

Spectrum Enforcement in a Spectrum Sharing World

Suman Banerjee

Wisconsin Wireless and NetworkinG Systems (WiNGS) Laboratory

Collaborations and discussions with: Victor Bahl (MSR) Vladimir Brik, Arunesh Mishra, Vivek Shrivastava (UW-Madison) Marco Gruteser, Sangho Oh (Rutgers), Edward Suh (Cornell) Jon Peha, Adrian Perrig (CMU)

ISM unlicensed band

NYC Measurements 31-Aug-2004 15:45:41

PCS band

Dynamic spectrum sharing

- Regulatory bodies

 Such as FCC, Ofcom
- Primary user
 - Owns the spectrum (through a long-term lease)
- Secondary user
 - Need limited, opportunistic, access to spectrum
- Spectrum brokers
 - Aggregates unused spectrum and makes it available to secondary users

Design goals Time

• High utilization

Design goals

- High utilization
- Flexible usage

Unknown PHY/MAC modulations

Design goals

- High utilization
- Flexible usage
- Verifiable use

Unknown PHY/MAC modulations

Design goals

- High utilization
- Flexible usage
- Verifiable use
- Certifiable X-ware

Requirements

- Violation detection should be
 - Fast Accurate

- Automated

Build confidence among primary owners

Approach I

- Secure spectrum rights management
 - A Secure secondary license (slice)

Approach I

- Secure spectrum rights management
 - A Secure secondary license (slice)

Real-time spectrum management[™]

Secure spectrum rights management

Switch

Approach I

• In-band spectrum enforcement

radio

Comm.

interface

- Disable communication on violation

Spectrum Monitoring Engine (SME)

A power fence

Enforcing the power fence

• In this example, implemented in software

Approach II

- Out-of-band spectrum violation detection
 - Radiometric identification (PARADIS)
 - Automated localization (RADAR, Horus, others)

Radiometric identification

- Utilize unforgeable characteristics of wireless RF front-end
 - Usually imperfections acquired during manufacturing process

Errors do not inhibit decoding

Others include: Frequency error, SYNC correlation, I/Q origin offset

Frame frequency error

• Collect radiometric samples of permitted transmitters

- Collect radiometric samples of permitted transmitters
- Build radiometric profiles (models)

- Collect radiometric samples of permitted transmitters
- Build radiometric profiles (models)
- Use profiles to classify incoming transmissions

- Collect radiometric samples of permitted transmitters
- Build radiometric profiles (models)
- Use profiles to classify incoming transmissions
- Currently implemented schemes
 - k-Nearest Neighbors (kNN)
 - Support Vector Machines (SVM)

- Collect radiometric samples of permitted transmitters
- Build radiometric profiles (models)
- Use profiles to classify incoming transmissions
- Currently implemented schemes
 - k-Nearest Neighbors (kNN)
 - Support Vector Machines (SVM)

Overall performance

Scheme	NIC pop.	Bin Size	Training fraction	Error reported	Equivalent performance of PARADIS	
					kNN	SVM
Franklin et. al.	17	8	5%	15%	0%	0%
Hall et. al.	30	10	33%	8%	0%	0%
PARADIS	138	4	20%	-	3%	0.0034%

Experimented on ORBIT testbed with identical Atheros-based 802.11 NICs

A more careful look

A more careful look

More results

 Designed against temperature changes

 Can deal with node mobility

Can handle NIC aging

- Spectrum enforcement may be a critical piece in facilitating dynamic spectrum sharing
- Needs planned hardware and software design
- Requires regulatory processes as well