Sound Synthesis in Crackdown 2

Nikunj Raghuvanshi

Researcher, Microsoft Research
Realism

- Graphics has made leaps and bounds
- Audio far behind: great potential
Sound in Games Today

- Recorded samples
- Realism requires tedious labor
- Reduces time for creativity
Physically-Based Sound

• Physics automation
 “Physically-based”
 Perception control

• Use auditory perception \rightarrow compact, parametric models
 • Realistic-sounding starting point
 • Artistic control
 • Quality-efficiency trade-off

• More time for creative work
Overview

- Physics of sound
- Sound synthesis in *Crackdown 2*
 - Collaborators:
 - Brandon Lloyd, Microsoft Research
 - Nikunj Raghuvanshi, Microsoft Research
 - Naga K. Govindaraju, Microsoft Research
 - Guy Whitmore, Microsoft Game Studio
 - Kristofor Mellroth, Microsoft Game Studio
Sound Synthesis

- Collisions lead to surface vibrations
- Vibrations create pressure waves in air
- Pressure waves perceived as sound
Physical Model: Modal Synthesis

Modes

Amplitude

String

Waveform
Modal Synthesis

O’Brien et al. 2002
Forward Modal Synthesis

• geometric shape + material → Sound
• Previous work in graphics:
 • van den Doel et al. 2001
 • O’Brien et al. 2002
 • Raghuvanshi and Lin 2007
 • Bonneel et al. 2008
• All assume ideal exponential decay
Pros and Cons

Pros:
• No need for recordings
• Very simple to implement

Cons:
• Ideal exponential decay doesn’t sound realistic
• Most real-life sounds’ transients have a non-modal component
 • Synthesized sounds are too clean
Amplitude Envelopes per Mode

Log Amplitude (dB)

Time

Original

Exponential
Spectral Modeling Synthesis

- Model spectral content rather than physics
- Sinusoidal partials (modes)
 - Amplitude envelope + frequency
- Noise
 - Spectral envelope
- Good: Quite general and accurate
- Bad: Expensive to compute
Implementation

- Xbox 360: 3 PowerPC cores @ 3.0 GHz
- Bounded CPU usage (10% of a hardware thread)
- Limited memory
 - ~25 MB for all audio
 - ~2 MB for all physics sound data (including nonprocedural)
- Easy-to-use internal tools
 - UI tool: generate procedural models, control efficiency vs. quality
 - Custom plug-ins for Audiokinetic’s Wwise
Our Approach: Middle Ground

- Arbitrarily decaying sinusoids + residual waveform
- Much more realistic-sounding than forward synthesis
- Faster to compute than spectral modeling synthesis
Amplitude Envelopes per Mode

- **Original**
- **Exponential**
- **Sampled**

Log Amplitude (dB)

Time
Physically-Based Impact Sounds

• Most games: Variation achieved through multiple clips (3 to 5) for each sound
 • Inflexible, memory-intensive

• Our approach:
 • Extract compact physical model from a single clip
 • Procedurally generate sound from model (costs compute)
 • Infinite variation and artistic control
Our Approach: Details

Modal information

Original

Modal (“Clean”)

Residual (“Noise”)

frequency
time

150 KB

369 bytes

17 KB
Amplitude Envelopes vs. Exponential (modal only)
Original vs. Synthesized Sound

Plastic Barrel

Original

Modal + Residual (23 modes)
Variation

Modes

String

Waveform

Amplitude
Variation

Modes

String

Waveform

Amplitude
Variation

Modes

Amplitude

String

Waveform
Variation for Modal Sounds

- Exact variation: mode shapes to determine mode amplitudes
 - Requires a lot of memory

- Simple yet effective: Randomize mode amplitudes
 - Degree of variation: artistic control
Variation for Non-Modal Sounds

- Attenuate regions of spectrum
- Cascade several dip filters (biquad)
- Randomize parameters
 - Location (center frequency)
 - Width (Q factor)
 - Depth (gain)
- Provides variation from a single clip
<table>
<thead>
<tr>
<th>Name</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic Barrel</td>
<td>Modal</td>
</tr>
<tr>
<td>Brass Bell</td>
<td>Modal</td>
</tr>
<tr>
<td>Road Cone</td>
<td>Modal</td>
</tr>
<tr>
<td>Wooden Stick</td>
<td>Modal</td>
</tr>
<tr>
<td>Door</td>
<td>Filter</td>
</tr>
<tr>
<td>Ground</td>
<td>Filter</td>
</tr>
<tr>
<td>Ice</td>
<td>Filter</td>
</tr>
<tr>
<td>Plastic Ball</td>
<td>Filter</td>
</tr>
</tbody>
</table>
Modal Synthesis
- single input clip
- no variation
Modal Synthesis
- single input clip
- with variation
Variation Filter
- single clip
Single clip
(no variation)

Crackdown 2
Demo: Synthesis Tool
Memory Usage (PCM)

Size (KB)

- **Brass Bell**
 - 6 modes
 - Original: 600 KB
 - Residual: 150 KB
 - Modal: 50 KB

- **Plastic Barrel**
 - 23 modes
 - Original: 250 KB
 - Residual: 50 KB
 - Modal: 10 KB

- **Wooden Box**
 - 65 modes
 - Original: 300 KB
 - Residual: 60 KB
 - Modal: 20 KB

- **Rock**
 - 120 modes
 - Original: 150 KB
 - Residual: 30 KB
 - Modal: 10 KB

Legend:
- Orange: Original
- Blue: Residual
- Green: Modal
Memory Usage (XMA)

- **Brass Bell**
 - 6 modes
 - Original: 120 modes
 - Residual: 65 modes
 - Modal: 23 modes
- **Plastic Barrel**
 - 23 modes
 - Original: 65 modes
 - Residual: 23 modes
 - Modal: 6 modes
- **Wooden Box**
 - 65 modes
 - Original: 120 modes
 - Residual: 65 modes
 - Modal: 23 modes
- **Rock**
 - 120 modes
 - Original: 120 modes
 - Residual: 65 modes
 - Modal: 23 modes

Compressed with XMA2 at maximum setting.
Optimizations on the Xbox 360

- Compact decay envelopes
- Runtime quality scaling
- Multirate mixing
- SIMD
Compact Decay Envelopes

• Simplification
 • Noise threshold
 • Adaptive sampling
 • Same sample points for all envelopes

• Quantization
 • Store amplitudes in dB: 8 bits is sufficient
Runtime Quality Scaling

• User-specified, fixed-mode budget
 • Fixed memory overhead
 • Fixed CPU usage

• Prioritize modes by how much they contribute

• Remove low-priority modes
Quality Scaling: Reference
- high mode quota (5000)
Quality Scaling
- low mode quota (1000)
- 5x savings in compute
Multirate Mixing

• Mix low-frequency modes at lower rate

• Interpolate to next higher rate
 • Fixed overhead depends on number of bands (usually 4 bands)
 • 8-tap filter

• ~30% to 50% reduction in compute
VMX128

Max. perf: 18000 modes @ 16 modes, 4 samples

Modes/Step
- 4
- 8
- 16
- 32
- 64

16 registers
48 KHz
Further Work

• Mode evaluation currently in time domain
 • Frequency domain would be much faster
 • Hard to integrate with current audio middleware

• Use mesh or texture map for impact-strike variation
 • Edge strikes tend to act as high-pass filters.
Summary

- Sound synthesis for high quality impact sounds with variation in *Crackdown 2*
 - More compute
 - Less memory
 - Infinite variety
- Powerful physically-based representation
 - Rolling/sliding could potentially be modeled
 - Field is open for your experimentation!
- Physically-based techniques are a powerful way to deal with game sounds
 - Automation for the tedious part of audio design
Thank you!! Questions?

- http://research.microsoft.com/people/nikunjr/
- Papers, demos, *etc.*
- nikunjr@microsoft.com

Please Remember Your Feedback For All Talks
Physically-Based Sound: Scenarios

- Grenade rolling on wooden floor
- Simulated footsteps
- Rustling leaves
- ...

Gamefest

2011
Conclusion

• Physically-based impact sounds in Crackdown 2
 • Infinite variation
 • Saves memory

• Physically-based techniques are a powerful way to deal with game sounds
 • Automation for the tedious part of audio design