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Introduction

In many emerging wireless networks no central frequency
allocation authority is naturally available.
Examples are

◮ Ad hoc Networks
◮ Cognitive Radios

Optimal frequency allocation requires full knowledge of the spatial
distribution profile of the network nodes.

This makes distributed frequency allocation an important but
mostly unchartered territory in wireless networking.

Objective: Dynamic assignment of the frequency bands to the
users in the network in order to minimize the interference.
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System Model
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• Various networks are
naturally clustered, i.e. the network elements
are partitioned into a union of clusters.

• Examples include combat
scenarios, WLAN hot spots, WLAN, etc.

• N clusters, ci, i = 1, · · · , N, where
each cluster has a cluster head responsible
for managing some of the network functions.
dij denotes the distance between the cluster
heads of ci and cj.
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Interference Model

We assume that the updates are taking place at times t1, t2, · · · .

The interference experienced by ci caused by all the other clusters
is

Ici(N, {dij}, l) =
∑

j6=i

KP0

dη
ij

δ(si(l), sj(l))

where l denotes the update time tl, l = 1, 2, · · · .

The aggregate interference of the network at time l is

I(N, {dij}, l) =
∑

i

Ici(N, {dij}, l) =
∑

i

∑

j6=i

KP0

dη
ij

δ(si(l), sj(l))

Note that this channel model is not necessary for the convergence
of our algorithm (our algorithm works with any other channel
model as long as it is reciprocal).
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Similar Problems and Existing Approaches

There are a number of proposed solutions to similar problems in
different contexts (graph coloring, iterative waterfilling, etc.)
These approaches have either of these drawbacks:

◮ Excessively simplifying the interference models
◮ Not fully decentralized
◮ Require too much information exchange between autonomous

nodes/clusters
◮ Too complex to implement
◮ Suffer from all the above shortcomings
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Similar Problems and Existing Approaches (cont.)

C. Peng, H. Zheng, and B. Y. Zhao [2006] propose that secondary users
choose their spectrum according to their information about their
local primary and secondary neighbors, in a cognitive network
setting (Vertical sharing).

Nodes are the vertices of a graph and any two interfering nodes
are connected with an edge. This turns the problem into the graph
multi-coloring problem.

A sub-optimal solution to the graph multi-coloring, using an
approximation algorithm to the graph labeling problem.
Drawbacks:

◮ Not fully decentralized
◮ The interference model is excessively simplified
◮ Too much message-passing among the nodes
◮ High complexity
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Similar Problems and Existing Approaches (cont.)

Similar works in the context of Digital Subscriber Lines (DSL).

W. Yu, G. Ginis, and J. M. Cioffi [2002] have proposed a method of
iterative waterfilling in order to solve the problem of optimal PSD
shaping in DSL applications.

Each user must know a weighted sum of the PSD of the other
users (interference), in order to do waterfilling.
Drawbacks:

◮ High computational complexity.
◮ Nash equilibrium point does not necessarily correspond to the

optimal answer.
⋆ For instance, in a two-user scenario, if both users start with a flat PSD

initially, iterative waterfilling does not change their PSD.
⋆ This is clearly a Nash equilibrium point, but is far away from the

optimal answer.

Harvard (SEAS) 9 / 60



Similar Problems and Existing Approaches (cont.)
R. Cendrillon, J. Huang, M. Chiang, and M. Moonen [2006], [2007] consider
the problem for a DSL system with N users and K tones.
The achievable bit-rate of user n is

Rn ,

K
∑

k=1

log
(

1 +
sn

k
∑

m 6=n αn,m
k sm

k + σn
k

)

where sn
k is the transmission power of user n over tone k, αn,m

k is
the normalized cross-talk channel between users n and m and σn

k
is the noise level of tone k for user n.
The optimization problem is:

maxsn
k ,∀n,k

∑

i wiRi s.t.
∑

k sn
k ≤ Pn,∀n

for a given set of 0 ≤ w1, · · · , wN ≤ 1 such that
∑

i wi = 1.
This problem can be solved iteratively in a centralized fashion and
converges to the optimal values.
However, it is very complicated due to being centralized.
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Similar Problems and Existing Approaches (cont.)

Very hard to solve in a decentralized manner.

The optimization problem is relaxed based on introducing a virtual
user with fixed thresholds.

The throughput of the virtual user (from the viewpoint of user n) is

Rn,ref ,
∑

k

log

(

1 +
s̃k

α̃n
ksn

k + σ̃k

)

where s̃k is a fixed power assignment over tone k for the virtual
user, σ̃k is the noise over tone k, and α̃n

k is the cross-talk channel
of user n and the virtual user over tone k.

The relaxed optimization problem for each user n:

maxsn
k∀k,wn wnRn + (1 − wn)Rn,ref s.t.

∑

k sn
k ≤ Pn

where the maximization is jointly over wn and sn
k , k = 1, · · · , K.

Harvard (SEAS) 11 / 60



Similar Problems and Existing Approaches (cont.)

Each user solves the relaxed optimization problem locally across
different tones. The knowledge of a weighted sum of the PSD of
the other users (interference) is required.

The convergence is proved only in high SNR regime.

The achievable region resulted by
∑

i wiRi over all the values of
0 ≤ wi ≤ 1,∀i such that

∑

i wi = 1 is close to the achievable region
of the optimal centralized solution.

No one-to-one correspondence between the points of the
achievable regions of the optimal (centralized) and decentralized
algorithms.

The algorithm does not necessarily converge to optimal values.
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Similar Problems and Existing Approaches (cont.)

For the case of asynchronous transmission (in the presence of
ICI), the optimization can not be separated across the tones. They
have therefore used heuristic optimization approaches with no
convergence guarantee.
Drawbacks:

◮ Simplified model for the coupling of the users
◮ Stringent constraints for the uniqueness of the Nash equilibrium

point
◮ The convergence is only proved in high SNR regime
◮ No guarantee on the optimality
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Contributions of Our Work
Our proposed dynamic frequency allocation algorithm is fully
distributed

◮ No information exchange between autonomous devices is needed
◮ No knowledge of the existence of other autonomous entities is

required

The proposed algorithm is simple and has low computational
complexity.
It can be used in conjunction with any realistic wireless radio
channel model such as those commonly employed in wireless
standards (e.g., Hata model, Okumura model, etc.)
Convergence of this algorithm to a sub-optimal solution is proved
We have established performance bounds showing that this
sub-optimal solution is near-optimal under various practical node
activity models.
The algorithm achieves at least 90% of the Shannon capacities
corresponding to the optimum centralized frequency band
assignment, even in presence of time-varying activity of clusters.
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Assumptions

At each time slot for any cluster at most one user is transmitting
and one user is receiving.

◮ Alternative scenarios are possible, e.g., users transmit and receive
through the cluster head.

The distances between clusters are much larger than the size of
clusters and bounded below by a distance δ.

The rate of change of the spatial distributions of the clusters in the
network and the underlying channels is much less than the
processing/transmission rate.
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Assumptions (cont.)

Each user transmits with power KP0, where K is a function of
frequency.

◮ This assumption can be relaxed.

Path loss with exponent η. No shadowing and fading is assumed.

r different accessible transmission bands, b1, · · · , br.

At time t, the ith cluster is in state si(t) ∈ {1, 2, · · · , r},
corresponding to the index of the transmission band it is using.

Performance metric: Aggregate interference of the network.
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GADIA Algorithm

GADIA Algorithm: Clusters scan all the frequency bands b1, · · · , br in
an asynchronous manner over time. Each cluster chooses the
frequency band in which it experiences the least aggregate
interference from other clusters.

The cluster head scans all the frequency bands and
estimates/measures the interference it experiences in each
frequency band.

The cluster head chooses the new transmission frequency band.
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An Example of The Update Process
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Figure: States vs. time for 6 clusters located equidistantly on a line

The algorithm converges to the optimal configuration in this example.
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Convergence

Theorem
Given any reciprocal channel model, the GADIA Algorithm converges
to a local minimum in polynomial time in N.
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Outline of the Proof

If a cluster ci updates its frequency band, it reduces the amount of
interference it experiences.

Due to channel reciprocity, the mount of interference experienced
by all the other clusters due to ci is also reduced.

Thus, the aggregate interference of the network is a
non-increasing function of time.

Since the aggregate interference is also lower-bounded, the
algorithm converges to a local minimum.
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Outline of the Proof (cont.)

Assuming that the clusters are distributed in an area with diameter
O(Nd) for some constant d, the least amount of decrement in each
update step is O( 1

Nη ).

The maximum of aggregate interference if O(N).

The algorithm converges in polynomial time in N.
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Upper Bound on the Performance

Theorem
Let Ia(N, {dij}) denote the aggregate interference of all the clusters
corresponding to the state of the algorithm following convergence and
Iw(N, {dij}) to be the aggregate interference for the worst case
interference scenario (all clusters transmitting in one frequency band),
then

Ia(N, {dij}) ≤
1
r Iw(N, {dij})

Proof outline:
After convergence, ci is in a frequency band, say k ∈ {1, 2, · · · , r}
such that Ici,k(N, {dij}) ≤ Ici,j(N, {dij}), for all j 6= k. Therefore,

rIa(N, {dij}) = r
∑

i

Ici,k(N, {dij}) ≤
∑

i

∑

j

Ici,j(N, {dij}) = Iw(N, {dij})
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Lower Bound for the Optimal Strategy (For Linear
Arrays)

Definition
A Linear Array is an array of clusters for which all the clusters are
co-linear (lie on a line).

Theorem
For a Linear Array of clusters in [0, (N − 1)d], we have

lim
N→∞

1
N

Io(N, {dij}) ≥
1
rη

2ζ(η)
P̃
dη

where Io(N, {dij}) is the aggregate interference of the optimal strategy,
P̃ is the transmission power of one node and ζ(η) is the Riemann zeta
function.
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Outline of the proof

Motivation: The optimal frequency band assignment strategy is
not known for general linear arrays. We therefore try to lower
bound the aggregate interference of the optimal assignment.

It can be shown that the minimum aggregate interference of any
linear array of N clusters in [0, (N − 1)d], is higher than that of the
corresponding uniform linear array, where the N clusters are
located in [0, (N − 1)d] equidistantly, for N large enough.

The righthand side corresponds to the minimum normalized
aggregate interference of a uniform linear array.

Uniform linear array achieves the bound, for N large enough.

The inequality holds for any linear array.
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The case of r = 2

Theorem
If r = 2 and η ≥ 2, then the optimal strategy for a uniform linear array is
the alternating assignment of the two frequency bands, for any N.

Outline of the proof:
◮ For η ≥ 2, there can not be any 3 successive clusters in the same

frequency band, in the optimal configuration.
◮ There is a sequence of changes in the assignments for any given

configuration, which results to the alternating assignment and in
each step, the aggregate interference decreases.
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Performance Result for Linear Arrays

Corollary
For a linear array in [0, (N − 1)d], we have

Ia(N, {dij})

Io(N, {dij})
≤

rη−1

( dmin
min{dmax,d}

)η

as N → ∞, where Ia(N, {dij}) denote the aggregate interference of all
the clusters corresponding to the state of the algorithm following
convergence and Io(N, {dij}) is the aggregate interference
corresponding to the optimal strategy.

Proof outline:
◮ Combining the previous theorems.
◮ It is a worst-case bound. Applicable to any linear array.
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Remarks

The optimal strategy is non-trivial for a general uniform array of
clusters.

The alternating strategy for finite N and r > 2 seems to be the
optimal strategy, although it is not trivial.

The Riemann zeta function in the lower bound expression is
merely a consequence of the path loss model and the fact that at
each time slot, only one transmitter and one receiver are active in
each cluster.
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Simulation Setup

Simulations for r = 2, d = 1 and η = 2.

We let all the clusters to be in frequency band b1 initially.

We repeat the updates until the convergence is achieved. The
simulations are obtained by ensemble averaging over 100 different
update patterns.

The ith cluster is distributed uniformly on the interval
[i − 0.5 + G, i + 0.5 − G], where G denotes the guard-band to
restrict the minimum distance of two adjacent clusters.
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Simulation Results: 1D Arrays
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Figure: Average Normalized Aggregate Shannon Capacity and Normalized Aggregate Interference (dB) vs. time for a
uniform linear array of 100 clusters

• The position of each cluster is distributed uniformly on the interval [−0.4, 0.4] around the sites
of the Z1 lattice (Monte Carlo sampling using 500 ensembles).

• The algorithm achieves about 94.8% of of the Shannon Capacity corresponding to the optimal

(alternating) frequency band assignment (r = 2).
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Simulation Results: 1D Arrays
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Figure: Normalized Aggregate Interference (dB) vs. N for a non-uniform linear array with G = 0.02

Here, the assumption on the size of the clusters being much smaller than the distances between

them is relaxed (G = 0.02). The algorithm still performs within 1.5 dB of the optimal strategy

(significantly better that the upper bound of 3 dB obtained in the performance results).Harvard (SEAS) 32 / 60



Simulation Results: 2D Arrays
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Figure: Average Normalized aggregate Shannon capacity and normalized aggregate
interference curves for a rectangular lattice of 100 clusters vs. t

• The position of each cluster is distributed uniformly in a 0.8 × 0.8 rectangle around the sites of
the Z2 lattice (Monte Carlo sampling using 500 ensembles).

• The algorithm achieves about 98.5% of of the Shannon Capacity corresponding to the

near-optimal 1:4 frequency reuse (r = 4).
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Simulation Results: Rectangular Lattice
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Figure: Normalized aggregate Shannon capacity and normalized aggregate interference
curves for a rectangular lattice vs. N
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Simulation Results: Hexagonal Lattice
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Figure: Normalized aggregate Shannon capacity and normalized aggregate interference
curves for a hexagonal lattice vs. N
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Time-varying setup

The clusters go on and off over time, according to a two-state
Markov model.

For cluster ci, i = 1, 2, · · · , N, we consider an activity indicator
state ai(l), such that ai(l) = 1 and ai(l) = 0 correspond to being
active and inactive at time l, respectively. Let Pci

0 (l) and Pci
1 (l) be

the probability of ci being in activity indicator state 0 and 1 at time
l, respectively. The evolution of the probabilities is given by:

(

Pci
0 (l + 1)

Pci
1 (l + 1)

)

=

(

α 1 − α
1 − α α

)(

Pci
0 (l)

Pci
1 (l)

)
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Assumptions

The algorithm converges to an equilibrium point on average, in a
statistical sense.

We assume that the clusters update their frequency band
asynchronously according to the same temporal statistics.

In a continuous approximation, let I(t) denote the aggregate
interference of the network at time t.

The update process is modeled by a Poisson process of rate 1
∆T ,

i.e., each cluster updates its frequency band with a rate 1
N∆T .

For the moment, we assume that all the N clusters are active.

We associate ǫi = −1 and ǫi = 1 to clusters in band b0 and b1,
respectively.

All the following analysis is valid for steady state (near equilibrium)
and assuming that the number of users switching on/off in each
time slot is much less than the total number of users.
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Dynamics of the Algorithm for r = 2
An active cluster experiences an interference of 1

2(Ii −
∑

j6=i
ǫj(t)
dη

ij
)

or 1
2(Ii +

∑

j6=i
ǫj(t)
dη

ij
) depending on the band it is using, where Ii is

the worst case interference experienced by cluster ci.
We define the band bj to be appropriate for cluster ci, if ci is
assigned in band bj in the optimal strategy.
If a total of M users ci, i ∈ {i1, · · · , iM} are not in the appropriate
frequency bands, the aggregate interference will be

I(t) = Ia +

M(t)
∑

k=1

∣

∣

∑

j6=ik

ǫj(t)
dη

ik ,j

∣

∣

where Ia is the target performance of the algorithm.
Assuming Ergodicity, we have

E [I(t)] − E [Ia] = 2E [M(t)]E
[

∣

∣

∑

j6=i

ǫj(t)

dη
ij

∣

∣

]

where E denotes the ensemble average.
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Dynamics of the Algorithm
For any update, the average change in E [I(t)], will be

∆E [I(t)] =
ρE [M(t)]

N
2E

[

∣

∣

∑

j6=i

ǫj(t)
dη

ij

∣

∣

]

where ρ is a geometrical constant showing the effective number of
interacting neighbors to a cluster including itself (this is a
linearization near the equilibrium point).
Combining the above equations we get

∆E [I(t)]
∆T

= −
ρ

N∆T
(E [I(t)] − E [Ia])

Spatial ergodicity is assumed in the derivation of the above
dynamics.
On the time scale of the updates, using the ansatz N∆T , τ one
can write

dE [I(t)]
dt

= −
ρ

τ
(E [I(t)] − E [Ia])
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Simulation Results: Dynamics of the Algorithm for a
Uniform Linear Array of 100 clusters
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A theoretical estimate for ρ in this case is 3, since every cluster has two nearest neighbors.

Harvard (SEAS) 40 / 60



Time-varying Statistics

We can model the change in the number of active clusters by two
Poisson counters of rate λ.

Each cluster when activated, approximately experiences the
instantaneous normalized aggregate interference of the network
(Ergodicity).

If we define I(t) , E [I(t)] and Ia(t) , E [Ia(t)], under the
assumption of λ being small compared to 1

τ , we have the new
dynamics in the Itō form as

dI(t) = −
ρ

τ
(I(t) − Ia(t))dt +

4
N
I(t)(dN+ − dN−)

where dN+ and dN− are two independent Poisson counters of rate
λ, i.e., E(dN+) = E(dN−) = λdt.

Under this model, the algorithm converges in mean to
the target performance.
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Steady State Analysis
The variance equation associated with the dynamics is

dE(I2(t))
dt

= −
(2ρ

τ
−

32λ

N2

)

E(I2(t)) +
2ρ

τ
I2

a

In the steady state, the variance settles down to

σ2
ss = I2

a
16λτ

N2ρ − 16λτ

given 16λτ
N2ρ

< 1.

According to our model for cluster activities, λ = N2(1 − α)/2τ .
Thus, we get the following trade-off inequality

8(1 − α)

ρ
< 1

in order to have a finite variance in the steady state.
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Remarks

The model gives a simple trade-off inequality for design purposes.

The geometrical parameter ρ can be empirically estimated for
different network topologies. However, theoretical estimates are
possible.

If λ = O(N1−ǫ) for some ǫ > 0, as N → ∞, the inequality always
holds. Therefore, the algorithm converges in both mean and
variance in the sub-linear regime.

The analysis can be generalized to other statistical models for the
activity of the clusters over time.
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Simulation Results: Empirical vs. Theoretical Steady
State Variance
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The model matches the empirical data (averaged over 500 ensembles).
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Simulation Results: Capacity vs. Time-varying
Activities
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Figure: Normalized Aggregate Shannon Capacity for a linear array of 100 clusters vs. time, for on/off switching probabilities
α = 0.01, 0.05 and 0.1.

• For on/off switching probabilities α = 0.01, 0.05 and 0.1 (Nα = 1, 5 and 10) the algorithm

achieves about 90%, 86% and 83% of the optimal capacity on average, respectively.
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Impact of Spectrum Sensing Time

In the previous analysis, we assumed that at each instance of time
only one cluster is sensing the spectrum in order to update its
frequency band.

Suppose that each cluster requires a time interval of T0 ≪ ∆T to
perform the spectrum sensing, where 1/N∆T is the update rate of
each cluster.

A cluster can not sense the interference of other clusters who are
simultaneously sensing the spectrum, which may result in a wrong
update decision.
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Probability of Simultaneous Sensing

Suppose that at time t, cluster ci is sensing the spectrum to
update its frequency band. The probability that in the interval
[t, t + T0] another cluster is also sensing the spectrum is given by

β ,

(

N − 1
1

)(

λ0T0e−λ0T0

)(

(

e−λ0T0
)N−2

)

= (N − 1)λ0T0e−(N−1)λ0T0 =
N − 1

N
T0

∆T
e−( N−1

N )
T0
∆T

≈
T0

∆T

where the approximation is based on the assumptions T0 ≪ ∆T
and N ≫ 1.
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Simultaneous Sensing (cont.)

R


d


i
c


c


• Interference gap between the two bands b0

and b1 experienced by cluster ci is given by

P0

dη
c (t)

, E
[
∣

∣

∣

∑

j6=i

P0ǫj(t)

dη
ij

∣

∣

∣

]

• If a cluster at a distance
at most dc(t) from ci is sensing the spectrum,
and is in the frequency band corresponding
to the updated frequency band
of ci, then ci may make a wrong decision.
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Probability of Making a Wrong Update

Assuming that the clusters are distributed homogeneously in two
dimensions, we can write the probability of a wrong decision as
follows:

pe(t) , Pr(wrong decision by ci at time t) =
1
2
β

πd2
c (t)

πR2

R corresponds to the area over which the clusters are distributed.

The factor of 1/2 in the above equation reflects the fact that only
the clusters in the inappropriate band of ci may cause a wrong
decision.
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Convergence

Lemma
The algorithm converges to an equilibrium point with probability 1,
given

β ≤
2I0

I0 + Im
(1)

where
I0 ,

P0

dη
max

(2)

dmax , max
i,j

dij (3)

and
Im , max

i

∑

j6=i

P0

dη
ij

(4)
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Modeling the Dynamics

The spectrum sensing collisions will result in fluctuations around
the equilibrium point.

In order to model the behavior of the algorithm near the
equilibrium point, we define two Poisson counters dN1 and dN2,
with

E[dN1] =
1 − pe(t)

∆T
dt

E[dN2] =
pe(t)
∆T

dt

In other words, dN1 corresponds to successful updates which has
rate (1 − pe(t))/∆T and dN2 corresponds to wrong updates which
has rate pe(t)/∆T.
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Modeling The Dynamics (cont.)

One can write the changes in the aggregate interference using
these counters as follows:

dE [I] = −
ρE [M(t)]

N
2∆I(t)dN1 +

(

1 −
ρE [M(t)]

N

)

2∆I′(t)dN2

where ∆I(t) , E
[
∣

∣

∑

j6=i
P0ǫj(t)

dη

ij

∣

∣

]

corresponds to the average

decrement due to a successful update by a cluster whose
switching bands decreases the aggregate interference, ∆I′(t)
corresponds to the average increment due to a wrong update by a
cluster whose switching bands increases the aggregate
interference.

The above equation can be simplified as

dE [I(t)] = −
ρ

N
(E [I(t)] − E [Ia])dN1 +

(

1 −
ρE [M(t)]

N

)

2∆I′(t)dN2
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Steady State Variance
By defining f (t) ,

(

1 − ρE[M(t)]
N

)

∆I′(t), the variance equation

corresponding to the dynamics becomes

dI2(t) =

[

(

I(t) −
ρ

N
(I(t) − Ia)

)2
− I2(t)

]

dN1

+

[

(I(t) + 2f (t))2 − I2(t)

]

dN2

where I(t) , E [I(t)] and Ia , E [Ia]

Taking expectations and computing the steady state variance
yields

dE[I2(t)]
dt

= −
( 2ρ

N∆T
−

ρ2

N2∆T

)

(1 − pe(t))E[I2(t)]

+ Ia

( 2ρ

N∆T
E[I(t)] +

ρ2

N2∆T
(Ia − 2E[I(t)])

)

(1 − pe(t))

+
(

4f (t)2 + 4E[I(t)]f (t)
)pe(t)

∆T
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Steady State Variance (cont.)

The steady state variance of the aggregate interference can be
written as

σ2
ss , lim

t→∞
E
[(

I(t) − E[I(t)]
)2]

= lim
t→∞

2f (t)2pe(t)
ρ/N

up to the first order in pe(t) ≪ 1 and ρ/N ≪ 1.

By simplifying and using proper upper bounds on f (t), we get

σ2
ss < β

( I2
m

ρ/N

)( NP0

Iw − Ia

)2/η 1
R2

where Im , maxi
∑

j6=i
P0
dη

ij
and Iw ,

∑

i

∑

j6=i
P0
dη

ij
.
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Simulation Results: Steady State Variance
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Figure: Normalized steady state variance of the equilibrium point for a
rectangular array of 100 clusters vs. β
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Adaptive Update Rates

In previous sections, all the clusters update their frequency band
with a constant rate.

In order to do the updates in a more opportunistic way, each
cluster ci tosses a biased coin with head probability

pi ,
|Ici,0 − Ici,1|

max{Ici,0, Ici ,1}
(5)

where Ici,0 and Ici,1 denote the interference experienced in bands
b0 and b1, respectively.

Each cluster updates its frequency band, if the outcome of the
coin toss is head.

In this manner, the less a cluster benefits from updating, the less
frequent it updates its band.
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Simulation Results: 1D Array, 2 Frequency Bands
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Figure: Average normalized aggregate Shannon capacity and number of updates for linear arrays of 100 clusters vs. time

• All the clusters are initially in band b0. Both schemes have similar performance, but the

adaptive scheme reduces the number of updates by 20% (both achieve around 95% of the

optimal aggregate Shannon capacity).
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Conclusion

Proposed a distributed algorithm for finding a sub-optimal
frequency band allocation to the clusters in a network.

Proved the convergence of the algorithm for any reciprocal
channel model.

Obtained performance bounds for one dimensional linear arrays of
clusters (the algorithm outperforms the bounds).

Evaluated the performance of the algorithm when clusters can be
in sleep or active mode and go off and on according to
time-varying statistics.

Evaluated the performance of the algorithm under the impact of
simultaneous spectrum sensing by different clusters.

Considered adaptive update rates.
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Future Work

Finding performance bounds for more general network topologies.

Generalization of the performance bounds to higher dimensions.

Distributed control methods using limited feedback.

Extension to vertical spectrum sharing.

Allowing inter-cluster communications.

Optimal adaptive update rates.
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