure twice).

While the listless transformer guarantees evaluation of the resulting functions in constant

bounded space, the treeless transformer may use space bounded by the depth of the tree.

Wadler’s carefully worded deforestation theorems (both pure and blazed) guarantee the

transformation can be without loss of efficiency.

There have been various attempts to extend his method, but still major drawbacks remain.

Termination of the transformer is proved in [FW89]. All these algorithms need to keep

track of all function calls occurred previously, and introduce a definition for a recursive

function on detecting a repetition, which corresponds to the Folding Rule of Burstall and

Darlington [BD77]. The process of keeping track of function calls and the clever control to

avoid infinite unfolding introduces substantial cost and complexity into algorithms which

hinders deforestation to be adopted as part of any serious compiler.

Chin [Chi92b, Chi90, Chi94] extended Wadler’s work in many ways. He devised a double

blazing technique, which allowed him to use the treeless transformer for all functions, not

only the ones in treeless form. Combined with higher-order removal technique [Chi90,

Chi92a] his transformer could process a complete higher-order functional language, although

the remaining higher-order functions and functions not in treeless form are not deforested.

Marlow [Mar95] extended Wadler’s work into a yet another direction. Instead of using a

blazing technique to avoid higher-order functions which can not be deforested by the original

treeless transformer he developed a transformer which works in the presence of higher-

order functions. He also produced an implementation of his algorithm for the Glasgow

Haskell Compiler. Marlow [Mar95] appears to be the first who elaborated on the connection

between deforestation and cut elimination contribution is the notion of transparency, i.e. the

property of a transformation, which helps the programmer to decide if the transformation

applies.

2.4. CHEAP DEFORESTATION 12

2.4 Cheap deforestation

In order to avoid the problems associated with infinite unfolding (non-termination of the

compiler), the paper by Gill, Launchbury and Peyton Jones [GLPJ93] took a less purist

approach. The idea came from the Squiggol community, where it had long been recognised

that program transformation is hard in the presence of general recursion. Instead, they

advocate the use of higher-order functions which follow a fixed pattern of recursion. One of

these fixed patterns on lists is known in the Haskell community as the foldr list data type

data [α] = [] | α : [α] the foldr function is defined in the following way:

foldr :: (α → β → β) → β → [α] → β

foldr c n [] = []

foldr c n (x : xs) = c x (foldr c n xs)

The foldr function standardises the consumption of its argument by traversing the argument

in a predefined order and replacing the list constructors (:) by c and [] by n. Many Standard

Prelude functions can be written using foldr .

To standardise the production of lists, they introduced a function build with type and

definition:

build :: ∀ α.(∀ β.(α → β → β) → β → β) → [α]

build g = g (:) []

and the following property:

foldr c n (build g) = g c n (2.1)

which appears in the literature under the names foldr/build rule, cata-build rule, and

instance of the Acid Rain theorem for catamorphisms at the datatype of lists.

Equation 2.1 is the essence of cheap deforestation: if a list is produced a certain way, by

using build , and the result is consumed by foldr then the intermediate list need not be

built, the result can be constructed by passing foldr first two argument directly to g . Each

application of the foldr-build rule can be seen as a canned application of unfold/simplify/fold

in the traditional deforestation framework. Unfortunately, at that time build could not be

safely exposed to the Haskell programmer since it does not have a Hindley-Milner [Mil78]

type. To circumvent this, most functions of the Standard Prelude were redefined using foldr

2.5. SUPERCOMPILATION 13

and build . The cheap deforestation algorithm then looks for applications of the above form

and rewrites them in one-step. In effect, only certain Standard Prelude functions can be

deforested.

While the approach seems to be practical, the measurements of Gill’s implementation [Gil96]

did not show any performance improvement on real programs.

2.5 Supercompilation

Turchin’s supercompiler [Tur86] can be seen as another automatic instance of the unfold/fold

framework. It is a powerful technique, and it can achieve effects of both deforestation –

removing intermediate data structures – and partial evaluation. This makes it strictly more

powerful than the approach advocated in this thesis. For example, the supercompiler can

derive a Knuth-Morris-Pratt style matcher from the naive definition (see [SGJ94]). The

drawback is that it is a much more expensive technique and has never been implemented

in a practical way.

The supercompiler does not transform programs. Instead, it traces all possible generalised

histories of the computation by the original program, and compiles an equivalent program.

Reexpressed in the Darlington and Burstall terminology, supercompilation performs driving:

unfolding and propagation of information, and generalisation: a form of abstraction which

enables folding. Pettorossi [PP96b] calls this form of generalisation Lambda Abstraction.

Supercompilation is compared with deforestation, and two other techniques partial eval-

uation and generalised partial computation, in [SGJ94] using a simple test program the

Knuth-Morris-Pratt matching algorithm.

2.6 Warm Fusion

Warm fusion [LS95] is the starting point of this thesis. It is the culmination of the work

done by Fegaras and Sheard [FSS92, SF93, SF94], which is in turn based on the work of

Hagino [Hag88] and Malcolm [Mal89] and related to Kieburtz [KL95]. In this school, in-

termediate structure removal is often called fusion [MFP91, Fok92b] or promotion [Mal89].

The technique also incorporates ideas from cheap deforestation, namely that removing in-

termediate data structures is implemented by a one-step rewrite rule.

The fusion rule applies to programs in the so called build-cata1 form, that is data struc-

1We say build-cata form because when functions in such form are read from left to right build appears

2.7. WARM FUSION (ALMOST) WITHOUT INLINING 14

ture consumption is expressed using an explicit fold (or catamorphism), production is ex-

pressed using an explicit build . It generalises the cheap deforestation work by extending

the cata-build rule to arbitrary polynomial datatypes. Later work by Meijer and Hut-

ton [MH95] and Fegaras and Sheard [FS96] extend the basic method to apply to datatypes

with embedded functions, i.e. to include the function space constructor. The major contri-

bution of the Launchbury and Sheard paper is, that in order to make the one-step fusion

rule apply more often they suggested a completely automated, conservative, decision proce-

dure which became known as the warm fusion method. This attempts to turn functions in

general recursive form into build-cata form with an explicit fold and build , which, when

successful, allows the application of the one-step fusion rule, the cata-build rule. When

the warm fusion method is not successful fusion is not attempted.

The original work has been extended in various ways. Theory is extended to monadic folds

by Fokkinga [Fok94] and Meijer and Jeuring [MJ95]. The implementation of the extension

to the monadic case is hindered by the fact that monadic folds are sometimes too specific to

be useful and there is a side condition on the monad which is known not to hold for several

often used monads.

Fegaras continued to develop fusion techniques: first, in [FSZ94], he proposed a new binary

promotion theorem, which can successfully fuse on both arguments of zip. Later he aban-

doned the fixed pattern of recursion idea, (fold), returned to the basics and suggested the

direct use of the parametricity theorem [Rey83, Wad89] to fusion [Feg96].

2.7 Warm Fusion (almost) without inlining

In an attempt to overcome the difficulties of the warm fusion method which were first

reported in [NPJ98] and discussed at length in this thesis, Chitil [Chi99] uses the type

system to predict when the transformation to explicit build form can be successful. More

recently [Chi00], he managed to dispense build completely. Unfortunately, as we shall

demonstrate in Section 3.3 this does not simplify the implementation of warm fusion, only

decreases the penalty we are paying for the transformation to explicit build-cata form

(see Page 99 for further details). No complete design, suitable for incorporation into a

production quality compiler like GHC, has been put forward so far.

first. On the other hand we say cata-build rule because that describes the application of a cata to a build

(also read from left to right).

2.8. HYLO FUSION 15

2.8 Hylo Fusion

Warm Fusion is a program transformation based on catamorphisms, which is just one fixed

pattern of recursion. Other well-known patterns are anamorphisms [MFP91], paramor-

phisms [Mee90], mutumorphisms [Fok92b] and hylomorphisms [MFP91, TM95] just to name

a few. A method for intermediate data structure removal was suggested by Hu, Iwasaki and

Takeichi in [HIT96d] and discussed in detail in Hu’s thesis [Hu96], is based on hylomorphisms

(what you get by composing a catamorphism with an anamorphism: [[ϕ,ψ]] = (|ϕ|) · [(ψ)])

and its associated fusion laws. An extension of the basic system is suggested in [HIT97],

progress report on the ongoing effort to implement the system can be found in [OHIT97].

The idea resembles to the idea of the warm fusion method. Functions in general recursive

form are first transformed into hylomorphisms in triplet form [TM95], which is more con-

venient for program transformation. This step is similar to the two transformations, catify

and buildify, studied in this thesis.

f :: B → A

f ⇒ [[ϕ, η, ψ]]G,F ,where ϕ :: (GA→ A), η :: (F
·
→ G), ψ :: (B → FB) (2.2)

Note, that η is a natural transformation. Unlike catify and buildify, the algorithm in [Hu96]

for this transformation always succeeds in the sense that it is always terminates with a

hylomorphism. However, the result may not be in the right form for the fusion theorems:

Cata-Hylo Fusion (2.3)

τ :: ∀A.(FA→ A)→ FA→ A ⇒ [[ϕ, η1, outF]]G,F · [[τinF , η2, ψ]]F,L = [[τ(ϕ · η1), η2, ψ]]F,L

Hylo-Ana Fusion (2.4)

σ :: ∀A.(A→ FA)→ A→ FA ⇒ [[ϕ, η1, σoutF]]G,F · [[inF , η2, ψ]]F,L = [[ϕ, η1, σ(η2 · ψ)]]G,F

Note, that fusion can only take place (in the Cata-Hylo case for example), if the hylomor-

phism on the left ([[ϕ, η1, outF]]G,F) is really a catamorphism and the hylomorphism on the

right is of a specific form [[τinF , η2, ψ]]F,L. Dually, the Hylo-Ana law is only applicable if the

hylomorphism on the right is really an anamorphism and the one on the left is of a specific

form.

In order to allow more fusion to take place via Equation 2.3 or Equation 2.4, hylomorphisms

are restructured using the Hylo-Shift law

[[ϕ, η, ψ]]G,F = [[ϕ · η, id, ψ]]F,F = [[ϕ, id, η · ψ]]G,G (2.5)

2.9. DEFORESTATION FOR FREE 16

and appropriate τ, σ are derived. These last two steps may not find appropriate polymorphic

functions, so the fusion transformation based on hylomorphisms can also miss opportunities

for fusion.

Hylomorphisms have two fusion laws, the Cata-Hylo Fusion (Equation 2.3) and the Hylo-

Ana Fusion (Equation 2.4) law. The problem of reduction ordering arises since the reduction

system, with overlapping instances of Cata-Hylo and Hylo-Ana redexes which are sensitive

to the reduction order, is clearly not confluent. Takano and Meijer [TM95] give a non-trivial

algorithm to achieve the maximum deforestation opportunity, but they do not include a

proof of this claim. The additional generality over the warm fusion method comes from two

sources:

1. Hylomorphisms have been claimed to be sufficiently general to be used to express most

functions of interest, that is they are more general than build-cata form. For the

particular case of primitive recursive functions this was proved by Meertens in [Mee90].

2. The second transformation based on the hylo-shift law, which allows restructuring of

hylomorphisms, and may expose further opportunities for fusion.

2.9 Deforestation for free

A completely different approach — in a rather different setting — is taken by Johnsson [Joh,

Boq99] to remove intermediate data structures. The original aim of Boquist’s thesis is to

develop an intermediate language (GRIN) for lazy functional languages which is suitable for

program analysis and aggressive code optimisation using mostly control flow analysis and

inter-procedural register allocation. His relatively simple (at least to the transformations

presented in this thesis) transformations taken together can sometimes achieve effects of

removing intermediate data structures. This is particularly interesting as in order to do the

same we heavily rely on type information which he does not seem to use. One relatively

small drawback of his approach is that it is essentially a whole program analysis, which

limits its applicability somewhat.

2.10 Generic program transformation

Based on the observation that the fusion transformation itself a generic program (meta pro-

gram) whose parameters are the distributivity conditions needed in its application, de Moor

and Sittampalam [DMS99] proposed yet another approach to intermediate data structure

2.10. GENERIC PROGRAM TRANSFORMATION 17

removal. They found that the scope of the fusion transformation’s applicability is only

marred by the limitations of the matching algorithm used to implement rewriting. The im-

portance of higher-order matching has been studied by Huet and Lang [HL78] previously.

Higher-order matching being undecidable in general, the most popular restriction is to

second-order matching: this restricts pattern variables to be of base type (Int,Bool, [Int]),

or functions between base types. Since this restriction is not a convenient one for the trans-

formation of functional programs — in most modern functional languages functions are

first-class citizens — the paper presents a new approach, which many believe to be more

intuitive for the programmer. Instead of restricting the order of variables, they propose a

one-step matching algorithm. This matching algorithm lifts many limitations of the original

by Huet and Lang.

de Moor and Sittampalam’s paper [DMS99] also reports on a prototype implementation, the

MAG system. MAG takes a program file written in a small subset of Haskell and a theory

file, a set of conditional equations, which are the transformation rules and applies the rewrite

rules until no more is applicable. It shows all the steps properly annotated, so its output

also serves as documentation of the transformation. This addresses a frequently occurring

problem, first noted by Marlow in his thesis [Mar95], the problem of transparency. Roughly

speaking, the problem is that the outcome of various transformations is not predictable, so

the user of an optimising compiler can rarely be sure that the resulting program really is

better than the one she started with.

Their approach can be seen as a variation on the topic of this thesis. The theory is the

same (most of their transformations are expressed in terms of the fusion law), but while

we add the transformation to a compiler they do the transformation with a separate tool.

The conditions which are needed to be satisfied for a given transformation to take place are

easily identifiable in their system (the theory files), in ours it is hidden in the source code

of the compiler itself. It would be interesting to see, if their theory files could automatically

be incorporated into a compiler, either by recompiling the compiler every time new theories

are added, or by ‘parametrising’ the compiler over theory files.

Chapter 3

The Theory of Warm Fusion

We develop a calculus for lazy functional programming based on recursion

schemes associated with datatype definitions. For these operators we derive

various algebraic laws that are useful in deriving and manipulating programs.

[Meijer, Fokkinga and Paterson: Functional Programming with Bananas . . . [MFP91]]

With an analogy to the bananas paper, we could start by saying that we develop a program

transformation based on one specific recursion operator and its associated laws. In order

to understand the transformations and to establish that these transformations are indeed

correct, we need to recall some theory. Since this thesis makes no contributions to the theory

of catamorphisms or category theory this chapter serves purely as background material

on the relevant theory and it is based on three sources: Chapter 2 of the book ‘Algebra

of Programming’ by Richard Bird and Oege de Moor [BDM97] which is the smoothest

introduction to the categorical treatment of datatypes and calculating programs, Fokkinga’s

thesis [Fok92b] which is the most detailed introduction and contains a wealth of material,

and the bananas paper [MFP91]. The order of definitions follows that of in the ‘Algebra of

Programming’, but some notation is incorporated from the bananas paper.

Catamorphisms, and their associated laws, are well known in the literature [Fok92a, MFP91,

Fok92b, FM94], therefore, instead of repeating all the categorical setup, theorems and their

proofs we only state them. Only those proofs are given which prove the correctness of our

transformations. The interested reader is referred to Fokkinga’s papers. The definitive work

is Fokkinga’s thesis [Fok92b].

18

3.1. PRELIMINARIES 19

3.1 Preliminaries

In the following we assume that the reader is familiar with the basic notions of category

theory: objects, arrows, (small) categories, initiality, products, sums, and functors. For

those lacking this knowledge an easy introduction is Pierce’s book [Pie91] or Fokkinga’s

Gentle Introduction to Category Theory [Fok92a]. Everything (and more) one ever needs

is covered in [Mac71].

Some of the following definitions hold in any category, but we do not need that generality,

so in order to avoid confusion when it matters we state that our default category for types

is CPO, the category of complete partial orders with continuous functions. This is a conve-

nient choice to handle arbitrary recursive equations in a framework close to lazy functional

programming languages.

Definition 3.1 Let F be an endofunctor on a category C. An F-algebra is an arrow of type

FA→ A, the object A is called the carrier of the algebra.

Definition 3.2 An F-homomorphism to an algebra f : FA→ A from an algebra g : FB →

B is an arrow h : B → A such that h · g = f · Fh.

Definition 3.3 The objects of the category Alg(F) are F-algebras and the arrows are ho-

momorphisms in between those F-algebras.

The following class of functors can be used to model datatypes found in functional languages.

We exploit this correspondence in Chapter 4, in the definition of polynomial datatypes.

Definition 3.4 The class of polynomial functors is defined inductively by the following

clauses:

• The identity functor id and the constant functors KA are polynomial;

• If F and G are polynomial, then so are their composition FG, their pointwise sum F+G

and their pointwise product F× G. These pointwise functors are defined by

(F + G)h = Fh+ Gh

(F× G)h = Fh× Gh

3.2. CATAMORPHISMS 20

• If F is polynomial, then so is the type functor for F

Tf = (|in · F(f, id)|) (3.1)

Type functors only appear in Sections 4.5.1 and 5.2.1 in connection with datatypes like

T α = T1[T α] | . . . where T1 is a data constructor whose argument is of type [T α] (i.e.

list of T α).

3.2 Catamorphisms

Now we have all the definitions to describe one function, and its associated laws on which

the rest of the thesis is built upon.

Theorem 3.1 For polynomial functors, the category Alg(F) has an initial object and it

will be called the initial algebra. It will be denoted in : FT → T . (The letter T stands for

‘Type’ and also for ‘Term’ since such algebras are often called term algebras).

The proof of this theorem can be found in the book by Manes and Arbib [MA86]. The

existence of an initial F-algebra means that for any other F-algebra f : FA→ A, there is a

unique homomorphism from the initial algebra to f .

Definition 3.5 (Catamorphism) The unique homomorphism from the initial F-algebra

to another F-algebra f : FA→ A is called a catamorphism. We will denote this homomor-

phism by (|f |). (|f |) : T → A is characterised by the universal property

h = (|f |) ≡ h · in = f · Fh

Catamorphisms enjoy many useful properties. From the definition above we immediately

obtain the reflection law ((|in|) is called the copy function by Launchbury and Sheard [LS95]

and we shall use it in Section 4.5.2)

(|in|) = id (3.2)

The evaluation rule for catamorphisms states how to evaluate an application of (|f |) to an

arbitary element of F (returned by in):

(|f |) · in = f · F(|f |) (3.3)

3.2. CATAMORPHISMS 21

apply (|f |) recursively to the argument of in and then apply f to the result. We shall appeal

to this rule in Sections 4.5.2 and 5.2.2.

The induction principle for catamorphisms [Mei92, Page 35]

f · ⊥= g · ⊥ (∀x, y.f · x = g · y ⇒ f · ϕ · Fx = g · ψ · Fy)

f · (|ϕ|) = g · (|ψ|)
(cataInd)

follows from the fixed point induction rule

P (⊥) (∀a ∈ A.P (a)⇒ P (f a))

P (µf)
(µ-ind)

by P(x , y) = f · x = g · y .

Then there is the very useful fusion law

h · (|f |) = (|g|)⇐ h · ⊥= (|g|) · ⊥ ∧ h · f = g · Fh (3.4)

The fusion law states that the compostion of any function h with a catamorphism can be

reexpressed as a single catamorphism, so that intermediate data structures can be avoided.

Operationally, the left-hand side traverses the data structure which (|f |) is applied to and

builds another one, which is then traversed by h. The right-hand side however combines

h and (|f |) into one, and avoids the construction and traversal of the intermediate data

structure. Intuitively, the program on the right-hand side is more efficient.

The proof for the general case is by the induction principle for catamorphisms

〈base case〉

h · ⊥= i · ⊥

〈i = id〉

= h · ⊥=⊥

〈induction step: assuming h · x = i · y〉

= h · f · Fx = i · g · Fy

〈i = id〉

= h · f · Fx = g · Fy

〈hypothesis〉

= h · f · Fx = g · F(h · x)

〈functor calculus〉

= h · f · Fx = g · Fh · Fx

3.2. CATAMORPHISMS 22

〈assume h · f = g · Fh〉

= True

A more useful variation on the fusion law is to replace the condition h · ⊥= (|g|) · ⊥ by

h · ⊥=⊥, i.e. h is strict.

h · (|f |) = (|g|)⇐ h strict ∧ h · f = g · Fh (3.5)

We use this form of the fusion law in the transformation catify. See Sections 4.5.5, 5.1.4 and

5.2.5 for details. While the calculational style proof above is perfectly sensible, it is hard to

relate to the implementation, because in the proof recursion is made explicit, while in GHC

it is not. An alternative proof, based on parametricity, makes the connection between the

fusion law (Equation 3.5), catify and the rewrite system much clearer. We prove catify for

the special case of lists, by using the free theorem of Wadler [Wad89]. The proof is spelt out

in detail, because this shows how the need for the dynamic rewrite system of Section 5.3

arises. The proof for other datatypes is completely analogous.

cata [] :: ∀ α ρ.ρ → (α → ρ → ρ) → [α] → ρ

{ parametricity }

(cata [], cata []) ∈ ∀ A X .X → (A → X → X) → [A] → X

{ ∀ on relations twice }

= ∀ A : A⇔ A′, B : B ⇔ B ′.

(cata
[]
AB , cata

[]
A′B ′) ∈ B → (A → B → B) → [A] → B

{ → three times }

= ∀ A : A⇔ A′, B : B ⇔ B ′.

∀ (n, n ′) ∈ B, (c, c′) ∈ (A → B → B), (xs, xs ′) ∈ [A].

(cata
[]
AB n c xs, cata

[]
A′B ′ n ′ c′ xs ′) ∈ B

{ ∀(n, n′) ∈ B, (c, c′) ∈ (A → B → B), (xs, xs′) ∈ [A] gives three conditions }

Case 1.〈∀(n, n′) ∈ B〉

b n = n ′

Case 2.〈∀(c, c′) ∈ (A → B → B)〉

if a z = z ′ ∧ b zs = zs ′

then

b (c z zs) = c′ (a z) (b zs)
Case 3.〈∀(xs, xs′) ∈ [A]〉

map[] a xs = xs ′

{ this gives }

= ∀ a : A→ A′, b : B → B ′.

3.2. CATAMORPHISMS 23

if ∀ z : A, zs : B .b n = n ′ ∧ b (c z zs) = c′ (a z) (b zs) ∧ map[] a xs = xs ′

then

b (cata
[]
AB n c xs) = cata

[]
A′B ′ n ′ c′ .map[] a xs

{ or slightly rewritten, in point-free style }

= ∀ a : A→ A′, b : B → B ′.

if ∀ z : A, zs : B .b n = n ′ ∧ b (c z zs) = c′ (a z) (b zs)

then

b . cata
[]
AB n c = cata

[]
A′B ′ n ′ c′ .map[] a (3.6)

Equation 3.6 has a number of premises. It may appear that in order to satisfy the premises

we need some form of automatic theorem proving, but fortunately this is not the case.

Instead of proving that the premises hold, we define the unknown variables, n ′ and c′, in

the right-hand side of Equation 3.6 to satisfy the premises by construction. In particular,

if we define n ′ = b n , then Case 1 automatically holds.

For Case 2, we take the conclusion as the implicit definition of c′ and interpret the premises

as rewrite rules. That is we define c′ to be λ z ′ zs ′.b (c z zs), simplify and apply the substi-

tutions [z := z ′, b zs := zs ′], which are the premisses of Case 2.

To turn an arbitrary function into a catamorphism:

{ Take n = [], c = (:), a = id }

= ∀ b : B → B ′.b strict

if ∀ z : A, zs : B .b [] = n ′ ∧ b ((:) z zs) = c′ z (b zs)

then

b . cata
[]
AB [] (:) = cata

[]
A′B ′ n ′ c′

{ Use the conditions as definition of n ′ and c′ }

= ∀ b : B → B ′.b strict

b . cata
[]
AB [] (:) = cata

[]
A′B ′ n ′ c′

where

n ′ = b []

c′ = λ z ′ zs ′.b ((:) z zs) [z := z ′, b zs := zs ′]

{ cata [] [] (:) = id }

= ∀ b : B → B ′.b strict

b = cata
[]
A′B ′ n ′ c′ (3.7)

where

n ′ = b []

c′ = λ z ′ zs ′.b ((:) z zs) [z := z ′, b zs := zs ′]

3.2. CATAMORPHISMS 24

In the last clause, [z := z ′, b zs = zs ′] denotes the substitution of z ′ for z and zs ′ for b zs

in the body of b ((:) z zs).

Lets see an example in detail! This time we turn the definition of map for lists to a

catamorphism.

〈definition of map[]〉

map[] :: ∀ α β.[α] → (α → β) → [β]

map[] = Λ α β.λ xs f . case xs of

[] → [] β

(:) x xs → (:) β (f x) (map α β xs f)
〈Equation 3.7〉

map[] = Λ α β.λ xs f .cata β [β] n ′ c′ xs f

where

n ′ = map[] α β ([] α)

c′ = λ z ′ zs ′.map[] α β ((:) α z zs)
〈simplifies to〉

map[] = Λ α β.λ xs f .cata β [β] n ′ c′ xs f

where

n ′ = λ f .[] β

c′ = λ z ′ zs ′.(:) β (f z) (map[] α β zs f)

〈apply the substitutions [z := z ′,map[] α β zs := zs ′]〉

map[] = Λ α β.λ xs f .cata β [β] n ′ c′ xs f

where

n ′ = λ f .[] β

c′ = λ z ′ zs ′.(:) β (f z ′) (zs ′ f)

The single most important theorem, which appears under the name cata-build rule in the

rest of the thesis, is the Acid Rain theorem.

Theorem 3.2 (Acid Rain for catamorphism)

g : ∀A.(FA→ A)→ B → A⇒ (|ϕ|)F · (g inF) = g ϕ

Proof by parametricity:

{ wish }

= (| ϕ |)F (buildF g) = g ϕ

{ definition: buildF g = g inF }

(| ϕ |)F (g inF) = g ϕ

3.3. BUILD 25

{ the free theorem for g ’s type }

f (g ψ) = g ϕ ⇐ f · ψ = ϕ · F f

{ take f := (| ϕ |)F , ψ := inF }

= (| ϕ |)F (g inF) = g ϕ ⇐ (| ϕ |)F · inF = ϕ · F (| ϕ |)F

{ premise trivially holds }

= True

Takano and Meijer [TM95] gives another instance of the Acid Rain theorem (the dual of

the one above the so called Acid Rain for anamorphism), but we do not use that theorem

in this thesis.

3.3 Build

The function build — for a given datatype F — does not have much theory behind it. It is a

syntactic construct which was introduced in Gill, Launchbury and Peyton Jones [GLPJ93].

It serves two purposes: (1) it enforces the side condition on Theorem 3.2 and (2) it eases

spotting opportunities for the application of the cata-build rule. Introducing buildF g

for g inF the Acid Rain theorem can be restated as follows (provided the left-hand side is

well-typed):

(|ϕ|)F · (build
F g) = g ϕ (3.8)

If the definition of the catamorphism is expanded and F is instantiated at the type of lists

one gets Gill’s foldr/build rule (see [Gil96, page 19]):

foldr k z (build g) = g k z (3.9)

3.4 The correctness of buildify

The correctness of buildify (see sections 4.5.4, 5.1.3, and 5.2.4) is equally simple. The need

for the worker-wrapper split is explained in the informal introduction to buildify on Page 29.

f

{ build introduction splits f into two }

= buildF f ′

f ′ = λ ϕ.(| ϕ |)F · f

3.4. THE CORRECTNESS OF BUILDIFY 26

{ definition of f ′ }

= buildF (λ ϕ.(|ϕ |)F · f)

{ definition of build }

= (λ ϕ.(| ϕ |)F · f) inF

{ beta reduction }

= (| inF |)F · f

{ (| inF |)F = id }

= f

Chapter 4

The Practice of Warm Fusion I:

The Basics

Explaining the practice of warm fusion is a daunting task. It’s not that the concepts are

hard to grasp, but there is incredible detail: type variables, polymorphic functions passed as

arguments to functions, polymorphic functions returned etc. In order to help the reader we

first start off with a completely informal introduction, just to show the ideas (Section 4.1).

This informal introduction skips many important aspects of the transformation, those are

introduced and explained later on. In Section 4.3 we put the ideas introduced in Section 4.1

into a proper framework.

4.1 Informal introduction to warm fusion

For some reason it appears that explaining warm fusion is much easier if one starts at the

end of the process, that is at the application of the cata-build rule. This is what we shall

do in this section. We are going to be completely informal, shall never use type variables

and will only talk about lists. We shall try to answer questions of why instead of how.

In Haskell the type declaration

data List a = Nil | Cons a (List a)

introduces the parametrised type List with two data constructors: the nullary Nil , and

Cons with two arguments, the first of which is of type a, that is a parameter, and the

second which is of type List a. Notice, that this is the same as the type being declared, so

List is in fact a recursive datatype. Examples of values of the type List are:

27

4.1. INFORMAL INTRODUCTION TO WARM FUSION 28

Nil 〈The empty list〉

Cons 42 Nil 〈The list containing one element: 42〉

Cons 42 (Cons 69 Nil)〈The list containing two elements: 42 and 69〉

. . . 〈There are many more lists〉

An important function which can naturally be associated with this type is called cata (from

catamorphism). The defining property of cata is that when it is applied to a list it uses its

arguments (nil and cons , we usually denote arguments to the cata with the corresponding

constructor’s name lowercased and the first argument stands for the first constructor, the

second argument for the second and so on) to replace all the constructors in the list. So

applying the function cata 0 (+), where (+) is the infix addition operator, to the empty list

Nil results in 0, since the catamorphism replaces Nil with the first argument to the cata ,

which is 0. The result of applying the cata above to our second example:

cata 0 (+) (Cons 42 Nil)

→ (+) 42 (cata 0 (+) Nil)

→ (+) 42 0

→ 42

The catamorphism traversed the entire list and replaced Cons with the binary addition

operator and Nil with 0. The result of applying the same function to our third exam-

ple Cons 42 (Cons 69 Nil) shows that cata 0 (+) sums all the elements of the list. The

definition of cata is:

cata n c Nil = n

cata n c (Cons x xs) = c x (cata n c xs)

The catamorphism for the datatype of lists is called foldr in Haskell, with the minor differ-

ence that n and c are swapped.

Another function which can — not so naturally — be associated with the datatype of lists

is called build . The defining property of build is that its argument, g , builds its result only

by using the arguments. The definition of build is:

build g = g Nil Cons

It is easy to see what this definition means: build’s argument is a function which takes the

constructors — it can of course take an arbitrary number of other arguments as well — of

the given datatype, in our case Nil and Cons . For example,

4.1. INFORMAL INTRODUCTION TO WARM FUSION 29

map = build (λ f xs n c. case xs of

Nil → n

Cons x xs → c (f x) (map f xs n c))

is a valid use of build, while

map = build (λ f xs n c. case xs of

Nil → Nil

Cons x xs → Cons (f x) (map f xs n c))

is not, because build ’s argument does not constructs its result with n and c. This notion

of validity will be formalised later.

Now we have two important functions concerning the datatype of lists, and the only thing

we need is a theorem to connect them. This is the cata-build rule:

cata nil cons (build g) = g nil cons

The theorem says: if a list is built with build and consumed by a cata then this ’produce-

consume’ process can be replaced by a single function g which does not build the intermedi-

ate list. Intuitively, the right-hand side is more efficient, because the intermediate list need

not be built, traversed and deallocated.

While it is possible to write programs in build-cata form it is somewhat tedious. What we

need is an automatic way of transforming arbitrary functions into a form where consumption

is made explicit by a catamorphism and production of a data structure is made explicit by

a build. The transformations to achieve this do in fact exists: the transformation which

introduces a build is called buildify, the other one which introduces a catamorphism is

called catify. In the rest of this section we give an informal introduction how these two

transformations can be performed.

4.1.1 Buildify informally

As its name suggest buildify is a transformation which turns functions to an equivalent one

with an explicit build in it. The reason it is called buildify is that the transformation makes

it explicit that the function produces its result in a certain way. Functions which can be

transformed are often called good producers, meaning the presence of the build. We shall

explain the transformation with the simplest possible function which builds a list of length

n containing the number 42, where n is a parameter. One possible definition is:

4.1. INFORMAL INTRODUCTION TO WARM FUSION 30

repAnswer = λ n. case n of

0 → Nil

→ Cons 42 (repAnswer (n − 1))

One — wrong — way to do this transformation is to simply slap a build around the definition

of repAnswer :

— The two new lambdas are needed because build’s argument must be

— a function which takes the two constructors as arguments

repAnswer = build (λ nil cons.λ n. case n of

0 → Nil

→ Cons 42 (repAnswer (n − 1)))

When we introduced build, we stated that its argument must not use the constructors of the

resulting datatype directly: it should use the two arguments nil and cons1. In other words

in the body of build’s argument Nil and Cons need to be replaced by the corresponding

nil and cons . This ’. . . need to be replaced by the corresponding nil and cons ’ should ring

the bell for anyone who read Page 28. This is exactly what a cata is for! To make the

transformation correct, we slap a cata around the body of repAnswer and get this:

— First correct definition of the transformation

repAnswer = build (λ nil cons n.cata nil cons (case n of

0 → Nil

→ Cons 42 (repAnswer (n − 1))))

This is now a completely sensible and correct transformation, and it can be simplified by

noting that cata is strict i.e. we might as well push it into the right-hand sides of the case

alternatives. By doing so we get:

repAnswer = build (λ nil cons n. case n of

0 → cata nil con Nil

→ cata nil cons (Cons 42 (repAnswer (n − 1))))

Using the definition of the catamorphism, the first alternative — cata is applied to Nil —

can be further simplified to nil . In the second alternative, the situation is similar: cata is

applied to Cons , which by the definition of catamorphisms can be replaced by cons and

cata applied to the rest of the list. So we get:

1Notice, that Cons is the constructor while cons is its abstraction. We use the same name, lowercased,
to help the reader.

4.1. INFORMAL INTRODUCTION TO WARM FUSION 31

repAnswer = build (λ nil cons n. case n of

0 → nil

→ cons 42 (cata nil cons (repAnswer (n − 1))))

The only thing which is somewhat worrying is the remaining cata in the second case

alternative. The reason it is worrying is that it is the traversal of the rest of the list, which

is intuitively unnecessary. What can we do about it? Not much, unless we modify the

transformation the following way:

repAnswer = λ n.build (repAnswer ′ n)

repAnswer ′ = λ n nil cons.cata nil cons (case n of

0 → Nil

→ Cons 42 (repAnswer (n − 1)))

This is not too different from the first sensible and correct definition of the transformation

(see above). The only difference is that now the cata is moved into another function. This

sort of splitting a function into two is often called the worker-wrapper2 split [PJL91a]. The

point of a worker-wrapper split is that by construction the wrapper is small so it can be

inlined. It is so small in fact, that the wrapper can be inlined into the worker’s body, which

would not be possible otherwise. To see why it does make a difference we note that the

cata can be pushed into the case alternatives, where it is applied to the constructors Nil

and Cons . This gives:

repAnswer = λ n.build (repAnswer ′ n)

repAnswer ′ = λ n nil cons. case n of

0 → nil

→ cons 42 (cata nil cons (repAnswer (n − 1)))

What difference the worker-wrapper split makes? The difference is that now the cata is

applied to a different function from the one being defined (repAnswer instead of repAnswer ′

which is the one being defined). In other words, the right-hand side of repAnswer , the

wrapper, can be inlined into the body of repAnswer ′ and doing so gives (in the process of

inlining the definition of repAnswer we renamed n to n ′ to avoid a name clash):

repAnswer = λ n.build (repAnswer ′ n)

2While the terminology is not inappropriate it is getting rather confusing: in the original paper the worker-
wrapper split is used to mark strictness properties of functions, therefore allowing subsequent optimisations.
In buildify and catify we use it to allow aggressive inlining. In standardising argument ordering (Section 5.4)
it is used to allow reordering of arguments.

4.1. INFORMAL INTRODUCTION TO WARM FUSION 32

repAnswer ′ = λ n nil cons. case n of

0 → nil

→ cons 42 (cata nil

cons

((λ n ′.build (repAnswer ′ n ′)) (n − 1)))

The function λ n ′.build (repAnswer ′ n ′) has its argument (n − 1) so this application can be

beta-reduced which gives:

repAnswer = λ n.build (repAnswer ′ n)

repAnswer ′ = λ n nil cons. case n of

0 → nil

→ cons 42 (cata nil cons (build (repAnswer ′ (n − 1))))

The astute reader will notice something exciting about the second case alternative. A cata

is applied to a build ! The cata-build rule applies and gives:

repAnswer = λ n.build (repAnswer ′ n)

repAnswer ′ = λ n nil cons. case n of

0 → nil

→ cons 42 (repAnswer ′ (n − 1) nil cons)

We managed to transform a function into another one with a build in it without paying

any penalty for the extra traversal by a remaining cata. The good thing about the worker-

wrapper split is that it allows inlining of the wrapper into other functions thereby exposing

applications of the cata-build rule. The only bad thing about the transformation is that

the worker is now a function of three arguments instead of the original one. We shall see

in later sections that this is indeed a problem and unfortunately it is quite hard to reverse

the transformation.

Sections 4.5, 5.1, and 5.2 are variations on this simple example. Section 4.5 generalises the

method above from lists to a large class of (recursive and non-recursive) datatypes while

Section 5.2 extends it even further to include sets of mutually recursive datatypes. The

correctness of buildify is proved in Section 3.4.

4.1.2 Catify informally

In contrast to buildify, which makes it explicit if a function produces its result in a certain

way, catify makes it explicit if a function consumes its argument in a certain way. Accord-

ingly, successfully transformed functions are often called good consumers, and to denote this

4.1. INFORMAL INTRODUCTION TO WARM FUSION 33

property we stick a cata into the definition of the function. Of course, in this process we

have to be careful not to change the meaning of the original function. To demonstrate the

techniques which we refine in the rest of the thesis we shall be using the well-known sum

function:

sum = λ xs. case xs of

Nil → 0

Cons a as → a + sum as

The game plan is to somehow change this definition to have a cata in it. There are several

places one could put a cata into the right-hand side of sum , but if we recall what a cata does

we might just find the right place. We already discussed, that a cata is a special form of

recursion (structural for those who cannot wait) and its workings is such that as it traverses

the list (the third argument) it replaces the constructors by its first two arguments. All

the Cons cells are replaced by the second argument, and Nil is replaced by the first. In

other words, the first argument to cata must be equivalent what sum does if it finds a Nil

constructor and the second argument must do the same what sum does when it finds a

Cons . But how do we find out what sum does in each case? We partially evaluate it!

sum = λ xs.cata sumNil sumCons xs

sumNil is a function which stands for the action of sum if it finds a Nil constructor, and

sumCons is also a function which represents the Cons case. How do we find the definition

of sumNil and sumCons? We apply sum to Nil to get sumNil and apply sum to Cons to get

sumCons :

sumNil = sum Nil

sumCons = sum (Cons t ts)

We assume that t and ts are fresh, appropriately typed variables. Next, we replace sum by

its right-hand side (unfolding) and get:

sumNil = (λ xs. case xs of

Nil → 0

Cons a as → a + sum as) Nil
sumCons = (λ xs. case xs of

Nil → 0

Cons a as → a + sum as) (Cons t ts)

Beta-reduction both on sumNil and sumCons gives:

4.1. INFORMAL INTRODUCTION TO WARM FUSION 34

sumNil = case Nil of

Nil → 0

Cons a as → a + sum as
sumCons = case Cons t ts of

Nil → 0

Cons a as → a + sum as

This exposes further opportunities for simplification because the scrutinee of the case is

known i.e. in the first case of sumNil the scrutinee is Nil therefore it cannot possibly be a

Cons so we simplify, get rid of the entire case expression and get:

sumNil = 0

sumCons = t + sum ts

This is almost perfect. The only problem left is the call to sum in the right-hand side

of sumCons . Recall again what a catamorphism does. It does (structural) recursion, so

catifying a function means that we replace explicit recursion (calls to the function being

transformed, like sum in our case) with calls to the appropriate catamorphism. So we

need to replace sum ts with something which does not mention the function sum. But

unfortunately, there does not seem to be anything to replace sum ts with.

Returning to the example, we note that the expression: cata sumNil sumCons is not well-

typed. sumNil is OK, because Nil is nullary so the corresponding sumNil is a constant

function with no arguments. In order to make sumCons well-typed we need to add two

lambdas and we get:

sumNil = 0

sumCons = λ z zs. t + sum ts

If z and zs are well-typed this makes the entire expression a function of two arguments, but

these two new variables do not occur in the body of sumCons and t and ts are free. We can

solve the two problems (there was nothing to replace sum ts with and t and ts being free

in the body of sumCons) if we replace t with z and sum ts with zs . This may seem to be a

somewhat arbitrary choice, but this replacement system happens to obey some very simple

rules:

Rule 1 : For nullary constructors nothing needs to be done. There are no arguments to

nullary constructors, therefore there are no new variables.

Rule 2 : For a non-nullary constructor there are two sub-cases:

4.1. INFORMAL INTRODUCTION TO WARM FUSION 35

– If the type of the argument (ts) is the same as the argument to the original

function (i.e. List Int in our case) then replace the application of the original

function to this argument (sum ts) by a new, appropriately typed variable zs .

– If the type of the argument (t) is different from the argument to the original

function (i.e. Int) then replace t by a new, appropriately typed variable z .

To put it even simpler: nuke calls to the function being transformed, when an argument has

the same type as the argument to the original function, and replace variables by variables

with the same type otherwise. In later sections this process is called the dynamic rewrite

system. Its ’rewrite systemness’ requires no further explanation, but why is it dynamic?

With a bit of an abuse of the terminology it is called dynamic because the rewrite rules

change from function to function: when sum is transformed, the expression sum ts is re-

placed by a new variable, when another function, say, f is transformed applications of f to

the recursively occurring type are replaced. Section 5.3 formalises the rewrite system and

Section 3.2 proves its correctness.

Lets see what happens if we replace variables according to the rules above:

sum =λ xs.cata sumNil sumCons xs

sumNil =0

sumCons =λ z zs. z + zs

Strangely enough all three functions are closed and there is no explicit recursion (calls to

sum) so we seem to be done. To see that the result really is equivalent to the original

definition of sum lets try to reverse what we have just done. We inline the definition of cata

into the body of sum:

— We renamed xs in the body of cata to avoid a name clash

sum = λ xs.(λ nil cons xs ′. case xs ′ of

Nil → nil

Cons a as → cons a (cata nil cons as))
sumNil sumCons xs

sumNil = 0

sumCons = λ z zs. z + zs

We can now inline sumNil and sumCons into the body of sum and do three beta-reductions.

This gives:

sum = λ xs. case xs of

Nil → 0

Cons a as → a + (cata sumNil sumCons as)

4.2. DEFINITIONS 36

sumNil = 0

sumCons = λ z zs. z + zs

Earlier on we made the claim that sum is equivalent to cata sumNil sumCons . If we assume

that this is in fact the case, we can replace sum by cata sumNil sumCons or vice versa. We

note that cata sumNil sumCons does occur in the body and replacing it by sum gives:

sum = λ xs. case xs of

Nil → 0

Cons a as → a + sum as
sumNil = 0

sumCons = λ z zs. z + zs

And this is equivalent to what we started with! We must have been doing something

sensible. In plain words, catify abstracts a fixed pattern of recursion, a cata , out of the

function being transformed.

This completes the informal introduction to buildify and catify.

4.2 Definitions

First, we need a few definitions. In Haskell, an algebraic datatype declaration introduces a

new (possibly mutually recursive) type and constructors over that type and has the form

(for the precise syntax and examples see the Haskell Report [PJH99]):

data cx ⇒ T1 tv1 . . . tvm =K11 ty11 . . . ty1k | . . . |K1n tyn1 . . . tynk (4.1)
...

data cx ⇒ Ti tv1 . . . tvm =Ki1 ty11 . . . ty1k | . . . |Kin tyn1 . . . tynk

where cx is a context. Contexts play no role in this thesis, therefore their effect on the types

of constructors will be omitted. We assume that the declarations are dependency analysed,

so the index i is greater then one only if, the group is genuinely mutually recursive.

The declaration introduces a new type constructor Ti with data constructors Ki1, . . . , Kin

whose types are given by:

Kij :: ∀ tv1 . . . tvm . tyi1 → · · · → tyiki
→ (Ti tv1 . . . tvm)

Polynomial datatypes are properly defined in Definition 4.1, here we give a purely syntactic

definition.

4.3. OVERVIEW OF THE METHOD 37

Definition 4.1 (Polynomial datatype) A polynomial datatype is one that is built up

according to the syntax given in Equation 4.1 and neither the function space constructor

(→) nor quantifiers (∀) appear in tyi1, . . . , tyiki
for all i , k.

An example of non-polynomial datatype is:

data T α β = T1 (α → β) | . . .

because of the function space constructor in T1 (α → β).

Definition 4.2 (Regular datatype) A regular datatype is one in which the recursive uses

of the type datatype being defined (T above) have the same arguments, tv1, . . . , tvm , in the

same order as the head of the definition.

Most of the usual datatypes (List, Tree, Maybe etc) in Haskell are regular. An example of

a non-regular datatype is:

data Twist α β = Twist α (Twist β α) | . . .

because the order of type arguments in the head (α β) is different from the recursive use

Twist β α.

data Nest α = N 1 (Nest [α]) | . . .

is also non-regular, because in the recursive use of the datatype being defined (the first

argument Nest [α] to the constructor N 1) Nest ’s argument is [α], while in the head of the

definition is α. Bird [BM98] calls these datatypes nested datatypes.

4.3 Overview of the method

The design is centred around the idea of two stage fusion [LS95]. In the first stage, individual

function definitions are preprocessed in an attempt to re-express their definitions in terms of

a build and a catamorphism. In the second, invocations of the already transformed functions

are fused using the one-step cata-build rule. In practice, there is third, preparatory stage:

builds, maps, and catamorphisms are derived for each fusible datatype and every function

which is a candidate for fusion has its arguments rearranged to simplify the first stage of

fusion. We shall also see that, the transformation is not as beneficial as one might expect

so we shall introduce some post-processing to reduce the overhead, which is the result of

4.3. OVERVIEW OF THE METHOD 38

the fusion transformation. The different stages and their ingredients are summarised in

Figure 4.1.

This separation into two steps is not only for clarity. It is well known that the unfold-fold

strategy (the classical Darlington/Burstall approach) of efficiency increasing transforma-

tions suffers from two major problems: one is that the fold step may lead to non-terminating

recursion, the other that uncontrolled unfolding requires the later stages to search for ar-

bitrary patterns of recursive calls. The two stage approach overcomes the difficulties with

the second problem, because the fusion engine is limited to the body of one function, the

one being processed. Inter-function fusion happens via the cata-build rule with the help

of inlining wrappers. Neither the wrappers nor the cata-build rule are recursive, therefore

nontermination becomes a non-issue.

Even though the fusion transformation is separated into two stages, in reality there is quite

a bit of interplay between them. During the transformations in the second stage we often

need to inline the wrappers of already transformed functions to allow for more fusion.

4.3.1 The preprocessing stage

The preprocessing stage comprises four steps. In the first, we derive maps — or type functors

— for every parametrised, fusible datatype, from the datatype declarations. By deriving,

we mean that given the datatype declaration we generate the corresponding code, which

amounts to standard polytypic programming as provided by PolyP [JJ97]. The existence

of these type functors is established in Equation 3.1. The definition of fusibility and the

technicalities of how to derive maps are detailed in Sections 4.5.1 and 5.2.1.

Once we have maps, we can derive catamorphisms for fusible datatypes. Just as in deriving

maps, our input consists of datatype declarations and our output is the corresponding

code. Similarly to the case of deriving maps, this correspondence is based on the uniqueness

property of catamorphisms (Definition 3.5). We need maps first, since catamorphisms which

belong to datatypes involving other fusible datatypes involve their maps. We shall see an

example of this shortly in Section 4.5.2.

Deriving builds is much simpler than deriving map or cata, because builds are not recursive

and have a simple definition.

The need for the last step in the preprocessing stage, normalise, will only arise in the

section dealing with the higher-order case, but its purpose is to rearrange the arguments

of functions which are candidates for fusion. After the normalisation step every func-

tion’s first argument will be of a fusible datatype (provided of course that it originally

4.3. OVERVIEW OF THE METHOD 39

Preprocessing

First stage

Second stage

Postprocessing

Derive maps Derive catas Derive builds Normalise

Buildify Catify

Simplify and one-step fusion

Inline builds and simplify

❄

❄

❄

✲ ✲ ✲

✲

Figure 4.1 Overview of the fusion transformation

had any fusible argument) and one in which the function is strict. The newly derived

map functions are also put through this transformation. The map for list for example

will be changed to have type map[] :: ∀ αβ.[α]→ (α→ β)→ [β] as opposed to the usual

map[] :: ∀αβ.(α→ β)→ ([α]→ [β]).

4.3.2 First stage of fusion

It is a bit unfair to call the next stage, the first stage, since this is the very heart of the fusion

transformation. This is when we automatically transform arbitrary recursive functions into

explicit build-cata form, therefore paving the way to the second stage when the one-step

fusion rule becomes applicable. We nicknamed the first transformation, which attempts to

transform good producers of fusible datatypes to explicit build form, buildify. The second

transformation, whose purpose is to transform good consumers of fusible datatypes into

4.3. OVERVIEW OF THE METHOD 40

explicit catamorphic form is named catify. We shall use these nicknames frequently in

the rest of the thesis, as they are short and easy to remember. Without the first stage,

there would be no catas and builds in our programs, unless as in the shortcut deforestation

work [GLPJ93], the libraries were rewritten in terms of catas and builds, which limited the

applicability of fusion for functions defined in the Prelude, and more importantly, it limited

fusion to the only recursive datatype, lists, which is defined in the Prelude. Alternatively,

forcing users to write their programs entirely in terms of catas, as in the programming

language Charity [CF91], is an idea which never really caught on.

The transformations buildify and catify can both fail. Theoretically it is easy to see why:

catamorphisms correspond to structural recursion, so it is not surprising that not every

function can be transformed into this restrictive form. In practice, therefore, after both

transformations we need to verify that the result is

1. equivalent to the original definition, and

2. the transformation is beneficial.

In the case of buildify, (1) trivially holds (just inline the worker back to the wrapper and

we get back what we started with), but (2) needs to be checked: this is the case of the

’radioactive cata’. For catify (1) is important because during the transformation we tem-

porarily produce ill-typed code. We shall say more about this in Sections 4.5.5, 5.1.4, and

5.2.5.

We shall identify this verification with a simple syntactic criteria, one for buildify and an-

other for catify. It should be clear that these syntactic criteria cannot be both complete and

sound at the same time, since if they were, we could solve the halting problem: we would

attempt to transform the given function and if transformation is successful we could con-

clude that the function terminates (since functions defined by structural recursion always

do). Completeness means that every function which can be written in structural recursive

form will pass the criteria, while soundness means that only those functions which are re-

ally structurally recursive will pass. The bigger concern is of course the issue of soundness,

which must be met. We have no direct proof of this property, but experience with the imple-

mentation shows that every single program we have tried so far has the same denotational

behaviour with and without the transformations.

Details of these syntactic criteria will be given when we present the transformations: in

Section 4.5 for the simplest scenario, in Section 5.1 for the higher order case, and finally in

Section 5.2 when we extend the algorithm for mutually recursive datatypes.

4.3. OVERVIEW OF THE METHOD 41

4.3.3 Buildify detailed

The above discussed possibility of failure gives rise to the following three step approach to

buildify.

1. Transform

2. Simplify

3. If the syntactic criterion holds replace the definition of the function with the newly

simplified one. Otherwise, keep the original and give up on the possibility of fusion

for this function.

The precise definition of the transformation step (Step 1), which is the application of a

one-step rewrite rule, is given in Sections 4.5.4, 5.1.3, and 5.2.4; we only discuss the general

idea behind it here.

The purpose of the build introduction is to expose that the given function is a good producer

of some fusible datatype. build’s argument, g , is a (polymorphic) function, which builds its

result using only the last arguments to g , which stand for the abstracted constructors of

the result datatype. Introducing build the following way:

〈Pseudo code〉

f = λ v̄ .e

=⇒

f = λ v̄ .build (λ c1 . . . cn . e)

does not suffice, because it does not guarantee that e uses c1 . . . cn exclusively to construct

its result. The observation that a catamorphism cataT c1 . . . cn traverses its argument,

and replaces the constructors by c1 . . . cn leads us to use the appropriate catamorphism to

abstract the constructors out of e:

〈Pseudo code〉

f = λ v̄ .e

=⇒

f = λ v̄ .build (λ c1 . . . cn .cata c1 . . . cn e)

For example, in the case of lists, build has type (∀α ρ.ρ→ (α → ρ → ρ) → ρ) → [α]. By

using the parametricity theorem [Rey83, Wad89], one can show that if g has the given type,

4.3. OVERVIEW OF THE METHOD 42

it must work for any ρ. The intuitive explanation of this result is that g is provided with no

other operations of type ρ than its two arguments and all it can do is use these arguments

to construct its result. The reason for the strange worker-wrapper split is explained on

Page 31.

build is not strictly necessary. It only serves as a syntactic construct to help the compiler

spotting an opportunity for fusion. All we need to know to apply the cata-build rule is

that a catamorphism is applied to an appropriately typed function. For example, in the

case of lists:

cata[α] ρ n c g ⇒ g ρ n c, if g :: ∀β.β → (α→ β → β)→ β (4.2)

Of course, if we dispense build it would be somewhat meaningless to call Equation 4.2 the

cata-build rule! Meijer [TM95] calls the equation Acid Rain theorem for catamorphisms.

The aim of the extra simplification step (Step 2) is to ease checking the syntactic criterion

of Step 3: the examples later in this chapter will demonstrate that the Core Simplifier will

simplify f to some3 normal form.

4.3.4 Catify detailed

Catify is even more complicated, because of GHC’s limited rewriting capabilities. It requires

a four step approach:

1. Transform

2. Simplify

3. Rewrite

4. According to the syntactic criteria replace the definition with the result of the rewrite

step, or keep the original and give up on fusion.

Details of the first step are spelt out in Sections 4.5.5, 5.1.4, and 5.2.5. It is also the

application of a one-step rewrite rule. The purpose of the transformation is to expose that

the successfully transformed function is a good consumer: it consumes its argument in a

disciplined manner i.e. with a fixed pattern of recursion.

3Precise definition is hindered by the fact that GHC’s rewrite engine is neither confluent, nor terminating.
The simplifier is allowed to run a fixed number of times.

4.3. OVERVIEW OF THE METHOD 43

The transformation implements the cata fusion theorem [MFP91, Fok92b] (aka. promotion

theorem of Malcolm [Mal89, Mal90]), which can be used to transform the composition of

a strict function, f , with a catamorphism into a single catamorphism. We compose f with

the identity catamorphism — one which replaces the constructors of the given datatype

with themselves — so its meaning, and termination properties, do not change. The strict-

ness criteria is important, otherwise we may transform a terminating function into a non-

terminating one.

Another view of the transformation is that we separate the action of f into n cases, one

case for each constructor the argument’s datatype has. We do this by partially evaluating

f with respect to its fusible argument.

Step 2, the extra simplification, again, has the purpose of easing the task of the third and

fourth steps.

The astute reader will notice from the detailed rewrite rules (Section 5.3), that Step 1

produces invalid Core expressions. In GHC, top level Core expressions must be closed, but

the rewrite rule introduces well-typed but free variables (we usually denote them by adding

a t in front of the name of the variable they are introduced for). It also introduces extra

binders (usually denoted by prefixing with a z) which are not used in the body. The purpose

of Step 3, the rewrite step, is to replace combinations of the function being transformed

and the free variables with the extra binders, which, if successful, makes the bindings valid

again. Rules of this rewriting are valid only in the body of the current function and they are

generated on the fly. We are forced to do it this way, because GHC’s rewriting capabilities,

with respect to the generated rules, are limited. On the positive side, this separation of the

second rewriting from the Core Simplifier allows us to prove termination and confluence of

the former.

Buildify and catify are performed on a per function basis, i.e. one function at a time, because

of the multi-step approach to these transformations. It would be desirable to do the entire

program at once, because that is the way GHC is designed. However, the three(four)-step

approach makes it nearly impossible to revert to the original definitions of functions in case

of failure, because inlining may happen during the simplification. Also, very precise control

(for example we would need to be able to instruct the Core Simplifier to simplify some

bindings, and not to allow inlining to take place in the first pass, but to allow it in later

passes) over inlining would be required and that is another thing GHC lacks.

As we mentioned earlier, there is an interplay between the first stage and the second. The

wrappers of already transformed functions are sometimes required for the success of buildify

and catify (for a detailed example of this in the case of the append function see page 65),

4.4. DISCUSSION 44

so these two transformations take place in an environment which holds the wrappers.

4.3.5 The second stage

The second stage is very simple as we do not need to do tricky transformations. We only let

the Core Simplifier do its job. However, the Core Simplifier needs to be slightly extended:

for example it needs to know about the cata-build and the handful of rules are given

under the title of Cata-Core rules in the three main sections. Further care is required with

regards to inlining. The first step of both buildify and catify is such that it splits functions

into wrappers and workers [PJL91a]. The build and the cata functions are put into the

wrappers. By construction wrappers are small4 and the preceding transformations mark

them to encourage GHC to inline their definition whenever possible. Once they are inlined,

the hope is that they expose opportunities for the cata-build rule. Every application

of the cata-build rule eliminates an intermediate data structure and this is what we are

aiming for.

4.3.6 Cleaning up

The post-processing stage is necessitated by the fact that the presence of builds result in

an overhead which degrades performance badly. Once all the cata-build reductions take

place, build is only an unnecessary level of abstraction: an extra function call and some

extra arguments. By inlining build we hope to reduce the overhead. After this cleanup, we

need one more pass of the Core Simplifier.

4.4 Discussion

This section contains a discussion of some fundamental questions about the implementation

of warm fusion in GHC. As such, it is very compiler specific and it is probably of interest

of compiler writers only. It also assumes that the ideas of warm fusion is well-understood

so reading later parts of the thesis may be necessary.

The bits which are of any consequence later on marked Decision and denote the answer

to the question discussed beforehand.

The Haskell compiler is a large piece of software. Being probably the largest application

4The exact definition changes with every release of GHC, but it essentially means, that the function is
not recursive, by inlining it we do not risk duplicating computations, or if we do they are not expensive etc.
For details of the inlining dilemma see for example [PJM99]

4.4. DISCUSSION 45

written in Haskell so far, its complexity gives rise to the possibility of doing certain things

more than one way. Different solutions often represent different trade-offs: for example

simplicity for the compiler writer versus compilation time. Frequently, there is more than

one design decision which shapes the entire compiler. Good decisions interact smoothly

with the already built parts and with other decisions, others may require rewriting large

pieces but in the end may lead to a better overall design. Unfortunately, these design

decisions are rarely documented: they are only of interest to other compiler writers and

most importantly they are intricate little details and require an in-depth knowledge of the

entire compiler, or more precisely the philosophy behind the compiler.

Before we embark on the details of our design, we would like to discuss the overall picture

and several decisions we needed to make. We discuss the different options, their advantages

and disadvantages and try to justify why we made the choice that we did. In most cases,

the decision is influenced by the existing infrastructure within GHC. Future implementors

of the fusion transformation may well reach different conclusions for another compiler or

later releases of GHC. This section, therefore, is mostly of interest to compiler writers and

can be read before the rest of the chapter in strict sequential order or can be skipped on

a first reading. In either case, it assumes a solid knowledge of the different passes of the

compiler and what they do. Those who are not familiar with this will find an introduction

in Appendix A.

4.4.1 Do catas deserve a special treatment or should they be ordinary

Core bindings?

By the introduction of catamorphisms into programs – to allow transformation of functions

to explicit catamorphic form – we are introducing a new construct into the compilation

process. Two alternatives arise:

1. The new catas are introduced as ordinary Core bindings. This has the advantage that

the runtime system need not be modified (only the Core Simplifier), but it makes

life harder for the compiler writer since the new construct interacts with existing

Core constructs, requiring it to be handled specially. We devote Section 4.5.3 to the

discussion of how catas and other Core constructs interact and what modifications

are required to the Simplifier.

2. Let the runtime system deal with the construct. Introduce cata as a new primitive

in Core and propagate this information all the way to the runtime system. This

has the huge disadvantage that all the passes have to be modified to accommodate

4.4. DISCUSSION 46

the new primitive Core construct. The motivation is that catamorphisms represent

structural recursion – which can be implemented in a tail recursive manner, requiring

only constant bounded space. If we could devise an improved STG [PJ92] machine or a

better runtime system which exploits this information it may lead to a big performance

benefit. Current trends in compiler construction suggest that the propagation of

more information (e.g. type information [MWCG97, TMC+96]) to later stages of the

compilation process and to runtime can be exploited.

Of the two alternatives 2 requires a ’vertical’ change in the compiler, since if cata is a

primitive Core construct then every pass which acts on Core needs to be modified. If it is

also a primitive STG construct, then the STG machine and the runtime system also needs

to be modified. Option 1 requires a change only in the simplifier, therefore it is vastly

preferable. At the time of writing, no abstract machine, or runtime system extensions are

known, which would exploit the additional information. It is also unknown, how much

performance this modification would gain.

Decision: Based on the above, we chose 1, that is catamorphisms will be ordinary Core

bindings.

4.4.2 When should catas, maps and builds be derived?

Looking at the overall structure of GHC (see Page 149) one can ask two questions which

will lead to constraints on the placement for the derivation pass: what is the last phase

when catas and builds need not be present and what is the first phase when these functions

can be derived. The answer to the second question is simple: nothing can be done before

the Reader and it is desirable to introduce the generated bindings before the Renamer,

which will make sure that the new identifiers will be unique. Unfortunately, there is no

type information before the Typechecker.

Regarding the first question, it should be absolutely clear that once the Simplifier is run,

these bindings must be present: unless special care is taken, Core Lint will complain about

non-existent, but referenced identifiers. Even if that special care was taken, deriving catas

and maps before the Simplifier seems a more attractive option: the newly derived bindings

would go through the same process of simplification as ordinary bindings. One situation in

which this matters is the interaction of the new bindings with the full laziness transforma-

tion [PJL91b]; if we are not careful during the derivation of catamorphisms and maps we

may, by accident, generate code which is not fully lazy, i.e. it repeats computations.

This leaves us with four options, which we will discuss in turn:

4.4. DISCUSSION 47

1. Introduce the bindings after the Reader. Very good candidate, because the newly

introduced identifiers are guaranteed to be unique, and will be type checked. Since

we are before the Desugaring phase we can generate Haskell source, just as if the

user wrote the code. This also has the advantage that the user can refer to these

derived functions. Another possible advantage is that we could make use of overload-

ing to smoothly integrate the newly generated functions with user written code. The

disadvantage is that we have no type information.

Generating Haskell source is somewhat tricky, perhaps generating some subset of

Haskell is the solution.

2. Introduce the bindings after the Renamer. We lost the opportunity for automatically

(by the compiler) ensuring the uniqueness of the new bindings but there is still no

type information.

3. Introduce the bindings after the Type checker. Full type information is available and

we know that the entire source is well-typed. We still can generate Haskell source,

but now we need to give the precise type of every new identifier we generate. This is

rather painful.

4. Introduce the bindings after the Desugarer. We have to generate Core, with full type

information. Getting the types right is cumbersome, but we could possibly gener-

ate bindings which would not type check as Haskell source (e.g. functions involving

polymorphic recursion). Newer versions of GHC [PJH99] allow polymorphic recur-

sion in the source, — if an explicit type signature is given — which decreases the

attractiveness of this route.

Options 2 and 3 are not too different, they don’t buy us much. So, the real candidates are

1 and 4. 1 is very attractive especially if the method can be made to work smoothly with

the class mechanism and overloading can be used. This would lead to a limited form of

polytypism: the same name, map, could be used with very different types. Unfortunately,

the discovery of this option came at a late stage of the (re)design, well after the first

implementation was ready which left us very little time to explore this idea thoroughly. In

the context of new developments in the theory of fusion [BM98], 4 is still favourable as it

allows more control over the type of generated identifiers.

Decision: Based on the above, the decision is that we will introduce catas and maps in

Core (after the Desugarer).

4.4. DISCUSSION 48

4.4.3 When to transform functions to build-cata form

It is not unexpected that the transformation to explicit build-cata form interacts with

other transformations in GHC, therefore we need to make sure that this interaction does

not counteract with other optimisations. There are two principal issues:

• Transformation to build-cata form vs full laziness.

Gill [Gil96] already observed that, in most cases, sharing is preferable to deforestation

assuming that computing elements of an intermediate data structure is more expensive

compared to building the data structure.

• Transformation to build-cata form vs strictness analysis.

We would like to run strictness analysis after the transformation to build-cata form.

This is because buildify and catify splits functions into workers and wrappers and

the strictness properties of these newly generated functions needs to be determined

to expose further transformations. By construction our workers are always strict in

their first inductive argument and this may help the strictness analyser to do a better

job.

Decision: Based on these two criteria the transformation to build-cata form is run after

full laziness but before strictness analysis. The resulting sequence of transformations is

shown in the Appendix on page 147.

4.4.4 Buildify-catify vs catify-buildify

In the first stage of the fusion transformation, see Figure 4.1, we have two separate steps:

buildify and catify and we perform these in the given order. However, the question arises as

to what happens if we change their order and perform catify first? Is there any difference in

the results? Are there any functions which can be transformed in buildify, catify order (BC

in the following) but not in CB order? Essentially, we are asking if the rewrite system, which

results from adding catify and buildify (considering both of them as a one-step, conditional

rewrite rules) to the usual set of rewrite rules, is confluent or not.

The answer is that this rewrite system is not confluent. Some functions can successfully be

transformed in BC order, but doing it in CB order gives more efficient code. Other times BC

order fails, while CB succeeds. The original paper on warm fusion [LS95] introduces these

problems and note that CB order often requires something called second-order fusion. We

4.5. FIRST-ORDER FUSION 49

chose not to implement second-order fusion, because as shown by the results of Chapter 6,

most functions can be transformed in the much simpler setting of first-order fusion.

Decision: We do the transformations in buildify, catify order.

4.5 First-order fusion

In this section we present the necessary steps for the simplest case of fusion. First, maps are

derived, then catamorphisms. This may seem illogical because Equation 3.1 defines map

in terms of its corresponding catamorphism. So in theory, once catamorphisms are derived

we get maps for free. In practice, however, even if we use Equation 3.1, we still need to

buildify (with the corresponding worker-wrapper split and normalise) the definition because

map is also a good producer, unless we are prepared to go all the way and define map in

build-cata form. There are two pragmatic reasons to derive the naive code for map:

• In later stages of the compilation (normalise and static argument transformation) the

naive definitions are put through the very same sequence of transformations as user

written functions. If we defined them in build-cata form buildify and catify would

need to be aware that some functions may already be in build-cata form and not

attempt the transformation.

• The code for deriving catamorphisms is very much the same as the code for deriving

maps, so we get the naive definitions almost by cut and paste.

The following definition applies to the core of this chapter only. We will redefine fusibility

in sections dealing with the extensions.

Definition 4.3 (Fusible datatype) Regular and polynomial and non-recursive or self-

recursive datatypes are fusible. All other datatypes are not fusible.

The fusibility of a datatype is not a general property of the type constructor itself: it only

states that these are the datatypes we know how to deal with; we simply give up on the

possibility of fusion for all the others.

4.5.1 Deriving maps

In the example of rose trees (see Page 53), we demonstrate the need to have a map function

for each parametrised, fusible datatype. In that case we need a map for lists. In the general

4.5. FIRST-ORDER FUSION 50

case, we may need a map for any parametrised, fusible datatype. The existence of maps

is established in Chapter 3. Since the method is very similar to the one used to derive

catamorphisms, we are not going to work out a detailed example.

Map functions — or type functors [Fok92b] — are well known in functional programming.

The usual reading of the type of map for lists, map[] :: ∀αβ.(α→ β)→ ([α]→ [β]) is that

map is a polymorphic function which takes a function f with type α → β and rewrites a

data structure of type [α] to type [β] by applying f to all the occurrences of α.

For each fusible, parametrised datatype, we are going to generate the following code:

mapT =Λ ᾱ β̄.λ f1 . . . fm .λ t . (4.3)

case t of

{Ti v̄ → Ti β̄ (M T f1 . . . fm (mapT ᾱ β̄ f1 . . . fm) v̄)}ni=1

Note: by construction the number of ᾱs is equivalent to the number of β̄s, which is equal

to the number of f ’s and the number of type arguments to the datatype (in the head of the

data declaration).

M is defined by induction on the type of its argument. For the syntax of types see Fig-

ure A.2. Recall that we do not attempt fusion, or to derive maps for non-polynomial types

so foralls and the function space constructor (→) can not occur as argument type.

M T f1 . . . fm g v = MT f1 . . . fm g (typeOf v) v (4.4)

where

MT f1 . . . fm g [[primitive]] = λ x .x

MT f1 . . . fm g [[α]] = λ x .{fi x | sourceTypeOf fi = α ∧ i ∈ {1 . . . n}}

MT f1 . . . fm g [[T ᾱ]] = λ x .g x

MT f1 . . . fm g [[K τ̄]] = λ x .mapK (tyVarsOf(sourceTypeOf g))

(tyVarsOf(targetTypeOf g))

(MT f1 . . . fm g [[τ̄]])

x

Note: here are as many functions in f1 . . . fm as arguments to the type constructor T .

Lets see what M does! The first case deals with primitive types, for example the built-in

Int . These types have no maps, therefore M returns the identity function. The second

case, the case of a type variable, is more interesting: we have to find the approriate f which

rewrites the given type variable. Two questions arise: can we be sure that we find at least

one f such that sourceTypeOf f is equal to the given type variable and can we be sure that

we find at most one such f? The existence and the uniqueness of such f is guaranteed by

the construction of maps (see above).

4.5. FIRST-ORDER FUSION 51

The similarity between M and E (see Page 52) should be clear. Both functions perform

similarly: they apply their argument g recursively to the appropriate type. The reason we

need E and M separately is that M takes one function for each parameter (type variable)

of the datatype. E does not depend on the number of type arguments.

It is easy to see that Equation 4.3 expands to the well-known definition of map in the case

of lists:

〈Equation 4.3〉

map[] = Λ α β.λ f t . case t of

[] → [] β

(:) a as → (:) β (M [] f (map[] α β f) a)

(M [] f (map[] α β f) as)
〈Equation 4.4〉

map[] = Λ α β.λ f t . case t of

[] → [] β

(:) a as → (:) β (M[] f (map[] α β f) α as)

(M[] f (map[] α β f) [] as)
〈second and third clause of M〉

map[] = Λ α β.λ f t . case t of

[] → [] β

(:) a as → (:) β (λ x .f x) a

(λ x .map[] α β f x) as
〈beta reductions〉

map[] = Λ α β.λ f t . case t of

[] → [] β

(:) a as → (:) β (f a) (map[] α β f as)

And we are done.

4.5.2 Deriving catas: implementing the cata evaluation rule

Our starting point is the datatype declarations in source programs (Equation 4.1). For each

such declaration, provided the type constructor is fusible according to Definition 4.3, we

generate the following code:

cataT =Λ ᾱ ρ.λc̄.λ t . (4.5)

case t of

{Ti v̄ → ci (ET (cataT ᾱ ρ c̄) v̄)}ni=1

4.5. FIRST-ORDER FUSION 52

In the equation above, n is the number of constructors the datatype T ᾱ has, ρ is a fresh

type variable, c̄ consists of exactly n appropriately typed variables. Functions in c̄ corre-

spond to the constructors of T ᾱ, with the recursive occurrences of T ᾱ replaced by ρ. If

monoConstrs(T ᾱ) denotes the list of constructors (with their forall(s) stripped off), the

substitution [ρ/T ᾱ] — substitute ρ for T ᾱ — will give the right types.

For example, for lists

data [] α = [] | α : [α]

monoConstrs([α]) gives the list of monomorphic functions [[], (:)] with types [α] and α →

[α] → [α] respectively. Applying the substitution [ρ/T ᾱ] to these two types gives ρ and

α→ ρ→ ρ. Equipped with this notation, it is easy to give a type to cataT .

cataT :: ∀ᾱ.∀ρ.monoConstrs(T ᾱ)→ T ᾱ → ρ

In the running example of lists we get

cata [] :: ∀α.∀ρ.ρ→ (α→ ρ→ ρ)→ [α]→ ρ

We need to give a definition of E. For the syntax of types see Figure A.2.

ET g v = ET g (typeOf v) v (4.6)

where

ET g [[primitive type]] = λ x .x

ET g [[α]] = λ x .x

ET g [[T ᾱ]] = λ x .g x

ET g [[K τ̄]] = λ x .mapK (sourceTypeOf g)

(targetTypeOf g)

(ET g [[τ̄]])

x

Notice, that in the last clause we extended E from a single type to a list of types with the

expected meaning: E f τ̄ means (E f τ1) . . . (E f τn).

For lists, we have

〈Equation 4.5〉

4.5. FIRST-ORDER FUSION 53

cata [] = Λ α ρ.λ nil cons.λ t . case t of

[] → nil

(:) y ys → cons (E [] (cata [] α ρ nil cons) y)

(E [] (cata [] α ρ nil cons) ys)
〈Equation 4.6〉

cata [] = Λ α ρ.λ nil cons.λ t . case t of

[] → nil

(:) y ys → cons (E [] (cata [] α ρ nil cons) α y)

(E [] (cata [] α ρ nil cons) [] ys)
〈second and third clause of E〉

cata [] = Λ α ρ.λ nil cons.λ t . case t of

[] → nil

(:) y ys → cons (λ x .x) y

(λ x .cata [] α ρ nil cons x) ys
〈beta reductions〉

cata [] = Λ α ρ.λ nil cons.λ t . case t of

[] → nil

(:) y ys → cons y (cata [] α ρ nil cons ys)

This is in fact the familiar foldr function from the Standard Prelude, with its second and

third argument swapped around.

A more substantial example, which involves the third clause in the definition of E , is the

derivation of the cata for Rose trees.

data Rose α = Fork α [Rose α]

〈definition〉

cataRose :: ∀α.∀ρ.(α→ [ρ]→ ρ)→ Rose α→ ρ

cataRose = Λα.Λρ.λ fork .λ t .

case t of

Fork (a :: α)

(lt :: [Rose α]) → fork (ERose (cataRose α ρ fork) [a, lt])
〈definition of E twice〉

cataRose = Λα.Λρ.λ fork .λ t .

case t of

Fork (a :: α)

(lt :: [Rose α]) → fork (ERose (cataRose α ρ fork) a)

(ERose (cataRose α ρ fork) lt)
〈E applied to a type variable〉

4.5. FIRST-ORDER FUSION 54

cataRose = Λα.Λρ.λ fork .λ t .

case t of

Fork (a :: α)

(lt :: [Rose α]) → fork a

(ERose (cataRose α ρ fork) lt)
〈E applied to a type constructor different from the one being defined〉

cataRose = Λα.Λρ.λ fork .λ t .

case t of

Fork (a :: α)

(lt :: [Rose α]) → fork a

((λ x .map[] (Rose α)

ρ

(cataRose α ρ fork)

x) lt)
〈β-reduction〉

cataRose = Λα.Λρ.λ fork .λ t .

case t of

Fork (a :: α)

(lt :: [Rose α]) → fork a

(map[] (Rose α)

ρ

(cataRose α ρ fork)

lt)

Notice, map[] in the definition! This is a call to the familiar map function for lists.

We have already shown how to derive the map function for arbitrary datatypes in Sec-

tion 4.5.1. It is easy to verify that cataRose is well-typed: map[] takes two type arguments

Rose α and ρ, and a function from Rose α to ρ. cataRose α ρ fork does indeed have that

type. map[] (Rose α) ρ (cataRose α ρ fork) lt has type [Rose α] → [ρ] and fork has type

α→ [ρ]→ ρ which makes the entire expression well-typed.

4.5.3 Cata-Core rules

The Core Simplifier need to be extended with several rules to describe how catamorphisms

and Core constructs interact. The cata of case rule follows from the strictness property

of catamorphisms. The cata of known constructor rule is called cata evaluation rule in

Equation (3.3). The cata-build rule is proved correct on Page 24.

4.5. FIRST-ORDER FUSION 55

〈cata of case rule〉
cataT τ̄ ρ c̄ (case Expr of

{C v̄ → e})
→ case Expr of

{C v̄ → cataT τ̄ ρ c̄ e}
〈cata of known constructor rule〉
cataT τ̄ ρ c̄ (Ci v1 . . . vn) → ci (ET (cataT τ̄ ρ c̄) v1)

...
(ET (cataT τ̄ ρ c̄) vn)

〈cata-build rule〉
cataT τ̄ ρ c̄ (buildT ρ f) → f ρ c̄
〈cata-of-error rule〉
cataT τ̄ ρ c̄ error → error

Figure 4.2 Rules for the interaction of catamorphisms and Core

The local transformations (Table A.1) are still in effect. The notation lhs → rhs has its

standard meaning: lhs reduces to rhs in one step.

In the following, we will refer to these rules by their name.

4.5.4 Buildify

We now formally define the algorithm which attempts to transform a function to explicit

build form. The transformation’s validity is proved in Section 3.4 and can also be seen by

reversing it: if the wrapper is inlined and the definition of build is expanded we get back

the same definition we started with.

1. Rewrite each function, which produces a fusible result, according to the following rule

f :: ∀ᾱ.σ̄ → T τ̄

f = Λᾱ.λv̄ .e

=⇒

f :: ∀ᾱ.σ̄ → T τ̄

f = Λᾱ.λv̄ .buildT (f ′ ᾱ v̄)

f ′ :: ∀ᾱ.σ̄ → (∀ρ. monoConstrs(T τ̄)[ρ/T τ̄]→ ρ)

f ′ = Λᾱ.λv̄ .Λρ.λc̄. cataT τ̄ ρ c̄ e

In effect, we are splitting the definition of f into a wrapper f and a worker f ′. f also

4.5. FIRST-ORDER FUSION 56

gets marked as InlineMe. In GHC this will encourage the Core Simplifier to replace

calls to f with the right hand side of f .

A few remarks about the abundant variables: in the original definition of f , ᾱ stands

for an arbitrary number of type variables, σ̄ stands for the type of an arbitrary number

of arguments, where the arguments themselves are denoted by v̄ . T τ̄ is the result

type of f , and τ̄ is built up from type variables from ᾱ and applications of fusible

type constructors and primitive types (Int, Bool, etc). In fact, ᾱ can be a subset of τ̄

or the other way around. e stands for an arbitrary core expression that has no more

lambdas.

In the resulting definitions of f and f ′, ᾱ, τ̄ , e are as above, and ρ is a fresh, appro-

priately kinded type variable.

2. Simplify the resulting bindings by calling the Core Simplifier.

3. We check if the transformation is beneficial by traversing the resulting bindings and

checking if the cataT disappeared. Leaving the cata would mean an extra traversal.

If it disappears then this function is a good producer and we replace the original

definition with the newly simplified bindings. Otherwise, we revert to the original

definition of f . The machinery in the compiler gives a simple implementation for this

step: we mark the cata as ’radioactive’ [LS95] and when traversing the simplified

bindings we check for the absence of the marked identifier.

Let’s look at an example to see how these rules work! We are going to demonstrate it with

the simplest possible function: one which when applied to a positive number n, delivers a

list of numbers between n and 0 in decreasing order. We will use Core syntax, except that

we are not going to observe the syntactic restriction on arguments, and assume that the

corresponding cata has already been derived.

downTo :: Int → [Int]

downTo = λ n. case n > 0 of

True → (:) Int n (downTo (n − 1))

False → [] Int

We rewrite this binding according to Step 1 and get:

downTo :: Int → [Int]

downTo = λ n.build [] (downTo′ n)

downTo′ :: Int → (∀ρ.ρ→ (Int → ρ→ ρ)→ ρ)

downTo′ = λ n.Λρ.λ nil .λ cons.

4.5. FIRST-ORDER FUSION 57

cata [] Int ρ nil cons (case n > 0 of

True → (:) Int n (downTo (n − 1))

False → [] Int)

Step 2 calls for the simplifier extended with the rules given in Figure 4.2, which in this

case would deliver the result we are expecting, but would not show the intermediate steps.

Instead, we detail the workings of the Core Simplifier. Nothing is going to happen to the

wrapper downTo apart from getting inlined, therefore we omit it. We also omit the type of

downTo′ since it does not change.

〈cata of case〉

downTo′ = λ n.Λ ρ.λ nil .λ cons.

case n > 0 of

True → cata [] Int ρ nil cons ((:) Int n (downTo (n − 1)))

False → cata [] Int ρ nil cons ([] Int)
〈case of known constructor twice〉

downTo′ = λ n.Λ ρ.λ nil .λ cons.

case n > 0 of

True → cons (E [] (cata [] Int ρ nil cons) n)

(E [] (cata [] Int ρ nil cons) (downTo (n − 1)))
False → nil

〈definition of E twice〉

downTo′ = λ n.Λ ρ.λ nil .λ cons.

case n > 0 of

True → cons (E [] (cata [] Int ρ nil cons) Int n)

(E [] (cata [] Int ρ nil cons) [Int] (downTo (n − 1)))
False → nil

〈E applied to a primitive type and E applied to the recursive use of [α]〉

downTo′ = λ n.Λ ρ.λ nil .λ cons.

case n > 0 of

True → cons ((λ x .x) n)

((λ x .cata [] Int ρ nil cons x) (downTo (n − 1)))
False → nil

〈β reductions〉

downTo′ = λ n.Λ ρ.λ nil .λ cons.

case n > 0 of

True → cons n (cata [] Int ρ nil cons (downTo (n − 1)))

False → nil
〈downTo gets inlined〉

4.5. FIRST-ORDER FUSION 58

downTo′ = λ n.Λ ρ.λ nil .λ cons.

case n > 0 of

True → cons n

(cata [] Int ρ nil cons

((λ n ′.build [] (downTo′ n ′)) (n − 1)))
False → nil

〈β reduction〉

downTo′ = λ n.Λ ρ.λ nil .λ cons.

case n > 0 of

True → cons n (cata [] Int ρ nil cons (build [] (downTo′ (n − 1))))

False → nil
〈cata-build rule〉

downTo′ = λ n.Λ ρ.λ nil .λ cons.

case n > 0 of

True → cons n (downTo′ (n − 1) ρ nil cons)

False → nil
〈The Core Simplifier finished〉

Simple examination (Step 3) shows that the ’radioactive’ cata did indeed disappear via the

cata-build rule. The wrapper downTo is not recursive anymore and is small. The worker

downTo′ is recursive, but does not call its wrapper. downTo therefore is a good producer

and we replace its old definition with newly derived ones downTo and downTo′.

It maybe somewhat surprising that a program transformation technique applies equally

to recursive and non-recursive datatypes. Very much the same thing happens as in the

recursive case except that we eliminate a Maybe instead of say a list. Some might say that

it is not worth using the big hammer for a single Maybe, but there are other reasons to

consider. It gives us a uniform method to eliminate intermediate data structures whether

they are recursive or not. Its success entirely depends on heavy inlining which we have to

do anyway.

data Maybe α = Nothing | Just α

mapMaybe :: ∀αβ.Maybe α→ (α→ β)→ Maybe β

mapMaybe =Λ α β.λm f . case m of

Nothing → Nothing

Just a → Just (f a)

mapMaybe :: ∀αβ.Maybe α→ (α→ β)→ Maybe β

4.5. FIRST-ORDER FUSION 59

mapMaybe =Λ α β.λm f . buildMaybe (map#Maybe α β m f)

map#Maybe :: ∀αβ.Maybe α→ (α→ β)→ (∀ ρ.ρ→ (α→ ρ)→ ρ)

map#Maybe =Λ α β.λm f .Λ ρ.λ nothing just .

let

c = case m of

Nothing → Nothing

Just a → Just (f a)
in

cataMaybe β ρ nothing just c

mapMaybe :: ∀αβ.Maybe α→ (α→ β)→ Maybe β

mapMaybe =Λ α β.λm f . buildMaybe (map#Maybe α β m f)

map#Maybe :: ∀αβ.Maybe α→ (α→ β)→ (∀ ρ.ρ→ (α→ ρ)→ ρ)

map#Maybe =Λ α β.λm f .Λ ρ.λ nothing just .

case m of

Nothing → nothing

Just a → just (f a)

Our final example shows when the third clause of E plays a role.

The rose tree data structure is interesting because its type constructor is ’embedded’ into

another one, that is, a rose tree is an element and a list of rose trees:

data Rose a = Fork a [Rose a]

mapRose :: ∀αβ. Rose α→ (α→ β)→ Rose β

mapRose = Λαβ.λ r f . case r of

Fork a rs → let

g = λ r ′.mapRose α β r ′ f

in

Fork β (f a) (map[] (Rose α) (Rose β) g rs)

After performing Steps 1 to 3 of buildify we get:

mapRose :: ∀αβ. Rose α→ (α→ β)→ Rose β

mapRose = Λαβ.λ r f .buildRose (map#Rose α β r f)

map#Rose :: ∀αβ. Rose α→ (α→ β)→ (∀ρ.(α→ [ρ]→ ρ)→ ρ)

map#Rose = Λαβ.λ r f .Λρ.λ fork .

4.5. FIRST-ORDER FUSION 60

let

g = λ r ′.mapRose α β r ′ f

c = case r of

Fork a rs → Fork β (f a) (map[] (Rose α) (Rose β) g rs)
in

cataRose β ρ fork c

In the result, we observed the syntactic restriction in Core and let bound every argument.

Notice, the map[] in the body of map#Rose .

4.5.5 Catify

The process of automatically turning arbitrary functions into catamorphisms is theoretically

much simpler than buildify. Unfortunately, its implementation is definitely worse. Most of

the problems are due to the way GHC is structured. Not that GHC is badly structured,

but it takes an approach which seems to be hard to combine with the steps we need to take

to implement this transformation.

1. Rewrite each function, which consumes a fusible argument, according to the following

rewrite rule

f :: ∀ᾱ.T τ̄ → σ

f = Λᾱ.λ t .e

=⇒

f :: ∀ᾱ.T τ̄ → σ

f = Λᾱ.λ t . cataT τ̄ (T τ̄) (fC1
ᾱ) . . . (fCn

ᾱ) t

fC1
= Λᾱ.λz1. let

f ′C1
= λ t .e

in

f ′C1
(C1 τ̄ t1)

...

fCn
= Λᾱ.λzn . let

f ′Cn
= λ t .e

in

f ′Cn
(Cn τ̄ tn)

The additional criterion that f is strict in t (see Equation 3.5), can be discovered in

two ways: either the annotation for f tells us or e is a case expression on t. In Core,

4.5. FIRST-ORDER FUSION 61

case expressions always perform evaluation (see Appendix A for details), therefore

they are strict.

A few comments about the variables: In the original binding for f , ᾱ stands for

an arbitrary number of type variables. T τ̄ is a fusible type with the corresponding

variable t . τ̄ is built up from type variables from ᾱ and applications of fusible type

constructors and primitive types (Int, Bool, etc). σ is the result type of f . Notice,

that f has only one argument5 and this argument is fusible.

In effect, the rewrite rule splits f into a wrapper (also denoted f , since we need a

definition for it) and n workers (denoted fC1
. . . fCn

). By construction, n is equal to

the number of constructors T ᾱ has. In the examples, we will use the name of the

constructor instead of numbers, so for example a function g consuming a list will be

split into g , the wrapper, worker g[] for the Nil constructor and worker g(:) for the

Cons constructor.

In the rewritten bindings (after the =⇒), ᾱ, T τ̄ , σ and e are as above. There are

two new sets of variables (in each worker), zn and tn . The variables denoted by t

are appropriately typed (with respect to the type argument τ̄ to Cn), fresh variables

and tn and zn have equal number of (similarly) typed elements. n does not refer to

the number of elements, but to the constructor this particular z belongs to. In other

words, the z ’s and t ’s are different in each worker. Notice that z ’s are never used in

the body of their respective bindings and t ’s are free.

Notice, that the wrapper f is small and non-recursive, while the workers can be

arbitrarily big.

The astute reader will notice that Core syntax (see Appendix A.2) does not allow the

formation of the right hand sides of the rewritten bindings. In particular, arguments

to the application of an expression e are restricted to be Atoms while in our case the

argument is an expression C1 τ̄ t1. The usual way around this restriction is to let

bind the expression C1τ̄ t1 to an appropriately typed variable and mark it as used

once only (linear). The Core Simplifier then will do its job.

It may be somewhat worrying for those afraid of code explosion that in the workers

we duplicate the entire body of the original function. This is not an issue however,

since these are simplified which makes the case go away. We shall see an example of

this below.

2. Simplify the resulting bindings, by calling the Core simplifier.

5We will relax this condition in Section 5.1

4.5. FIRST-ORDER FUSION 62

3. Construct the rules of a rewrite system on-the-fly and do a second rewriting. We

define the rules and study the rewrite system in Section 5.3. These rules will be built

up from combinations of t ’s with f on the left hand sides and z ’s on the right-hand

sides.

4. Traverse the rewritten bindings and check for free occurrences of t . The presence of

any t denotes failure of the transformation, in which case revert to the original defini-

tion of f . If no t ’s occur (the bindings are closed) then we succeeded in transforming

f to an explicit catamorphic form, so replace the original definition with the result of

the previous step.

We will go through a detailed example to show how these rules work; later in this chap-

ter we relax most of the restrictions to make the process of turning functions to explicit

catamorphic form more general. The example we are going to use is the well known length

function for lists from the Prelude. Note, that length satisfies all of the restrictions: it has

only one argument, and that is fusible.

length :: ∀ α.[α] → Int

length = Λ α.λ l . case l of

[] → 0

(x : xs) → 1 + length α xs

According to Step 1, we rewrite this definition to:

length :: ∀ α.[α] → Int

length = Λ α.λ l . cata [] α [α] (length[] α) (length(:) α) l

length[] = Λ α. let

length∗ =Λ α.λ l . case l of

[] → 0

(x : xs) → 1 + length α xs
in

length α ([] α)
length(:) = Λ α.λ z zs. let

length∗ =Λ α.λ l . case l of

[] → 0

(x : xs) → 1 + length α xs
in

length α ((:) α (t :: α) (ts :: [α]))

According to Step 2, call the Core Simplifier: the definitions marked with ∗ will get inlined,

and two β reductions happen (in both bindings).

4.5. FIRST-ORDER FUSION 63

length :: ∀ α.[α] → Int

length = Λ α.λ l . cata [] α [α] (length[] α) (length(:) α) l

length[] = Λ α.0

length(:) = Λ α.λ z zs.1 + length α ts

In effect, we partially evaluated the definition of length with respect to its known first

argument.

We construct the rules of a rewrite system according to the definition in Section 5.3; the

function we are transforming, length, and the free variables t and ts will be on the left-hand

sides, while z and zs will be on the right-hand sides. There are no rules corresponding to

the [] case, since this constructor has no arguments. However, there are two rules for (:)

because it has two arguments: one of type α and another of type [α].

{t → z , length α ts → zs}

We rewrite the simplified bindings using these rules and get:

length :: ∀ α.[α] → Int

length = Λ α.λ l . cata [] α [α] (length[] α) (length(:) α) l

length[] = Λ α.0

length(:) = Λ α.λ z zs.1 + zs

Simple examination shows, that combinations of length with pre-recursion variables, t and

ts have been eliminated. Therefore we succeeded in transforming length into an explicit

catamorphic form; the original definition of length can be replaced by the newly derived

bindings.

The example also demonstrates that the catify split is not as good as it could be: in the

length[] wrapper, the type variable is unnecessary. It is a simple modification to the rewrite

step, but it would complicate the notation considerably to ensure that no unused type or

value arguments are passed to the wrappers. The implementation never passes unused

arguments to wrappers.

Chapter 5

The Practice of Warm Fusion II:

Extensions

This chapter is devoted to two extensions of the basic case: fusion for higher-order catamor-

phisms and fusion for mutually recursive datatypes. We also introduce a transformation,

the normalisation of the order of arguments, which seems rather simple — and new in

the literature — but has the surprising effect of simplifying other transformations. This is

discussed in Section 5.4.

Finally, in Section 5.3 we present and study the ’dynamic’ rewrite system. Section 5.5

discusses two closely related issues: fusion in the presence of separate compilation and how

fusion could simplify the Desugaring (see Figure A.1) phase of the compiler.

5.1 Functions with more than one argument

In the previous sections, we thoroughly explored the two transformations which, if they

succeed, turn arbitrary functions into explicit catamorphic and explicit build forms. We

also discussed the modifications which were required to to be made the Core Simplifier

to make the transformations useful. The restrictions we imposed on functions (only one

argument and that is fusible) are rather severe and limit the usefulness of the fusion. In this

section, we relax this criteria and allow functions with more than one argument. We shall

see that there are several ways to do this, and each approach comes with its own limitation.

The definition of fusibility remains as in Section 4.5.

64

5.1. FUNCTIONS WITH MORE THAN ONE ARGUMENT 65

5.1.1 Avoiding more than one argument

With regards to functions with more than one argument, one surprisingly frequent viable

way to cope with them is to avoid them. The technique is similar to that of Wadler [Wad90],

where he uses higher-order macros to extend his first-order deforestation to apply to certain

higher-order functions. The required transformation is called the static argument trans-

formation (SAT)[San95]; it stems from the observation that in many cases arguments to

functions in the recursive call do not change: they are static. Consider the well known

append function for lists:

append :: ∀α.[α]→ [α]→ [α]

append = Λα.λ xs ys. case xs of

[] → ys

(:) x xs → (:) α x (append α xs ys)

In the body of append and in recursive calls to append itself, α and ys are the same as the

binders. Therefore, these arguments need not be passed around in recursive calls and we

can transform append into:

append :: ∀α.[α] → [α] → [α]

append = Λ α. λ xs ys. let

append ′ :: [α] → [α]

append ′ =λ xs. case t of

[] → ys

(x : xs) → (:) α x (append ′ xs)
in

append ′ xs

We created a local function, append ′ which does not pass the static arguments around. The

static arguments are free in the body of append ′, but this does not cause any problems,

since they are bound by the outer lambdas. Section 5.1.6 formalises the transformation.

Now, we can perform catify on the local append ′ function using the techniques of the

previous section, since it has only one fusible argument and we get:

append :: ∀α.[α] → [α] → [α]

5.1. FUNCTIONS WITH MORE THAN ONE ARGUMENT 66

append = Λ α. λ xs ys. let

append ′ :: [α] → [α]

append ′ =λ xs.cata [] α [α] append ′
[] append ′

(:) xs

append ′
[] :: [α]

append ′
[] =ys

append ′
(:) :: α → [α] → [α]

append ′
(:) =λ z zs. (:) α z zs

in

append ′ xs

If we inline append ′ in the body of the let expression, we have:

append :: ∀α.[α] → [α] → [α]

append = Λ α. λ xs ys. let

append ′
[] :: [α]

append ′
[] =ys

append ′
(:) :: α → [α] → [α]

append ′
(:) =λ z zs. (:) α z zs

in

cata [] α [α] append ′
[] append ′

(:) xs

This is very good indeed! We transformed a function with two arguments into a first-order

catamorphism. The approach we are advocating in the rest of this section will derive a

slightly different form of the append function (provided buildify is not run before catify):

append :: ∀α.[α] → [α] → [α]

append = Λ α. λ xs ys. let

append ′
[] :: [α] → [α]

append ′
[] =λ ys. ys

append ′
(:) :: α → [α] → [α] → [α]

append ′
(:) =λ z zs ys. (:) α z (zs ys)

in

cata [] α [α] append ′
[] append ′

(:) xs ys

The second argument, ys , is now passed around in the recursive calls and the type of

the local functions have changed accordingly. Intuitively, this definition is slightly less

efficient because of the additional argument. We would, therefore, prefer to use static

argument transformation whenever possible. The usefulness of this approach, using SAT

5.1. FUNCTIONS WITH MORE THAN ONE ARGUMENT 67

whenever possible, is amply demonstrated by the fact that a large number of functions,

map, span, break , takeWhile,filter , init etc, from the Standard Prelude shown in the next

section, in the presence of mutually recursive datatypes, SAT makes it nearly impossible to

successfully transform a group of mutually recursive functions.

There is another drawback of using SAT: fusion does not happen on static arguments:

append e (build [] α ρ (g . . .)) 6→ append e(g α . . . ρ n c)

Section 5.1.5 shows a method to achieve fusion for more than one argument.

5.1.2 Higher-order catas

Let us consider now the situation when the function being transformed has more than one

non-static argument. There are dozens of well known, Standard Prelude functions we could

use, but for the sake of showing that all these techniques work for other datatypes than

lists, we are going to use the level function for trees. level has type Tree α→ Int → [α];

it takes a tree and a number and returns the elements on that level of the tree. The root

of the tree is at level 0. level genuinely requires higher-order catamorphisms as none of its

arguments are static, so the techniques detailed in the previous section would not work.

Given the datatype declaration for trees

data Tree α = Empty | Branch α (Tree α) (Tree α)

the corresponding catamorphism (as derived by the algorithm in Section 4.5.2) is:

cataTree :: ∀ α ρ.ρ → (α → ρ → ρ → ρ) → Tree α → ρ

cataTree = Λ α ρ.λ e b t . case t of

Empty →e

Branch x lt rt →b x (cataTree α ρ lt) (cataTree α ρ rt)

the naive definition of level:

level Empty n = []

level (Branch x lt rt) 0 = [x]

level (Branch x lt rt) n | n > 0 = level lt (n − 1) ++ level rt (n − 1)

which, in turn translates to (Desugarer):

5.1. FUNCTIONS WITH MORE THAN ONE ARGUMENT 68

level :: ∀ α.Tree α → Int → [α]

level = Λ α.λ t i . case t of

Empty →[] α

Branch x lt rt → case i == 0 of

True →(:) α x ([] α)

False → case i > 0 of

True →append α

(level α lt (i − 1))

(level α rt (i − 1))
False →[] α

The reader is invited to verify that buildify succeeds and we get:

level :: ∀ α.Tree α → Int → [α]

level = Λ α.λ t i .build [] (level ′ α t i)

level ′ :: ∀ α.Tree α → Int → (∀ ρ.ρ → (α→ ρ→ ρ) → ρ)

level ′ = Λ α.λ t i .Λ ρ.λ e b.

case t of

Empty →e

Branch x lt rt → case i == 0 of

True →b x e

False → case i > 0 of

True →level ′ α lt (i − 1)

(level ′ α rt (i − 1) e b)

b
False →e

The syntactic criteria for the success of the transformation holds, so we accept this definition.

It’s interesting to note the third argument, which stands for the [] constructor, to level ′. It

is the traversal of the right branch, which is an artefact of append getting inlined. We start

to catify this definition of level . After rewriting and simplification we have:

level :: ∀ α.Tree α → Int → [α]

level = Λ α.λ t i .build [] (level ′ α t i)

level ′ :: ∀ α.Tree α → Int → (∀ ρ.ρ → (α→ ρ→ ρ) → ρ)

level ′ = Λ α.λ t i .Λ ρ.λ e b. cataTree α ρ (level ′Empty α) (level ′Branch α) t i e b

level ′Empty = Λ α.λ i e b.e

5.1. FUNCTIONS WITH MORE THAN ONE ARGUMENT 69

level ′Branch = λ α.λ zx zlt zrt i e b. case i == 0 of

True →b tx e

False → case i > 0 of

True →level ′ α tlt (i − 1)

(level ′ α trt (i − 1) e b)

b
False →e

The rewrite system is constructed from the function level ′, the new, free variables tx , tlt

and trt and the new appropriately typed variables zx , zlt and zrt .

R = { tx → zx , level ′ α tlt → zlt , level ′ α trt → zrt }

The second rewriting then gives:

level :: ∀ α.Tree α → Int → [α]

level = Λ α.λ t i .build [] (level ′ α t i)

level ′ :: ∀ α.Tree α → Int → (∀ ρ.ρ → (α→ ρ→ ρ) → ρ)

level ′ = Λ α.λ t i .Λ ρ.λ e b. cataTree α ρ (level ′Empty α) (level ′Branch α) t i e b

level ′Empty = Λ α.λ i e b.e

level ′Branch = λ α.λ zx zlt zrt i e b. case i == 0 of

True →b zx e

False → case i > 0 of

True →zlt (i − 1) (zrt (i − 1) e b) b

False →e

Notice, that cataTree α ρ (level ′Empty α)(level ′Branch α) t is a function, which traverses the

structure t and constructs a function.

5.1.3 Buildify

Now we formalise the method we applied in the previous example. As we mentioned earlier

in this section, the transformation to explicit build form requires very little change if we

want to allow more than one argument. In fact, when we gave the precise algorithm and

the rewrite rule on page 55, we already allowed for an arbitrary number of arguments. Only

Step 3 changes:

3. Traverse the resulting bindings and check if the cataT disappeared from arguments

it was originally introduced on. If it did, then this function is a good producer and

5.1. FUNCTIONS WITH MORE THAN ONE ARGUMENT 70

we replace the original definition with the newly simplified bindings. Otherwise, we

revert to the original definition of f .

As the changes are not substantial from the first-order case, we do not give a detailed

example.

5.1.4 Catify

Transforming unary functions to explicit catamorphic form is simple: the function has only

one argument which is fusible, so it is immediately obvious on which argument we need

to introduce the cata. When the function has more than one argument we need to decide

which one we want to fuse on. In some cases, when there is only one fusible argument, like

in the case of map, the choice is still obvious.

But what happens, if we have two or more fusible arguments? There seems to be several

options:

1. Pick the first one

2. Pick one in which the function is strict

Using the first fusible argument (1) is a rather good choice since it is simple. However,

the fusion law for catamorphisms, Equation 3.4 (aka. promotion theorem), on which we

based the catify transformation, requires the function to be strict in the given argument.

This would force us to use the first fusible datatype in which the function is strict, which

would complicate the implementation: for one function we would introduce the cata on its

first argument, for another on its fifth. Instead, we rearrange the order of arguments to

functions. The transformation described in Section 5.4 details this simple process.

From now on, we will assume that every function which is a candidate for the transformation

had its arguments rearranged so that the function is strict in its first fusible argument. In

other words, we will always try to introduce the cata on the first argument. With this

assumption it is easy to extend the catify transformation. The skeleton of the algorithm

remains the same as in Section 4.5.5, only the rewrite step changes.

1. Rewrite each function which consumes a fusible argument, according to the following

rewrite rule:

f :: ∀ᾱ.T τ̄ → σ̄

5.1. FUNCTIONS WITH MORE THAN ONE ARGUMENT 71

f = Λᾱ.λ t v̄ .e

=⇒

f :: ∀ᾱ.T τ̄ → σ̄

f = Λᾱ.λ t v̄ . cataT τ̄ (T τ̄) (fC1
ᾱ) . . . (fCn

ᾱ) t

fC1
= Λᾱ.λz1.λv̄ . let

f ′C1
= λ t .e

in

f ′C1
(C1 τ̄ t1)

...

fCn
= Λᾱ.λzn .λv̄ let

f ′Cn
= λ t .e

in

f ′Cn
(Cn τ̄ tn)

The comments we made when we first gave this algorithm also apply here (see page

60.) The difference is that now we allow an arbitrary number of arguments, denoted

v̄ , to f . The workers change accordingly.

2. Simplify the resulting bindings.

3. Construct the rules of a rewrite system on-the-fly and do a second rewriting. We

define the rules and study the rewrite system in Section 5.3. These rules will be built

up from combinations of t ’s with f on the left hand sides and z ’s on the right-hand

sides.

4. Traverse the rewritten bindings and check for free occurrences of t . The presence

of any t denotes failure of the transformation, in which case revert to the original

definition of f . If no t ’s occur (the bindings are closed) we succeeded in transforming

f to an explicit catamorphic form, so replace the original definition with the result of

the previous step.

An example will nicely demonstrate the workings of the above algorithm. We will use

map again, for simplicity. According to the assumption that the function’s arguments are

rearranged before catify is attempted, the transformation which performs this is formalised

in Section 5.4, we start with the following definition.

map[] :: ∀ α β.[α] → (α → β) → [β]

map[] = Λ α β.λ t .λ f . case t of

[] → [] β

(x : xs) → (:) β (f x) (map[] α β xs f)

5.1. FUNCTIONS WITH MORE THAN ONE ARGUMENT 72

According to Step 1 we split this definition into three:

map[] :: ∀ α β.[α] → (α → β) → [β]

map[] = Λ α β.λ t .λ f . cata [] α [α] (map
[]
[] α β) (map

[]
(:) α β) t f

map
[]
[] :: ∀ α β.(α → β) → [β]

map
[]
[] = Λ αβ.λ f . let

map[] = Λ α β. λ t . case t of

[] → [] β

(x : xs) → (:) β (f x) (map[] α β xs f))
in

map[] α β ([] α)

map
[]
(:) :: ∀ α β.α → ((α → β) → [β]) → (α → β) → [β]

map
[]
(:) = Λ αβ.λ z zs.λ f . let

map[] = Λ α β. λ t . case t of

[] → [] β

(x : xs) → (:) β

(f x)

(map[] α β xs f))
in

map[] α β ((:) α (t :: α) (ts :: [α])

The Simplifier is called, which performs a few β reductions:

map[] :: ∀ α β.[α] → (α → β) → [β]

map[] = Λ α β.λ t .λ f . cata [] α [α] (map
[]
[] α β) (map

[]
(:) α β) t f

map
[]
[] :: ∀ α β.(α → β) → [β]

map
[]
[] = Λ αβ.λ f .[] β

map
[]
(:) :: ∀ α β.α → ((α → β) → [β]) → (α → β) → [β]

map
[]
(:) = Λ αβ.λ z zs.λ f . (:) β (f t) (map[] α β ts f)

Just like in the earlier case, we have new unused variables z and zs and free variables t and

ts . The rewrite system will replace the pre-recursion variables t and map[] α β ts with z

and zs. The rules are:

{t → z , map[] α β ts → zs}

After rewriting we get:

5.1. FUNCTIONS WITH MORE THAN ONE ARGUMENT 73

map[] :: ∀ α β.[α] → (α → β) → [β]

map[] = Λ α β.λ t .λ f . cata [] α [α] (map
[]
[] α β) (map

[]
(:) α β) t f

map
[]
[] :: ∀ α β.(α → β) → [β]

map
[]
[] = Λ αβ.λ f .[] β

map
[]
(:) :: ∀ α β.α → ((α → β) → [β]) → (α → β) → [β]

map
[]
(:) = Λ αβ.λ z zs.λ f .(:) β (f z) (zs f)

Notice the similarity with the second definition of append given on page 66. In particular,

the type of zs has changed from [β] to ((α → β) → [β]), so the catamorphism instead

of building a list it builds a function, which when applied to the missing argument f pro-

duces the final list. The drawback we noted earlier, that no fusion happens on the second

argument, remains.

5.1.5 Higher-order fusion

To see what goes wrong if we try to catify a function with more than one argument and

still expect fusion, consider the example of the reverse function for lists, this time written

with an accumulating argument.

lrev :: ∀ α.[α] → [α] → [α]

lrev = Λ α.λ xs ys. case xs of

[] →ys

(:) x xs →lrev α xs ((:) α x ys)

Parametricity, we used to prove the validity of fusing an arbitrary (strict) function with a

catamorphism, now gives a different theorem:

∀ a : A→ A′, a : A→ A′, r : R → R′.

if r · n = n ′ · b

∧ r · c x xs = c′ x ′ xs ′ · b ⇐ a x = x ′ ∧ r · xs = xs ′ · b

∧ a ys = ys ′ .map[] a

∧ b w = w ′

∧ r strict

then

r (cata n c ys w) = cata n ′ c′ ys ′ (b w) (5.1)

While Equation 5.1 — the second-order fusion theorem — does not look very different

from its first-order counterpart (Equation 3.4) the premises are much more complicated.

5.2. MUTUALLY RECURSIVE DATATYPES 74

Since we interpret these premises as rewrite rules, the rewrite system needs to be more

elaborate. Even if we were prepared to accept that additional complication, coming up

with an appropriate b in the general case is rather difficult. Because of this difficulty, we

do not attempt higher-order fusion.

5.1.6 Static argument transformation

Santos [San95] devotes a whole chapter of his thesis to the static argument transformation

and its relation to lambda lifting. He notes that lambda lifting undoes the effect of static

argument transformation. This, however, doesn’t need to concern us: we use SAT as a

temporary solution. Once catify succeeds, the function is in explicit catamorphic form. If

lambda lifting is used afterwards (like in GHC) that will float out local bindings but will

not affect the fusion transformation. The algorithm below formalises the static argument

transformation:

• We record the name of the bound variables (both value λ and type Λ) in the function

right hand side.

• For every recursive call of the function we check if this call repeats any arguments in

the same position as they were in the function definition.

• We define a local, recursive function which uses the static arguments as free variables.

f = Λ ᾱ.λ v̄ .e

=⇒

f = Λ ᾱ.λ v̄ . let

f ′ = Λ notStatic (ᾱ).λ notStatic (v̄).e ′

in

f ′ notStatic (ᾱ) notStatic (v̄)

In e ′ calls to f are replaced by calls to f ′ and the static arguments are dropped. We

only perform SAT for functions which have one non-static argument.

5.2 Mutually recursive datatypes

After the first-order case and the higher-order extension we finally consider the extension

to mutually recursive datatypes. The order of presenting these extensions is important.

5.2. MUTUALLY RECURSIVE DATATYPES 75

As we shall see, transformations of groups of mutually recursive functions require that our

machinery can handle the higher-order case.

There are two ways to deal with mutually recursive datatypes. One way is to reduce mutual

recursion on the type level to direct recursion by standard techniques. This is thoroughly

investigated in Fokkinga’s thesis [Fok92b]. The other technique is to deal with the additional

complexity and have mutually recursive terms as well.

The standard technique to reduce mutual recursion to single recursion is to invent a new

datatype which encompasses all the constructors of the mutually recursive group and re-

define all the functions which act on the original group of datatypes in terms of the newly

invented one. For example,

data T a = T1 a | T2 (K a) | T3 (T a)

data K a = K1 |K2 a (T a) |K3 a a (K a)

〈is transformed to〉

data RTK a = RT1 a |RT2 (RTK a) |RT3 (RTK a)

| RK1 |RK2 a (RTK a) |RK3 a a (RTK a)

that is, the new type constructor RTK a has as many constructors as T a and K a together.

The constructors need to be renamed and their type appropriately changed. This part of

the transformation is simple. The next step is to redefine every function in terms of RTK a.

The mutually recursive group of mapT and mapK :

〈type variables are dropped for simplicity〉

mapT f (T1 x) =T1 (f x)

mapT f (T2 k) =T2 (mapK f k)

mapT f (T3 t) =T3 (mapT f t)

mapK f K1 =K1

mapK f (K2 x t) =K2 (f x) (mapT f t)

mapK f (K3 x y k) =K3 (f x) (f y) (mapK f k)

〈becomes〉

mapTK f (RT1 x) =RT1 (f x)

mapTK f (RT2 k) =RT2 (mapTK f k)

mapTK f (RT3 t) =RT3 (mapTK f t)

mapTK f RK1 =RK1

mapTK f (RK2 x t) =RK2 (f x) (mapTK f t)

mapTK f (RK3 x y k) =RK3 (f x) (f y) (mapTK f k)

While this is not too complicated either, it does involve a lot of work (i.e. all the functions

5.2. MUTUALLY RECURSIVE DATATYPES 76

need to be transformed), which could unduly increase compilation times. So, instead of

transforming to single recursion, buildify and catify, and going back to mutual recursion we

leave recursion as it is.

In what follows, the order of presentation — deriving maps, catas, Cata-Core rules, buildify,

catify — is the same as in the first-order case.

Definition 5.1 (Fusible datatype) Regular, polynomial and non-recursive or self-recur-

sive or mutually recursive (groups of) datatypes are fusible. All other datatypes are consid-

ered not fusible.

Our starting point, just as in the first-order case is the datatype declaration. In the most

general case, the syntax of a group of m mutually recursive datatypes is given in Equa-

tion 4.1.

First we introduce new notation. As we mentioned above, for mutually recursive datatypes,

the corresponding catamorphisms and maps are also mutually recursive. To denote this,

we put all the datatypes of the recursive group in the superscript. This makes it clear that

the cata under consideration belongs to a datatype which is part of a mutually recursive

group. It does not tell us however, which datatype it applies to. Therefore we add one

additional piece of information to the superscript: cata{T1 ᾱ + ... + Tn ᾱ}, Tj will stand for the

catamorphism which reduces a data structure of type Tj . Sometimes for convenience, we

will use the notation cataT̄ , Tj . If we wanted to be overly precise, we could repeat the type

variables ᾱ for Tj , as in cataT̄ , Tj ᾱ, but we will refrain from doing so. We could even write

cataT ᾱ, Tj ᾱ to emphasise that T is a set of type constructors that can have more than one

type argument ᾱ.

5.2.1 Deriving maps

The process is very similar to that of the first-order case. Additional superscripts are

used for exactly the same purpose as in the case of catas. For a set of mutually recursive

datatypes we generate the following code:

map T̄ , T1 = Λ ᾱ Λ β̄.λ f̄ .λ t .

case t of

{ T1, i v̄ → T1, i β̄ (M T̄ , T1 f̄ (map T̄ , T1 ᾱ β̄ f̄) v̄) }ni=1
...

map T̄ , Tm = Λ ᾱ Λ β̄.λ f̄ .λ t .

case t of

{ Tm, i v̄ → Tm, i β̄ (M T̄ , Tm f̄ (map T̄ , Tm ᾱ β̄ f̄) v̄) }ni=1

5.2. MUTUALLY RECURSIVE DATATYPES 77

f̄ , the first argument to the functor M , contains the functions which rewrite the individual

type variables in ᾱ, so by construction there are as many functions in f̄ as many type

variables the group has. The second argument is the set of maps being generated: the left

hand sides above.

For simplicity we generate maps in their natural form. We could instead generate the

build-cata form of maps directly, but that is not worth the trouble. Catify (Section 5.2.5)

and buildify (Section 5.2.4) will transform these appropriately.

The extension of M to the mutually recursive datatype case is similar to that of extending

E : instead of one function, there is a group of functions and the clause which checks if the

current type constructor is in the recursive group, applies the appropriate map. We employ

set comprehension notation, with its standard meaning, to pick the right fi and gi.

M T̄ , Ti f̄ ḡ v = MT̄ ,Ti f̄ ḡ (typeOf v) v

where

MT̄ ,Ti f̄ ḡ [[primitive]] = λ x .x

MT̄ ,Ti f̄ ḡ [[α]] = λ x .{fi x | sourceTypeOf (fi) = α ∧ i ∈ {1 . . . n}}

MT̄ ,Ti f̄ ḡ [[T ᾱ]] = λ x .{gi x | tyConOf (g) = T ∧ i ∈ {1 . . . m}}

MT̄ ,Ti f̄ ḡ [[K τ̄]] = λ x .mapK ᾱ (tyVarsOf(sourceTypeOf g1))

(tyVarsOf(targetTypeOf g1))

(MT̄ ,Ti f̄ ḡ [[τ̄]])

x

The index in the second clause goes to n because there can be n type variables, while the

index in the third clause goes to m because there are m types in the group. The second

clause applies whenM is applied to a type variable: we select the appropriate f to rewrite

the given occurrence. The third clause applies when M is applied to a type constructor

within the mutually recursive group. Clause four applies otherwise. It is possible to combine

these last two clauses, at the expense of some notational difficulty.

Clause four perhaps deserves some explanation. Assume that the mutually recursive group

consists of three types T1, T2 and T3, all three quantified over the same set of type variables

α and β. Assume furthermore, that one of the data constructors refers to a fourth type,

say K with two type arguments and its mapK has already been derived. mapK has the

following type:

mapK :: ∀ αβγδ.(α → γ) → (β → δ) → K α β → K γ δ

Applications of mapK , when applied to functions of type (α→ γ) and (β → δ), rewrite

data structures of type K α β to data structures of type K γδ. ḡ typically consists of

5.2. MUTUALLY RECURSIVE DATATYPES 78

functions of the form: mapT ᾱ, T1 α1 α2 α3α4 f1 f2, f1 and f2 having types (α1 → α3) and

(α2 → α4) respectively. In this example, there are three functions of this form, one for

each member of the mutually recursive group. The type of these functions therefore is

T1 :: T1 α1 α2 → T1 α3 α4 and so on for T2 and T3. Notice that only the type con-

structor differs in the three cases. The type arguments at which they are instantiated at

are the same! This explains why is it enough to take tyVarsOf(targetTypeOf g1) and

tyVarsOf(sourceTypeOf g1). With a slight abuse of the notation we extendM to apply to

a list of types ([[τ̄]]), which explains the ’bar’ over tyVarsOf(targetTypeOfg1): the sources

(and the targets) need to be repeated as many times as type variables K has.

5.2.2 Deriving catas

For a mutually recursive group of datatypes we define the also mutually recursive group of

catamorphisms as follows:

cataT̄ , T1 = Λ ᾱ.Λ ρ̄. λ c1 . . . cm .λ t .

case t of

{ T1, i v̄ → c1, i (E T̄ (cataT̄ ᾱ ρ̄ c1 . . . cm) v̄) }n1

i=1
...

cataT̄ , Tm = Λ ᾱ.Λ ρ̄. λ c1 . . . cm .λ t .

case t of

{ Tm, i v̄ → cm, i (E T̄ (cataT̄ ᾱ ρ̄ c1 . . . cm) v̄) }nm

i=1

It is interesting to note, that the entire group is quantified over the same set of type variables,

and the argument to E is now a group, not just a single function. We denoted this by

dropping the second superscript in ET ᾱ. cataT ᾱ stands for cataT ᾱ, T1 . . . cataT ᾱ, Tn . ρ̄ has

exactly m type variables. Every catamorphism in the recursive group takes as argument

one function for each constructor of the mutually recursive group: if there are n type

constructors in the group and NumOfConstrs (T) denotes the number of constructors T

has, then cataT α , Tm will have
∑n

i=0 NumOfConstrs(Ti) arguments.

We also need to give a definition for E :

E T̄ ḡ v = E T̄ ḡ (typeOf v) v

5.2. MUTUALLY RECURSIVE DATATYPES 79

〈cata of case rule〉
cataT̄ ,Ti τ̄ ρ̄ c1 . . . cn (case Expr of

{C v̄ → e})
→ case Expr of

{ C v̄ → cataT̄ ,Ti τ̄ ρ̄ c1 . . . cn e }
〈cata of known constructor rule〉
cataT̄ ,Ti τ̄ ρ̄ c1 . . . cn (Ci v̄) → ci (E T̄ ,Ti (cataT̄ ,Ti τ̄ ρ c1 . . . cn) v̄)
〈cata-build rule〉
cataT̄ ,Ti τ̄ ρ̄ c1 . . . cn (build T̄ ,Ti ρ̄ f) → f ρ̄ c1 . . . cn

〈cata of error rule〉
cataT̄ ,Ti τ̄ ρ̄ c1 . . . cn error → error

Figure 5.1 Cata-Core rules in the presence of mutually recursive datatypes

where

E T̄ ḡ [[primitive type]] = λ x .x

E T̄ ḡ [[α]] = λ x .x

E T̄ ḡ [[T ᾱ]] = λ x .gi x , if T = Ti

E T̄ ḡ [[K τ̄]] = λ x .mapK ᾱ (sourceTypeOf g)

(targetTypeOf g)

(E T̄ ḡ [[τ̄]])

x

The third clause of E selects the appropriate cata from the mutually recursive group. ḡ

typically consists of other catas from the mutually recursive group, all applied to the type

arguments and value arguments, except the one which stands for the data structure being

traversed.

5.2.3 New Cata-Core rules

There is no fundamental change in the rules from the original rules given in Figure 4.2,

apart from the extra superscripts. The definition of build does change to

build T̄ , Ti g = g Constrs(T1) . . . Constrs(Tn)

which is reflected in the cata-build rule: build now applies its argument, g, to all the

constructors of the mutually recursive group. The extended rules are shown in Figure 5.1.

5.2. MUTUALLY RECURSIVE DATATYPES 80

5.2.4 Buildify

The algorithm is the same as in the higher-order case, except that the builds are intro-

duced simultaneously and the syntactic check involves checking for the occurrence of any

‘radioactive’ cata within the recursive group. We only give the rewrite step.

1. Rewrite each group of functions, which produces a fusible result according to:

f1 :: ∀ᾱ.σ̄ → T1τ̄

f1 =Λᾱ.λv̄ .e1
...

fn :: ∀ᾱ.σ̄ → Tn τ̄

fn =Λᾱ.λv̄ .en

=⇒

— The wrappers

f1 :: ∀ᾱ.σ̄ → T1τ̄

f1 =Λᾱ.λv̄ .buildT ,T1 (f ′1 ᾱ v̄)
...

fn :: ∀ᾱ.σ̄ → Tn τ̄

fn =Λᾱ.λv̄ .buildT ,Tn (f ′n ᾱ v̄)

— The workers

f ′1 :: ∀ᾱ.σ̄ → (∀ρ̄. monoConstrs(T1τ̄)[ρ1/T1τ̄]→
...

monoConstrs(Tn τ̄)[ρn/Tn τ̄]→ ρ1)
f ′1 =Λᾱ.λv̄ .Λρ̄.λc1 . . . λcn . cata

T1 τ̄ ρ̄ c1 . . . cn e1
...

f ′n :: ∀ᾱ.σ̄ → (∀ρ̄. monoConstrs(T1τ̄)[ρ1/T1τ̄]→
...

monoConstrs(Tn τ̄)[ρn/Tn τ̄]→ ρn)
f ′n =Λᾱ.λv̄ .Λρ̄.λc1 . . . λcn . cata

Tn τ̄ ρ̄ c1 . . . cn en

Remarks we made in Section 4.5.4 regarding arguments and type variables all apply

here. The extra type variables ρ̄ and abstracted constructors c1 . . . cn to the workers

are a consequence of catamorphisms being mutually recursive. We were a bit sloppy

with the notation: v̄ ’s do not necessarily denote the same arguments in the different

workers, nor need ᾱ’s be the same.

5.2. MUTUALLY RECURSIVE DATATYPES 81

5.2.5 Catify

1. Rewrite each group of functions, which consumes a fusible argument, according to the

following rewrite rule

f1 :: ∀ᾱ.T1 τ̄ → σ̄

f1 =Λᾱ.λ t v1.e1
...

fn :: ∀ᾱ.Tn τ̄ → σ̄

fn =Λᾱ.λ t vn .en

=⇒

— The wrappers

f1 :: ∀ᾱ.T1 τ̄ → σ̄

f1 =Λᾱ.λ t v1. cata
T1 τ̄ (T1 τ̄) . . . (Tn τ̄) — Type arguments

(f T1

C1
ᾱ) . . . (f T1

Cm
ᾱ) — Constructors of T1

...

(f Tn

C1
ᾱ) . . . (f Tn

Cm
ᾱ) — Constructors of Tn

t

fn :: ∀ᾱ.Tn τ̄ → σ̄

fn =Λᾱ.λ t vn . cata
Tn τ̄ (T1 τ̄) . . . (Tn τ̄) — Type arguments

(f T1

C1
ᾱ) . . . (f T1

Cm
ᾱ) — Constructors of T1

...

(f Tn

C1
ᾱ) . . . (f Tn

Cm
ᾱ) — Constructors of Tn

t

— The workers

f T1

C1
=Λ ᾱ.λ z1.λv̄ . (λ t .e1) (C1 τ̄ tm) — First constructor of T1

. . .

f T1

Cm
=Λ ᾱ.λ zm .λv̄ . (λ t .e1) (Cm τ̄ tm) — Last constructor of T1

...

f Tn

C1
=Λ ᾱ.λ z1.λv̄ . (λ t .en) (C1 τ̄ tm) — First constructor of Tn

. . .

f Tn

Cm
=Λ ᾱ.λ zm .λv̄ . (λ t .en) (Cm τ̄ tm) — Last constructor of Tn

The comments we made when we first gave this algorithm also apply here (see page

60.) There are as many workers f Ti

Cj
as constructors the of entire mutually recursive

group and as many type arguments Ti τ̄ as type constructors in the group.

2. Simplify the resulting bindings.

5.2. MUTUALLY RECURSIVE DATATYPES 82

3. Construct the rules of a rewrite system on-the-fly and do a second rewriting. We

define the rules and study the rewrite system in Section 5.3. These rules will be built

up from combinations of t ’s with f̄ on the left hand sides and z ’s on the right-hand

sides.

4. Traverse the rewritten bindings and check for free occurrences of t . The presence

of any t denotes failure of the transformation, in which case revert to the original

definition of f̄ . If no t ’s occur (the bindings are closed) we succeeded in transforming

f̄ to an explicit catamorphic form, so replace the original definition with the result of

the previous step.

We continue our example with the previously buildified maps: map{T ,K},T and map{T ,K},K .

Originally, they were mutually recursive. After buildify, the wrappers, map{T ,K},T and

map{T ,K},K are not mutually recursive anymore, but the workers are. We leave out the

wrappers map{T ,K},T and map{T ,K},K as they play no role. If we performed static argument

transformation we would be in trouble here: mutual recursion would occur within local

bindings where calls to the other function would have all the arguments while calls to the

local function would have its static arguments dropped. This would not only complicate

the definition of the rewrite system, but also Step 1.

Step 1 splits the workers map{T ,K},T and map{T ,K},K into two wrappers:

map#{T ,K},T =Λ αβ.λ t f .Λ τ ρ.λ t1 t2 k1 k2.

cata{T ,K},T β τ ρ

(map#
{T ,K},T
T1

β) (map#
{T ,K},T
T2

β)

(map#
{T ,K},K
K1

β) (map#
{T ,K},K
K2

β)

t f τ ρ t1 t2 k1 k2

map#{T ,K},K =Λ αβ.λ k f .Λ τ ρ.λ t1 t2 k1 k2.

cata{T ,K},K β τ ρ

(map#
{T ,K},T
T1

β) (map#
{T ,K},T
T2

β)

(map#
{T ,K},K
K1

β) (map#
{T ,K},K
K2

β)

k f τ ρ t1 t2 k1 k2

and four workers:

map#
{T ,K},T
T1

=Λ αβ.λ z1.λ f .Λ τ ρ.λ t1 t2 k1 k2.

5.2. MUTUALLY RECURSIVE DATATYPES 83

let

l ′ = λ t . case t of

T1 a → t1 (f a)

T2 a k → t2 (f a) (map#{T ,K},K α β k f β τ ρ

t1 t2 k1 k2)
in

l ′ (T1 ta)

map#
{T ,K},T
T2

=Λ αβ.λ z1 z2.λ f .Λ τ ρ.λ t1 t2 k1 k2.

let

l ′ = λ t . case t of

T1 a → t1 (f a)

T2 a k → t2 (f a) (map#{T ,K},K α β k f β τ ρ

t1 t2 k1 k2)
in

l ′ (T2 ta tk)

map#
{T ,K},K
K1

=Λ αβ.λ f .Λ τ ρ.λ t1 t2 k1 k2.

let

l ′ = λ k . case k of

K1 → k1

K2 t → k2 (map#{T ,K},T α β t f β τ ρ t1 t2 k1 k2)
in

l ′ K1
map#

{T ,K},K
K2

=Λ αβ.λ z1.λ f .Λ τ ρ.λ t1 t2 k1 k2.

let

l ′ = λ k . case k of

K1 → k1

K2 t → k2 (map#{T ,K},T α β t f β τ ρ t1 t2 k1 k2)
in

l ′ (K2 tt)

The local functions, which we denoted l ′, will get inlined and the ”case of known constructor”

rule applies. We get:

map#
{T ,K},T
T1

=Λ αβ.λ z1.λ f .Λ τ ρ.λ t1 t2 k1 k2. t1 (f ta)

map#
{T ,K},T
T2

=Λ αβ.λ z1 z2.λ f .Λ τ ρ.λ t1 t2 k1 k2.

t2 (f ta) (map#{T ,K},K α β tk f β τ ρ t1 t2 k1 k2)

map#
{T ,K},K
K1

=Λ αβ.λ f .Λ τ ρ.λ t1 t2 k1 k2.k1

map#
{T ,K},K
K2

=Λ αβ.λ z1.λ f .Λ τ ρ.λ t1 t2 k1 k2.

k2 (map#{T ,K},T α β tt f β τ ρ t1 t2 k1 k2)

5.3. THE DYNAMIC REWRITE SYSTEM 84

Rewriting with the rules generated by the rewrite system in Section 5.3 finally gives:

map#{T ,K},T =Λ αβ.λ t f .Λ τ ρ.λ t1 t2 k1 k2.

cata{T ,K},T β τ ρ

(map#
{T ,K},T
T1

β) (map#
{T ,K},T
T2

β)

(map#
{T ,K},K
K1

β) (map#
{T ,K},K
K2

β)

t f τ ρ t1 t2 k1 k2

map#{T ,K},K =Λ αβ.λ k f .Λ τ ρ.λ t1 t2 k1 k2.

cata{T ,K},K β τ ρ

(map#
{T ,K},T
T1

β) (map#
{T ,K},T
T2

β)

(map#
{T ,K},K
K1

β) (map#
{T ,K},K
K2

β)

k f τ ρ t1 t2 k1 k2

map#
{T ,K},T
T1

=Λ αβ.λ z1.λ f .Λ τ ρ.λ t1 t2 k1 k2. t1 (f z1)

map#
{T ,K},T
T2

=Λ αβ.λ z1 z2.λ f .Λ τ ρ.λ t1 t2 k1 k2. t2 (f z1) (z2 f β τ ρ t1 t2 k1 k2)

map#
{T ,K},K
K1

=Λ αβ.λ f .Λ τ ρ.λ t1 t2 k1 k2.k1

map#
{T ,K},K
K2

=Λ αβ.λ z1.λ f .Λ τ ρ.λ t1 t2 k1 k2. k2 (z1 f β τ ρ t1 t2 k1 k2)

All the pre-recursion variables and recursive calls have been eliminated, the transformation

is successful, therefore we replace the original definition of map#{T ,K},T and map#{T ,K},K

with the ones above.

5.3 The dynamic rewrite system

The previous three sections detailing the first-order, the higher-order and the mutually

recursive case referred to the rewrite system which we study in this section. The reason

to share the definition and study of properties is that the rewrite system does not depend

on the transformations, provided that we define it the right way: that is including all

the extensions. The idea behind the rewrite system has been explained very informally in

Section 4.1 and it is related to theory on Page 22.

5.3.1 The details

Recall that the purpose of the rewrite system is to eliminate combinations of the function

being transformed with pre-recursion variables (we denoted them t), in favour of the new

appropriately typed variables (z).

Definition 5.2 (Rewrite System) Given ḡ, the functions being transformed, ti , appro-

priately typed — with respect to the constructor they belong to — variables, and zi fresh,

5.3. THE DYNAMIC REWRITE SYSTEM 85

appropriately typed variables, we define the rules of the rewrite system to be:

R = {ET̄ ,Ti ḡ ti → ET̄ ,Ti id zi | i ∈ Constrs(Tj) ∧ j ∈ {T ᾱ}}

This set of rewrite rules are valid only in the body of the function being transformed. Typing

of ti and zi is such that the resulting expressions are well typed.

This is rather compact definition! It generates a set of rewrite rules, which we use on a

per-function basis. ḡ is(are) the function(s) being transformed. In the case of a group

of mutually recursive datatypes, functions acting over any of the types will be mutually

recursive. A self recursive datatype will have one function in ḡ . Note that, j varies over

type constructors (members of a possibly mutually recursive group T ᾱ), while i varies over

the data constructors of the given type constructor. We also rely on the slight abuse of

notation we introduced on page 52: E is applied to a list of variables instead of a single

variable. Note, that as far as the rewrite system is concerned, the vectors of new variables

ti and zi are treated as literals, and not as term rewriting variables.

The terminology used in the following is standard and follows [Klo96].

Definition 5.3 A TRS is non-erasing if in every rule t→ s the same variables occur in t

and in s.

Theorem 5.1 Every orthogonal TRS is confluent.

For the reference to the proof see Klop [Klo96].

Theorem 5.2 The rewrite system generated by Definition 5.2 is confluent.

Proof 5.1 (Confluence) First, we observe that the rules generated by Definition 5.2 form

a ground TRS (no term rewriting variables, only function symbols and constants). Left-

linearity of the rules and the absence of critical-pairs is an easy consequence. By definition, a

TRS where all the rules are left-linear and there are no critical pairs is orthogonal, therefore

the dynamic rewrite system generated by Definition 5.2 is orthogonal. From Theorem 5.1

confluence follows.✷

For termination it is much easier argue informally: we are rewriting a finite tree with

rules which have no term rewrite variables (i.e. ground rules). The RHS of each rule is

fully reduced, that is once a subtree is rewritten no other rule applies to it. Consequently,

visiting each node of the tree once and performing a rewrite step if there is an applicable

one will rewrite the tree completely.

5.4. STANDARDISING ARGUMENT ORDERING 86

To spell this informal argument out in detail we need to recall a few definitions from [Der93].

Definition 5.4 Let τ0, . . . , τi−1(i ≥ 0) be monotonic homomorphisms, all but possibly τi−1

strict, and let τi, . . . , τk be any other kinds of termination functions. The induced path

ordering ≻ is as follows

s = f(s1, . . . , sm) ≻ g(t1, . . . tn) = t

if either of the following hold:

(1) si � t for some si, i = 1, . . . ,m; or

(2) s ≻ t1, . . . , tn and 〈τ1s, . . . , τks〉 is lexicographically greater than or equal to 〈τ1t, . . . , τkt〉,

where function symbols are compared according to their precedence, homomorphic im-

ages are compared in the corresponding well-founded ordering, and subterms are com-

pared recursively in ≻.

Theorem 5.3 A rewrite system terminates if lσ ≻ rσ in a path ordering ≻ for all rules

l → r and substitutions σ, and also τ(lσ) = τ(rσ) for each of the non-monotonic homo-

morphisms among its termination functions.

Theorem 5.4 All the rules generated by Definition 5.2 are size decreasing, if nullary func-

tion symbols (constants) are compared such that yi < zi, for all i.

Proof 5.2 By induction on 5.2.✷

Proof 5.3 (Termination) To prove that the rewrite system given in Definition 5.2 termi-

nates, let the termination function be the size (strictly monotonic) of the term and note that

all of the rules show a decrease for ≻ by virtue of clause (1) and Theorem 5.4. Termination

follows by application of Theorem 5.3.✷

One technical question remains open. What sort of reduction strategy can we use to imple-

ment the rewrite system? Fortunately, the answer is easy. The combination of orthogonality

and the property that all rules are non-erasing (since there are no variables) guarantees that

either leftmost-innermost or leftmost-outermost strategy will work.

5.4 Standardising argument ordering

The need for standardising argument ordering has been explained in Section 5.1.4. The

idea is rather simple: we transform every function which

5.4. STANDARDISING ARGUMENT ORDERING 87

• has more than one argument and

• has at least one fusible argument and

• the function is strict in the fusible argument

to a form where the fusible argument is the first argument to the function. We do this by

splitting the function into a wrapper and a worker [PJL91a]. The wrapper has the original

argument ordering while the worker has the ’better’ one. We also mark the wrapper as

Inline — this will encourage the Core simplifier to inline the small wrapper at call sites —

which ensures that the wrapper is also inlined into its own worker. This way the worker is

recursive and has the ’better’ argument ordering.

The transformation is formalised as follows: we rewrite every function according to the

following rewrite rule (v̄ stands for all the arguments to f , i.e. body is not a function):

f = Λᾱ.λv̄ .body

=⇒

〈v′ denotes the better ordering of arguments〉

f = Λᾱ.λv̄ .f ′ ᾱ v ′

f ′ = Λᾱ.λv ′.body

Lets see an example for the transformation:

mapFilter :: ∀αβ.(α→ Bool) → [α] → (α→ β) → [β]

mapFilter = Λαβ.λ p xs f .

case xs of

[] → [] β

y : ys → case p y of

True → (:) β (f y) (mapFilter α β p ys f)

False → mapFilter α β p ys f

We collect all the explicit binders of the function and rewrite the above definition of

mapFilter into a worker (mapFilter ′) and a wrapper (mapFilter∗).

mapFilter∗ :: ∀αβ.(α→ Bool) → [α] → (α→ β) → [β]

mapFilter∗ = Λαβ.λ p xs f .mapFilter ′ α β xs p f

mapFilter ′ :: ∀αβ.[α] → (α→ Bool) → (α→ β) → [β]

mapFilter ′ = Λαβ.λ xs p f .

5.5. TWO PRACTICAL ISSUES 88

case xs of

[] → [] β

y : ys → case p y of

True → (:) β (f y) (mapFilter α β p ys f)

False → mapFilter α β p ys f

After simplification, the wrapper (marked with a ∗) is inlined into the body of the worker

(and to all the call sites), a few beta reductions happen and we get:

mapFilter∗ :: ∀αβ.(α→ Bool) → [α] → (α→ β) → [β]

mapFilter∗ = Λαβ.λ p xs f .mapFilter ′ α β xs p f

mapFilter ′ :: ∀αβ.[α] → (α→ Bool) → (α→ β) → [β]

mapFilter ′ = Λαβ.λ xs p f .

case xs of

[] → [] β

y : ys → case p y of

True → (:) β (f y) (mapFilter ′ α β ys p f)

False → mapFilter ′ α β ys p f

Since the wrapper is inlined at every call site — if the function is exported then both the

wrapper and the worker are exported — this transformation does not result in indirections,

so it does not degrade performance. The only disadvantage is a minute increase in code

size if the function is exported, because the wrapper needs to be kept as well. However, if

the function is not exported then at the end of compilation process there are no calls to the

wrapper and it is discarded by the occurrence analyser.

5.5 Two practical issues

In this section we examine to practical issues related to warm fusion. The first one is warm

fusion in the presence of separate compilation, and the second one is the use of warm fusion

to remove intermediate lists from one prominent and useful feature of functional languages:

list comprehensions.

5.5.1 Separate compilation

In previous sections, we have presented fusion for a large class of datatypes and detailed

the necessary transformations to fuse compositions of functions defined in a single module.

5.5. TWO PRACTICAL ISSUES 89

Fusion between functions within the same module is well understood and lies on sound

theoretical foundations.

Any nontrivial piece of software will however spread over more than one module. Module

systems have at least two roles:

1. they allow splitting up projects into manageable pieces, and

2. they enforce a layer of abstraction.

If a module system is only used to exploit benefits of 1, then from the compiler’s point of

view there is no difference between definitions in separate modules: the compiler sees all

the code, that is all the code defined in all the modules at once. On the other hand, if

a module system is used to enforce a layer of abstraction, it can hide information (types,

constructors of a type, definitions etc) from other modules. In this case, the compiler can

only deal with the module it is instructed to compile. This has the benefit that if a hidden

entity changes in module X, modules depending on X need not be recompiled, in other

words separate compilation is possible. Separate compilation is therefore a Good Thing

because it can reduce recompilation times.

Haskell’s module system is defined in Chapter 5 of the Haskell Report [PJH99]. Most of the

constructs of the module system (imports, some forms of exports, hiding) do not interfere

with the fusion transformation. For example, if a type T is not exported from the module

X and no functions over T are exported from X, then one can reasonably expect that fusion

will happen within the module, but there could be no opportunities for fusion outside the

module.

Difficulties arise when a module abstractly (without the constructors) exports a type T ,

which is the typical situation in the case of libraries. For example, an abstract datatype

(ADT) for sets could be defined as:

module Set (Set , empty , insert , isEmpty) where

data Set a =EmptySet | Insert a (Set a)

〈Implementation based on lists〉

empty :: Set a

empty =EmptySet

insert :: a → Set a → Set a

insert x s =Insert x s

〈more functions (destructors and predicates) on Sets〉

isEmpty :: Set a − > Bool

5.5. TWO PRACTICAL ISSUES 90

isEmpty EmptySet =True

isEmpty =False

Modules importing Set cannot construct values of type Set because they do not have access

to the constructors of the type. Since Set is abstract, the writer of the module is free to

change the implementation: modules depending on the Set module need not be recompiled

unless the interface changes. Despite the abstraction, one would like to have fusion to

make sure that compositions of functions over the datatype Set build no intermediate data

structures. For example, given the expression isEmpty (insert 1empty) one would like to

use fusion to avoid building the intermediate Set , containing the number 1. In order to

make this happen, one would need to export the cataSet and buildSet and the wrappers of

insert , empty , isEmpty . This would, however break the abstraction barrier and separate

compilation because the type of these functions encode the types of the constructors. If the

implementor of module Set changes the implementation but not the signature one would

expect that recompilation of modules importing Set is not necessary, which is not the case

if the wrappers and cataSet , buildSet is exported. To make this argument more concrete

consider the following example.

Given the module Set , fusion transformation would derive the following functions:

cataSet :: ∀αρ.ρ→ (α→ ρ→ ρ)→ Set α→ ρ (5.2)

buildSet :: ∀α.∀ρ.(ρ→ (α→ ρ→ ρ)→ ρ)→ Set α

According to the Haskell Report these functions would end up in interface files. Now

consider a change to the implementation of Set :

module Set (Set , empty , insert , isEmpty) where

data Set a =EmptySet | Insert a (Set a) (Set a) — !!! CHANGED !!!

〈Implementation based on trees〉

empty :: Set a

empty =EmptySet

insert :: a → Set a → Set a

insert x s =〈insertion to a balanced Tree〉

〈more functions (destructors and predicates) on Sets〉

isEmpty :: Set a − > Bool

isEmpty EmptySet =True

isEmpty =False

5.5. TWO PRACTICAL ISSUES 91

The interface of the module is not changed, so one could reasonably expect that modules

importing Set need not be recompiled. This is not the case, if buildSet and cataSet is ’silently’

exported to expose opportunities of fusion, because the type of these functions change to:

cataSet :: ∀αρ.ρ→ (α→ ρ→ ρ→ ρ)→ Set α→ ρ

buildSet :: ∀α.∀ρ.(ρ→ (α→ ρ→ ρ→ ρ)→ ρ)→ Set α (5.3)

Since the Set is exported abstractly we are not expecting recompilation of modules which

import Set . But this leads to anomalies because those modules are built with the assumption

that the catamorphism and build have types as in Equation 5.2, as opposed to the types

shown in Equation 5.3.

The proper type theoretical interpretation of abstract datatypes is that of existential quan-

tification [Car82]. Fusion for existentially quantified datatypes is an unexplored area,

therefore, in order to avoid anomalies we will refrain from attempting fusion for abstract

datatypes.

Instead, we shall take the following simple, conservative approach:

• T and all of its constructors are exported: cataT , buildT are both exported. A func-

tion f ’s wrappers are exported if the function is exported. For functions which are

not exported, at the end of fusion transformation wrappers are inlined to minimise

the overhead of extra function calls.

• T is not exported: cataT , buildT are derived for intramodule fusion but they are not

exported. Wrappers are not exported, but at the end of fusion transformation they

are inlined so the overhead of extra function calls can be minimised.

5.5.2 List comprehensions

List comprehensions are a syntactic feature of Haskell, which can greatly increase the ease

with which one can read and write Haskell programs. Since they have such a prominent role

it is important that their use is as efficient as it can be. Translating list comprehensions

from Haskell to Core has long been studied and several optimal desugaring schemes (see

Figure 5.3) have been proposed [Wad87b, Aug87]. The criterion for a translation scheme to

be optimal is that only one cons cell is used for each element in the result, in other words

the translation scheme is such that no intermediate lists are produced. Extensions to the

basic schemes often include features such as provision for optimising a chain of appended

list comprehensions, upholding the optimality criterion.

5.5. TWO PRACTICAL ISSUES 92

[e |] = [e]
[e | b, Q] = if b then [e |Q] else []
[e | p ← l , Q] = let

ok p =[e |Q]
ok =[]

in
concatMap ok l

[e | let decls, Q] = let decls in [e |Q]

Figure 5.2 Semantics of Haskell list comprehensions

If these translation schemes produce no intermediate lists, the question arises why do list

comprehensions need to be discussed in a thesis which deals with the removal of intermediate

data structures? The reason is that we would like to ensure that the resulting list can also

be avoided. As we shall see, optimal translations are nothing more than applying fusion to

the semantics given for clarity.

Consider the following expression:

f n = sum [p | p ← [1 .. n], odd p]

which computes the sum of odd numbers between 1 and n. If the semantics of Haskell list

comprehensions (see Figure 5.2 and the Haskell Report [PJH99]) were used to translate this

to Core, an intermediate list would be produced by the inner list comprehension [1 .. n]

and would be immediately consumed by the traversal (a filter) which applies the predicate

p to each element. This traversal then would build another list which would be consumed

by sum.

The optimal translation scheme, given in Figure 5.3 avoids the first intermediate list, but

the second remains.

Gill gives a desugaring scheme [Gil96, page 44], which is optimal for his cheap deforestation

technique, and proves it correct with respect to the semantics of list comprehensions (see

Figure 5.2). Contrary to his approach we calculate the optimal translation scheme from

the semantics by using only one program transformation technique: the technique of warm

fusion. We shall use exactly the same steps we advocate in this thesis: we turn functions to

explicit build form, then when possible to explicit cata form and will apply the cata-build

rule whenever possible.

We shall use the definition of Haskell list comprehensions in Figure 5.2 but for convenience

we put a T E or T Q in front of untranslated subexpressions. Also for convenience we do not

5.5. TWO PRACTICAL ISSUES 93

T E [[[E |QS]]] ≡ T Q [[[E |QS] ++ []]]
T Q [[[E |] ++ L]] ≡ (:) T E [[E]] T E [[L]]
T Q [[[E | B , QS] ++ L]] ≡ case T E [[B]] of

True → T Q [[[E |QS] ++ L]]
False → T Q [[L]]

T Q [[[E | P ← L1, QS] ++ L2]] ≡ let
h = λ us. case us of

[] → T E [[L2]]
(:) u

us ′ → case u of
P → T Q [[[E |QS]

++
(h us ′)]]

→ h us ′
in
(h T E [[L1]])

T Q [[[E | let DS , QS] ++ L]] ≡ let
T E [[DS]]

in
T Q [[[E |QS] ++ L]]

Figure 5.3 Traditional list comprehension desugaring scheme

use explicit type variables and we drop the superscripts from the cata and the build: it will

be understood that we mean cata [α] and build [α] with their expected types and definitions.

T E [[[E |QS]]]

〈introduce build〉

= build (T Q [[[E |QS]]])

〈there are four subcases: we deal with them one by one〉

Case 1.〈empty generator〉

T Q [[[E |]]] nil cons

= cata nil cons [T E [[E]]]

〈definition of [expr]〉

= cata nil cons ((:) T E [[E]] [])

〈cata of known constructor rule for (:)〉

= cons (T E [[E]]) (cata nil cons [])

〈cata of known constructor for []〉

= cons (T E [[E]]) nil .

Case 2.〈filter〉

T Q [[[E | B , QS]]] nil cons

5.5. TWO PRACTICAL ISSUES 94

〈definition〉

= cata nil cons (if T E [[B]] then T E [[[E |QS]]] else [])

〈translation of if〉

= cata nil cons (case T E [[B]] of

True → T E [[[E |QS]]]

False → [])
〈cata of case rule〉

= case T E [[B]] of

True → cata nil cons (T E [[[E |QS]]])

False → cata nil cons []
〈definition of T E and cata of known constructor〉

= case T E [[B]] of

True → cata nil cons (build (T Q [[[E |QS]]]))

False → nil
〈cata-build rule〉

= case T E [[B]] of

True → T Q [[[E |QS]]] nil cons

False → nil .
Case 3.〈generator〉

T Q [[[E | P ← L, QS]]] nil cons

〈definition〉

= cata nil cons (let

ok P ′ = T E [[[E |QS]]]

ok = []
in

concatMap ok (T E [[L]]))
〈translation of pattern matching〉

= cata nil cons (let

ok = λ P ′. case P ′ of

P → T E [[[E |QS]]]

→ []
in

concatMap ok (T E [[L]]))
〈ok is buildified and we get〉

= cata nil cons (let

ok = λ P ′.build (λ nil ′ cons ′. case P ′ of

P → T Q [[[E |QS]]]

nil ′ cons ′
→ nil ′)

in

concatMap ok (T E [[L]]))

5.5. TWO PRACTICAL ISSUES 95

〈cata of let〉

= let

ok = λ P ′.build (λ nil ′ cons ′. case P ′ of

P → T Q [[[E |QS]]] nil ′ cons ′

→ nil ′)
in

cata nil cons (concatMap ok (T E [[L]]))
〈build-cata form definition of concatMap〉

= let

ok = λ P ′.build (λ nil ′ cons ′. case P ′ of

P → T Q [[[E |QS]]] nil ′ cons ′

→ nil ′)
in

cata nil cons

((λ f xs.build (λ nil ′ cons ′.cata cmn cmc xs f nil ′ append)) ok (T E [[L]]))
〈β reductions〉

= let

ok = λ P ′.build (λ nil ′ cons ′. case P ′ of

P → T Q [[[E |QS]]] nil ′ cons ′

→ nil ′)
in

cata nil cons (build (λ nil ′ cons ′.cata cmn cmc (T E [[L]]) ok nil ′ append))
〈cata-build rule〉

= let

ok = λ P ′.build (λ nil ′ cons ′. case P ′ of

P → T Q [[[E |QS]]] nil ′ cons ′

→ nil ′)
in

cata cmn cmc (T E [[L]]) ok nil append .
Case 4.〈let〉

T Q [[[E | let DS , QS]]] nil cons

〈definition〉

= cata nil cons (let

DS

in

T E [[[E |QS]]])
〈case of let〉

5.5. TWO PRACTICAL ISSUES 96

= let

DS

in

cata nil cons (T E [[[E |QS]]])
〈cata-build rule〉

= let

DS

in

T Q [[[E |QS]]] nil cons.

Cases 1, 2 and 4 are clearly optimal: only one list is built with the abstracted constructors

nil and cons . If a good consumer (a function which consumes its argument with a cata) is

applied to the resulting list the cata-build rule applies the intermediate list is not built.

Case 3 is somewhat subtle. In particular, the presence of append is worrying. Consider

however, that L is a piece of source program and as such is always finite. Its translation

proceeds via the T E scheme resulting in a list valued (if it was not list valued the source

program would not be well typed) expression which starts with a build (see the definition

of T E on Page 93). So the translation of Case 3, produces a chain of applications of catas

to build. This chain is then reduced via the cata-build rule.

To see one example that append does indeed disappear consider the translation of the list

comprehension below. The example is of course artificially small, but anything longer would

fill up many pages.

T E [[[x | x ← [1, 2]]]]

〈definition〉

=build (λ nil cons.T Q [[[x | x ← [1, 2]]]])

〈generator〉

=build (λ nil cons. let

ok = λ x ′.build (λ nil ′ cons ′. case x ′ of

x → T Q [[[x |]]] nil ′ cons ′

→ nil ′)
in

cata cmn cmc (T E [[[1, 2]]]) ok nil append)
〈definition of T Q[[[x |]]], and the variable x always matches in the case〉

=build (λ nil cons. let

ok = λ x ′.build (λ nil ′ cons ′.cons ′ x nil ′)

in

cata cmn cmc (T E [[[1, 2]]]) ok nil append)
〈skipping several steps: T E [[[1, 2]]] gives〉

5.5. TWO PRACTICAL ISSUES 97

=build (λ nil cons. let

ok = λ x ′.build (λ nil ′ cons ′.cons ′ x nil ′)

in

cata cmn cmc (build (λ n c. c 1 (c 2 n))) ok nil append)
〈cata-build rule and beta reductions〉

=build (λ nil cons. let

ok = λ x ′.build (λ nil ′ cons ′.cons ′ x nil ′)

in

cmc 1 (cmc 2 cmn) ok nil append)
〈defintion: cmc = λz zs f n c.c(f z)(zs f n c) and beta reductions〉

=build (λ nil cons. let

ok = λ x ′.build (λ nil ′ cons ′.cons ′ x nil ′)

in

append (ok 1) (cmc 2 cmn ok nil append)
〈defintion: cmc = λz zs f n c.c(f z)(zs f n c) again and beta reductions〉

=build (λ nil cons. let

ok = λ x ′.build (λ nil ′ cons ′.cons ′ x nil ′)

in

append (ok 1) (append (ok 2) (cmn ok nil append))
〈definition: cmn = λf n c.n and beta reductions〉

=build (λ nil cons. let

ok = λ x ′.build (λ nil ′ cons ′.cons ′ x nil ′)

in

append (ok 1) (append (ok 2) nil)
〈definition of append for empty list〉

=build (λ nil cons. let

ok = λ x ′.build (λ nil ′ cons ′.cons ′ x nil ′)

in

append (ok 1) (ok 2)
〈definition: append = λxs ys n c.cata (cata n c ys) c xs and beta reductions〉

〈definition of ok〉

=build (λ nil cons.cata (cata nil cons (build (λ nil ′ cons ′.cons ′ 2 nil ′))) cons (ok 1))

〈cata-build and the definition of ok again〉

=build (λ nil cons.cata (cons 2 nil) cons (build (λ nil ′ cons ′.cons ′ 1 nil ′)))

〈cata-build rule〉

=build (λ nil cons.cons 1 (cons 2 nil)).

Simple examination shows that append is gone from the result, so the list is built optimally.

Other cases are completely similar to the example above, but the derivation is rather te-

5.5. TWO PRACTICAL ISSUES 98

T E [[[E |QS]]] ≡build (T Q [[[E |QS]]])
T Q [[[E |]]] n c ≡c (T E [[E]]) n
T Q [[[E | B , QS]]] n c ≡ case T E [[B]] of

True → T Q [[[E |QS]]] n c
False → n

T Q [[[E | P ← L, QS]]] n c ≡ let
ok = λ P ′.build (λ n ′ c′. case P ′ of

P → T Q [[[E |QS]]] n ′ c′

→ n ′)
— cmn and cmc are part of the build-cata form
— of concatMap

cmn = λ f n c.n
cmc = λ z zs f n c. c (f z) (zs f n c)

in
cata cmn cmc (T E [[L]]) ok n append

T Q [[[E | let DS , QS]]] n c ≡ let
T E [[DS]]

in
T Q [[[E |QS]]] n c

Figure 5.4 Optimal list comprehension desugaring scheme

dious. The function definitions in build-cata form we implicitly used in the derivation

for map, concat , append are the same what warm fusion would derive given their naive

definition. The reader is invited to verify that this is indeed the case. The rules which are

optimal if warm fusion is applied to the translation are summarised in Figure 5.4.

Chapter 6

Measuring Warm Fusion

We devote this chapter to the analysis of the effect of fusion transformation. The general

aspects of optimisation are discussed in Chapter 2.

6.1 Measuring warm fusion

In order to allow us to quantify the effect of the different transformations we turn on them

one by one.

1. Control run. As our control we use a version of the compiler (GHC-4.06) which

includes our optimisations but they are totally disabled. To demonstrate that the

inclusion of the transformations does not affect compilation times and binary sizes

when they are not used, we should include a complete set of numbers gathered from

compiling the benchmarks with an unmodified compiler. The reason we do not do this

is that there is no significant difference between a modified and unmodified compiler.

2. Normalised. Our first set of numbers are aimed to show that the normalisation

process does not affect execution speed of the resulting programs, because the extra

wrappers get inlined to the call sites. It does affect binary sizes as some of the extra

wrappers (the exported ones) need to remain.

3. Buildified only. The second set of numbers show how bad the result of buildify

is. As we noted earlier, buildify splits functions into two and more importantly adds

extra arguments to the recursive workers. The number of extra arguments depends on

the number of constructors the result type of the given function has. The importance

of reporting the results of buildify only is that if catify is unsuccessful, this gives us a

clue how bad things can get.

99

6.2. WHAT WE WANT TO MEASURE 100

We expect both total heap allocation and max heap residency to increase considerably

as no fusion is taking place.

4. Catified only. The same as above for catify. We expect a similar, but even greater

increase of both total allocation and max heap residency, because the transformation

splits a single function into as many functions as the inductive arguments type has.

No fusion is taking place.

5. Buildify and Catify. The effect of catifying the already buildified functions. This

results not only in splitting the original binding into many workers and wrappers, but

also that all the newly introduced catamorphisms are higher-order.

We expect a great increase of total heap allocation and max heap residency. This is

the situation when we transform programs to build-cata form but for some reason

fusion is not taking place i.e. these numbers are the ones we get in the worst possible

case.

6. All the transformations and fusion. How much fusion can gain on the results

of the previous runs. The hope is that total allocation and heap residency are both

smaller than in the control run. We also expect reduced execution times.

7. build inlined. This should improve on the results of the previous test as one level of

indirection is eliminated. Still the transformed functions do take the extra arguments.

This leaves us with seven different runs of the compiler for the four sets of benchmarks.

6.2 What we want to measure

Having decided on the number of different runs of the compiler, we need to decide what to

measure. In choosing the aspects we are trying to quantify we use the following principles:

• The numbers we gather should allow comparison with similar work. In particular we

use the very same benchmarks as used in Gill [Gil96] and report almost the same set

of data.

• We need measurements which substantiate claims we made earlier in this thesis.

The data we collect can be subdivided into two sets: the first set is about the programs

produced by the modified compiler while second is about the compiler itself. The first set

allows us to quantify the effect of the transformations, the second provides a clue if the

transformations are worthwhile. Both sets affect the user of the modified compiler.

6.3. HOW TO MEASURE IT? 101

• Execution speed. The whole point of performing an optimisation is to improve perfor-

mance! We measure Unix user time.

• Total heap allocation. Because warm fusion is an optimisation technique which elimi-

nates intermediate data structures, we expect it to reduce total heap allocation.

• Max Heap Residency. Another measure of memory usage.

• Binary size. During the first stage of fusion we often duplicated code (Page 61).

Measuring the size of the object files is therefore important.

• Compilation time. We would like to demonstrate that our implementation of warm

fusion is practical.

For the various sets of benchmarks we also report the minimum, the maximum, and the

geometric mean of the above. For a thorough discussion why geometric mean is preferable

to arithmetic mean see [FW86].

6.3 How to measure it?

According to the above mentioned second aspect of an optimisation we need to reduce some

resource requirement compared to the unoptimised program. But what is an unoptimised

program? In GHC there are several levels of optimisations, these can be set with flags to

the compiler:

• Unoptimised. Fiddling with the compiler switches one can turn off all optimisations

which are on by default. This results in horrendously inefficient code.

• The default is gotten by simply typing the compiler’s name followed by the programs

name. This results in relatively fast compilation, but slow programs.

• -0 optimised. Compilation takes visibly longer, but the code resulting code is defi-

nitely faster. This is the most frequently used level of optimisation.

• -O2 optimised. This is a higher level of optimisation, because it uses analysis and

techniques which are not used at previous levels and it is also more aggressive with

for example inlining.

There can be several arguments about which level to chose as our control run, but for

simplicity we use the third -O. As for the version of the compiler it is GHC-4.06. This

6.4. A DETAILED EXAMPLE 102

differs from the version we used in previous chapters because with the release of GHC-4.00

that one has become obsolete. In fact, GHC 3.03 does not build anymore on newer versions

of Linux (as of RedHat 6.0). Luckily this does not affect the transformations in any major

way. For the sake of completeness, all the programs were run on a machine with an Intel

Celeron 330MHz processor and 128MBytes of memory, running SuSe Linux 6.3.

6.4 A detailed example

In this section we give a full example of how fusion happens. It is full in the sense that code

which follows is copied straight out of the compiler’s output and has only been formatted

to take up less space. The example is of course artificially small, but anything reasonable

would take up just too much space.

We start with the program what the user writes. It uses a user defined datatype, which is

the same as the list datatype in the Standard Prelude. The definitions are also from the

Prelude.

module Main where

import Prelude hiding (map, length, iterate, take)

data List a = Nil | a :^: (List a) deriving (Show, Ord, Eq)

infixr 5 :^:

map f Nil = Nil

map f (x :^: xs) = (f x) :^: (map f xs)

length = foldl’ (\n _ -> n + 1) 0

foldl’ f a Nil = a

foldl’ f a (x:^:xs) = (foldl’ f $! f a x) xs

iterate f x = x :^: iterate f (f x)

take 0 _ = Nil

take _ Nil = Nil

take n (x:^:xs) | n>0 = x :^: take (n-1) xs

take _ _ = error "Prelude.take: negative argument"

main = print (length . map (+1) . map (*2) . take 1000 . iterate (+1) $ 1) >> return ()

The first step (see Figure 4.1) is deriving the map, the catamorphism, and the build for

this datatype. The name of each definition is composed from its functionality (cata, map,

build) with the name of the datatype attached to it. So, the map function for the list

datatype becomes map List. First, each function’s type is shown, then its body. In between,

6.4. A DETAILED EXAMPLE 103

[NoDiscard] says that the definition should not be dropped even if it is never referenced

in the rest of the program. For cata List, LLS describes the strictness properties of this

function: it is lazy in its first two argument, and strict in the third one.

Rec {

map_List :: (forall t_x2u5 t_x2u6.(t_x2u5 -> t_x2u6) -> List t_x2u5 -> List t_x2u6)

[NoDiscard]

map_List

= \ @ t_x2u2 @ t_x2uI f_x2uJ :: (t_x2u2 -> t_x2uI)

scrut_x2uH :: (List t_x2u2) ->

case scrut_x2uH of wild_B1 {

Nil -> $wNil @ t_x2uI;

:^: a_x2u1 b_x2u3 -> $w:^: @ t_x2uI (f_x2uJ a_x2u1)

(map_List @ t_x2u2 @ t_x2uI f_x2uJ b_x2u3)

}

end Rec }

Rec {

cata_List :: (forall t_x2us t_x2ur.t_x2ur -> (t_x2us -> t_x2ur -> t_x2ur) -> List t_x2us -> t_x2ur)

[NoDiscard] __S LLS

cata_List

= \ @ t_x2uh @ t_x2uK nil_x2uL :: t_x2uK

zczuzc_x2uM :: (t_x2uh -> t_x2uK -> t_x2uK)

scrut_x2up :: (List t_x2uh) ->

case scrut_x2up of wild_B1 {

Nil -> nil_x2uL;

:^: a_x2ug b_x2uj -> zczuzc_x2uM ((\ id_x2uN :: t_x2uh -> id_x2uN) a_x2ug)

(cata_List @ t_x2uh @ t_x2uK nil_x2uL zczuzc_x2uM b_x2uj)

}

end Rec }

Rec {

build_List :: (forall t_x2uw.(forall t_x2uv. t_x2uv -> (t_x2uw -> t_x2uv -> t_x2uv) -> t_x2uv)

-> List t_x2uw)

[NoDiscard]

build_List

= \ @ t_x2uw g_x2uu :: (forall t_x2uv.t_x2uv -> (t_x2uw -> t_x2uv -> t_x2uv) -> t_x2uv) ->

g_x2uu @ (List t_x2uw) ($wNil @ t_x2uw) ($w:^: @ t_x2uw)

end Rec }

The implementation uses GHC’s built-in transformation rules. Three rules need to be

derived: the cata-build rule, and the two rules for the catamorphism applied to the

constructors of the datatype. These are called cata of known constructor rules in the thesis.

"cata/build(List)" __forall {@ t_x2us @ t_x2ur a_x2uQ :: t_x2ur b_x2uR :: (t_x2us -> t_x2ur -> t_x2ur)

c_x2uS :: (forall t_x2uv.t_x2uv -> (t_x2uw -> t_x2uv -> t_x2uv) -> t_x2uv)}

cata_List @ t_x2us @ t_x2ur a_x2uQ b_x2uR (build_List @ t_x2us c_x2uS)

= (c_x2uS @ t_x2ur a_x2uQ b_x2uR) ;

"cata/Nil" __forall {@ t_x2uE @ t_x2uT nil_x2uU :: t_x2uT zczuzc_x2uV :: (t_x2uE -> t_x2uT -> t_x2uT)}

cata_List @ t_x2uE @ t_x2uT nil_x2uU zczuzc_x2uV ($wNil @ t_x2uE)

= nil_x2uU ;

6.4. A DETAILED EXAMPLE 104

"cata/:^:" __forall {@ t_x2uE @ t_x2uT nil_x2uU :: t_x2uT zczuzc_x2uV :: (t_x2uE -> t_x2uT -> t_x2uT)

a_x2uD :: t_x2uE b_x2uG :: (List t_x2uE)}

cata_List @ t_x2uE @ t_x2uT nil_x2uU zczuzc_x2uV ($w:^: @ t_x2uE a_x2uD b_x2uG)

= (zczuzc_x2uV a_x2uD (cata_List @ t_x2uE @ t_x2uT nil_x2uU zczuzc_x2uV b_x2uG)) ;

The normalisation pass generates the function called nmap from the definition of the user

supplied map, and buildify generates wnmap. nmap and the original map are not shown because

after normalisation the wrapper is inlined at every call site (in the body of main) and

becomes dead. So wnmap is the worker for map and all the wrappers have been eliminated.

Rec {

wnmap :: (forall a b.List a -> (a -> b)

-> __u - (forall t_s2CW.t_s2CW -> __u - ((b -> t_s2CW -> t_s2CW) -> t_s2CW)))

__AL 4

wnmap

= \ @ a @ b x_s2Cr :: (List a) x_s2Co :: (a -> b) @ t_s2CW

c1_s2CX OneShot :: t_s2CW c2_s2CY OneShot :: (b -> t_s2CW -> t_s2CW) ->

case x_s2Cr of wild_B1 {

Nil -> c1_s2CX;

:^: x xs -> c2_s2CY (x_s2Co x) (wnmap @ a @ b xs x_s2Co @ t_s2CW c1_s2CX c2_s2CY)

}

end Rec }

The same thing happens to the generated map List function. It’s wrappers however are

not dropped, because we may need them at later stages, i.e. in catify. nmap List is the

worker of map List, but it becomes a wrapper during buildify. wnmap List is the worker of

the generated map.

Rec {

wnmap_List :: (forall t_x2u5 t_x2u6.List t_x2u5 -> (t_x2u5 -> t_x2u6)

-> __u - (forall t_s2CS.t_s2CS -> __u - ((t_x2u6 -> t_s2CS -> t_s2CS) -> t_s2CS)))

__AL 4

wnmap_List

= \ @ t_x2u5 @ t_x2u6 x_s2Cc :: (List t_x2u5) x_s2C9 :: (t_x2u5 -> t_x2u6)

@ t_s2CS c1_s2CT OneShot :: t_s2CS c2_s2CU OneShot :: (t_x2u6 -> t_s2CS -> t_s2CS) ->

case x_s2Cc of wild_B1 {

Nil -> c1_s2CT;

:^: a_x2u1 b_x2u3 ->

c2_s2CU (x_s2C9 a_x2u1)

(wnmap_List @ t_x2u5 @ t_x2u6 b_x2u3 x_s2C9 @ t_s2CS c1_s2CT c2_s2CU)

}

end Rec }

nmap_List :: (forall t_x2u5 t_x2u6.List t_x2u5 -> (t_x2u5 -> t_x2u6) -> List t_x2u6)

__AL 2

nmap_List

= __inline_me (\ @ t_x2u5 @ t_x2u6 x_s2Cc :: (List t_x2u5) x_s2C9 :: (t_x2u5 -> t_x2u6) ->

build_List @ t_x2u6 (wnmap_List @ t_x2u5 @ t_x2u6 x_s2Cc x_s2C9))

map_List :: (forall t_x2u5 t_x2u6.(t_x2u5 -> t_x2u6) -> List t_x2u5 -> List t_x2u6)

6.4. A DETAILED EXAMPLE 105

[NoDiscard] __AL 2

map_List

= __inline_me (\ @ t_x2u5 @ t_x2u6 x_s2C9 :: (t_x2u5 -> t_x2u6) x_s2Cc :: (List t_x2u5) ->

nmap_List @ t_x2u5 @ t_x2u6 x_s2Cc x_s2C9)

The same thing happened to the function take what happened to map. Its wrappers have

also been eliminated. wntake as expected is a good producer, so the newly introduced cata

fused with the build of its own wrapper.

Rec {

wntake :: (forall a.List a -> Int

-> __u - (forall t_s2D4.t_s2D4 -> __u - ((a -> t_s2D4 -> t_s2D4) -> t_s2D4)))

__AL 4

wntake

= \ @ a x_s2CB :: (List a) x_s2Cz :: Int @ t_s2D4

c1_s2D5 OneShot :: t_s2D4 c2_s2D6 OneShot :: (a -> t_s2D4 -> t_s2D4) ->

case x_s2Cz of wild_B1 { I# ds_d2nA ->

case ds_d2nA of ds_X2nA {

0 -> c1_s2D5;

__DEFAULT ->

case x_s2CB of wild_X1 {

Nil -> c1_s2D5;

:^: x xs ->

case ># ds_X2nA 0 of wild_X2 {

True ->

c2_s2D6

x

(let {

s_s2BI :: Int#

__AL 0

s_s2BI

= -# ds_X2nA 1

} in wntake @ a xs ($wI# s_s2BI) @ t_s2D4 c1_s2D5 c2_s2D6);

False -> __coerce t_s2D4 (error @ (List a) lvl_s2AA)

}

}

}

}

end Rec }

The original iterate function is also a good producer, but it is not affected by normalisation

because that is only performed for functions which are good consumers. This explains the

name witerate: there is no wniterate as that would be generated by the normalisation

pass.

Rec {

witerate :: (forall a.(a -> a) -> a

-> __u - (forall t_s2D0.t_s2D0 -> __u - ((a -> t_s2D0 -> t_s2D0) -> t_s2D0)))

__AL 4

witerate

6.4. A DETAILED EXAMPLE 106

= \ @ a f :: (a -> a) x :: a @ t_s2D0

c1_s2D1 OneShot :: t_s2D0 c2_s2D2 OneShot :: (a -> t_s2D0 -> t_s2D0) ->

c2_s2D2 x (witerate @ a f (f x) @ t_s2D0 c1_s2D1 c2_s2D2)

end Rec }

Finally, main. All the normalised wrappers and the build wrappers are inlined so only calls

to the workers remain.

main :: (IO ())

[NoDiscard] __AL 1

main

= __coerce (IO ())

(\ s5 :: (State# RealWorld) ->

case nfoldl’

@ Int

@ Integer

(build_List

@ Integer

(wnmap

@ Integer

@ Integer

(build_List

@ Integer

(wnmap

@ Integer

@ Integer

(build_List

@ Integer

(wntake

@ Integer

(build_List

@ Integer

(witerate

@ Integer

(\ s_s2wb :: Integer ->

PrelNum.+1 s_s2wb lit_a1Yu)

lit_a1Yu))

($wI# 1000)))

(\ s_s2w9 :: Integer -> PrelNum.*1 s_s2w9 lvl_s2AL)))

(\ s_s2w7 :: Integer -> PrelNum.+1 s_s2w7 lit_a1Yu)))

(\ n :: Int ds_d2tS :: Integer ->

case n of wild { I# x1 ->

let {

s_s2BM :: Int#

__AL 0

s_s2BM

= +# x1 1

} in $wI# s_s2BM

})

($wI# 0)

of w { I# ww ->

case PrelIO.$whPutStr

6.4. A DETAILED EXAMPLE 107

PrelHandle.stdout (PrelShow.$wshowSignedInt 0 ww ($w[] @ Char)) s5

of wild { (# new_s, a1 #) ->

case PrelIO.$whPutChar PrelHandle.stdout ’

’ new_s

of wild { (# new_s, a1 #) ->

(# new_s, $w() #)

}

}

})

Static argument transformation (after a pass of simplification) transforms the workers such

that there is a new local definition with only one argument. This helps to generate first-order

catamorphisms which are more efficient than their higher-order counterparts. In general,

SAT drops as many static arguments as possible, but it does not always succeeds.

wnmap :: (forall a b.List a -> (a -> b)

-> __u - (forall t_s2CW.t_s2CW -> __u - ((b -> t_s2CW -> t_s2CW) -> t_s2CW)))

__AL 4

wnmap

= \ @ a @ b x_s2Cr :: (List a) x_s2Co :: (a -> b) @ t_s2CW

c1_s2CX OneShot :: t_s2CW c2_s2CY OneShot :: (b -> t_s2CW -> t_s2CW) ->

__letrec {

_sat_s37m :: (List a -> t_s2CW)

__AL 1

_sat_s37m

= \ x_X2Cr :: (List a) ->

case x_X2Cr of wild_B1 {

Nil -> c1_s2CX; :^: x xs -> c2_s2CY (x_s2Co x) (_sat_s37m xs)

};

} in _sat_s37m x_s2Cr

Notice, that wntake has two non-static arguments, so the local function has two arguments.

This results in a higher-order catamorphism, which passes its integer argument around.

wntake :: (forall a.List a -> Int

-> __u - (forall t_s2D4.t_s2D4 -> __u - ((a -> t_s2D4 -> t_s2D4) -> t_s2D4)))

__AL 4

wntake

= \ @ a x_s2CB :: (List a) x_s2Cz :: Int @ t_s2D4

c1_s2D5 OneShot :: t_s2D4 c2_s2D6 OneShot :: (a -> t_s2D4 -> t_s2D4) ->

__letrec {

_sat_s37o :: (List a -> Int -> t_s2D4)

__AL 2

_sat_s37o

= \ x_X2CB :: (List a) x_X2Cz :: Int ->

case x_X2Cz of wild_B1 { I# ds_d2nA ->

case ds_d2nA of ds_X2nA {

0 -> c1_s2D5;

__DEFAULT ->

case x_X2CB of wild_X1 {

Nil -> c1_s2D5;

6.4. A DETAILED EXAMPLE 108

:^: x xs ->

case ># ds_X2nA 0 of wild_X2 {

True ->

c2_s2D6

x

(let {

s_s2BI :: Int#

__AL 0

s_s2BI

= -# ds_X2nA 1

} in _sat_s37o xs ($wI# s_s2BI));

False -> __coerce t_s2D4 (error @ (List a) lvl_s2AA)

}

}

}

};

} in _sat_s37o x_s2CB x_s2Cz

Catify does two things. First, it transforms the local bindings into a catamorphism, then

it encourages the simplifier to inline the now non-recursive local binding. This results in

the most efficient definitions for wnmap and wntake. The catamorphism for wnmap does not

pass its static argument, the function, around.

wnmap :: (forall a b.List a -> (a -> b)

-> __u - (forall t_s2CW.t_s2CW -> __u - ((b -> t_s2CW -> t_s2CW) -> t_s2CW)))

__AL 4

wnmap

= \ @ a @ b x_s2Cr :: (List a) x_s2Co :: (a -> b) @ t_s2CW

c1_s2CX OneShot :: t_s2CW c2_s2CY OneShot :: (b -> t_s2CW -> t_s2CW) ->

cata_List @ a @ t_s2CW c1_s2CX

(\ r_s37y :: a r_s37A :: t_s2CW -> c2_s2CY (x_s2Co r_s37y) r_s37A)

x_s2Cr

The catamorphism for wntake is higher-order (see the second type argument to cata List)!

wntake :: (forall a.List a -> Int

-> __u - (forall t_s2D4.t_s2D4 -> __u - ((a -> t_s2D4 -> t_s2D4) -> t_s2D4)))

__AL 4

wntake

= \ @ a x_s2CB :: (List a) x_s2Cz :: Int @ t_s2D4

c1_s2D5 OneShot :: t_s2D4 c2_s2D6 OneShot :: (a -> t_s2D4 -> t_s2D4) ->

cata_List @ a @ (Int -> t_s2D4)

(\ x_X2Cz :: Int -> case x_X2Cz of wild_B1 { I# ds_d2nA -> c1_s2D5 })

(\ r_s385 :: a r_s387 :: (Int -> t_s2D4) x_X2Cz :: Int ->

case x_X2Cz of wild_B1 { I# ds_d2nA ->

case ds_d2nA of ds_X2nA {

0 -> c1_s2D5;

__DEFAULT ->

case ># ds_X2nA 0 of wild_X2 {

True -> c2_s2D6 r_s385 (let {s_s2BI :: Int#

__AL 0

6.4. A DETAILED EXAMPLE 109

s_s2BI = -# ds_X2nA 1

} in r_s387 ($wI# s_s2BI));

False -> __coerce t_s2D4 (error @ (List a) lvl_s2AA)

}

})

x_s2CB

x_s2Cz

After catify, the already transformed workers wnmap and wntake have become non-recursive

and therefore they could be inlined into main. After applying the cata-build rule we get:

$wmain :: (__u - (State# RealWorld -> (# State# RealWorld, () #)))

[NoDiscard] __AL 1 __S P

$wmain

= \ w :: (State# RealWorld) ->

case nfoldl’

@ Int

@ Integer

(witerate

@ Integer

(\ s3 :: Integer -> PrelNum.+1 s3 lit)

lit

@ (Int -> List Integer)

(\ x :: Int -> case x of wild { I# ds -> $wNil @ Integer })

(\ r :: Integer r1 :: (Int -> List Integer) x :: Int ->

case x of wild { I# ds ->

case ds of ds1 {

0 -> $wNil @ Integer;

__DEFAULT ->

case ># ds1 0 of wild1 {

True ->

let {

s3 :: Integer

s3 =

PrelNum.+1 (PrelNum.*1 r lvl) lit } in

let { s4 :: (List Integer)

s4 =

let {

s5 :: Int#

s5

= -# ds1 1

} in r1 ($wI# s5)

} in

$w:^: @ Integer s3 s4;

False -> error @ (List Integer) lvl1

}

}

})

($wI# 1000))

(\ n :: Int ds :: Integer ->

case n of wild { I# x1 ->

let {

6.4. A DETAILED EXAMPLE 110

s3 :: Int#

s3

= +# x1 1

} in $wI# s3

})

s1

of w1 { I# ww ->

case PrelIO.$whPutStr

PrelHandle.stdout (PrelShow.$wshowSignedInt 0 ww ($w[] @ Char)) w

of wild { (# new_s, a1 #) ->

case PrelIO.$whPutChar PrelHandle.stdout ’

’ new_s

of wild1 { (# new_s1, a11 #) ->

(# new_s1, $w() #)

}

}

}

Notice, that we failed to transform nfoldl’, so the intermediate list built by witerate

remains, but all the others, the one between the first map and the second disappeared.

Running the original program gives:

angel 167 (haskell/andreas): unopt +RTS -Sstderr

unopt +RTS -Sstderr

unopt +RTS -Sstderr

Alloc Collect Live GC GC TOT TOT Page Flts

bytes bytes bytes user elap user elap

1000

143028 0.00 0.00

143,028 bytes allocated in the heap

0 bytes copied during GC

0 collections in generation 0 (0.00s)

0 collections in generation 1 (0.00s)

1 Mb total memory in use

INIT time 0.01s (0.00s elapsed)

MUT time 0.00s (0.01s elapsed)

GC time 0.00s (0.00s elapsed)

EXIT time 0.00s (0.00s elapsed)

Total time 0.01s (0.01s elapsed)

%GC time 0.0% (0.0% elapsed)

Alloc rate 14,302,800 bytes per MUT second

Productivity 0.0% of total user, 0.0% of total elapsed

The same program with warm fusion gives:

6.4. A DETAILED EXAMPLE 111

angel 168 (haskell/andreas): opt +RTS -Sstderr

opt +RTS -Sstderr

opt +RTS -Sstderr

Alloc Collect Live GC GC TOT TOT Page Flts

bytes bytes bytes user elap user elap

1000

106912 0.00 0.00

106,912 bytes allocated in the heap

0 bytes copied during GC

0 collections in generation 0 (0.00s)

0 collections in generation 1 (0.00s)

1 Mb total memory in use

INIT time 0.00s (0.00s elapsed)

MUT time 0.00s (0.00s elapsed)

GC time 0.00s (0.00s elapsed)

EXIT time 0.00s (0.00s elapsed)

Total time 0.00s (0.00s elapsed)

%GC time 0.0% (0.0% elapsed)

Alloc rate 1,069,120,000 bytes per MUT second

Productivity 100.0% of total user, 2145388542.0% of total elapsed

The total heap allocation for the unoptimised program is 143, 028 bytes, while for the

optimised one is 106, 912. A good 25% decrease in total allocation.

The importance of static argument transformation can not be stressed enough. Had we not
done SAT after buildify, catify would have given:

wnmap :: (forall a b.List a -> (a -> b)

-> __u - (forall t_s2C4.t_s2C4 -> __u - ((b -> t_s2C4 -> t_s2C4) -> t_s2C4)))

__AL 4

wnmap

= \ @ a @ b ->

cata_List

@ a

@ ((a -> b)

-> __u - (forall t_s2C4.

t_s2C4 -> __u - ((b -> t_s2C4 -> t_s2C4) -> t_s2C4)))

(\ x_s2Bx :: (a -> b)

@ t_s2C4

c1_s2C5 OneShot :: t_s2C4

c2_s2C6 OneShot :: (b -> t_s2C4 -> t_s2C4) ->

c1_s2C5)

(\ r_s2CC :: a

r_s2CE :: ((a -> b)

-> __u - (forall t_s2C4.

t_s2C4 -> __u - ((b -> t_s2C4 -> t_s2C4) -> t_s2C4)))

6.4. A DETAILED EXAMPLE 112

x_s2Bx :: (a -> b)

@ t_s2C4

c1_s2C5 OneShot :: t_s2C4

c2_s2C6 OneShot :: (b -> t_s2C4 -> t_s2C4) ->

c2_s2C6 (x_s2Bx r_s2CC) (r_s2CE x_s2Bx @ t_s2C4 c1_s2C5 c2_s2C6))

wntake :: (forall a.List a -> Int

-> __u - (forall t_s2Cc.t_s2Cc -> __u - ((a -> t_s2Cc -> t_s2Cc) -> t_s2Cc)))

__AL 4

wntake

= \ @ a ->

cata_List

@ a

@ (Int

-> __u - (forall t_s2Cc.

t_s2Cc -> __u - ((a -> t_s2Cc -> t_s2Cc) -> t_s2Cc)))

(\ x_s2BI :: Int

@ t_s2Cc

c1_s2Cd OneShot :: t_s2Cc

c2_s2Ce OneShot :: (a -> t_s2Cc -> t_s2Cc) ->

case x_s2BI of wild_B1 { I# ds_d2nc ->

case ds_d2nc of ds_X2nc { 0 -> c1_s2Cd; __DEFAULT -> c1_s2Cd }

})

(\ r_s2D9 :: a

r_s2Db :: (Int

-> __u - (forall t_s2Cc.

t_s2Cc -> __u - ((a -> t_s2Cc -> t_s2Cc) -> t_s2Cc)))

x_s2BI :: Int

@ t_s2Cc

c1_s2Cd OneShot :: t_s2Cc

c2_s2Ce OneShot :: (a -> t_s2Cc -> t_s2Cc) ->

case x_s2BI of wild_B1 { I# ds_d2nc ->

case ds_d2nc of ds_X2nc {

0 -> c1_s2Cd;

__DEFAULT ->

case ># ds_X2nc 0 of wild_X2 {

True ->

c2_s2Ce

r_s2D9

(let {

s_s2AQ :: Int#

__AL 0

s_s2AQ

= -# ds_X2nc 1

} in r_s2Db ($wI# s_s2AQ) @ t_s2Cc c1_s2Cd c2_s2Ce);

False -> __coerce t_s2Cc (error @ (List a) lvl_s2zI)

}

}

})

Contrast these with the previously given definitions! The only difference is that now all

the arguments to wntake and wnmap are passed around in the recursive call. main changes

6.4. A DETAILED EXAMPLE 113

accordingly to:

$wmain :: (__u - (State# RealWorld -> (# State# RealWorld, () #)))

[NoDiscard] __AL 1 __S P

$wmain

= \ w :: (State# RealWorld) ->

case nfoldl’

@ Int

@ Integer

(witerate

@ Integer

(\ s7 :: Integer -> PrelNum.+1 s7 lit)

lit

@ (Int -> __u - (forall t. t -> __u - ((Integer -> t -> t) -> t)))

(\ x :: Int @ t c1 :: t c2 :: (Integer -> t -> t) ->

case x of wild { I# ds -> c1 })

(\ r :: Integer

r1 :: (Int

-> __u - (forall t. t -> __u - ((Integer -> t -> t) -> t)))

x :: Int

@ t

c1 :: t

c2 :: (Integer -> t -> t) ->

case x of wild { I# ds ->

case ds of ds1 {

0 -> c1;

__DEFAULT ->

case ># ds1 0 of wild1 {

True ->

c2 r

(let {

s7 :: Int#

s7

= -# ds1 1

} in r1 ($wI# s7) @ t c1 c2);

False -> __coerce t (error @ (List Integer) lvl1)

}

}

})

($wI# 1000)

@ ((Integer -> Integer)

-> __u - (forall t. t -> __u - ((Integer -> t -> t) -> t)))

(s3 @ Integer @ Integer)

(s2 @ Integer @ Integer)

(\ s7 :: Integer -> PrelNum.*1 s7 lvl)

@ ((Integer -> Integer)

-> __u - (forall t. t -> __u - ((Integer -> t -> t) -> t)))

(s3 @ Integer @ Integer)

(s2 @ Integer @ Integer)

(\ s7 :: Integer -> PrelNum.+1 s7 lit)

@ (List Integer)

($wNil @ Integer)

($w:^: @ Integer))

6.4. A DETAILED EXAMPLE 114

(\ n :: Int ds :: Integer ->

case n of wild { I# x1 ->

let {

s7 :: Int#

s7

= +# x1 1

} in $wI# s7

})

s5

of w1 { I# ww ->

case PrelIO.$whPutStr

PrelHandle.stdout (PrelShow.$wshowSignedInt 0 ww ($w[] @ Char)) w

of wild { (# new_s, a1 #) ->

case PrelIO.$whPutChar PrelHandle.stdout ’

’ new_s

of wild1 { (# new_s1, a11 #) ->

(# new_s1, $w() #)

}

}

}

Fusion still takes place (GHC also reports the same number of applications of the cata-build

rule): this can be seen from that nfoldl’ is applied to witerate, so no intermediate list

exists in between the two functions. But now look at the total allocations:

angel 170 (haskell/andreas): a.out +RTS -Sstderr

a.out +RTS -Sstderr

a.out +RTS -Sstderr

Alloc Collect Live GC GC TOT TOT Page Flts

bytes bytes bytes user elap user elap

1000

207544 0.00 0.00

207,544 bytes allocated in the heap

0 bytes copied during GC

0 collections in generation 0 (0.00s)

0 collections in generation 1 (0.00s)

1 Mb total memory in use

INIT time 0.00s (0.00s elapsed)

MUT time 0.00s (0.00s elapsed)

GC time 0.00s (0.00s elapsed)

EXIT time 0.00s (0.00s elapsed)

Total time 0.00s (0.00s elapsed)

%GC time 0.0% (0.0% elapsed)

Alloc rate 2,075,440,000 bytes per MUT second

Productivity 100.0% of total user, 307018953.7% of total elapsed

6.4. A DETAILED EXAMPLE 115

Total allocation almost doubled compared to the run when we used static argument trans-

formation and increased by 50% compared to the unoptimised program. The cata-build

rule has been applied the very same number of times: 7 (the compiler’s output is not

shown). It is applied four times to buildify the definitions of map, take, iterate, and

the derived map List, and three times to eliminate the intermediate lists from the original

program between, iterate and take, take and the first map, and the first and the second

map. The explanation for this phenomenon is in wmain: witerate is now applied to about

20 arguments, which are higher-order functions. It is reasonable to conclude that the STG

machine is not particularly efficient when executing higher-order code.

A remark concerning the Standard Prelude definition of length is not inappropriate here.

It is defined, for efficiency reasons, in terms of foldl’, which is the strict version of folding

from the left. Because it is folding from the left, we failed to turn it to a catamorphism,

therefore the intermediate list between witerate and length remained. Had it been defined

with a foldr, we would have the following result (only wmain is shown, as length’s definition

is trivial):

$wmain :: (__u - (State# RealWorld -> (# State# RealWorld, () #)))

[NoDiscard] __AL 1 __S P

$wmain

= \ w :: (State# RealWorld) ->

case PrelIO.$whPutStr

PrelHandle.stdout

(PrelNum.showSignedInteger

PrelBase.zeroInt

(witerate

@ Integer

(\ s3 :: Integer -> PrelNum.+1 s3 lit)

lit

@ (Int -> Integer)

(\ x :: Int -> case x of wild { I# ds -> c1 })

(\ r :: Integer r1 :: (Int -> Integer) x :: Int ->

case x of wild { I# ds ->

case ds of ds1 {

0 -> c1;

__DEFAULT ->

case ># ds1 0 of wild1 {

True ->

let {

s3 :: Int#

s3

= -# ds1 1

} in PrelNum.+1 lit (r1 ($wI# s3));

False -> __coerce Integer (error @ (List Integer) lvl)

}

}

})

($wI# 1000))

6.4. A DETAILED EXAMPLE 116

($w[] @ Char))

w

of wild { (# new_s, a1 #) ->

case PrelIO.$whPutChar PrelHandle.stdout ’

’ new_s

of wild1 { (# new_s1, a11 #) ->

(# new_s1, $w() #)

}

}

Not a single list constructor remains: we managed to eliminate all the intermediate data

structures. This is because length is now a catamorphism (GHC also reports that the

cata-build rule has been applied 8 times), the intermediate list between witerate and

length also disappeared.

angel 57 (haskell/andreas): a.out +RTS -Sstderr

a.out +RTS -Sstderr

a.out +RTS -Sstderr

Alloc Collect Live GC GC TOT TOT Page Flts

bytes bytes bytes user elap user elap

1000

71028 0.00 0.00

71,028 bytes allocated in the heap

0 bytes copied during GC

0 collections in generation 0 (0.00s)

0 collections in generation 1 (0.00s)

1 Mb total memory in use

INIT time 0.00s (0.00s elapsed)

MUT time 0.01s (0.00s elapsed)

GC time 0.00s (0.00s elapsed)

EXIT time 0.00s (0.00s elapsed)

Total time 0.01s (0.00s elapsed)

%GC time 0.0% (0.0% elapsed)

Alloc rate 7,102,800 bytes per MUT second

Productivity 100.0% of total user, 35756475700.0% of total elapsed

The total allocation is half of that the original, unoptimised (-O2, without warm fusion)

program. It appears that the presence of the warm fusion optimisation affects how functions

should be defined: with warm fusion, manually introducing strictness leads to decreased

performance, while without warm fusion strict versions of functions are sometimes more

efficient. This substantiates the saying: more haste, less speed.

6.5. THE BENCHMARKS 117

Program Description

exp3 8 Calculate 38 using Naturals
gen regexps Generate all the expansions of a generalised regular expression
paraffins Generation of radicals
primes Generate the first 1500 prime numbers
queens Count the the number of solutions to the ”n queens” problem
rfib nfib 30 with Doubles
tak Calculate tak 24 16 8
x2n1 Calculate a root to the equation xn = 1 using complex numbers

Table 6.1 Programs of the imaginary subset

6.5 The benchmarks

To allow comparison with similar work we follow Gill [Gil96] and use the nofib benchmark

suite. The nofib suite is divided into three subsets:

• the imaginary or toy subset: trivial few-liners like queens and fib. Mostly used in

the literature to demonstrate the usefulness of optimisations which usually remain

unsubstantiated afterwards.

• the spectral subset: somewhat bigger programs. Following Gill [Gil96] we include

Hartel’s [HL93, Har94] benchmarks.

• the real subset: programs that are written to get a job done.

The programs with brief description and their original authors are listed in Tables 6.1, 6.2, 6.3

and 6.4. Data is gathered from the nofib suite directly (i.e. from the source) or when the

code is completely unannotated from Gill [Gil96].

6.6 A short analysis of the benchmarks

Before we give endless pages of numbers of several different runs of the compiler we would

like to ’guess’ what our numbers could be. We make this guess based on the limitations of

the implementation and our expectations.

1. The Haskell Prelude is not put through the optimisation1. The difficulty

with optimising the Standard Prelude is that a number of definitions, types, and

1It may be surprising to the uninitiated but the binary of the Glasgow Haskell Compiler, until very recently
— GHC-4.06 is not an exception — is compiled without -O, i.e. warm fusion would not be attempted anyway.

6.6. A SHORT ANALYSIS OF THE BENCHMARKS 118

Program Description Author

awards Public awards scheme Kevin Hammond
banner Simple banner program Mark P Jones
boyer Boyer benchmark Denis Howe
boyer2 Gabriel benchmark ’Boyer’
calendar Calendar program Mark P Jones
cichelli Perfect hashing function Iain Checkland
circsim Circuit simulator David King
clausify Reducing propositions to clausal form Colin Runciman
cse Common subexpression elimination Mark P Jones
eliza Pseudo-psychoanalyst Mark P Jones
expert Minimal expers system Ian Holyer
fibheaps Fibonacci heaps Chris Okasaki
fish

knights Knights tour Jonathan Hill
life Game of life John Launchbury
mandel Mandelbrot set generator Jonathan Hill
mandel2 Mandelbrot set generator David Hanley
minimax Tic-tac-toe Iain Checkland
multiplier Binary multiplier John T O’Donnell
pretty Pretty printer
primetest Probabilistic primality testing David Lester
rewrite Rewriting system Mike Spivey
scc Strongly connected components of a graph John Launchbury
simple Standard Id benchmark
sorting Sorting algorithms Will Partain
sphere Ray tracer for spheres David King

Table 6.2 Programs of the spectral subset

functions in the Prelude are also hard-wired into the compiler itself and in some

cases these hard-wired entities silently take precedence over the text of the files which

define these datatypes and functions. In particular, the most commonly used List

datatype is affected by this. Attempting fusion for the built-in List datatype is further

complicated by the new RULES mechanism in GHC. The RULES mechanism is used to

implement cheap deforestation ([Gil96]) — amongst other transformations, which can

be described by an appropriately typed one-step rewrite rule — but it does not attempt

to turn arbitrary functions into build-cata form.

In order to reap the benefits of warm fusion, we also use the aforementioned mecha-

nism, but for historic reasons the function which we call cata in this thesis is called

foldr in Haskell with a slightly different type: ∀ α β.(α → β → β) → β → [α] → β

while the cata — as derived by the methods described in this thesis — would have

6.6. A SHORT ANALYSIS OF THE BENCHMARKS 119

Program Description

comp lab zift Image processing application
event Event driven simulation
fft Two Fast Fourier Transforms
genfft Generation of synthetic FFT programs
ida Solution of a particular configuration of the n-puzzle
listcompr Compilation of list comprehensions
listcopy Compilation of list comprehensions
parstof Wadler’s method for lexing and parsing
sched Calculation of an optimum schedule of parallel jobs
solid Point membership classification algorithm
transform Transformation of a number of programs represented as synchronous

process networks into master-slave style parallel programs
typecheck Polymorphic typechecking of a set of function definitions
wang Wang’s algorithm for solving a system of linear equations

Table 6.3 Programs of the spectral subset: the Hartel Benchmarks

Program Description Author

anna Strictness analyser
bspt BSP tree modeller Iain Checkland
compress Text compression Paul Sanders
ebnf2ps Syntax diagram generator Peter Thiemann
fluid Fluid dynamics program Xiaoming Zhang
fulsom Solid modeling Duncan Sinclair
gamteb Monte Carlo photon transport Pat Fasel
gg Graphs from GRIP statistics Iain Checkland
grep Grep program
hpg Haskell program generator Nick North
infer Hindley-Milner type inference Phil Wadler
lift Fully-lazy lambda lifter David Lester & Si-

mon Peyton Jones
maillist Mailing list generator Paul Hudak
mkhprog Command line parser generator N D North
parser Partial Haskell parser Julian Seward
prolog mini-Prolog interpreter Mark P Jones
reptile Escher tiling program Sandra Foubister
rsa RSA encryption John Launchbury
symalg Command line evaluator
veritas Theorem prover Gareth Howells

Table 6.4 Programs of the real subset

6.7. SUMMARY 120

type ∀ α β.β → (α → β → β) → [α] → β i.e. the two arguments standing for []

and (:) are swapped around. The two methods, the hard-wired and somewhat op-

timised functions in the Prelude, and the full-blown implementation of warm fusion

would compete with most probably unimaginable consequences.

2. Separate compilation. In the three subsets of the nofib benchmark suite the

programs are written rather differently. The imaginary subset consists of small pro-

grams, therefore all the necessary type declarations are within the same file. Under

these circumstances attempting fusion is not a problem (Section 5.5.1).

The spectral subset is somewhat similar: with the exception of boyer2 all the programs

consist of one file, so fusion for these programs are still not problematic. boyer2

exports one of its ’central’ datatype — the one on which great many functions are

defined — abstractly.

The real subset is rather different: in these programs the datatypes are usually de-

fined in separate files and in some cases are exported abstractly. As explained in

Section 5.5.1, fusion for abstractly exported datatypes (datatypes exported without

their constructors) is not attempted.

These two limitations suggest that most nofib programs will not be affected by our trans-

formations.

6.7 Summary

In this section we have a look at the numbers our transformations produce and attempt an

analysis of the sometimes surprising results.

6.7.1 The control run

Compilation times and run times are reported in seconds, while binary size, total allocation

and heap residency are shown in bytes. There are no surprises in Tables 6.5, 6.7, 6.6, or 6.8.

Maximum heap residency is sometimes 0, but that only means that the program is small,

so no sample of the heap contents is available. This is typically true for programs which

allocate less than 300K in total.

It is intriguing to compare binary sizes to those reported in [Gil96]. It appears from this

comparison that the programs generated by GHC-4.06 are approximately half the size that

of the ones compiled by GHC-0.26.

6.7. SUMMARY 121

Program
Time to
compile

Binary size Time to run
Total allo-
cation

Max Heap
Residency

exp3 8 4.34 175002 2.82 161962500 2920
gen regexps 4.77 201747 0.09 1061736 4192
paraffins 9.26 192330 1.85 25412408 10873068
primes 3.01 169882 1.07 28184000 19816
queens 3.03 167146 0.47 12114868 628
rfib 2.66 377418 0.41 7448 0
tak 2.59 178042 0.41 14963024 1168
x2n1 4.25 407802 0.49 18812528 1396
wheel-sieve1 4.56 175114 9.15 10270256 98972
wheel-sieve2 5.18 175706 3.64 38202816 9812932
integrate 4.99 385082 8.22 448223840 4958888

Table 6.5 Control run: imaginary subset

Program
Time to
compile

Binary size Time to run
Total allo-
cation

Max Heap
Residency

event 10.96 182618 2.28 54794652 2944284
fft 14.71 404394 0.41 10804340 83084
genfft 13.31 188602 0.46 26356304 3372
listcompr 12.83 188010 2.13 129027180 2372
listcopy 12.9 188282 2.37 144099284 2152
nucleic2 92.4 479130 1.18 47629352 5632
parstof 93.07 327290 0.16 1350940 41204
sched 11.27 180074 0.45 17368564 3176
solid 40.63 424890 1.84 86154404 295332
transform 56.28 298602 6.51 307153768 27600
typecheck 18.19 201770 4.44 146058248 3552
wang 12.65 397674 1.51 44075624 3922944
wave4main 16.31 205450 5.39 48742552 1835352

Table 6.6 Control run: the Hartel Benchmarks

6.7.2 Normalised run

One thing to note here: because of the implementation, the normalised run needs the

results of the cata, build, map derivation phase (see Sections 4.5.1, 4.5.2), in other words

the increased code size and increased compilation times are partly due to those. There is

no change in total allocation, which is what we expect. This means that all the normalised

wrappers get inlined and there is no penalty for rearranging the arguments to functions.

It appears that there is a slight increase in runtimes for most programs, while parstof and

sched, amongst others, improves. The improvement is likely to be due to the extra run

6.7. SUMMARY 122

Program
Time to
compile

Binary size Time to run
Total allo-
cation

Max Heap
Residency

atom 6.69 389866 5.55 181389016 3172
awards 6.67 204922 0.12 105220 0
banner 9.38 203379 0.12 83584 0
boyer 13.34 199226 0.62 27229080 31376
boyer2 20.54 231610 0.23 1730252 31832
calendar 6.69 180858 0.10 346404 2336
cichelli 18.31 225235 1.56 34323100 21680
circsim 25.24 284522 16.13 684021348 12754416
clausify 7.97 190746 0.66 19524212 3432
constraints 12.32 197386 64.27 965843528 20793288
cryptarithm1 3.57 173082 16.86 926684208 2228
cryptarithm2 13.51 211482 0.49 19785960 4248
cse 11.58 209562 0.11 529672 3608
eliza 13.89 228259 0.13 262428 0
expert 25.01 241539 0.15 111236 0
fibheaps 9.97 234250 0.56 25572344 154980
fish 10.34 185658 0.24 7152788 2024
gcd 3.8 178618 0.59 25989928 5428
life 5.24 182730 4.61 222927164 12512
knights 32.39 235930 0.16 968360 16540
mandel 13.34 466627 3.38 103856092 19332
mandel2 6.55 186634 0.24 4512064 2352
minimax 21.38 212499 0.13 2684428 2992
multiplier 9.27 188634 1.99 95067900 18616
para 9.74 227779 9.65 350640368 95228
primetest 13.82 251267 7.77 89433208 62176
puzzle 10.8 191578 2.75 58604352 2140
rewrite 21.52 220842 0.53 14027148 8048
scc 4.81 171962 0.10 6284 0
sorting 9.62 200467 0.15 524164 59448
sphere 20.72 466010 2.15 55503740 3000

Table 6.7 Control run: spectral subset

of the simplifier after normalise. This was verified for parstof with normalise and derive

switched off but allowing for the extra run of the simplifier.

In clausify the maximum heap residency increased dramatically, which appears to be due

to the fact that there is only one sample.

6.7. SUMMARY 123

Program
Time to
compile

Binary size Time to run
Total allo-
cation

Max Heap
Residency

anna 319.18 969180 1.90 30906900 138540
compress 23.94 275203 3.02 134907892 107440
ebnf2ps 132.33 538316 0.18 2872968 102792
fem 94.78 516243 0.55 26373684 28724
fulsom 77.16 560122 8.10 274028100 2626908
gamteb 55.01 510579 1.47 48100772 7040
gg 78.3 574531 0.19 4339328 100328
grep 22.87 238675 0.10 5196 0
hpg 60.12 641594 1.19 40928592 4872
infer 58.13 323411 1.19 13664232 16312
lift 31.53 239002 0.13 331456 4980
maillist 5.46 203763 0.22 5615964 108232
mkhprog 17.17 222234 0.13 1173676 5608
parser 60.53 343571 0.51 14785448 102512
pic 44.21 480115 0.25 3794652 152796
prolog 28.71 244563 0.13 755952 13852
reptile 75.43 368083 0.19 7315340 25492
rsa 7.16 240227 1.58 22060704 34444
veritas 287.93 840883 0.11 585408 15216

Table 6.8 Control run: the real subset

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

exp3 8 1.21 1.01 1.01 1.00 1.00
gen regexps 1.01 1.00 1.22 1.00 1.00
paraffins 1.09 1.01 1.02 1.00 1.00
primes 1.03 1.00 0.98 1.00 1.00
queens 1.02 1.00 1.13 1.00 1.00
rfib 1.00 1.00 0.95 1.00 NA
tak 1.04 1.00 0.95 1.00 1.00
x2n1 1.06 1.00 1.16 1.00 1.00
wheel-sieve1 1.00 1.00 1.00 1.00 1.00
wheel-sieve2 1.00 1.00 1.01 1.00 1.00
integrate 1.01 1.00 1.03 1.00 1.00

Minimum 1.00 1.00 0.95 1.00 1.00
Maximum 1.21 1.01 1.22 1.00 1.00
Geometric mean 1.04 1.00 1.03 1.00 1.00

Table 6.9 Normalise: imaginary subset

6.7.3 Buildify only

In general, we can expect buildify to increase compilation times, because of the worker-

wrapper split, which gives rise to further inlining. Binary sizes should only be affected to

6.7. SUMMARY 124

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

event 1.11 1.01 1.05 1.00 1.00
fft 1.07 1.00 1.12 1.00 1.00
genfft 1.05 1.00 1.09 1.00 1.00
listcompr 1.07 1.00 1.06 1.00 1.00
listcopy 1.07 1.00 1.04 1.00 1.00
nucleic2 1.12 1.01 1.01 1.00 1.00
parstof 1.09 1.00 0.94 1.00 1.00
sched 1.17 1.02 0.96 1.00 1.00
solid 1.12 1.01 1.09 1.00 1.00
transform 1.07 1.00 1.08 1.00 1.00
typecheck 1.09 1.00 1.07 1.00 1.00
wang 1.06 1.00 1.10 1.00 1.00
wave4main 1.08 1.00 1.06 1.00 1.00

Minimum 1.05 1.00 0.94 1.00 1.00
Maximum 1.12 1.02 1.12 1.00 1.00
Geometric mean 1.08 1.01 1.05 1.00 1.00

Table 6.10 Normalise: the Hartel Benchmarks

the extent normalise affects it, as buildify and normalise works very much the same way.

Two programs, clausify and fibheaps, are highly problematic: total allocation increases

tenfold for clausify, while fibheaps runs out of heap. Examination revealed that in the

case of clausify this is due to the highly successful transformation on the datatype shown

in Table 6.13. Every single function defined in the module is successfully transformed to

explicit build form leading to increased allocation. There is nothing to worry about yet,

as no cata-build reductions take place in this run. It just shows how bad the result of

buildify can get.

The problem with fibheaps is likely to be the same as it also uses a datatype on which

most of its functions can be buildified.

Total allocation in most programs are not affected, which is a consequence of not doing

fusion for the built-in datatype List .

6.7.4 Catify only

We expect catify to result in increased runtimes as compared to buildify. The reason for this

is the worker-wrapper split. Here we split a single function to as many as data constructors

the fusible — the functions first argument — datatype has.

6.7. SUMMARY 125

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

atom 1.01 1.00 1.05 1.00 1.00
awards 1.01 1.00 0.67 1.00 NA
banner 1.04 1.00 0.83 1.00 NA
boyer 1.23 1.01 0.90 1.00 1.00
boyer2 1.02 1.00 1.26 1.00 1.00
calendar 1.11 1.00 1.10 1.00 1.00
cichelli 1.07 1.00 1.07 1.00 1.00
circsim 1.14 1.01 1.08 1.00 1.00
clausify 1.27 1.02 1.12 1.00 25.682

constraints 1.13 1.01 1.06 0.98 1.00
cryptarithm1 1.11 1.00 1.08 1.00 1.00
cryptarithm2 1.11 1.00 0.88 1.00 1.00
cse 1.08 1.00 1.09 1.00 1.00
eliza 1.09 1.00 0.92 1.00 NA
expert 1.12 1.01 1.00 1.00 NA
fibheaps 1.17 1.01 1.07 1.00 1.00
fish 1.12 1.00 0.92 1.00 1.00
gcd 1.09 1.00 1.05 1.00 1.00
life 1.06 1.00 1.08 1.00 1.00
knights 1.08 1.01 1.00 1.00 1.00
mandel 1.08 1.00 1.05 1.00 1.00
mandel2 1.11 1.01 1.21 1.00 1.00
minimax 1.09 1.00 0.85 1.00 1.00
multiplier 1.07 1.00 1.08 1.00 1.00
para 1.06 1.00 1.05 1.00 1.00
primetest 1.06 1.00 1.05 1.00 1.00
puzzle 1.13 1.01 1.07 1.00 1.00
rewrite 1.12 1.01 1.09 1.00 1.00
scc 1.09 1.00 1.00 1.00 NA
sorting 1.16 1.01 0.80 1.00 1.00
sphere 1.11 1.00 1.01 1.00 1.00

Minimum 1.01 1.00 0.67 0.98 1.00
Maximum 1.27 1.02 1.26 1.00 1.00
Geometric mean 1.09 1.01 1.00 0.99 1.00

Table 6.11 Normalise: spectral subset

Tables 6.22, 6.23, 6.24, and 6.25 complete the data we gathered to demonstrate the efficiency

of warm fusion. We conclude our measurements with a few random comments:

• It appears that the nofib suite has not kept up with the constantly improving micro-

processors, larger and larger amounts of memory and improvements to GHC. Run-

6.7. SUMMARY 126

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

anna 1.06 1.00 0.95 1.00 1.00
compress 1.06 1.01 1.10 1.00 1.00
ebnf2ps 1.07 1.00 1.00 1.00 1.00
fem 1.09 1.01 0.84 1.00 1.00
fulsom 1.13 1.01 1.27 1.10 0.75
gamteb 1.08 1.00 1.10 1.00 1.00
gg 1.08 1.00 0.95 1.00 1.00
grep 1.01 1.00 1.10 1.00 NA
hpg 1.00 1.00 0.98 1.00 1.00
infer 1.01 1.00 1.05 1.00 1.00
lift 1.08 1.00 0.92 1.00 1.00
maillist 1.09 1.00 1.27 1.00 1.00
mkhprog 1.08 1.00 0.69 1.00 1.00
parser 1.11 1.01 1.16 1.00 1.00
pic 1.07 1.00 1.08 1.00 1.00
prolog 1.06 1.00 0.92 1.00 1.00
reptile 1.08 1.00 1.26 1.00 1.00
rsa 1.07 1.00 1.09 1.00 1.00
veritas 1.04 1.01 1.09 1.00 1.00

Minimum 1.00 1.00 0.69 1.00 0.75
Maximum 1.13 1.01 1.27 1.00 1.00
Geometric mean 1.06 1.00 1.03 1.00 0.98

Table 6.12 Normalise: the real subset

data Formula =Sym Char
| Not Formula
| Dis Formula Formula
| Con Formula Formula
| Imp Formula Formula
| Eqv Formula Formula

Table 6.13 A datatype making buildify too successful

times, with and without warm fusion, are generally under 10s. In order to make a fair

comparison with for example the cheap deforestation work [Gil96], one would have to

re-run the benchmarks. Unfortunately, this is not possible anymore as the compiler

versions used do not build any longer.

• It is interesting to examine the result of warm fusion on larger programs: in general

the transformation has the effect of producing a lot of higher-order functions. The

6.7. SUMMARY 127

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

exp3 8 1.29 1.01 1.56 1.40 0.66
gen regexps 1.01 1.00 1.44 1.00 1.00
paraffins 1.09 1.01 1.00 1.00 1.00
primes 1.06 1.00 1.04 1.00 1.00
queens 1.02 1.00 1.36 1.00 1.00
rfib 0.98 1.00 0.98 1.00 NA
tak 1.00 1.00 1.05 1.00 1.00
x2n1 1.05 1.00 0.96 1.00 1.00
wheel-sieve1 1.03 1.00 0.99 1.00 1.00
wheel-sieve2 1.02 1.00 1.03 1.00 1.00
integrate 1.04 1.00 1.05 1.00 1.00

Minimum 0.98 1.00 0.96 1.00 0.66
Maximum 1.29 1.01 1.56 1.40 1.00
Geometric mean 1.05 1.00 1.11 1.03 0.96

Table 6.14 Buildify only: imaginary subset

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

event 1.06 1.01 1.05 1.01 1.04
fft 1.03 1.00 0.98 1.00 1.00
genfft 1.01 1.00 0.93 1.00 1.00
listcompr 1.02 1.00 0.99 1.00 1.00
listcopy 1.02 1.00 0.94 1.00 1.00
nucleic2 1.10 1.01 0.98 1.01 1.03
parstof 1.04 1.00 0.88 1.00 1.00
sched 1.15 1.02 0.84 1.19 0.93
solid 1.11 1.02 1.81 1.97 1.00
transform 1.02 1.00 1.00 1.00 1.00
typecheck 1.10 1.01 1.01 1.07 0.92
wang 1.01 1.00 0.99 1.00 1.00
wave4main 1.03 1.00 1.00 1.00 1.00

Minimum 1.01 1.00 0.88 1.00 0.92
Maximum 1.15 1.02 1.81 1.97 1.04
Geometric mean 1.05 1.01 1.01 1.07 0.99

Table 6.15 Buildify only: the Hartel Benchmarks

somewhat disappointing results are most probably due to the fact that buildify and

catify makes programs run much slower and the STG machine is not well-suited to

run programs containing a lot of higher-order functions.

• As a result of the transformations some programs break: most of them run out of

6.7. SUMMARY 128

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

atom 1.03 1.00 1.03 1.00 1.00
awards 1.03 1.00 0.83 1.00 NA
banner 1.06 1.00 1.08 1.00 NA
boyer 1.24 1.01 0.97 1.00 1.00
boyer2 1.01 1.00 0.96 1.00 1.00
calendar 1.06 1.00 1.40 1.00 1.00
cichelli 1.04 1.00 1.01 1.08 0.97
circsim 1.13 1.01 1.03 1.00 1.00
clausify 1.43 1.05 23.94 11.72 3234.33
constraints 1.07 1.01 1.00 0.98 1.00
cryptarithm1 1.05 1.00 1.03 1.00 1.00
cryptarithm2 1.05 1.00 0.92 1.00 1.00
cse 1.05 1.00 1.27 1.00 1.00
eliza 1.05 1.00 0.85 1.00 NA
expert 1.12 1.02 0.80 1.01 NA
fibheaps

fish 1.07 1.00 0.79 1.00 1.00
gcd 1.04 1.00 1.00 1.00 1.00
life 1.00 1.00 1.00 1.00 1.00
knights 1.04 1.01 1.25 1.00 1.00
mandel 1.02 1.00 0.99 1.00 1.00
mandel2 1.05 1.01 1.08 1.00 1.00
minimax 1.06 1.01 1.00 1.01 1.14
multiplier 1.03 1.00 0.97 1.00 1.00
para 1.01 1.00 1.00 1.00 1.00
primetest 1.00 1.00 0.99 1.00 1.00
puzzle 1.12 1.01 1.08 1.20 1.18
rewrite 1.12 1.01 0.89 1.00 1.02
scc 1.03 1.00 1.10 1.00 NA
sorting 1.22 1.02 0.53 1.00 1.00
sphere 1.07 1.00 0.96 1.00 1.00

Minimum 1.01 1.00 0.79 1.00 0.97
Maximum 1.43 1.05 23.49 11.72 3234.23
Geometric mean 1.06 1.01 1.08 1.09 1.3

Table 6.16 Buildify only: spectral subset

stack space. These are omitted from the benchmarks without further notice.

6.8. CONCLUSIONS 129

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

anna 1.05 1.00 0.99 1.00 1.00
compress 1.09 1.02 1.03 1.01 1.47
ebnf2ps 1.02 1.00 0.94 1.00 1.00
fem 1.04 1.01 0.96 1.00 1.00
fulsom 1.13 1.03 1.04 1.15 0.96
gamteb 1.01 1.00 0.97 1.00 1.00
gg 1.05 1.01 1.11 1.00 1.00
grep 1.02 1.00 1.20 1.00 NA
hpg 1.02 1.00 0.99 1.00 1.00
infer 1.05 1.01 1.03 0.99 1.05
lift 1.03 1.00 0.69 1.00 1.00
maillist 1.02 1.00 1.14 1.00 1.00
mkhprog 1.03 1.00 0.77 1.00 1.00
parser 1.10 1.01 0.80 1.00 1.00
pic 1.01 1.00 0.92 1.00 1.00
prolog 1.03 1.00 0.77 1.00 1.00
reptile 1.02 1.00 0.95 1.00 1.00
rsa 0.99 1.00 0.99 1.00 1.00
veritas 1.05 1.01 1.27 1.00 1.00

Minimum 0.99 1.00 0.69 0.99 0.96
Maximum 1.13 1.03 1.27 1.15 1.47
Geometric mean 1.03 1.01 0.96 1.00 1.02

Table 6.17 Buildify only: the real subset

6.8 Conclusions

We base our summary on two sources: the detailed example in Section 6.4 and the nofib

suite. Most of the programs in the nofib suite are not affected by the transformations

(Section 6.6) therefore the detailed example is the more important source.

1. Transforming programs to build-cata form results in a considerable increase in total

allocation. See Tables 6.14 through 6.17, and Tables 6.18 through 6.21. This suggests

that in an industrial strength implementation care must be taken to verify if the

cata-build rule is applied enough times, and if not the transformations need to be

reversed.

2. Static argument transformation (SAT) is absolutely essential to get improvements

(Page 114). It appears that the STG machine is not well-equipped to execute heavy

higher-order code.

6.8. CONCLUSIONS 130

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

exp3 8 1.20 1.01 0.95 1.00 1.00
gen regexps 1.03 1.00 1.00 1.00 1.00
paraffins 1.10 1.01 0.94 1.00 1.00
primes 1.04 1.00 1.03 1.00 1.00
queens 1.03 1.00 1.13 1.00 1.00
rfib 1.05 1.00 1.10 1.00 NA
tak 0.99 1.00 1.05 1.00 1.00
x2n1 1.06 1.00 1.10 1.00 1.00
wheel-sieve1 0.99 1.00 0.99 1.00 1.00
wheel-sieve2 1.02 1.00 1.00 1.00 1.00
integrate 1.00 1.00 1.01 1.00 1.00

Minimum 0.99 1.00 0.94 1.00 1.00
Maximum 1.20 1.01 1.13 1.00 1.00
Geometric mean 1.04 1.00 1.02 1.00 1.00

Table 6.18 Catify only: imaginary subset

3. The Standard Prelude is biased towards a compiler which does not use fusion (Sec-

tion 6.4), which limits the applicability of fusion.

4. Binary sizes are practically unaffected by warm fusion, as the wrappers are always

inlined. The only exception is the wrappers for exported functions, which are required

in other modules.

6.8. CONCLUSIONS 131

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

atom 1.03 1.00 0.97 1.00 1.00
awards 1.03 1.00 0.83 1.00 NA
banner 1.05 1.00 1.00 1.00 NA
boyer 1.74 1.08 0.98 1.00 1.00
boyer2 1.02 1.00 0.91 1.00 1.00
calendar 1.03 1.00 1.20 1.00 1.00
cichelli 1.05 1.01 1.01 1.00 1.00
circsim 1.11 1.01 1.00 1.00 1.00
clausify 1.20 1.02 1.11 1.00 25.68
constraints 1.08 1.01 0.99 0.98 1.00
cryptarithm1 1.04 1.00 1.00 1.00 1.00
cryptarithm2 1.03 1.00 0.94 1.00 1.00
cse 1.04 1.00 1.00 1.00 1.00
eliza 1.06 1.00 0.62 1.00 NA
fish 1.08 1.00 1.00 1.00 1.00
gcd 1.03 1.00 1.02 1.00 1.00
life 1.02 1.00 1.00 1.00 1.00
knights 1.10 1.03 1.06 0.97 1.05
mandel 1.01 1.00 0.99 1.00 1.00
mandel2 1.06 1.01 0.88 1.00 1.00
minimax 1.05 1.00 1.38 1.00 1.00
multiplier 1.01 1.00 1.01 1.00 1.00
para 1.02 1.00 1.00 1.00 1.00
primetest 1.01 1.00 0.99 1.00 1.00
puzzle 1.47 1.07 1.00 1.00 1.00
scc 1.02 1.00 1.00 1.00 NA
sorting 1.11 1.01 0.73 1.00 1.00
sphere 1.06 1.00 0.98 1.00 1.00

Minimum 1.01 1.00 0.62 0.97 1.00
Maximum 1.74 1.08 1.38 1.00 1.00
Geometric mean 1.08 1.02 0.97 1.00 1.00

Table 6.19 Catify only: spectral subset

6.8. CONCLUSIONS 132

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

event 1.06 1.01 1.00 1.00 1.00
fft 1.03 1.00 0.95 1.00 1.00
genfft 1.00 1.00 1.02 1.00 1.00
listcompr 1.02 1.00 1.00 1.00 1.00
listcopy 1.02 1.00 0.97 1.00 1.00
nucleic2 1.10 1.01 0.96 1.00 1.00
parstof 1.05 1.00 1.00 1.00 1.00
sched 1.11 1.02 0.98 1.00 1.00
transform 1.03 1.00 1.00 1.00 1.00
typecheck 1.04 1.00 1.00 1.00 1.00
wang 1.01 1.00 0.97 1.00 1.00
wave4main 1.03 1.00 1.00 1.00 1.00

Minimum 1.00 1.00 0.95 1.00 1.00
Maximum 1.11 1.02 1.02 1.00 1.00
Geometric mean 1.04 1.01 0.98 1.00 1.00

Table 6.20 Catify only: the Hartel Benchmarks

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

ebnf2ps 1.02 1.00 1.00 1.00 1.00
fem 1.05 1.01 0.80 1.00 1.00
gamteb 1.02 1.00 1.01 1.00 1.00
grep 1.02 1.00 1.10 1.00 NA
hpg 1.03 1.00 0.99 1.00 1.00
infer 1.02 1.00 1.01 1.00 0.98
lift 1.03 1.00 0.69 1.00 1.00
maillist 1.01 1.00 1.14 1.00 1.00
mkhprog 1.02 1.00 1.00 1.00 1.00
parser 1.28 1.04 0.98 1.00 1.00
pic 1.01 1.00 1.12 1.00 1.00
prolog 1.02 1.00 1.00 1.00 1.00
reptile 1.02 1.00 1.16 1.00 1.00
rsa 1.01 1.00 0.99 1.00 1.00
veritas 1.08 1.03 0.73 1.00 1.00

Minimum 1.01 1.00 0.69 1.00 0.98
Maximum 1.28 1.04 1.16 1.00 1.00
Geometric mean 1.03 1.01 0.97 1.00 0.99

Table 6.21 Catify only: the real subset

6.8. CONCLUSIONS 133

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

exp3 8 1.39 1.02 1.90 1.80 0.35
gen regexps 1.02 1.00 1.33 1.00 1.00
paraffins 1.10 1.01 0.97 1.00 1.00
primes 1.07 1.00 1.12 1.00 1.00
queens 1.03 1.00 1.32 1.00 1.00
rfib 1.00 1.00 0.95 1.00 NA
tak 1.02 1.00 1.00 1.00 1.00
x2n1 1.07 1.00 1.08 1.00 1.00
wheel-sieve1 1.00 1.00 0.98 1.00 1.00
wheel-sieve2 1.04 1.00 1.01 1.00 1.00
integrate 1.03 1.00 1.01 1.00 1.00

Minimum 1.00 1.00 0.95 1.00 0.35
Maximum 1.39 1.02 1.90 1.80 1.00
Geometric mean 1.06 1.01 1.12 1.05 0.90

Table 6.22 Buildify, catify and the cata-build rule: imaginary subset

6.8. CONCLUSIONS 134

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

atom 1.02 1.00 0.98 1.00 1.00
awards 1.04 1.00 1.00 1.00 NA
banner 1.08 1.00 0.83 1.00 NA
boyer 1.78 1.08 1.06 1.00 1.00
boyer2 1.02 1.00 0.96 1.00 1.00
calendar 1.06 1.00 1.20 1.00 1.00
cichelli 1.09 1.01 1.01 1.08 0.97
circsim 1.19 1.02 1.04 1.03 0.98
clausify 1.46 1.05 23.35 11.72 3234.33
constraints 1.08 1.01 0.99 0.98 1.00
cryptarithm1 1.06 1.00 1.00 1.00 1.00
cryptarithm2 1.04 1.00 0.88 1.00 1.00
cse 1.06 1.00 0.73 1.00 1.00
eliza 1.05 1.00 0.77 1.00 NA
fish 1.07 1.00 0.75 1.00 1.00
gcd 1.03 1.00 1.08 1.00 1.00
life 1.04 1.00 1.00 1.00 1.00
knights 1.11 1.03 0.88 0.97 1.05
mandel 1.03 1.00 0.99 1.00 1.00
mandel2 1.10 1.01 0.88 1.04 1.03
minimax 1.09 1.01 0.92 1.01 1.14
multiplier 1.03 1.00 0.96 1.00 1.00
para 1.03 1.00 1.00 1.00 1.00
primetest 1.02 1.00 1.01 1.00 1.00
puzzle 1.41 1.05 1.08 1.23 1.08
scc 1.05 1.00 1.10 1.00 NA
sorting 1.26 1.03 0.73 1.00 1.00
sphere 1.06 1.00 0.96 1.00 1.00

Minimum 1.02 1.00 0.73 0.97 0.97
Maximum 1.78 1.08 23.35 11.72 3234.33
Geometric mean 1.10 1.01 1.06 1.10 1.34

Table 6.23 Buildify, catify and the cata-build rule: spectral subset

6.8. CONCLUSIONS 135

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

wave4main 1.06 1.00 1.00 1.00 1.00
wang 1.01 1.00 1.03 1.00 1.00
typecheck 1.11 1.01 1.00 1.07 0.92
transform 1.04 1.00 1.01 1.00 1.00
sched 1.17 1.02 1.00 1.18 1.05
nucleic2 1.16 1.01 1.00 1.01 1.03
parstof 1.05 1.00 1.06 1.00 1.00
listcopy 1.03 1.00 1.00 1.00 1.00
listcompr 1.03 1.00 1.01 1.00 1.00
genfft 1.02 1.00 1.00 1.00 1.00
fft 1.04 1.00 1.05 1.00 1.00
event 1.08 1.01 1.09 1.01 1.04

Minimum 1.01 1.00 1.00 1.00 0.92
Maximum 1.17 1.02 1.06 1.18 1.05
Geometric mean 1.06 1.01 1.02 1.02 1.00

Table 6.24 Buildify, catify and the cata-build rule: the Hartel Benchmarks

Program
Time to
compile

Binary
size

Time to
run

Total allo-
cation

Max Heap
Residency

ebnf2ps 1.03 1.00 0.72 1.00 1.00
fem 1.07 1.01 0.85 1.00 1.00
gamteb 1.03 1.00 1.03 1.00 1.00
grep 1.01 1.00 0.90 1.00 NA
hpg 1.03 1.00 1.00 1.00 1.00
infer 1.05 1.01 1.01 1.00 0.98
lift 1.04 1.00 1.08 1.00 1.00
maillist 1.01 1.00 1.14 1.00 1.00
mkhprog 1.04 1.00 1.00 1.00 1.00
parser 1.32 1.04 0.94 1.00 1.00
pic 1.01 1.00 0.84 1.00 1.00
prolog 1.03 1.00 0.92 1.00 1.00
reptile 1.03 1.00 0.79 1.00 1.00
rsa 1.01 1.00 1.01 1.00 1.00
veritas 1.10 1.03 1.00 1.00 1.00

Minimum 1.01 1.00 0.72 1.00 0.98
Maximum 1.32 1.04 1.14 1.00 1.00
Geometric mean 1.05 1.01 0.94 1.00 0.99

Table 6.25 Buildify, catify and the cata-build rule: the real subset

Chapter 7

Conclusions and Further Work

In this thesis, we have demonstrated that warm fusion is a practical approach for the removal

of intermediate data structures within a real, production quality complier for Haskell. We

also have seen that the techniques required to implement warm fusion are a higher level —

higher complexity — of transformations compared to most of those reported, for example,

in Santos thesis [San95]: some bits are conditional, sometimes other transformations are

needed to find out that warm fusion cannot proceed further. Contrasting this with those in

Santos thesis, it is clear that his transformations are unconditional and almost always result

in a benefit: decreased heap allocation or runtime improvement. The transformations of

the warm fusion method are not always beneficial, in fact, both buildify and catify has been

shown to increase heap allocation and runtime unless the cata-build rule gets applied to

the transformed functions.

Through the implementation we discovered that warm fusion, being a higher level trans-

formation often stretches the capabilities of the compiler. Our findings, which can also be

considered as suggestions for a new implementation — both for GHC and the warm fusion

transformation — are as follows:

• GHC’s inliner cannot cope with the complexity of the conditions required to efficiently

implement warm fusion. We were often forced to have many passes of the simplifier

instead of one, which leads to increased compilation times.

• GHC’s philosophy is often quite different from what warm fusion requires. In par-

ticular, in order to successfully buildify we sometimes need the wrappers of already

catified functions. This mismatch is particularly painful with conditional transforma-

tions, where the problem of reversal arises.

• Recent work by Chitil [Chi00] demonstrates that build can be dispensed, because his

136

7.1. FURTHER WORK 137

type system can predict when buildify is successful. A new design incorporating this

observation should be somewhat simpler in terms of implementation, as after type

inference all the functions which can be buildified would be properly annotated, so

the transformation buildify would cease to be conditional.

• The two transformations presented in this thesis are quite complex. Their interaction

with other transformations (see Table A.1 and Santos’s thesis [San95]) is even more

so. This has two consequences:

1. Fusion transformation can be quite unpredictable for the user, and sometimes

even for the implementor.

2. It is hard to insert the new transformations into the standard sequence of passes

and guarantee that the new sequence always results in better programs.

If the current fusion engine is extended for example to apply to datatypes with embed-

ded functions (Section 7.1.5) or to allow fusion for functions with multiple inductive

arguments these interactions may become intractably complex. In this case, the use

of some sort of guarantee that the transformations do indeed improve the code, for

example improvement theory [San96b, San96a] will be unavoidable.

7.1 Further Work

One of the most exciting aspect of the work presented in this thesis is that by putting a lot

of theory into practice, it opened up many avenues for further exploration.

7.1.1 Automatically deriving code from types

We have shown that in order to transform arbitrary functions to build-cata form we need

the definitions of a few functions: cata, build . Sometimes we also need the appropriate type

functor or map. These functions exist for a certain class of datatypes. It is known that

other functions also exist: for example a length kind of function always exist for polynomial

datatypes. zip style functions between any two types also exist for a large class. Functions

whose existence is guaranteed, should be derived by the compiler automatically from the

type declaration (data) and made available to the user. This would have several advantages:

• It would simplify the Standard Prelude, since map, foldr etc would not need to be

defined there.

7.1. FURTHER WORK 138

• The derivable functions need not be written by the user.

• The derivable functions would be unique within the compiler, possibly leading to the

opportunity of generating better code for them.

• Encourage a style of programming in which simply declaring a type would result

in functions over that type. The idea of this style, albeit in a seemingly different

context, is not a new one: in the HOL theorem prover [GM93] declaring a type results

in theorems about it. For example, the existence of a unique, primitive recursion

operator can be asserted for a large class of datatypes from the declaration. The

system then efficiently proves these theorems [Mel88], which happens to be almost

the same as what we called deriving catamorphisms (see Sections 4.5.2, 5.2.2) in this

thesis.

Perhaps this could be the starting point of connecting (a compiler for) Haskell with a

theorem prover, thereby increasing the power of transformation methods and increas-

ing the confidence in the correctness of the generated code.

7.1.2 Special abstract machine for fused programs

We noted in Chapter 6 that warm fusion tends to produce lots of higher-order functions

in the resulting code, and STG seems to be ill-suited for efficient execution of such code.

It would be interesting to see, if other abstract machines used for executing functional

languages cope can better.

7.1.3 Transparency of transformations

Warm fusion is not a transparent program transformation, meaning that it is hard for the

user to predict if the transformation applies or not. For efficiency conscious programmers

this presents a dilemma: they can try to write optimised code — which in some cases has the

embarrassing effect of disabling other built-in optimisations — or hope for the best. If we

contrast this situation with simpler, traditional, perhaps better understood optimisations

or the transparency provided by the MAG system [DMS99] we realise the need to provide

feedback not just when warm fusion is successful, but also when and why it fails. How to

provide this feedback and what form it should take is currently unknown, but its deeper

understanding may lead to wider acceptance of higher level transformations.

7.1. FURTHER WORK 139

7.1.4 More aggressive inlining

In our implementation, applicability of the cata-build rule depends entirely on inlining of

the wrapper functions. It is therefore of utmost importance that these functions are inlined

at every possible call site. Unfortunately, inlining have two major risks: code duplication

and duplication of computations. Duplication of computations can arise when we inline

across lambdas. In certain cases a linear type system or usage analysis [TWM95, WPJ99]

can ensure that inlining is without this risk. Warm fusion would certainly benefit from

these analyses.

Another problem with inlining concerns the Glasgow Haskell Compiler itself. We are forced

to have multiple runs of simplification over the module being compiled, because we want

one pass of simplification to happen and only then have inlining. Since this cannot currently

be expressed in the simplifier we need to have one pass with inlining disabled and a second

one to get the effects of inlining.

This only affects compilation time, but finer control over inlining — for example some form

of conditional inlining – would make the warm fusion transformation faster and simpler to

implement.

7.1.5 Fusion for datatypes with embedded functions

The first theoretical proposal to handle datatypes with embedded functions is the one

by Meijer and Hutton [MH95] based on Freyds work [Fre90]. Fegaras and Sheard [FS96]

suggested a more implementable way. Their proposal requires three modifications to the

work reported in this thesis:

• The deriving mechanism (see Section 4.5.2) needs to be modified:

1. by adding a fictitious constructor, Place α, acting as a placeholder, to every

datatype and catamorphism which uses embedded functions.

2. within the catamorphism, the action of the constructor which uses the embedded

function needs to be slightly altered and a new case alternative needs to be added

which deals with the fictitious constructor.

Despite of these modifications, the only change to the type of the catamorphisms is

an extra type argument for α. Nothing else changes, apart from the recursive uses

of the type being defined, where the extra type argument is needed, since the Place

constructor remains hidden from the user.

7.1. FURTHER WORK 140

• The typechecker needs to be modified to restrict the uses of the new constructor.

• The cata-build rule and other rules defining the interaction between catamorphisms

and Core needs to be changed to accommodate the extra type argument.

These modifications seem to be quite simple, but interaction with other extensions (Sec-

tion 5.1 and Section 5.2) needs to be thoroughly investigated.

7.1.6 Fegaras style folds

In their 1994 PEPM paper, Fegaras, Sheard and Zhou [FSZ94] suggested a new form of

catamorphisms, and the corresponding binary fusion theorem to handle functions which

induct on two arguments. Their method can perform fusion on both arguments for example

on the well-known zip function, which have been used as a benchmark to compare the

relative strengths of different deforestation methods [HIT97]. Their work can, in theory, be

easily generalised to functions with an arbitrary number of inductive arguments, but the

extension does not fit into our framework. We started the theory chapter, Chapter 3, with

a quotation from the bananas paper [MFP91], which is a fundamental assumption of our

work. We derive folds and maps, once for all after the desugarer, from the type constructor,

while they derive their fold operators on a per-function basis. In other words, in the current

framework all functions consuming arguments of type list use the same fold operator, while

in their framework, a function which consumes a single list (e.g. filter) would use the

familiar fold operator, while another function (e.g. zip, or structural equality) would use a

different one, and could only be fused with the use of a different fusion law!

Incorporating their fusion method into GHC would certainly result in serious penalty re-

garding compilation times.

7.1.7 Monadic maps, folds and fusion

Catamorphisms are control structures that exactly match the datatypes they belong to, in

other words, folding structures functions by the way they consume their arguments. An

alternative is to structure computations by the way the compute their results, by using

monads [Mog91, Wad92, WPJ93, Wad95]. It is possible to combine these two approaches,

as it was shown by Fokkinga [Fok94] and later by Meijer and Jeuring [MJ95]. The usefulness

of their approach is amply demonstrated in the later paper.

Incorporating a monadic fusion engine into GHC raises several problems:

7.1. FURTHER WORK 141

1. Many simple functions are hard to express in terms of a monadic fold, that is the

recursive patterns captured by monadic folds are often to specific to be useful.

2. The deriving mechanism (see Section 4.5.2) can be extended to automatically derive

monadic maps and folds, but the existence of these functions for a given datatype

depends on a side condition [Fok94, paragraph 5.1] on the monad. Verifying this

condition seems to be rather hard in general — may even require a theorem prover

— and it is known not to hold for several monads, for example the state monad.

3. In the desugaring phase (see page 142) of the Glasgow Haskell Compiler, the monadic

structure of the original program is lost, because the definitions of the two functions,

which constitute a monad — together with the given type constructor — often called

bind and result , are inlined for efficiency. For reasons we explained in Section 4.4.2,

maps and folds are derived after the desugarer. Since we need the monadic structure

to be able apply the monadic fusion law, we would need to modify the desugarer not to

inline bind and result . This requires a major rethinking, restructuring of the compiler

and may have a far reaching consequences on compilation time and the efficiency of

generated code.

7.1.8 Warmer fusion

Catamorphisms represent structural induction over datatypes. Together with tupling and

currying, they are capable of representing primitive recursive functions. A more nat-

ural framework to deal with primitive recursive functions could be based on Meertens

work [Mee90], since paramorphisms directly correspond to primitive recursive functions.

Most of the techniques, for example transforming an arbitrary function to catamorphic

form by composing it with the identity catamorphism, carries over to paramorphisms, which

may lead to a simpler design for a transformation system centred around the concept of

paramorphisms or it may lead to a more powerful transformation engine.

Appendix A

The Framework

In this chapter we give a short introduction to the Glasgow Haskell Compiler (GHC 3.03),

on which the design and the first implementation is based. The definitive, though rather

outdated, description is Santos’ thesis [San95]. Newer accounts are [PJS96, PJ96]. Sec-

tion A.1 details the main passes of the compiler before the incorporation of the fusion

engine. Section A.3 summarises the changes as the result of this thesis. The rationale for

these changes are given in Chapter 4.

A.1 The compiler (pre-warm fusion)

The compiler has a modular design. The compilation process consists of a series of correctness-

preserving transformations, which are shown in Figure A.1. The main passes, which follow

one another in the order given are:

• reader

Written in Lex and Yacc.

• renamer

Resolves scoping and naming issues and makes identifiers unique.

• type inference

Annotates the program with type information.

• desugarer

Transforms the high level constructs of Haskell (like pattern matching, and list com-

prehensions) into 2nd-order lambda calculus, which in GHC terminology is called the

142

A.1. THE COMPILER (PRE-WARM FUSION) 143

Core language. Its abstract syntax is given in Figure A.2.

• core-simplifier

A series of transformation passes over Core that aim at improving the efficiency of

the code.

• core-to-stg

Translator from Core to the Shared Term Graph STG [PJ92] language.

• stg-transformations

A few more transformations, now on STG language.

• code-generator

A pass which converts STG language to Abstract C, or generates assembly code

directly.

We will be mostly concerned with the core-simplifier, which also consists of many passes

over Core programs. Note that core-simplifier passes are functions from Core to Core, they

can be performed any number of times and in any order. The sequence of these pases

is governed by a Perl (gasp) script; ordering does matter and picking the right ordering

— which gives the best performance — can best be described as a Black Art. The most

important ones are, in the order they are performed in GHC 3.03:

• simplify

Performs local transformations (see Table A.1): beta-reduction, inlining, case elimi-

nation, case merging, eta expansion etc.

• specialise

Eliminates overloading.

• simplify

Performs local transformations (see Table A.1): beta-reduction, inlining, case elimi-

nation, case merging, eta expansion etc.

• float-out

Full laziness transformation.

• float-in

The opposite of full laziness.

A.2. THE SIMPLIFIER 144

• simplify

Performs local transformations: beta-reduction, inlining, case elimination, case merg-

ing, eta expansion etc.

• strictness analysis

This annotates identifiers with their strictness properties.

• simplify

Performs local transformations: beta-reduction, inlining, case elimination, case merg-

ing, eta expansion etc.

• float-in

The opposite of full laziness.

• simplify

Performs local transformations: beta-reduction, inlining, case elimination, case merg-

ing, eta expansion etc. This is the final clean up simplification.

Santos [San95] devotes a whole chapter of his thesis to the discussion of the constraints,

which a good sequence should satisfy and presents the one shown above. One would like

to see this process of simplification formulated as a rewrite system and to see the proofs of

a few desirable (confluence, termination) properties. Unfortunately, neither confluence nor

termination holds.

A.2 The simplifier

At the very heart of the compiler, there is the simplifier. It implements a set of local

transformations and its primary aims are twofold:

• some transformations remove Core constructs: β-reduction, let elimination, case elim-

ination;

• some transformations move Core constructs: let-floating, case floating.

The simplifier is also used to ’clean up’ mess after transformations. Sometimes, it is just

too inconvenient/hard/complex to write code (within the compiler) which produces the best

possible code. For example, when pieces of code become ’dead’ one would have to combine

A.2. THE SIMPLIFIER 145

Rule Before After Condition

beta reduction (λ v .e) x e[x/v]

typed beta reduc-
tion

(Λ τ.e) σ e[σ/τ]

dead code removal letv = ev
ine

e v doesn’t occur
free in e

inlining letv = ev
ine

letv = ev
in
e[ev/v]

several see Santos’s
thesis [San95]

case of known con-
structor

case Ci v1 . . . vn of
C1 . . . → e1
...
Ci w1 . . . wn → ei

ei [v1/w1 . . . vn/wn]

case of error case error E of
...

error E

case elimination case v1 of
v2 → e

e[v1/v2]

let to case letv = ev
ine

case ev of
v → e

e is strict in v and
ev is not in weak
head normal form

Table A.1 Local transformations

the given transformation with dead-code elimination, which would introduce unnecessary

complications.

We give a list of rewrite rules, which are needed for warm fusion to work in Table A.1.

Santos [San95] calls these rules local transformations. These will be refered to in the body

of the thesis by their names without further discussion. The interested reader is again

refered to Santos’ thesis [San95] for a thorough discussion of these rules.

The main points to be noted about Core are:

• Explicit type abstraction and type application.

• Atomic arguments. The arguments of an application or constructor are atomic (vari-

ables, literals or types).

• Applications of constructors and primitive operations are saturated.

• Core programs have a direct operational interpretation.

1. All heap allocation is represented by lets.

A.3. THE COMPILER (POST-WARM FUSION) 146

2. evaluation is always denoted by case.

This means that the case construct of Haskell is not the same as the case construct

of Core. In this thesis, all case constructs are considered to be strict, that is they are

of the Core variety.

A.3 The compiler (post-warm fusion)

Adding the fusion engine to GHC 3.03 does not result in deep structural changes in the

compiler. A new pass (derive) is added to the main compilation process.

• reader

Written in Lex and Yacc.

• renamer

Resolves scoping and naming issues and makes identifiers unique.

• type inference

Annotates the program with type information.

• desugarer

Transforms the high level constructs of Haskell (like pattern matching, and list com-

prehensions) into 2nd-order lambda calculus, which in GHC terminology is called the

Core language. Its abstract syntax is given in Figure A.2.

• derive

The existence of certain functions is guaranteed by their types. The existence is

explained in Chapter 3 and the deriving process is explained at length in Section 4.5.2.

• core-simplifier

A series of transformation passes over Core that aim at improving the efficiency of

the code.

• core-to-stg

Translator from Core to the Shared Term Graph STG [PJ92] language.

• stg-transformations

A few more transformations, now on STG language.

A.3. THE COMPILER (POST-WARM FUSION) 147

• code-generator

A pass which converts STG language to Abstract C, or generates assembly code

directly.

The core-simplifier is the pass which is most affected by the fusion transformation. The

new passes normalise, warm fusion (which consists of many simpler passes), static argument

transformation are detailed in Chapter 4.

• simplify

Performs local transformations (see Table A.1): beta-reduction, inlining, case elimi-

nation, case merging, eta expansion etc.

• specialise

Eliminates overloading.

• normalise

Rearranges the arguments of functions to a ’standard’ order. This is explained in

Section 5.4.

• simplify

Performs local transformations (see Table A.1): beta-reduction, inlining, case elimi-

nation, case merging, eta expansion etc.

• float-out

Full laziness transformation.

• warm fusion

What this thesis is about. It consists of two transformations: buildify (see Sec-

tions 4.5.4, 5.1.3, and 5.2.4) and catify (Sections 4.5.5, 5.1.4, and 5.2.5). Between

buildify and catify, there is a simplify pass and in some cases a static argument trans-

formation (Section 5.1.6).

• float-in

The opposite of full laziness.

• simplify

Performs local transformations: beta-reduction, inlining, case elimination, case merg-

ing, eta expansion etc.

A.3. THE COMPILER (POST-WARM FUSION) 148

• strictness analysis

This annotates identifiers with their strictness properties.

• simplify

Performs local transformations: beta-reduction, inlining, case elimination, case merg-

ing, eta expansion etc.

• float-in

The opposite of full laziness.

• simplify

Performs local transformations: beta-reduction, inlining, case elimination, case merg-

ing, eta expansion etc. This is the final clean up simplification.

There is an additional set of rules, which describe how the newly introduced constructs

(cata, build) interact with the rest of Core. These are described in the chapter dealing with

the practice of warm fusion.

A.3. THE COMPILER (POST-WARM FUSION) 149

Haskell Source

Reader

Abstract Syntax

Renamer

Abstract Syntax

Type inference

Abstract Syntax

Desugarer

Core Syntax

Derive and Normalise

Core Syntax

Buildify

Core Syntax

Catify

Core Syntax

Core to STG

STG Syntax

Code Generator

Abstract C

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

Core Simplifier

STG to STG

Derive + Buildify + Catify = WarmFusion

❍❥

❍❨

❍❥

❍❨

Figure A.1 Glasgow Haskell Compiler passes

A.3. THE COMPILER (POST-WARM FUSION) 150

Program Prog ::= TopDecl1 ; . . . ; TopDecln n ≥ 1

Declarations TopDecl ::= Binding | TypeDecl

Declaration TypeDecl ::= data Con ᾱ = {Ci τ̄i}
n
i=1

Types τ ::= TyCon [τ] Constructor application
| τ → τ ′ Function space
| ∀α.τ Universal quantification
| α Type variable

Bindings Binding ::= Bind | rec Bind1 . . . Bindn

Bind ::= var :: τ = Expr

Expression Expr ::= Expr Atom Application
| Expr τ Type application
| λ var1 :: τ1 . . . varn :: τn.Expr Lambda abstraction
| Λ ty . Expr Type abstraction
| case Expr of Alts Case expression
| let Binding in Expr Local definition
| con var1 . . . varn Constructor n ≥ 0
| prim var1 . . . varn Primitive n ≥ 0
| Atom

Atoms Atom ::= var :: τ Variable
| Literal Unboxed Object

Literal values Literal ::= integer | float | . . .

Alternatives Alts ::= Calt1; . . . ; Caltn; Default n ≥ 0
| Lalt1; . . . ; Laltn; Default n ≥ 0

Constr. alt Calt ::= Con var1 . . . varn -> Expr n ≥ 0

Literal alt Lalt ::= Literal -> Expr

Default alt Default ::= NoDefault | var -> Expr

Figure A.2 Syntax of the Core language

Bibliography

[ASU86] Alfred V Aho, R Sethi, and Jeffrey D Ullman. Compilers: principles, tech-
niques, tools. Addison-Wesley, 1986.

[Aug87] Lennart Augustsson. Compiling lazy functional languages, Part II. PhD thesis,
Department of Computing Science, Chalmers University of Technology and
Göteborg University, 1987.

[BC85] Joseph L Bates and Robert L Constable. Proofs as programs. ACM Transac-
tions on Programming Languages and Systems, pages 113–136, 1985.

[BD77] Rodney Martineau Burstall and John Darlington. A transformational system
for developing recursive programs. Journal of the ACM, 24(1):44–67, January
1977.

[BDM97] Richard S Bird and Oege De Moor. Algebra of Programming. Prentice Hall
International Series in Computer Science. Prentice-Hall, 1997.

[Bir86] Richard S Bird. An Introduction to the Theory of Lists. Technical Report
PRG-56, Oxford University, Computing Laboratory, Programming Research
Group, October 1986.

[Bir87] Richard S Bird. A Calculus of Functions for Program Derivation. Techni-
cal Report PRG-64, Oxford University, Computing Laboratory, Programming
Research Group, December 1987.

[Bir89] Richard S Bird. Algebraic Identities for Program Calculation. The Computer
Journal, 32(2), 1989.

[BM75] R S Boyer and J S Moore. Proving theorems about LISP programs. Journal
of the ACM, 22(1), 1975.

[BM98] Richard S Bird and Lambert G T L Meertens. Nested datatypes. In 4th
International Conference on Mathematics of Program Construction, volume
1422 of Lecture Notes in Computer Science, pages 52–??, 1998.

[Boq99] Urban Boquist. Code Optimisation Techniques for Lazy Functional Languages.
PhD thesis, Department of Computing Science, Chalmers University of Tech-
nology and Göteborg University, 1999.

151

BIBLIOGRAPHY 152

[BP99] Richard S Bird and Ross Paterson. Generalised Folds for Nested Datatypes.
Formal Aspects of Computing, 11(2):200–222, September 1999.

[Car82] Luca Cardelli. Basic polymorphic typechecking. Science of Computer Pro-
gramming, 8(2):147–172, 1982.

[CF91] J Robin B Cockett and T Fukushima. About Charity. Technical Report
92/480/18, Department of Computer Science, University of Calgary, Canada,
1991.

[Chi90] Wei-Ngan Chin. Automatic Methods for Program Transformation. PhD thesis,
Imperial College, University of London, 1990.

[Chi92a] Wei-Ngan Chin. Fully lazy higher-order removal. In Charles Consel, editor,
Workshop on Partial Evaluation and Semantics-Based Program Manipulation,
pages 38–47. Yale Uni., June 1992. YALEU/DCS/RR-909.

[Chi92b] Wei-Ngan Chin. Safe fusion of functional expressions. ACM LISP Pointers,
5(1):11–20, 1992. Proceedings of the 1992 ACM Conference on LISP and Func-
tional Programming.

[Chi93] Wei-Ngan Chin. Towards an automated tupling strategy. In Proceedings of
the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation. PEPM’93, pages 119–132. ACM Press, 1993.

[Chi94] Wei-Ngan Chin. Safe fusion of functional expressions II: Further improvements.
Journal of Functional Programming, 4(4):515–555, October 1994.

[Chi99] Olaf Chitil. Type inference builds a short cut to deforestation. ACM Sig-
plan Notices, International Conference of Functional Programming (ICFP’99),
34(9):249–260, 1999.

[Chi00] Olaf Chitil. Type-inference based short cut deforestation (nearly) without in-
lining. In Proceedings of the 11th International Workshop on Implementation
of Functional Languages, Lochem, Netherlands, 2000.

[CK93] Wei-Ngan Chin and S C Khoo. Tupling functions with multiple recursion
parameters. Lecture Notes in Computer Science, 724:124–??, 1993.

[Coo66] D C Cooper. The equivalence of certain computations. The Computer Journal,
9:45–52, 1966.

[Cou90] B Courcelle. Recursive applicative program schemes. In J van Leuveen, editor,
Handbook of Theoretical Computer Science, volume B, pages 459–492. Elsevier,
1990.

[DB76] John Darlington and Rodney Martineau Burstall. A system which automati-
cally improves programs. Acta Informatica, 6(1):41–60, 1976.

BIBLIOGRAPHY 153

[DC94] Jeffrey Dean and Craig Chambers. Towards better inlining decisions using
inlining trials. In Conference on Lisp and Functional Programming, pages
273–282. LISP Pointers, July-September 1994.

[Der93] Nachum Dershowitz. A taste of rewrite systems. In P. E. Lauer, editor,
Functional Programming, Concurrency, Simulation and Automated Reasoning,
pages 199–228. Springer-Verlag, 1993. Proceedings of International Lecture
Series 1991-92, McMaster University Lecture Notes in Computer Science 693.

[DMS99] Oege De Moor and G Sittampalam. Generic program transformation. Lecture
Notes in Computer Science, 1608:116–??, 1999.

[Feg96] Leonidas Fegaras. Fusion for free! Technical Report CSE-96-001, Department
of Computer Science and Engineering, Oregon Graduate Institute of Science
and Technology, January 8, 1996.

[FM94] Maarten M Fokkinga and Lambert G T L Meertens. Adjunctions. Memoranda
informatica, University of Twente, June 1994.

[Fok92a] Maarten M Fokkinga. A Gentle Introduction to Category Theory — the calcu-
lational approach. University of Utrecht, 1992.

[Fok92b] Maarten M Fokkinga. Law and Order in Algorithmics. PhD thesis, Technical
University Twente, The Netherlands, 1992.

[Fok94] Maarten M Fokkinga. Monadic maps and folds for arbitrary datatypes. Mem-
oranda Informatica 94-28, University of Twente, June 1994.

[Fre90] Peter Freyd. Recursive types reduced to inductive types. In Proceedings of the
5th Annual IEEE Symposium on Logic in Computer Science, pages 498–507,
1990.

[FS95] Leonidas Fegaras and Tim Sheard. Using compact data representations for
languages based on catamorphisms. Technical Report 95-025, Department of
Computer Science and Engineering, Oregon Graduate Institute of Science and
Technology, 1995.

[FS96] Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over datatypes
with embedded functions (or, Programs from outer space). In Proceedings of
23rd Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, pages 284–294, St. Petersburg Beach, Florida, 21–24 January
1996.

[FSS92] Leonidas Fegaras, Tim Sheard, and David Stemple. Uniform traversal combi-
nators: Definition, use and properties. In Deepak Kapur, editor, Proceedings of
the 11th International Conference on Automated Deduction (CADE-11), vol-
ume 607 of LNAI, pages 148–162, Saratoga Springs, NY, June 1992. Springer-
Verlag.

BIBLIOGRAPHY 154

[FSZ94] Leonidas Fegaras, Tim Sheard, and Tong Zhou. Improving programs which
recurse over multiple inductive structures. In ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program Manipulation, pages 21–32,
Orlando, Florida, 25 June 1994.

[FW86] Philip J Fleming and John J Wallace. How not to lie with statistics: the
correct way to summarize benchmark results. Communications of the ACM,
29(3):218–221, March 1986.

[FW89] Alex Ferguson and Philip Wadler. When will deforestation stop? In Proceedings
of the 1989 Glasgow Functional Programming Workshop, 1989.

[Gil96] Andrew John Gill. Cheap Deforestation for Non-Strict Functional Languages.
PhD thesis, Department of Computing Science, University of Glasgow, 1996.

[GLPJ93] Andrew John Gill, John Launchbury, and Simon L Peyton Jones. A Short Cut
to Deforestation. In Proceedings of the 6th ACM Conference on Functional
Programming and Computer Architecture, April 1993.

[GM93] M J C Gordon and Thomas F Melham. Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press, 1993.

[Hag88] Tatsuya Hagino. A typed lambda calculus with categorical type constructors.
Technical Report ECS-LFCS-88-44, Laboratory for Foundations of Computer
Science, Department of Computer Science, University of Edinburgh, January
1988.

[Har94] Pieter H Hartel. Benchmarking implementations of lazy functional languages
II – Two years later. Technical Report Cs-94-21, Deptartment of Comp. Sys,
University of Amsterdam, December 1994.

[HIT96a] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Calculating accumula-
tions. Technical Report METR 96-03, Dept. of Mathematical Engineering,
Univ. of Tokyo, March 1996.

[HIT96b] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Cheap tupling in calcu-
lational form. Lecture Notes in Computer Science, 1140:471–??, 1996.

[HIT96c] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Construction of list
homomorphisms by tupling and fusion. Lecture Notes in Computer Science,
1113:407–418, 1996.

[HIT96d] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Deriving structural hylo-
morphisms from recursive definitions. ACM Sigplan Notices, 31(6):73–82, June
1996.

[HIT96e] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Formal derivation of
parallel program for 2-Dimensional maximum segment sum problem. Lecture
Notes in Computer Science, 1123:553–??, 1996.

BIBLIOGRAPHY 155

[HIT97] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. An extension of the acid
rain theorem. In T. Ida, A. Ohori, and M. Takeichi, editors, Proceedings 2nd
Fuji Intl. Workshop on Functional and Logic Programming, Shonan Village
Center, Japan, 1–4 Nov 1996, pages 91–105. World Scientific, Singapore, 1997.

[HITT97] Zhenjiang Hu, Hideya Iwasaki, Masato Takeichi, and Akihiko Takano. Tu-
pling calculation eliminates multiple data traversals. ACM Sigplan Notices,
32(8):164–??, August 1997.

[HJ94] Fritz Henglein and Jesper Jorgensen. Formally Optimal Boxing. In Proceed-
ings of 21st Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, Portland, Oregon, January 1994. ACM Press.

[HL78] Gérard Huet and Bernard Lang. Proving and applying program transforma-
tions expressed with second-order patterns. Acta Informatica, 11:31–55, 1978.

[HL93] Pieter H Hartel and Koen Langendoen. Benchmarking implementations of lazy
functional languages. In Functional Programming & Computer Architecture,
pages 341–349, June 1993.

[Hu96] Zhenjiang Hu. A Calculational Approach to Optimising Functional Programs.
PhD thesis, Department of Information Engineering, University of Tokyo, 1996.

[IHT98] Hideya Iwasaki, Zhenjiang Hu, and Masato Takeichi. Towards manipulation of
mutually recursive definitions. To appear in Proceedings FUJI’98, 1998.

[Jeu95] Johan Jeuring. Polytypic pattern matching. In Conference on Functional
Programming and Computer Architecture, 1995.

[JJ97] Patrik Jansson and Johan Jeuring. PolyP — a polytypic programming language
extension. In Conference record of POPL ’97: The 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Paris, France,
1997.

[JM95] Johan Jeuring and Erik Meijer, editors. Advanced Functional Programming,
volume 925 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[Joh] Thomas Johnsson. Sharing Analysis + EVAL inlining + Unboxing = Defor-
estation.

[Joh85] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equa-
tions. In Jouannaud [Jou85], pages 190–203.

[Joh94] Thomas Johnsson. Fold-unfold transformations on state monadic interpreters.
In Proceedings of the 1994 Glasgow Functional Programming Workshop, Work-
shops in Computing, Ayr, 1994. Springer-Verlag.

[Joh98] Thomas Johnsson. Graph reduction, and how to avoid it. Theoretical Computer
Science, 194(1–2):244–??, March 1998.

BIBLIOGRAPHY 156

[Jou85] Jean-Pierre Jouannaud, editor. Functional Programming Languages and Com-
puter Architecture, volume 201 of Lecture Notes in Computer Science. Springer-
Verlag, September 1985.

[KH89] Richard Kelsey and Paul Hudak. Realistic Compilation by Program Transfor-
mation. In Principles of Programming Languages, January 1989.

[KL95] Richard B Kieburtz and Jeffrey R Lewis. Programming with algebras. In
Jeuring and Meijer [JM95], pages 267–307.

[Klo96] Jan Willem Klop. Term graph rewriting. Lecture Notes in Computer Science,
1074, 1996.

[KT92] K Kaneko and Masato Takeichi. Relationship between lambda hoisting and
fully lazy lambda lifting. Journal of Information Processing, 15(4):564–569,
1992.

[Ler92] Xavier Leroy. Unboxed objects and polymorphic typing. In Conference record of
the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 177–188, Albuquerque, New Mexico, 1992.

[LS95] John Launchbury and Tim Sheard. Warm fusion: Deriving build-catas
from recursive definitions. In Proceedings of the Seventh International Con-
ference on Functional Programming Languages and Computer Architecture
(FPCA’95), pages 314–323, La Jolla, California, June 25–28, 1995. ACM SIG-
PLAN/SIGARCH and IFIP WG2.8, ACM Press.

[MA86] E G Manes and M A Arbib. Algebraic Approaches to Program Semantics.
Springer-Verlag, 1986.

[Mac71] Saunders MacLane. Categories for the Working Mathematician. Springer-
Verlag, 1971.

[Mal89] Grant R Malcolm. Homomorphisms and promotability. In J L A van de Snep-
scheut, editor, Proceedings of the International Conference on Mathematics
of Program Construction, volume 375 of Lecture Notes in Computer Science,
pages 335–347. Springer-Verlag, June 1989.

[Mal90] Grant R Malcolm. Data structures and program transformation. Science of
Computer Programming, 14:255–280, 1990.

[Mar95] Simon David Marlow. Deforestation for Higher-Order Functional Programs.
PhD thesis, Department of Computing Science, University of Glasgow, 1995.

[Mee86] Lambert G T L Meertens. Algorithmics – towards programming as a mathe-
matical activity. In Proceedings of the CWI Symposium on Mathematics and
Computer Science, pages 189–334, 1986.

[Mee90] Lambert G T L Meertens. Paramorphisms. Technical Report CS-R9005, CWI,
1990.

BIBLIOGRAPHY 157

[Mei92] Erik Meijer. Calculating Compilers. PhD thesis, University of Nijmegen, The
Netherlands, 1992.

[Mel88] Thomas F Melham. Automating Recursive Type Definitions in Higher Order
Logic. Technical Report 146, University of Cambridge, Computer Laboratory,
September 1988.

[MFP91] Erik Meijer, Maarten M Fokkinga, and Ross Paterson. Functional Program-
ming with Bananas, Lenses, Envelopes and Barbed Wire. In John Hughes,
editor, Proceedings of the 5th ACM Conference on Functional Programming
and Computer Architecture, volume 523 of Lecture Notes in Computer Science,
pages 124–144. Springer-Verlag, 1991.

[MH95] Erik Meijer and Graham Hutton. Bananas in space: extending fold and unfold
to exponential types. In Simon L Peyton Jones, editor, Functional Program-
ming & Computer Architecture, pages 324–333. ACM, 1995.

[Mil78] Robin Milner. A theory of type polymorphism in programming languages.
Journal of Computer and System Sciences, 17(3):348–375, 1978.

[MJ95] Erik Meijer and Johan Jeuring. Merging Monads and Folds for Functional
Programming. In Jeuring and Meijer [JM95].

[Mog91] Eugenio Moggi. Notions of computations and monads. Information and Com-
putation, 93:55–92, 1991.

[MWCG97] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F
to typed assembly language (extended version). Technical Report TR97-1651,
Cornell University, Computer Science, November 1997.

[NPJ98] László Németh and Simon L Peyton Jones. A design for warm fusion. In
Conference Record of the 10th International Workshop on Implementation of
Functional Languages, pages 381–393, 1998.

[OHIT97] Y Onue, Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. A calculational
fusion system HYLO. In Richard S Bird and Lambert G T L Meertens, editors,
Proceedings IFIP TC 2 WG 2.1 Working Conf. on Algorithmic Languages and
Calculi, Le Bischenberg, France, 17–22 Feb 1997, pages 76–106. Chapman &
Hall, London, 1997.

[Par90] H A Partsch. Specification and Transformation of Programs. Springer-Verlag,
1990.

[Par92] G Park. Semantic analyses for storage management optimizations in functional
language implementations. Technical Report TR-597, Department of Computer
Science, New York University, February 1992.

[Pie91] Benjamin C Pierce. Basic Category Theory for Computer Scientists. The MIT
Press, 1991.

BIBLIOGRAPHY 158

[PJ87] Simon L Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice-Hall, 1987.

[PJ92] Simon L Peyton Jones. Implementing lazy functional languages on stock hard-
ware: The Spineless Tagless G-machine. Journal of Functional Programming,
2(2):127–202, July 1992.

[PJ96] Simon L Peyton Jones. Compiling Haskell by program transformation: A report
from the trenches. In Hanne Riis Nielson, editor, Programming Languages and
Systems—ESOP’96, 6th European Symposium on Programming, volume 1058
of Lecture Notes in Computer Science, pages 18–44, Linköping, Sweden, 22–
24 April 1996. Springer-Verlag.

[PJH99] Simon L Peyton Jones and John Hughes, editors. Report on the Programming
Language Haskell 98. February 1999.

[PJL91a] Simon L Peyton Jones and John Launchbury. Unboxed values as first class
citizens in a non-strict functional language. Lecture Notes in Computer Science,
523, 1991.

[PJL91b] Simon L Peyton Jones and David R Lester. A modular fully-lazy lambda lifter
in HASKELL. Software – Practice & Experience, 21(5):479–506, 1991. Also
Research Report CSC/90/R17, Department of Computer Science, University
of Glasgow (1990).

[PJM99] Simon L Peyton Jones and Simon David Marlow. Secrets of the Glasgow Haskell
Compiler inliner. In IDL’99, 1999.

[PJS96] Simon L Peyton Jones and André Lúıs de Medeiros Santos. A transformation-
based optimiser for Haskell. Science of Computer Programming, 32(1–3):3–47,
1996.

[PK82] Robert Paige and S Koenig. Finite differencing of computable expressions.
ACM Transactions on Programming Languages and Systems, 4(3):402–454,
1982.

[PP96a] Alberto Pettorossi and Maurizio Proietti. Future directions in program trans-
formation. ACM, Computing Surveys, 28(4), 1996.

[PP96b] Alberto Pettorossi and Maurizio Proietti. Rules and strategies for transforming
functional and logic programs. ACM, Computing Surveys, 28(2), 1996.

[PS87] Alberto Pettorossi and A Skowron. Higher order generalisation in program
derivation. In Proceedings of Tapsoft’87 (Pisa, Italy), volume 250 of Lecture
Notes in Computer Science, pages 182–196. Springer-Verlag, 1987.

[Rey83] John C Reynolds. Types, abstraction, and parametric polymorphism. Infor-
mation Processing, pages 513–523, 1983.

BIBLIOGRAPHY 159

[San95] André Lúıs de Medeiros Santos. Compilation by Transformation in Non-Strict
Functional Languages. PhD thesis, Department of Computing Science, Univer-
sity of Glasgow, 1995.

[San96a] Dave Sands. Proving the correctness of recursion-based automatic program
transformations. Theoretical Computer Science, 167(10), October 1996. Pre-
liminary version in TAPSOFT’95, LNCS 915.

[San96b] Dave Sands. Total correctness by local improvement in the transformation
of functional programs. ACM Transactions on Programming Languages and
Systems, 18(2):175–234, March 1996.

[SDM93] Doaitse S Swierstra and Oege De Moor. Virtual data structures. Lecture Notes
in Computer Science, 155:355–??, 1993.

[SF93] Tim Sheard and Leonidas Fegaras. A fold for all seasons. In Proceedings of the
6th ACM Conference on Functional Programming and Computer Architecture,
pages 233–242. ACM, 1993.

[SF94] Tim Sheard and Leonidas Fegaras. Optimizing algebraic programs. Technical
Report CSE-94-004, Department of Computer Science and Engineering, Oregon
Graduate Institute of Science and Technology, February 1994.

[SGJ94] Morten Heine Sorensen, Robert Glück, and Neil D Jones. Towards unifying
partial evaluation, deforestation, supercompilation, and GPC. Lecture Notes
in Computer Science, 788, 1994.

[SRA94] Zhong Shao, John H Reppy, and Andrew W Appel. Unrolling lists. In Confer-
ence record of the 1994 ACM Conference on Lisp and Functional Programming,
pages 185–191, June 1994.

[SW94] Manuel Serrano and Pierre Weis. 1+1=1: An optimizing Caml compiler. In
Record of the 1994 ACM SIGPLAN Workshop on ML and its Applications,
pages 101–111, Orlando (Florida, USA), June 1994.

[TA90] Masato Takeichi and Yoji Akama. Deriving a functional Knuth-Morris-Pratt
algorithm by transformation. Journal of Information Processing, 13(4):522–
528, 1990.

[Tak87] Masato Takeichi. Partial parameterization eliminates multiple traversals of
data structures. Acta Informatica, 24:57–77, 1987.

[THT98] Akihiko Takano, Zhenjiang Hu, and Masato Takeichi. Program transformation
in calculational form. ACM, Computing Surveys, 30, September 1998.

[TM95] Akihiko Takano and Erik Meijer. Shortcut deforestation in calculational form.
In Simon L Peyton Jones, editor, Programming of the 8th ACM Conference on
Functional Programming and Computer Architecture, pages 306–313. ACM,
1995.

BIBLIOGRAPHY 160

[TMC+96] Dave Tarditi, Greg Morrisett, P Cheng, C Stone, Robert Harper, and Peter
Lee. TIL: A type-directed optimizing compiler for ML. ACM Sigplan Notices,
31(5):181–192, May 1996. Proceedings of the 1996 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI).

[Tur86] Valentin F Turchin. The concept of a supercompiler. ACM Transactions on
Programming Languages and Systems, 8(3):292–325, July 1986.

[TWM95] David N Turner, Philip Wadler, and Christian Mossin. Once upon a type.
In Programming of the 8th ACM Conference on Functional Programming and
Computer Architecture, San Diego, California, 1995.

[Wad81] Philip Wadler. Applicative style programming, program transformation and
list operators. In Proceedings ACM Conference on Functional Programming
Languages and Computer Architecture, pages 25–32, 1981.

[Wad84] Philip Wadler. Listlessness is better than laziness. In Conference Record of
the 1984 ACM Symposium on Lisp and Functional Programming, pages 45–52.
ACM, August 1984.

[Wad85a] Philip Wadler. How to replace failure by a list of successes. In Jouannaud
[Jou85], pages 113–128.

[Wad85b] Philip Wadler. Views: A way for elegant definitions and efficient representa-
tions to coexist. In Thomas Johnsson et al., editor, Aspenæs Workshop on
Implementation of Functional Languages. Programming Methodology Group,
University of Göteborg and Chalmers University of Technology, 1985.

[Wad86] Philip Wadler. Listlessness is better than laziness II: Composing listless func-
tions. In Lecture Notes in Computer Science, volume 217. Springer-Verlag,
October 1986.

[Wad87a] Philip Wadler. Fixing some space leaks with a garbage collector. Software –
Practice & Experience, 1987.

[Wad87b] Philip Wadler. List comprehensions, chapter 7. In spj:book [PJ87], 1987.

[Wad89] Philip Wadler. Theorems for free! In Proceedings of the 4th ACM Conference
on Functional Programming and Computer Architecture, pages 347–359. ACM
Press, London, September 1989.

[Wad90] Philip Wadler. Deforestation: transforming programs to eliminate trees. The-
oretical Computer Science, 73:231–248, June 1990.

[Wad92] Philip Wadler. Comprehending monads. Mathematical Structures in Computer
Science, 2:461–493, 1992.

[Wad95] Philip Wadler. Monads for functional programming. In Jeuring and Meijer
[JM95].

BIBLIOGRAPHY 161

[WPJ93] Philip Wadler and Simon L Peyton Jones. Imperative functional programming.
In Proceeding of the 20th Annual ACM SIGACT-SIGPLAN Symposium on
Pronciple of Programming Languages, pages 71–84, 1993.

[WPJ99] Keith Wansbrough and Simon L Peyton Jones. Once upon a polymorphic
type. In Conference record of POPL ’99: The 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 15–28, 1999.

[WS72] S A Walker and H R Strong. Characterisation of flowchartable recursions.
In Proceedings of the 4th Annual ACM Symposium on Theory of Computing,
Denver, Co., USA, 1972.

[XIT94] L Xu, Hideya Iwasaki, and Masato Takeichi. Derivation of algorithms by in-
troduction of generation functions. New Generation Computing, 13(1):75–98,
1994.

Index

abstract datatype, 91

accumulating argument, 73

Acid Rain theorem, 12, 24, 42

ADT, 91

Alg(F), category of algebras, 19

algebraic replacement rule, 9

algorithm for

buildify, 55, 69

catify, 60, 70, 81

beta reduction, 32, 145

build-cata form, 13

buildify, 55, 69

case elimination, 145

case of error, 145

case of known constructor, 83, 145

cata fusion law, 43

cata of case rule, 57, 79

cata of error rule, 79

cata of known constructor rule, 20, 57, 79,

103

cata-build rule, 12, 13, 25, 37, 38, 44,

55, 79

catamorphism, 12, 20

evaluation rule, 20

fusion law, 21

reflection law, 20

catify, 60, 70, 81

compiler passes

core simplifier, 143, 146

derive, 146

desugarer, 64, 142, 146

reader, 142, 146

renamer, 142, 146

type inference, 142, 146

copy function, 20, 43, 141

core simplifier, 44, 56, 143, 146

float in, 147

full laziness, 147

normalise, 147

simplify, 147

specialise, 147

strictness analysis, 148

warm fusion, 147

cut elimination, 11

dead code removal, 145

definition of

E, 57, 78

M , 50, 77

catamorphism, 20

map, 50

polynomial datatype, 37

polynomial functor, 19

regular datatype, 37

rewrite system, 84

the functor E, 52, 78

the functor M , 50, 77

type functor, 50

definition rule, 9

deforestation, 7, 10, 12

desugarer, 64, 142, 146

162

Index 163

dynamic rewrite system, 35

E, 52, 57

evaluation rule for catamorphism, 20

example

catamorphism

cataTree α, 67

first-order catamorphism

append , 65

for buildify

mapMaybe , 58

mapRose , 59

downTo , 56

level , 68

repAnswer , 30

for catify

length for List, 62

level , 69

map[], 72

mutually recursive maps, 82

sum, 33

for deriving

map[], 51

for deriving a catamorphism

List cata [α], 52

Rose tree cataRose α, 53

higher-order catamorphism

append , 66

level , 69

map[], 73

optimal translation of list comprehen-

sions, 96

standardising argument ordering, 87

existence of

catamorphisms, 20

existential quantification, 91

F-algebra, 19

F-homomorphism, 19

float in, 147

float out, 147

folding rule, 9

foldl , 8

foldr , 12, 25, 53

foldr/build rule, 12, 25

full laziness, 48, 147

fusion law

for catamorphism, 21, 70

monadic, 141

generate , 8

good consumer, 32, 39

good producer, 29, 39, 41, 56

HOL, 138

identity catamorphism, 43, 141

improvement theory, 137

inlining, 9, 145

instantiation rule, 9

interaction of catas and Core

cata-build rule, 55

cata of case rule, 55

cata of error rule, 55

cata of known constructor rule, 55

let to case, 145

list comprehension

optimal translation of, 92

local transformations

beta reduction, 145

case elimination, 145

case of error, 145

case of known constructor, 145

dead code removal, 145

inlining, 145

let to case, 145

Index 164

type beta reduction, 145

M , 50

map, 73

map for list, 8

monoConstrs, 52, 55, 80

natural transformation, 15

normalise, 87, 147

notStatic, 74

optimal translation, 92

parametricity theorem, 14

partial evaluation, 33

polynomial datatype, 37

polynomial functor, 19

program calculation, 5

program derivation, 5

program transformation

rules and strategies approach, 5

schemata approach, 5

promotion theorem, 43, 70

reader, 142, 146

reflection law for catamorphisms, 20

regular datatype, 37

renamer, 142, 146

rewrite system, 35, 84

Rose tree, 53, 59

RULES, 118

rules

cata-build rule, 79

case of known constructor, 83

cata of case, 55, 57, 79

cata of error, 55, 79

cata of known constructor, 20, 55, 57,

79, 103

rules and strategies approach, 5

SAT, 74

schemata approach, 5

second-order fusion, 48

second-order fusion theorem, 73

separate compilation, 89

simplify, 147

snoc list, 8

sourceTypeOf, 50, 77, 78

specialise, 147

Squiggol, 10, 12

Standard Prelude, 12, 53, 67, 117

static argument transformation, 74

strictness, 30, 43, 60

strictness analysis, 48, 148

structural recursion, 40

targetTypeOf, 50, 52, 78

theorem prover, 138

transparency of transformations, 11, 17,

138

tyConOf, 77

type beta reduction, 145

type functor, 137

type inference, 142, 146

typeOf, 50, 77, 78

tyVarsOf, 50, 77

unfolding rule, 9

warm fusion, 13, 147

where abstraction rule, 9

worker-wrapper split, 31, 61

