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interact with technology at a distance, without physically 
touching or holding hardware. The interest in touchless 
interactions reflects an expectation that – as technology 
becomes increasingly ubiquitous – computer use will 
become increasingly embedded within all areas of 
everyday life, requiring new forms of more ‘natural’ 
interactions [49].  

While numerous recent research projects have explored 
other forms of touchless bodily interaction, in this paper, 
we focus on prior work involving hand-based touchless, 
gestural interaction, which has been implemented in a wide 
range of applications. The most commonly cited 
advantages for the touchless modality include: 

1. improved hygiene, from a lack of touch  
2. support for larger displays, as users can be further from 

the screen  
3. multiple users, as everyone has a "controller"  
4. alleviating the ‘burden’ of physical contact or requiring 

a device. 

When supporting hand-based touchless interaction, there 
are two dominant styles of technique; cursor-based and 
those that employ a gesture-library.  

Cursor Metaphor for Touchless Interactions 
Cursor-based touchless hand interaction techniques are 
those that use the metaphor of a cursor to afford direct 
manipulation, such as by representing a user’s hand in 3D 
space as a cursor on a 2D screen. This is the primary form 
of interaction on the Xbox 360 and Xbox One interfaces 
(although both interfaces use a combination of cursor-
based and gesture-library interactions), and is therefore the 
most prevalent style of touchless hand-based interaction.  

The 2010 Xbox 360 touchless interface utilized a hover-to-
select technique, where the user would have to hold the 
cursor over an object for a defined amount of time to select 
it [26; evaluated in 38]. However, this technique has been 
noted for exacerbating ‘Gorilla-Arm’ fatigue issues [16,18] 
and slowing interactions [39] as the arm has to be held out 
in front of the user. In the more recent Xbox One console 
(released in 2013) the metro style user interface – which 
resembles the Windows 8/10 metro user interface of large, 
square tiles - is navigated by a Press-to-Select technique 
that leverages the familiar metaphor of a ‘button press’. 
The user holds their hand in front of their body, maneuvers 
it so that the on-screen cursor (a large hand) is located 
above the selected object, and then ‘pushes’ their hand 
directly towards the screen to ‘press’ the tile. Yoo et al. 
[51] recently conducted a direct comparison of these two 
techniques, finding that 8 out of 10 participants preferred 
Press-to-Select despite it being less accurate than hover-to-
select techniques, a finding they attribute to the perceived 
delay of the hover.  

While it is common that these cursors ‘snap-to’ the center 
of buttons to attempt to make up for the lack of haptic 
feedback, this style of interaction has been shown to lack 

accuracy and mastery [38, 47], a key measure for a 
successful user interface [41]. ‘Pressing’ when fully 
extended is also difficult, causing errors when the ‘press’ 
motion moves the hand (and cursor) towards the center of 
the screen. Further, that the user has to use their full range 
of movement to interact with the screen is frequently 
attributed to causing meaningful fatigue after prolonged 
use [13, 16, 38], another significant limitation. 

The Xbox interface utilizes a 1:1 mapping of the user’s 
hand and cursor, which limits the size of the screen to the 
user’s reach, but we note that alternative techniques for 
cursor-mapping overcome these limitations. Allowing the 
user to define the gesture space, creating a custom ratio, 
has been shown to be more comfortable without sacrificing 
accuracy on small displays [20]. Other methods like ray-
casting and relative cursor pointing are often more suited to 
larger screens. Relative cursor pointing utilizes a clutch 
gesture (such as open hand/closed hand) to allow the user 
to choose when to move the cursor, permitting relative 
movements to control its location, a configuration well 
suited towards very large displays [22].  Ray-casting, or 
pointing, is similarly suitable for large displays, 
particularly when with semantic pointing where the size of 
the targets are adapted based on cursor distance [3].  

An inherent limitation of these techniques is that they are 
proximal; despite being touchless, in order not to 
exacerbate these issues the user must stand centered on the 
screen, limiting the area available for interaction and the 
number of collocated users. Displaying a cursor also has 
the potential to be confusing with multiple users, where 
they also act to reveal the intent of a user to others, 
disallowing hidden or unattributed interactions. However, 
this can also be an advantage in collaborative contexts, 
where cursors can contextualize surrounding discussions 
[34], acting as an ‘avatar’ for the user. 

While this method – drawing on a familiar metaphor for 
computer interaction - is the most common in commercial 
applications [see 4 for a recent review], the focus in 
research has overwhelmingly been on gesture-library 
techniques. 

Gesture Libraries for Touchless Interactions 
Gesture-library techniques involve the remote detection of 
static or moving hand gestures that correspond to a 
predefined set of movements, such as iconic gestures like 
pinching to delimit interactions [24], or symbolic gestures 
such as tracing letters of the alphabet in mid-air for text 
entry [29]. The effective use of gestures from gesture 
libraries requires that they be known and recalled to users 
before interactions, often resulting in high false-positive 
recall [43]. 

A prominent research context for touchless interaction is 
within the [critiqued, see 32] paradigm of ‘natural’ user 
interface (NUI) research. In the context of gesture-library 
work, this has often been interpreted as meaning that a 
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natural hand-gesture interface is one where users can 
“interact with technology by employing the same gestures 
they employ to interact with objects in everyday life” [23, 
p. 36]. That is, the gestures used must either be implicit or 
have some symbolic relationship to the interaction task 
[11] (e.g. swipe to delete) or mimicry of conventions (e.g 
tracing a letter). While this interpretation of the NUI 
program has been more recently critiqued [see O’Hara et 
al. [33] who argue naturalness emerges through the 
interface’s support of embodied practices], this perspective 
remains prevalent in gesture-library based research, where 
the design of the prescribed set of gesture is based upon 
conventions and emergent properties of the task. 

This approach to creating gesture libraries has led to the 
considerable volume of work that principally assesses 
touchless interaction in terms of intuitiveness or ease of use 
[15, 42], or discoverability in contexts like walk-up 
displays [17, 36, 48]. Other perspectives create solutions 
based on user-defined [2, 35, 37] or context aware hand-
gestures [6], or by improving the detection of hand gestures 
[12, 52]. These projects have demonstrated that it is 
possible to improve the user experience, accuracy and 
opportunities for gesture-library based research, making it 
a suitable modality for many applications. In addition, like 
PathSync, mid-air gestures are distal, supporting multiple 
users and interactions with very large displays.  

However, gesture-library based techniques have two key 
limitations that render them unsuitable for numerous 
application contexts. Firstly, the user has to memorize 
multiple gestures, and recall what gesture does what in 
what context. This severely impacts the number of 
interactions possible at any one moment. Further, there is a 
limited number of different gestures that can be made by a 
single user and recognized as different gestures by a 
system, as they have to be sufficiently different in shape  

In comparison to PathSync, gesture-library based 
techniques also require high activation windows to 
circumvent the ‘Midas touch’ problem [40]. That is, in 
order to disambiguate between a non-interactive hand 
movement and those that are intentional interactions, a 
gesture has to be sufficiently ‘long’, or be delimited 
somehow, to reduce the likelihood of someone 
unintentionally causing the interaction. Consequently, 
systems that rely on gesture-libraries have an extremely 
low level of discoverability, rendering them inappropriate 
for walk-up public screens, and are therefore unlikely to 
prompt the initial propagation of touchless, gestural 
interaction. 

Rhythmic Mimicry as an Interaction Technique 
The principle of rhythmic mimicry has been employed in a 
small number of discrete research projects, though never as 
a form of touchless gestural input. This style of interaction 
exploits the natural human ability to mimic external 
rhythms, be they spatial or audio based [10]. 

The earliest example of rhythmic mimicry that we are 
aware of is Williamson et al. [50], who developed a system 
with randomly moving circles to ‘point without a pointer’. 
Users could select one of these circles by mimicking the 
movement of the circle on a laptop trackpad as a form of 
continuous interaction. The relative variance between the 
trackpad-pattern and the system represented pattern was 
calculated using a basic correlation algorithm, finding users 
could select these objects within 4-10 seconds. More 
thoroughly, Fekete et al. [10] extended this principle 
(which they refer to as “motion pointing”) using recurring 
elliptical motions and an optical mouse input. As they 
found that the correlation between the elliptical motions 
and user input was not sufficiently accurate to reliably 
distinguish between multiple different shaped and phased 
ellipses, Fekete et al. contribute a ‘move and stroke’ 
technique, where the four closest matches are initially 
selected, requiring a second gesture (a stroke in one of four 
directions) is used to make the selection out of these four. 
The improved correlation method we contribute in Study 1 
makes such extensions of the interaction unnecessary with 
gestural input. 

More recently, Vidal et al. [44-46] developed Pursuits, an 
eye-gaze calibration and interaction technique that 
leverages smooth pursuit eye movements. When our eyes 
follow a moving target, they perform a smooth movement, 
impossible to otherwise replicate.  The attributes of this 
smooth movement can be correlated with the location of 
the on-screen moving target, and used to calibrate gaze 
detection. Esteves et al. [8, 9] implemented this principle as 
a gaze-based interaction technique, where users could 
interact with Orbits – a target following a regular, circular 
path - by following its movement (such as a ‘read 
notification’ icon on a smart watch) for 1 second. Esteves 
et al. demonstrated that it is possible to distinguish between 
multiple simultaneous Orbits by alternating the speed, 
shape, direction and phase of the targets, as a particular 
smooth-eye movement can only be possible if the user is 
looking at an icon moving in the same direction and speed 
at that moment.  

Each of these systems represent a form of rhythmic path 
mimicry, where both spatial and temporal properties are 
used to activate an interaction. In these examples, all 
possible interactions are simultaneously visualized along a 
depicted path. Using an alternative method, Ghomi et al. 
[14] evaluated the use of audio & visual rythmic ‘beat’ 
mimicry, and attempt to extend it to a system that requires 
users recall different rhythmic beats to interact (as multiple 
audio beats cannot be simultaneously displayed).  

PATHSYNC 
PathSync represents the extension of the principle of 
rhythmic path mimicry to touchless, hand-based 
interaction; the synchronous mimicry of a screen-based 
moving target with the user’s hand. Similar to Orbits [8, 9], 
this technique works by depicting a shape (e.g. a square) 
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STUDY 2 – EFFICIENCY OF PATHSYNC 
Our second study set out to compare users’ performance 
with PathSync when selecting on-screen targets against 
Press-to-Select (PtS), the most common gestural 
interaction technique currently available. PtS works by 
representing (1:1) the user’s hand on the screen with a 
cursor, initiating selection by extending their hand towards 
the screen to ‘press’ the button the cursor is over. While 
PtS also supports more complex transactions, we felt a 
direct comparison was suitable due to PtS commercial 
ubiquity.  

For this study, we recruited 40 participants (21F/19M), 
aged between 19 and 35 years (mean=24) using posters on 
campus and internal mailing lists, none of whom had 
participated in the previous study. Participants were 
rewarded with a $5 coffee voucher. Five participants were 
left-handed and used the interface with this hand. 
Participants had little experience with Kinect interfaces: 24 
had never used it before, 10 fewer than 5 times, 3 fewer 
than 20 times, and 3 more than 20 times. The recording 
setup was the same as in the previous study. Upon arrival, 
participants signed an informed consent form and 
completed a demographics questionnaire. Participants then 
completed a tutorial session for each technique (labelled A 
and B for the participants). For the PtS technique, we used 
the interactive tutorial that ships with the Kinect SDK. For 
PathSync, we designed a similar version that followed the 
same visual style (see Figures 4-6).  

After the tutorials, participants completed a series of trials 
in which they were asked to select a particular object (e.g. 
a Carrot) among 5-9 other objects of the same category 
(e.g. Broccoli, Corn, etc., see Figure 6). We designed our 
interface in the Metro style, to match the ones found in the 
Xbox One and Windows 8/10 interfaces. In the PathSync 
condition, a small protrusion in the same color of the 
button’s background, moved around the button. The button 
was highlighted when correlation went above the upper 
threshold (.9), and if a high correlation (>.6) was 
maintained for one second, the button was selected. These 
thresholds were determined via simulation using study 1 
data. 

A trial was completed after a correct or incorrect button 
was selected, or after a 30s time-out. Participants 
completed a total of 48 trials, in 8 blocks of 6 trials, with 
alternating techniques for each trial, in a counter-balanced 
order. Random-order-practice was used because it has been 
shown to benefit motor learning more than block-practice 
[16, 19, 21]. In-between each trial, participants were asked 
to lower their hands as a resetting step. After completing 
all trials, participants were asked to fill in a questionnaire 
regarding their impressions of the techniques: their ease-of-
use, frustration, and overall preference. 

Study 2 Results 
Overall the results indicated that PathSync is a comparable 
touchless-interaction technique to Press-to-Select, not 

considering the inherent discrete, distal and multi-user 
advantages of PathSync we document and explore in Study 
3. We found no significant differences between the 
intuitiveness, efficiency and learnability of the techniques, 
and participants’ subjective opinions were evenly 
distributed; 19 participants found PathSync easier, 20 
found it faster, and 21 found it more frustrating. 

Intuitiveness – Initial Proficiency 

At the conclusion of both the tutorials, participants were 
asked if they understood the techniques. No participant 
said they did not understand either technique, and only one 
participant was uncertain about PathSync. That is, 39/40 
were confident that they understood PathSync after the 
tutorial. However, every participant (N=21, only 2 of 
whom had used the Kinect more than 5 times previously) 
who received Press-to-Select first was uncertain about 
whether they understood that method, a confusion not 
present in those that received PathSync first. The confusion 
around Press-to-Select appeared to be that users were 
unsure if they had to pull their hand back after pushing a 
button. However, the relationship between the order of the 
techniques and this confusion is not clear.  

In the last step of each tutorial, participants were asked to 
select a sequence of four targets in a specific order. We 
used the time to complete this task as a metric for the initial 
proficiency with the techniques, as users had the minimum 
experience necessary to complete it. We identified a 
significant (p<.001) but small (in absolute terms) 
difference between the two techniques, where the mean 
PathSync completion time was 33.1 seconds for these 4 
targets,  while PtS took 33.6 seconds for the same 4 targets. 
We examined the total tutorial completion time, and 
completion time for these specific steps based on age, 
gender, prior experience with the Kinect, and order of the 
tutorials, and found no significant differences. These 
results indicate that the two techniques have comparable 
intuitiveness.  

Efficiency – Overall Proficiency 
We tested the effects of the NUMBER OF OBJECTS and the 

INTERACTION TECHNIQUE on the SELECTION TIME for each 
technique with a two-way repeated-measures ANOVA, 
excluding the 7 trials (2 PtS, 5 PS) that timed out at our 
artificial limit of 30 seconds. Out of the 1920 trials, there 
were 7 timeouts and 71 incorrect selections. There were no 
significant (p > .05) differences between the error rates on 
each technique (1.9% for PathSync, vs 2.1% for PtS). We 
note that while 17 participants made at least one error with 
PtS, only 7 users made any errors with PathSync (with 18 
of the 29 incorrect PathSync selections made by just two 
participants).  

We found a slightly lower mean completion time in the 
PathSync condition (5.86s per target) than in the PtS 
condition (6.13s), but this difference was not statistically 
significant at the p=.05 level. We did not find any 
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significant effect of the NUMBER OF OBJECTS or interaction 
effects. 

We also note that prior experience with the Kinect did not 
affect a participant’s average time-to-completion. There 
was no significant difference based on prior experience, 
order of the tutorials, or on the user’s perception of which 
technique was faster. In summary, our results suggest that 
both techniques yield similar performance in selection 
tasks. 

User Preference - Qualitative Results 
At the conclusion of the study, participants were asked 
which technique was easier, faster, or more frustrating. 22 
participants strongly preferred PathSync, rating it easier, 
faster and less frustrating, while only 6 participants rated 
Press-to-Select as positively. The remaining 12 participants 
were more ambiguous, liking or finding issues with both.   

Our participants whose responses clearly indicated that 
they preferred PathSync (n=22) explained their preference 
by referring to PathSync as more responsive [P38], 
comfortable [P40], effective [P7], developed [P31] and 
more natural [P39], while comments about Press-to-Select 
considered it too sensitive [P32, P22, P18], hard to control 
[P25, P39, P19], or requiring too much concentration 
[P12]. Four participants explicitly commented that they felt 
PtS was more fatiguing than PathSync; "PtS strained my 
muscles a bit" [P28], "PtS won't be as comfortable to the 
users as they will become tired" [P31], and P29 and P33 
felt strongly that PathSync was a better technique because 
it didn't matter where they mimicked the target; they could 
do the interaction in the most comfortable position for their 
hand.  

Those participants that indicated that they preferred Press-
to-Select (n=6) on each rating were less negative about 
PathSync. P15 felt "it took ages to make PathSync work", 
while P26 felt it was "a little bit confusing", but P3 noted 
she preferred PathSync initially, and P5 prefaced their 
ratings by commenting that they chose Press-to-Select 
“because it’s easier and you know exactly where you have 
to move your hand. PathSync takes time to realise how it 
works”.  

Indeed, several participants  [P10, P31, P31, P39, P40, 
P12] who rated PathSync positively speculated that - while 
they preferred PathSync, others might find it less intuitive 
because "it is straight forward" [P39], but, as P10 put it, 
"its different, its weird, but once you get used to it, you 
know this is what you want" [P10]. The remaining 
participants (n=12), whose preference was more 
ambiguous, generally felt that "both are pretty good, I'm 
really happy to use either" [P29]. This group highlighted 
issues such as the inconsistency of how long it took 
PathSync to register; "sometimes you move just half a 
circle, later a quarter of a circle, then later you do 4 
circles and it still doesn't recognize?" [P21], or the 
frustrations of Press-to-Select; "it is a little difficult 

because it is more sensitive, I don't like the push" [P27]. 
P17 simply concluded that which technique they preferred 
would depend on what task they were doing.  

We had hypothesised that the moving targets necessary for 
path-mimicry would meaningfully distract the users, and 
consequently randomised the number of tiles in each trial, 
finding it had no effect on either technique. 36 participants 
were explicitly asked following the trials if they felt the 
dots in the PathSync type were confusing or distracting, 
and 26 felt that it was not distracting at all. P13 even felt 
that the targets - which we made the same color as the tile 
to minimize how distracting they were - should more 
obvious to make it easier to find them. Of those remaining, 
some only found it "a little distracting" [P25, P32, P37, 
P40], while only 4 felt strongly about it being negatively 
distracting [P26, P35, P21, P30].  Two acknowledged it 
was a little distracting [P28 & P29], but felt that the time it 
took to locate the cursor once they had located the target 
was equivalent to the distractions of the numerous moving 
targets.  

Finally, several users made comments against the 'push' 
gesture in Press-to-Select, suggesting that it slows the 
interaction down too much [P9, P8], and other clutch 
configurations such as "thumbs up" [P18], pointing [P24, 
P39] or grabbing [P6] could be better for target selection. 
We chose Press-to-Select for our comparison in this study 
because it is the most widely available, being at the core of 
the Xbox One user interface (with over 8 million consoles). 
Future research should explore user preference between 
different configurations of cursor-based interaction, as 
there are few comparative studies between touchless 
gestures.  

Study 2 - Discussion 
The purpose of this study was to compare PathSync to 
Press-to-Select in the specific context where PtS can 
perform optimally; with a single user, standing centered, 
~3m from a large television. Our results indicate that 
PathSync is a comparable technique to Press-to-Select 
encouraging further research and implementation.  

In particular, this study presented an extremely promising 
validation of the comparable intuitiveness of PathSync, 
both in terms of initial proficiency (based on tutorial 
completion speed) and how easy it was to understand the 
technique (based on participant’s confidence in their 
understanding of the technique following the tutorials). 
These results are a positive but surprising result 
considering that PathSync does not rely on a commonplace 
interaction metaphor.  

We also note a significant difference between the nature of 
the errors with these two techniques. With PtS, 17 
participants made at least one error, while no participant 
made more than 4 errors. In contrast, only 7 participants 
made an error with PathSync, but 2 of these made up for 
almost two thirds of the total errors with that technique. As 
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We passively observed 26 interactions with the screen over 
twelve 30 minute periods.  13 of these interactions resulted 
in successfully answering the attract mode question, while 
13 were not successful. Reflecting the transient nature of 
the space, in 5 of these ‘failed’ interactions we did not 
observe any discernable attempt to select an answer; users 
were either pulled away from the system by their 
companions (n=2), only interacted to play with their 
silhouette (n=2) or read the question while on the phone 
(n=1). Of the remaining 8, the principal issues were 
assuming that the screen was a touch screen (n=4) or 
standing too close to the screen to be detected by the 
Kinect sensor (n=3). In one case, a user was correctly 
mimicking the path of the orbit but only a few inches from 
the screen, while another’s touch interaction tried 
following the moving target. We note that 4 of the 
observed users that successfully interacted initially tried to 
touch the screen, before reading the instructions and 
matching the path touchlessly. As a result of the low-
threshold for interaction that interactive public-screens 
have, none of these 8 users attempted to interact for longer 
than 10 seconds, almost immediately giving up and 
continuing to their destination.  

As expected, usage data varied considerably across the two 
spaces. The hallway location had considerably more 
sessions (962 vs. 103), but the average length was shorter 
(47 seconds (SD=86) vs 170 seconds (SD=354)) and with 
fewer users at once in comparison to the library location 
(19.5% vs 26.2% having 2 or more users). 61.2% of the 
interactions in the hallway were only one round long; users 
answered the attract mode question, and then continued 
their journey. Observations indicated that the short period 
of interaction is primarily due to the transient nature of the 
space; users were intrigued by the attract mode question, 
and after finding out the answer (and whether they were 
right), they moved on rather than selecting ‘next round’.  

A key advantage of PathSync is its capacity to support 
multiple users. Sessions with more than 2 users were 141 
seconds long (SD=267), or 3.9 questions (SD=6.1) on 
average, while sessions with 1 user were 38 seconds long 
(SD=72), or 2 questions on average. That is, while 70.1% 
of sessions with 2 users or more lasted more than 2 rounds, 
only 32.4% of single users interacted for more than the 
attract mode question. Our passive observations 
corroborated this advantage, finding that the interaction 
modality and design of SocialNUIz encouraged bystanders 
and spectators to become players as the game waited for 
their response if they were visible, and the hidden nature of 
an interaction supported the ‘reveal’ moment of the quiz 
game. We only observed one instance of gestures 
interfering with other users, which was due to the users 
believing their gestures had to physically line up with the 
on-screen targets, requiring both participants to attempt to 
interact in the same area.  

Study 3 – Discussion 
Based on our observations and the large volume of use 
(n=1065 sessions), we argue that PathSync is a sufficiently 
intuitive and robust interaction technique for public 
displays. The primary issues that we observed were the 
assumption that the screen was a touch screen, and 
standing too close for the Kinect sensor, easily solved by 
additional signage.  There were over 426 sessions with 3+ 
successful PathSync interactions, emphasizing PathSync’s 
potential as an immediately legitimate alternative to 
existing techniques. We also contend that the large number 
of sessions with a single user interacting for a single round 
(571 out of 851) does not challenge intuitiveness of the 
display, as users of public displays like these have a very 
low threshold for interaction [25, 48]. These users validate 
the intuitiveness of the technique, as they still input an 
answer despite having no interest in a prolonged 
interaction. Further, the support for social use was 
particularly evident, as multiple users played for longer and 
answered more questions in the game.  

DISCUSSION 
In this paper we have presented PathSync, a novel form of 
touchless hand-based gestural interaction based on the 
principal of rhythmic path mimicry. We demonstrated and 
validated the advantages and efficiency of this new 
technique through three studies; in Study 1, we contributed 
three improvements to the correlation algorithm used to 
better respond to the nature of gestural path mimicry; in 
Study 2, we demonstrated that PathSync is a comparable 
technique to the widespread Press-to-Select technique on 
each relevant measure; and in Study 3 we verified the 
multi-user capability, as well as the discoverability and 
learnability of this highly novel technique out of the lab.  

We will now reiterate the advantages of PathSync over 
existing gestural interaction techniques before considering 
the alternative configurations of PathSync that extend 
opportunities for its use and overview how this new genre 
of interaction technique has further applicability.  

Opportunities for PathSync 
As we noted in our review of prior work, touchless 
gestures are cited as having four key advantages; (1) 
improved hygiene, (2) supporting larger displays, (3) 
multiple users and social use and (4) alleviating users the 
‘burden’ of physical contact with remote detection. Like 
existing techniques, PathSync does not require physical 
contact, alleviating the ‘burden’ of physical contact and 
having hygiene advantages. 

Firstly, our studies found that it is surprisingly natural and 
intuitive to replicate the movement of a target with a 
known path, such as in the case of a dot moving around the 
perimeter of a square. In study 1, we demonstrate that users 
are able to do this with a high level of accuracy. This 
means that the correlation thresholds can be extremely high 
(0.9), avoiding the midas touch issues that limit gesture-
library techniques, and allowing short (>1 second) 

Gesture Elicitation and Interaction #chi4good, CHI 2016, San Jose, CA, USA

3423



activation window. The comparable error rates and time-to-
complete of PathSync in comparison to the Xbox One’s 
Press-to-Select further demonstrate the validity of this as 
an alternative touchless interaction technique. As in our 
configurations of PathSync each target is associated with 
an icon that the user can select, all interactions are 
immediately contextualized requiring no memorization by 
the user, and permitting a large number of possible 
interactions at once. 

Coupled with these results, a key advantage of PathSync is 
that it is a distal interaction technique; the location of the 
user’s hand movement is disassociated from the location of 
the system represented pattern. As long as the user can see 
the pattern, and their movements are within the field of 
view of the Kinect sensor, they are able to interact. This 
means that of PathSync is well suited to both small screens 
(where tile and cursor size preclude Press-to-Select style 
cursor-based techniques) and very, very large screens 
(where 1:1 mapping of hand movements limits screen 
size), both foci of prior gestural interaction research.   

This meaningfully opens up the opportunities for multi-
user touchless interaction as users can more comfortably 
arrange themselves around larger displays and 
simultaneously interact without physical or virtual 
interruption. This is advantageous on very large public 
displays, but is also suited to the typical configuration of a 
TV lounge, where some couches are often perpendicular to 
the television. In the context of prior work that has 
commented on the capacity of gestural interfaces to blur 
the lines between spectator and player [7], opportunities for 
PathSync may include multi-user games that further 
explore this capacity. While cursors – as representations of 
users - can be useful for collaborative use cases [34], as 
demonstrated in SocialNUIz it is difficult to identify what 
another user’s hand movements correspond with, allowing 
secretive interaction such as voting. 

An additional opportunity presented by PathSync is that – 
by not requiring the representation of a cursor, or active 
feedback – it could be configured without a screen; for 
example, a target that followed the perimeter of buttons in 
an elevator, allowing users to select their destination 
without communicating touch-based diseases – a highly 
desirable advantage in contexts such as Hospitals or 
Nursing Homes. We note, however, that this lack of a 
familiar metaphor or active feedback is one of the primary 
limitations of PathSync, particularly in terms of 
discoverability that is key to such an application area.  

Limitations and Future Work 
While this paper has demonstrated and validated the 
advantages and efficiency of PathSync, several questions 
remain due to the limitations of the studies in this paper.  

While Study 2 showed that our method of always 
displaying the paths is non-invasive and is able to not 
reduce available space on the screen, it would not be 

applicable for all UI designs. Other opportunities may 
emerge through exploring other methods for representing 
patterns that user’s replicate (such as pulsating objects, flat 
paths rather than shapes, symbolic shapes, ecetera), and the 
capacity to overlay paths to increase density of selected 
objects. Alternate means of representing patterns on the 
screen could also improve the intuitiveness of the 
technique on public displays.  Similarly, we noted in study 
2 that while PathSync is comparable to Press-to-Select in a 
basic target selection task, PtS supports more complex 
transactions (such as grab and drag) which is necessary for 
a holistic touchless user interface. Future work should 
explore how PathSync might by integrated with these other 
techniques.   

We also speculate that PathSync has fatigue advantages 
over other techniques, a claim which future work should 
interrogate. In the context of recent research [16, 20] that 
has investigated rested touchless interaction as a solution to 
the ‘gorilla arm problem’, we note that PathSync works 
comfortably when the elbow is rested, for example on a 
desk or couch arm. We believe that the distal nature of 
PathSync also allows users to do the necessary movements 
where it is most comfortable, and that the smaller ranges of 
motion required for PathSync similarly may reduce fatigue. 
Further, following Montero et al.’s [28] study of the social 
acceptance of gestural interfaces, this smaller range of 
motion required for PathSync may result in improved 
social acceptance. Finally, less-fatiguing finger movements 
may be suitable for PathSync interaction.  

The concept of rhythmic path mimicry also has the 
potential in other modalities that have not yet been 
explored, though further extensions to how user-enacted 
patterns are correlated to system patterns would be 
necessary; a target moving along a sinusoidal wave cold be 
mimicked with a user’s whistle, changing pitch relative to 
the target’s path; a user could snap their fingers in beat 
with a pulsating light; choosing either interaction technique 
depending on context. Further research should explore the 
usability and opportunities that these new interaction 
techniques present. 

CONCLUSION 
In this paper, we have contributed new methods for 
correlating rhythmic mimicry for touchless hand-based 
interaction. We have shown that it is a comparable 
technique to the well-known Press-to-Select method found 
on the Xbox One interface, and we have demonstrated that 
it is sufficiently robust, intuitive and responsive for over 
1000 users who used PathSync as the interaction technique 
for a quiz game ‘in the wild’.  

While the lack of active feedback and unfamiliarity of the 
interaction metaphor in PathSync mean other techniques 
may be more suitable for some applications, we have 
demonstrated that PathSync is an immediately legitimate 
alternative to existing techniques, with key advantages for 
public display and multi-user applications. 
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