

Mobile Advertising: Triple-win for Consumers,
Advertisers, and Telecom Carriers
(A positional paper)

Chia-Hui Chang (張嘉惠) Kuan-Hua Huo (霍冠樺)

National Central University, Taiwan

Date: 7/28/11

@ T-----

From Consumers' Perspective

- The lower VAS prices and internet accessing charges the customers get, the more customers we find.
- One way to lower mobile internet charges is to obtain sponsor from mobile advertising, i.e. watching ads in exchange
- Mobile advertising is an important way of web monetization strategies, especially for telecommunication corporations.

From Advertisers' Perspective

- The growing popularity of mobile device
 - mobile cellular subscriptions have reached over
 70% of the world population at the end of 2010.

High Penetration Rate, Personal Communication
 Device and Interactive

From Telecoms' Perspective

 Mobile broadband subscriptions are less than 20 percents of the mobile subscriptions. [Mobile Tech News]

The high payments

VAS (Value-Added Services)
 is deeply influenced.

• Triple-win

- Telecommunication providers run the ads agent platform to attract investments from advertisers.
- Subscribers read promotional ads that are sent to subscribers' mobile phones to get discount payment of mobile Internet accessing from telecommunication.
- The advertisers register promotional ads, they pay a reasonable price to telecommunication.

Three Key Issues

- Sending the appropriate mobile ads to the most potential subscriber at the best time in the right place is the key issue!
 - How to show ads in subscriber's mobile device?
 - When to show the ads?
 - What potential ads will be clicked by the user?

Related Work

 Consumer Behavior and Personalized Advertising

Web Contextal Advertising

Mobile Advertising

Consumer Behavior and Personal Advertising

- Turban et al. [ICEC2000] described the main influences on the consumer's decision:
 - consumer's individual characteristics, the environment and the merchant's marketing strategy components (e.g., price and promotion)
- Varshney & Vetter [Mobile Networks and Applications 2002] proposed mobile advertising and shopping application could include
 - Demographics, location information, user preference, and store sales and specials

Consumer Behavior and Personal Advertisng (cont.)

- Rao's & Minakakis [COMMUNICATIONS OF THE ACM 2003] proposed the marketing technique base on
 - Knowledge: customer profiles, history, and needs
 - Advertising activities: location, time and time-related item such as local events
- Xu et al. [Decision Support Systems 2008] proposed a user model based on
 - Context: user activities, user location, weather, and time
 - User preference: cuisines, food, type, restaurant service and restaurant ambience
 - Content: price, discount, brand

Web Contextal Advertising

- Several studies pertaining to advertising research show that
 - The more targeted the advertising, the more effective it is. [Novak, World Wide Web Journal 1997].
- Contextual advertising
 - Assignment of relevant ads within the content of a generic web page
 - Matching pages to ads based on extracted keywords [Ribeiro-Neto et al., SIGIR'05]

Mobile Advertising

- Existing methods: SMS, Applet, Browser
 - SMS: free to receive SMS
 - Applet & Browser: broadband access
- SMS: the most common method
 - Infrastructure limitation make this method difficult to scale to personalized advertising
 - Giuffrida et al. [EDBT'07], Penev et al. [CIKM'09]

Mobile Advertising (cont.)

- Applet Marketing
 - Google acquired AdMob (Nov. 2009)
 - Mobile advertising platform
 - Apple iAd (Apr. 2010):
 - Share benefit between third-party developers
 - Another kind of triple win among 1) consumers,2) advertisers and 3) developers
- Browser
 - Web contextual advertising

Design Methodology

- System architecture
- Address the 3 key issue for mobile advertising
- Personalized ad matching

System architecture

Addressing the 3 Key Issues

- Sending the appropriate mobile ads to the most potential subscriber at the best time in the right place is the key issue!
 - How to show ads in subscriber's mobile device?
 - a particular applet to display ads and provide ad clicking info
 - When to show the ads?
 - trigger-based and fixed schedule
 - What potential ads will be clicked by the user?

Measuring the time spent on Ads

- The mobile ad allocator provides the following information to the telecom Carriers (for charging of the network usage):
 - The number of mobile ads that are shown in the user device
 - The number of mobile ads that are clicked by the user
 - Recording the time user spent on ads

What potential ads to be shown?

- Ads filtering is based on GPS and Velocity
 - Radius = v * m
- 2. Content similarity scoring
 - Long-term factors
 - Jaccard(J): Promotion and 5 categories
 - Short-term factors
 - User Query: Titles and landing pages
- 3. If the highest score of the filtered ads in step 1 is less than α , then
 - add top ranked 50 ads by discounted score based on distance

Personalized ad matching (cont.)

Similarity computation

$$Sim_{score}(u, a) = \alpha \times Jaccard(S_u, S_a) + Cos(q(u), t(a)) + Cos(q(u), p(a))$$

Where $\alpha \in [0.1,0.2]$

Long-term factors

$$Jaccard(S_u, S_a) = \frac{S_u \cap S_a}{S_u \cup S_a}$$

 $Jaccard(S_u, S_a) = \frac{S_u \cap S_a}{S_u \cup S_a}$, where S_u and S_a are six dimension binary vector for the user and the ad respectively. vector for the user and the ad respectively.

Short- term factors

$$Cos(v_1, v_2) = v_1 \cdot v_2$$

- q(u): user query
- t(a): title of ads
- p(a): landing page of ads

 $S(\vec{m}_{score}^{C}(\vec{u}), \vec{p}) = 0.1 \times Sim_{jaccard}(\vec{u}_{content}, \vec{a}_{content}) + Sim_{title}(q(\vec{u}), t(\vec{a})) + Sim_{page}(q(\vec{u}), p(\vec{a}))$

Personalized ad matching (cont.)

- Discounted score
 - For ads with distance < average distance</p>
 - $Sim_{discounted}(u, a) = 0.5 \times Sim_{score}(u, a)$
 - For ads with distance > average distance
 - $Sim_{discounted}(u, a) = 0.3 \times Sim_{score}(u, a)$

Simulation Platform

- Mobile Ad Collector
- Simulation Platform
- Performance Evaluation

Mobile Ad Collector

- No real business environment
 - Due to the lack of considerable amount of mobile ads, we propose a mobile ad collector.
- The process of mobile ad collector:
 - Ad-crawler Platform
 - Collect online ads automatically form Google AdSense
 - Ad Feature Extraction
 - extract the following information from ads landing pages
 - Postal Address, Promotion Activity and Product Category

Mobile Ad Collector (cont.)

Ad-crawler Platform

- Topic words as query terms are requested web pages from search engines.
- About 200,000 URL were retrieved.
- Extract the corresponding web ads assigned by Google AdSense
- After removing repeated web ads,
 54,709 different web ads were collected.
 - Hyperlink, title and abstract

Ad Feature Extraction

- Postal address extraction
- Promotion activity identification
- Product category classification

- However, most of web ads contain no postal address.
 - Only 4,003 web ads contain postal address.
 - A total of 9,327 postal address are extracted.
- Hence, a geographic coordinate are assigned for each web ad randomly.
- Convert geographic coordinates into a postal address via Google Map API

Promotion Identification

- Train a classification to identify whether an ads contains promotion information.
- Training tuples:
 - 548 web ads with real postal addresses are labeled manually.
- Train a binary classifier by decision tree.
 - Ten fold cross-validation

Promotion Identification (cont.)

Training with ten fold cross-validation

Class	Number	Precision	Recall	F-measure
No Promotion	385	0.907	0.94	0.923
Promotion	163	0.846	0.773	0.808
Weighted Average	548	0.889	0.891	0.889

• The accuracy for 100 testing examples is 0.94.

Effectiveness Metrics	Relevant	Non-Relevant	
Retrieved	47	2	
Not Retrieved	3	48	

Product Category Classification

- Five categories extraction
 - Delicacies, Clothing, Residence, Transportation, life service
- Training data preparation
 - Define some query keywords for each category (except for the last category: life service)
 - Positive: retrieve top relevant ads and label them manually
 - Negative: select randomly
 - Around 300 training examples including equal number of positive and negative examples

Product Category Classification

- Train a binary classifier for each category except for others
 - Ten fold cross-validation
- Annotate an ad as life service if it is not classified to each category

Category Prediction Performance

Training with ten fold cross-validation

Class	#Examples	Precision	Recall	F-measure
Delicacies	313	0.911	0.911	0.911
Clothing	302	0.984	0.983	0.983
Residence	302	0.815	0.815	0.814
Transportation	302	0.931	0.93	0.930

Simulation Platform

- The simulation platform is the web site, which was written in HTML, Java Script and PHP.
- Recommending mobile ads was calculated immediately
- The environment was assumed with GPS
- We assumed that user was moving with a velocity.
- Simulated platform couldn't simulate time interval, so we use steps within a route instead.

Simulation Platform (cont.)

- Scenarios
 - Case 1: travel from point A to point B.
 - Case 2: Sighting seeing around point A.(around here)

Simulation Platform (cont.)

http://140.115.51.8/system/index.php

Performance Evaluation

- 30 subjects
- Each with 20-25 runs of tests
- Precision, recall and F-measure are computed for each user.
- The result shows the average over the users.

Performance Evaluation (cont.)

- Precision $P(u) = \frac{|A \cap B|}{|A|} = CTR \text{ (Click Through Rate)}$
- Recall

$$R(u) = \frac{|\mathbf{A} \cap \mathbf{B}|}{|\mathbf{B}|}$$

- A: the numbers of ads recommended to a user
- B: the numbers of ads clicked by a user
- F-measure is computed as normal.

Performance Evaluation (cont.)

Performance

Approach	Precision	Recall	F-measure
Locality + User Information	0.494	0.369	0.401
User Information	0.428	0.311	0.343
Locality	0.310	0.199	0.232
Random	0.200	0.118	0.141

Conclusion

- The framework: a triple-win for the telecom carriers, the mobile advertisers and the subscribers
- Our system recommends mobile ads based on the factors of accessibility and content-match.
- Mobile advertising is important for geo-/ deep- / behavior- targeting

Future Work

- Advertising based on history or collaborative filtering can be explored to increase advertising effectiveness.
- Click fraud prevention is important for such services

Thanks for your time!