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Abstract. This paper addresses the recovery of structure and motion from uncalibrated images of a
scene under full perspective or under affine projection. Particular emphasis is placed on the configuration
of two views, while the extension to N views is given in an appendix. A unified expression of the funda-
mental matrix is derived which is valid for any projection model without lens distortion (including full
perspective and affine camera). Affine reconstruction is considered as a special projective reconstruction.
The theory is elaborated in a way such that everyone having knowledge of linear algebra can understand
the discussion without difficulty. A new technique for affine reconstruction is developed, which consists
in first estimating the affine epipolar geometry and then performing a triangulation for each point match

with respect to an implicit common affine basis.
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1. Introduction

Since the work of Koenderink and van Doorn [15]
on affine structure from motion and that of
Forsyth et al. [12] on invariant description, the
development of non-metric vision has attracted
quite a number of researchers [5, 13, 26, 17] (to
cite a few). We can find a range of applica-
tions: object recognition [12], 3D reconstruction
of scenes [15, 27, 9], image matching [35], visual
navigation [3, 33], motion segmentation [20, 30],
image synthesis [8], etc.

This paper mainly addresses the recovery of
structure and motion from two uncalibrated im-

Motion Analysis, Epipolar Geometry, Uncalibrated Images, Non-Metric Vision, 3D Recon-

ages of a scene under full perspective or under
affine projection. The extension to N views is
given in Appendix D. There is already a large
amount of work reported in the literature [5, 7,
13, 26, 38|, and it is known that the structure of
the scene can only be recovered up to a projective
transformation for two perspective images and up
to an affine transformation for two affine images.
We cannot obtain any metric information from
a projective or affine structure: measurements of
lengths and angles do not make sense. However,
projective or affine structure still contains rich in-
formation, such as coplanarity, collinearity and ra-
tios. The latter is sometimes sufficient for artificial
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systems, such as robots, to perform tasks such as
navigation and object recognition.
Contributions of this paper are the following:

e A unified expression of the fundamental ma-
trix for any projection model is presented.
Previously, the fundamental matrix is formu-
lated separately for full perspective and affine
projection. Our formula is valid for both.

e Affine reconstruction is treated as a special
projective reconstruction. A new efficient
technique for affine reconstruction from two
affine images is developed. We decompose the
problem into two subproblems: recovery of
affine epipolar geometry and 3D reconstruc-
tion with respect to an implicit affine basis.
A comparison of our work with previous work
is given in Sect. 5.3.

¢ The theory is elaborated in a way such that
everyone having knowledge of linear algebra
can understand the discussion without diffi-
culty. This arrangement, of course, sometimes
sacrifices the elegance of the formulations if
Projective Geometry were used.

This paper is organized as follows. Section 2
presents different camera projection models. Sec-
tion 3 derives an expression of fundamental matrix
which is valid for any projection model (ignoring
the lens distortion). Section 4 describes the pro-
jective reconstruction from two uncalibrated per-
spective images. In Section 5, we first special-
ize the general fundamental matrix to the case
of affine cameras and then show that only affine
structure can be recovered, and finally a new tech-
nique for affine reconstruction is proposed.

Appendix A recapitulates the technique de-
scribed in [25] for estimating the affine epipo-
lar geometry from a set of point matches. Ap-
pendix B describes a robust technique based on
least-median-squares principle which detects false
matches and estimates the affine epipolar geome-
try at the same time. Appendix C presents a tech-
nique which computes the affine transformation
between two sets of 3D affine points. All these al-
gorithms together with affine reconstruction have
been implemented in C and the software AffineF
is available from the following Web page:
http://www.inria.fr/robotvis/

personnel/zzhang/

A review on different techniques for estimating
fundamental matrix under perspective projection
is also available [34].

Appendix D extends the 2-view analysis to N
views, also in a unified way for both perspective
and affine cameras.

2. Perspective Projection and its Approx-
imations

If the lens distortion can be ignored, the projection
from a space point M = [X,Y, Z]T to its image

point m = [z, y]” can be represented linearly by
A
V=P ; (1)
Z
5 1

where z = U/S, and y = V/S if S # 0, and P
is the 3 x 4 projection matrix which varies with
projection model and with the coordinate system
in which space points M are expressed. Given a

vector X = [z, y,---]T, we use X to denote its aug-
mented vector by adding 1 as the last element, i.e.,
%X = [z,y,---,1]T. Now we can rewrite the above

formula concisely as
sm = PM, (2)

where s = §'is an arbitrary nonzero scalar.

Without loss of generality, we temporarily as-
sume that the space points M are expressed in the
camera coordinate system and that the cameras
are normalized (see e.g., [6]). Under full perspec-
tive projection, the projection matrix (identified
by the subscript p) is

1000
P,={0100 (3)
0010

Expanding it we have x = % and y = % This

is a nonlinear mapping, which makes many vision
problems difficult to solve, and more importantly,
they can become ill-conditioned when the perspec-
tive effects are small. Sometimes, if certain condi-
tions are satisfied, for example, when the camera
field of view is small and the object size is small
enough compared to the distance from the cam-
era, the projection can be approximated by a lin-
ear mapping [1]. For orthographic projection, the
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projection matrix (identified by the subscript o) is

(4)

o o <

100
P,=|010
000

Substituting it for (1), we can easily see that the
image coordinates are the same as the X and Y co-
ordinates, and the depth Z is lost. For weak per-
spective projection, the projection matrix (identi-
fied by the subscript wp) is

Py = (5)

O O =
o~ o
oo o
N oo

o

where Z, is the average depth of the object, which
is the depth of the object centroid. The difference
between this and the orthographic projection is
that while the right bottom component of P, is
Z., that of P, is 1. The further the object moves
away from the camera, the smaller its image be-
comes. This is the reason why the weak perspec-
tive is also called scaled orthographic projection.
For the paraperspective projection, the projection
matrix (identified by the subscript pp) is

10 -X./Z. X.
P,=|01-Y./Z Y. |, (6)
00 0 Z

where (X, Y, Z.) is the position of the object cen-
troid.

If the extrinsic parameters are considered, then
the above projection matrices should be multi-
plied from the right by a 4 x 4 matrix

R ¢
oo i)

where (R, t) is the rotation and translation re-
lating the world coordinate system to the camera
coordinate system. If the camera intrinsic param-
eters are considered, then the projection matrices
should be multiplied from the left by a 3 X 3 ma-
trix (see e.g., [6] for its general form). The projec-
tion matrix corresponding to the full perspective
is then of the form:

Py Pip P13 Py

P=| Py Py P3 Py |, (7)
P31 P3y P33 Psy

which is defined up to a scalar factor. This implies
that there are only 11 degrees of freedom in a full
perspective projection matrix.

If we examine the camera projection matrices
for orthographic, weak perspective, and paraper-
spective projections (see (4), (5) and (6)), we find
that they all have the same form:

Py Py P13 Py
Pyo= | Py Poy Po3 Pos | . (8)
0 0 0 Psy

Depending on different projection models, some
constraints exist on the elements of matrix P4 ex-
cept for P31, Pss, and Ps3, which are equal to
0. If we ignore the constraints on the matrix el-
ements, P4 becomes the so-called affine camera,
introduced by Mundy and Zisserman [19].

3. Fundamental Matrix for Any Projec-
tion Model

Consider now the case of two images whose pro-
jection matrices are P and P’, respectively (the
prime ’ is used to indicate a quantity related to
the second image). A point m in the first image is
matched to a point m’ in the second image. From
the camera projection model (2), we have

sm=PM and sm =PWV.

An image point m’ defines actually an optical ray,
on which every space point M projects on the sec-
ond image at m’. This optical ray can be written
in parametric form as

ﬁ/ _ S/P/+ﬁl/ 4 pu_ , (9)
where P’T is the pseudo-inverse of matrix P’
P/+ — P/T(P/P/T)—l , (10)

and p't is any 4-vector that is perpendicular to
all the row vectors of P, i.e.,

Ppt=o0.

Thus, p’* is a null vector of P’. As a matter
of fact, p’+ indicates the position of the optical
center (to which all optical rays converge). We
show later how to determine p’*. For a particular
value s, equation (9) corresponds to a point on
the optical ray defined by m’. Equation (9) is
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easily justified by projecting M’ onto the second
image, which indeed gives m’'.

Similarly, an image point m in the first image
defines also an optical ray. Requiring the two rays
to intersect in space implies that a point M' cor-
responding to a particular s’ in (9) must project
onto the first image at m, that is

sm = PP m’ + Pp'* .
Performing a cross product with Pp’* yields
s(Pp't) x m = ' (Pp™t) x (PP m) .

Eliminating s and s’ by multiplying m” from the
left (equivalent to a dot product), we have

m’Fm' =0, (11)

where F is a 3 x 3 matrix, called fundamental ma-
triz:

F = [Pp'* | PP'" | (12)

where we use the notation [x]x to denote the 3x3
antisymmetric matrix defined by a 3-vector x such
that x X y = [x]xy for any 3-vector y. More
precisely, if x = [z, 72, z3]T, then

0 —x3 i)
[x]x = x3 0 —a1
—XT2 X 0

Equation (11) is the well-known epipolar equa-
tion [13, 10, 16], but the form of the fundamental
matrix (12) is general and, to our knowledge, is
not yet reported in the literature. It does not
assume any particular projection model. Indeed,
equation (12) only makes use of the pseudo-inverse
of the projection matrix (which is valid for full
perspective as well as for affine cameras). In [16],
for example, the fundamental matrix is formulated
only for full perspective, because it involves the
inverse of the first 3 x 3 submatrix of P which is
not invertible for affine camera. In [38], a sepa-
rate fundamental matrix is given for affine cam-
eras. Our formula (12) works for both. We will
specialize it for affine cameras in Sect. 5.1.

The fundamental matrix F recapitulates all ge-
ometric information between two images. The
nine elements of F' are not independent from each
other. In fact, F has only 7 degrees of freedom.
This can be seen as follows. First F is defined up

to a scale factor because if F is multiplied by any
nonzero scalar, the new F still satisfy (11). Sec-
ond, the rank of F is at most 2, i.e., det(F) = 0.
This is because the determinant of the antisym-
metric matrix [Pp/t]. is equal to zero. Another
thing to mention is that the two images play a
symmetric role. Indeed, (11) can also be rewrit-
ten as m"F’m = 0. It can be shown that
FT = [P'pt]|<P'Pt.

The vector p’* still needs to be determined. We
first note that such a vector must exist because
the difference between the row dimension and the
column dimension is one, and that the row vec-
tors are generally independent from each other.
Indeed, one way to obtain p’* is

pt=I-P*P)w, (13)

where w is an arbitrary 4-vector. To show that
p’t is perpendicular to each row of P’, we multiply
p’t by P’ from the left:

P/p/J_ — (P/ _ P/P/T(P/P/T)—lpl)w -0

which is indeed a zero vector. The action of T —
P'tP’ is to transform an arbitrary vector to a
vector that is perpendicular to every row vector
of P’. If P’ is of rank 3 (which is usually the
case), then p’* is unique up to a scale factor.

4. Projective Reconstruction

We show in this section how to estimate the posi-
tion of a point in space, given its projections in two
images whose epipolar geometry is known. The
problem is known as 3D reconstruction in general,
and triangulation in particular. In the calibrated
case, the relative position (i.e., the rotation and
translation) of the two cameras is known. The
problem has already been extensively studied in
stereo [2, 6]. In the uncalibrated case, like the one
considered here, we assume that the fundamen-
tal matrix between the two images is known (e.g.,
computed with the methods described in [35]),
and we say that they are weakly calibrated.

4.1.  Fundamental Matriz for Full Perspective

We now derive a usual form of fundamental matrix
for full perspective from the general expression
(12). Let A and A’ be the 3 x 3 matrices contain-
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ing the intrinsic parameters of the first and sec-
ond image. Without loss of generality, we choose
the second camera coordinate system as the world
coordinate system. Then, the camera projection
matrices are

P=A[Rt and P' =A'[10],

where (R, t) is the rotation and translation relat-

ing the two camera coordinate systems, and I is

the 3 x 3 identity matrix and 0 is a zero 3-vector.
It is not difficult to see that

Pl-‘r — |:0:FT:| A/—l ,

G

0
1

I
OT

This yields:

Pp't = AR t] [ } = At,

PP " = AR t] { } A7l =ARA!.
Using the property (Ax)x(Ay) = det(A)A =T (xx
y), Vx,y, and the general expression of the fun-
damental matrix (12), we have

F = [Pp'*|PP'" = [At],ARA'™!
=~ AT« RATH, (14)

where = means “equal” up to a scale factor. Equa-
tion (14) is the usual form of the fundamental ma-
trix (see e.g., [16]).

4.2.  Projective Reconstruction

In the calibrated case, a 3D structure can be re-
covered from two images only up to a rigid trans-
formation and an unknown scale factor (this trans-
formation is also known as a similarity), because
we can choose an arbitrary coordinate system as
a world coordinate system (although one usu-
ally chooses it to coincide with one of the cam-
era coordinate systems). Similarly, in the un-
calibrated case, a 3D structure can only be per-
formed up to a projective transformation of the
3D space [5, 13, 18, 7].

At this point, we have to introduce some ele-
mentary notation of projective geometry (an in-
troduction can be found in [7]). For a 3D point
M = [X,Y,Z]T, its homogeneous coordinates are

% = [U,V,W,S]T = AM where X is any nonzero
scalar and M = [X,Y, Z,1]7. This implies: U/S =
X, V/S=Y,W/S = Z. If we include the pos-
sibility that S = 0, then x = [U,V,W,S]T are
called the projective coordinates of the 3D point
M, which are not all equal to zero and defined up
to a scale factor. Therefore, X and Ax (A # 0)
represent the same projective point. When S # 0,
% = SM. When S = 0, we say that the point is
at infinity. A 4 X 4 nonsingular matrix H defines
a linear transformation from one projective point
to another, and is called the projective transfor-
mation. The matrix H, of course, is also defined
up to a nonzero scale factor, and we write

py =Hx (15)

if X is mapped to y by H. Here p is a nonzero
scale factor.

Now we are given two perspective images of a
scene. The intrinsic parameters of the images are
unknown. Assume that the true camera projec-
tion matrices are P and P’. From (12), we have
the following relation

F = [Pp'*]PP'".

Given 8 or more point matches in general position,
the fundamental matrix F can be uniquely deter-
mined from two images. We are now interested
in recovering P and P’ from F, and once they
are recovered, triangulation can be conducted to
reconstruct the scene in 3D space.

Proposition 1.  Given two perspective images
of a scene whose epipolar geometry (i.e., the fun-
damental matriz) is known, the camera projection
matrices can only be determined up to an unknown
projective transformation.

More precisely, this proposition says that if P
and P’ are two camera projection matrices con-
sistent with the fundamental matrix F, then P =
PH and P’ = P'H are also consistent with the
same F, where H is any projective transforma-
tion of the 3D space. Therefore, we only need to
prove

[Pp'] PPt = AF = A[Pp'*] PP ", (16)
where p'* = (I — P'*P')& with @ any 4-vector,

and A\ is a scalar since F is defined up to a scale
factor.
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Proof: After some simple algebra, we have

Pp't =Px,
where x is a 4-vector given by
x= (I-HH"P"(PPHH"P'")"'P')H& .

Multiplying x by P’ from the left yields P'x = 0,
which implies that x is a null vector of P’. Since
in general rank(P’) = 3 (i.e., the three row vectors
are independent of each other, which is the case for
both perspective projections and affine cameras),
there is a unique null vector of P’, defined up to
a scale factor; we thus have x = Ap’* where p’*
is given by (13) and A is a scale factor. Therefore,
we have

Pp'* = \Pp't. (17)
Next, let us examine f’f”“‘, which is equal to

PPt = PHH"P7(PPHH'P")"' = PN,
where N = HH'P'T(PPHH'P'T)"! isa 4 x 3
matrix. It is easy to verify that P'N = I, so we
must have

N=P"+Q,

where Q is a 4 x 3 matrix such that P'Q = O,
i.e., each column vector q; (i = 1,2,3) of Q must
be the null vector of P’. That is, P'q; = 0 for
1 =1,2,3. Since the null vector is unique (up to a
scale factor) and P'p't =0, we have q; = a;p'~,
where «; is some scalar. Therefore, we have

PPt = PP T +PQ. (18)
Combining (17) and (18) gives
[Pp'L] PPt = A\[Pp't] PPt + A\[Pp'}], PQ.

Because of the structure of matrix Q and the
operator []x, the second term of the right side
of the above equation is a zero matrix, i.e.,
[Pp't]xPQ = O. The above equation is finally
reduced to (16), which completes the proof. O
The consequence of this proposition is the fol-
lowing: if the true structure is M, then the struc-
ture reconstructed from image points is H™'M, i.e.,
up to a projective transformation. This is because
PH-'M = PH gives the exact projection for the
first image; the same is true for the second im-

age. Although the above result has been known
for several years, we believe that it is easier to un-
derstand our discussion than what has been pre-
sented in the literature.

In order to reconstruct points in 3D space, we
need to compute the camera projection matrices
from the fundamental matrix F with respect to a
projective basis, which can be arbitrary because of
Proposition 1. One way is to use a canonical rep-
resentation [17, 3], as described below. The fun-
damental matrix F can be factored into a product
of an antisymmetric matrix [e]y and a matrix M,
ie.,

F = [e]xM, (19)

where e is the epipole in the first image because
FTe =0, and M is a 3 x 3 matrix which is in gen-
eral not unique because if M is a solution then
M + ev” is also a solution for any 3-vector v
(indeed, we have always [e]xevl = O). Since
FTe = 0, the epipole in the first image is given by
the eigenvector of matrix FF? associated to the
smallest eigenvalue. Using the relation

||VH213 =vv’l — [v]2X Vv,

we have

= || 1H2 (eeT - [e}i)F

e H?eeT“” (jore™) -

M

The first term on the right hand is a zero matrix
because FTe = 0. We can thus define matrix M
as
1
—zlelx (20)
llel]?

Once F is decomposed as above, the camera pro-
jection matrices can be chosen as

P=[M e and P =[ 0. (21)

It is easy to verify that the above P and P’ do
yield the fundamental matrix F. Another way is
to choose five point matches, each of four points
not being coplanar. The five points can be real as
in [5] or be virtual as in [36].

Once P and P’ are determined, the 3D re-
construction can be done in a much similar way
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as with calibrated cameras. Given two matched
points m and m’, we can estimate the correspond-
ing 3D point M by minimizing the following crite-
rion:

FM) = [m—m|* + m' —@'|*,

where m and m’ are projected points of M accord-
ing to P and P’, respectively. The reader is re-
ferred to [14, 22, 32] for more details.

5. Affine Reconstruction

This section deals with two images taken by an
affine camera at two different instants or by two
different affine cameras. We show that the struc-
ture can only be recovered up to an affine transfor-
mation in 3D space, and a new method for affine
reconstruction is developed.

5.1.  Affine Fundamental Matriz

In the case of a general affine camera [19, 25], the
projection matrix (8) can be rewritten as

Py = |p] p4] , (22)

where ps = [Pla, Pog, P34]T. We now derive the
specific fundamental matrix for affine cameras
from the general form of the fundamental matrix
(12).

For any affine camera, we can construct p’* as

plo ! [(p’l x p’z)} _ ! [pé} .
[p1 > pa 0 lp3ll L O

Here, we have defined p5 = p} x p5. From
pps = 0 and pi'p; = 0, we can verify that
p't is indeed perpendicular to P’:
T
, p’lT o
1/ &
P" = 1— Py Pl [0"} =03
ol [P
3

Now, multiplying P with p’* yields

| pi Pj
Pp'* = |pips| . (23)
0

or equivalently

0 0 plps
[Pp™], = 0o 0 -piph| . (24)
-pop3 Pip; O

Let us assume P'T = {q%], where Q =
1

1 2 3| 1s a 3 X 3 matrix and qq 1s a 3-vector.
q1 92 qslisa3x3 i dqsisad
Since
Py .
PP = |pyQ| +piq, =1z,
03

q4 can be uniquely determined:
q4 = 0 . (25)

1
P,

The constraint for matrix Q is then
s 10 —ta
hr| - l T ] B

It is evident that Q cannot be uniquely deter-
mined. In other words, any Q that satisfies the
above equation suffices.

Now substituting these matrices for (12), we
have

0 0 ais
FA: 0 0 ass (27)
a3y az2 ass
where
Py 1,
a3 = —;P2P3;
Ps,
Psy
ag3 = —PféAIthé,

azi = (—p3Pspi + Pipsps)ai,
azz = (—p2psp] + Pi PsP3 A2,
ass = (—p3P5P] + Pi P5P3)as

Py 1,

Py r
—Pf?,)4p2 p3 + 2

P7:§4p1 Pps -

The fact that the affine fundamental matrix has
the form of (27) is mentioned in [38]. Defined up
to a scale factor, F4 has only 4 degrees of freedom.

The corresponding points in the two images
must satisfy the following relation, called the
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affine epipolar equation:
~T ~ 7
m Fsm' =0. (28)

Expanding the epipolar equation, the left-hand
side is a first-order polynomial of the image co-
ordinates, and we have

a13% + agzy + az1x’ +agey’ +asz3 =0.  (29)

It means that the epipolar lines are parallel ev-
erywhere in the image, and the orientations of the
parallel epipolar lines are completely determined
by the affine fundamental matrix.

5.2.  Affine Reconstruction

Given a sufficient number of point matches (at
least 4) between two images, the affine fundamen-
tal matrix F4 can be estimated (see [25] and ap-
pendix 7 of this paper for details ). We are now
interested in recovering P4 and P/, from Fy4, and
once they are recovered, the structure can be re-
dressed in 3D space.

Since P4 and P are defined up to a scale factor,
without loss of generality, we assume P34 = Pj, =
1. Then the relation between a 3D point and its
2D image is given by

m=PyM and ' =P,|M.

Note that there is no more scale factor in the above
equations. From the affine epipolar equation (28),
it is easy to obtain

M PIF,P M =0, (30)
———
S
where
(P11 P1 O
PH P21 0 0 0 ais P1,1 P1,2 P1l3 P1l4
S= |1 2 0 O ass| |Py Pie P33 Poy
Pis Pos Ol s a 0 0 0 1
Py Pos 1 31 (32 a33
[0 0 0 Sy
|10 0 0 Su
10 0 0 Sy
| Sa1 Saz Si3 Saa

with

S1a = a13P11 + a3 Py

Sa24 = a13P12 + az3Pas
S34 = a13P13 + azsPa3
Su = as1 Py + asa Py
S42 = CL31P1/2 +a32P2’2
Si3 = az1 Pl + azzPag
Sia = a13Pia + assPos + ag1 P{y + aza Py + ass .

Equation (30) becomes

(S14 + S41)X + (S2a + S42)Y
+ (S34 + S43)Z + 844 = 0.

Since this equation should be true for all points,
the four coefficients must be all zero, which leads
to

a13Pi1 + agsPo1 4+ a3 Pjy +age Py = 0

a13P12 + agsPay 4 a31 Ply + agaPyy = 0

ai13Pis + as3Posz + az1 Pjs + aze Py = 0

a13P14 + agsPoy + a31 Py + asa Py = —ass .
We thus have 4 simple constraints on the coeffi-
cients of the projection matrices, which is consis-
tent with the number of the degrees of freedom

in an affine fundamental matrix. Writing them in
matrix form gives:

a13T P11 Pig P13 Py 0o]”"

a23 Pyy Pyy Po3 Poy| _ | 0 (31)
asi Py P, P53 Py 0

asz Py Py Py Py —ass

We now show the following proposition.

Proposition 2.  Given two images of a scene
taken by an affine camera, the 3D structure of
the scene can be reconstructed up to an unknown
affine transformation as soon as the epipolar ge-
ometry (i.e., the affine fundamental matriz) be-
tween the two images is known.

Let the 3D structure corresponding to the true
camera projection matrices P4 and P/, be M. We

need to show that the new structure M = Hzlﬁ is
still consistent with the same sets of image points
(i.e., with the affine fundamental matrix), where
At

=g
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is an affine transformation of the 3D space, A is
a 3 X 3 matrix, and t is a 3-vector. It follows that
M= AM+t.

Proof:

sponding to the new structure M are:

The camera projection matrices corre-

Py,=P,H, and P,=P,H,.

We only need to show that the new affine projec-
tion matrices f’A and f’fq satisfy the same relation
as (31), where P;; and P;; should be replaced by
Pij and Pj;. Indeed, multiplying both sides of (31)
by H4 from the right, i.e.,

T T
a3 Py Py Pi3 Py 0
as3 Py Py Pz Poy 0

Hy= H

asi Pi, Pjy P1/3 P, A 0 4
aszz Py Py P2/3 Py —ass
yields

as]” P Py P13 Py o 1"

a3 1321 622 1223 1324 _ 1 0

as1 Py P, Pi3 Py 0

32 Py Py Py Py —as3
This completes the proof. O

Because of the above result, there is no unique
determination of P4 and P/, from F4 based on
(31). In the following, we propose a similar
method to what we used in (21). We will con-
sider affine reconstruction as a special projective
reconstruction. The affine fundamental matrix Fu
can always be decomposed into F4 = [e]xM as in

(19), where e and M can be simply computed as:

—ass (note that the last element
e= ais is 0, implying that the
0 epipole is at infinity.)
1 mi1 Mmi2 Mi3
M = _W[e]XF: mo1 Ma22 M23| ,
0 0 1

with m;; = —a;sas;/(a3s + a3;) for i = 1,2 and
j=1,2,3.

If we conduct projective reconstruction, we can
construct P and P’ as in (21), which gives

mi1 Miz2 M1z —asgy

P=[M e|=|ma myp my a3
0 0 1 0
1000
P'=[ 0/=[0100
0010

However, they do not satisfy the definition of
affine cameras (8), although they give the same
fundamental matrix as F4. Let us define a special
projective transformation H4 as

Hy= , (32)

o O o
oo = O
— o O O
O = O O

which simply swaps the last two columns of P and
P’, or equivalently swaps the third and fourth co-
ordinates of a 3D projective point. If we apply
H 4, then we get

PAZPHAZ [M e] HA

mi1 Miz2 —az3 Mi3
= |Mm21 MT22 @13 M23 (33)
0 0 0 1

1000
P,=PH,=[1 0JH,=[0100]|. (34)
0001

As we have shown in the previous section, multi-
plication of a projective transformation does not
change the fundamental matrix. Furthermore, P4
and P/, are now affine camera projection matrices.

Once P4 and P/, are determined from Fju, the
3D structure can be uniquely recovered. Let m =
[u,v]T and m’ = [v/,v’]T be the observed image
points which have been matched between the two
images. Let M = [X,Y, Z]T be the corresponding
space point to be estimated, which projects on to
the two cameras P4 and P/, as

m = Y = m X +mi2Y —azZ +mqs
v mo1 X + maoY + a13Z + mos

= @ _[x
= | Ty
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Because the observations are made in image plane
and the noise level can be reasonably assumed
to be the same for each extracted image point,
a physically meaningful criterion is to minimize,
over the structure parameter M, the point-to-point
distances between the observed locations (m and
m’) and the image projections of the estimated
scene structure (m and m’):

F(4) = |lm — m||* + [lm" — @]

The solution is obtained by setting the derivative
of F (M) with respect to M to zero, i.e., OF (M)/OM =
0. This yields a vector equation

BM=Db,
where

2 2
mi; +m3 +1  miimiz + moimas
_ 2 2
B = |mumiz +moimas  miy +may + 1
—mMi1023 + M21a13 —M12023 + M22a13

—mi1023 + M21013
—Mi12023 + M22013
a3s + ai;
u + miiu + mo1v
b = |v +migu+ magv
—a93U + a13v

The 3D reconstructed point is then given by M =
B~ 'b.

5.8.  Relation to Previous Work

There already exist a number of algorithms for the
recovery of affine structure from two affine images.
They can be divided into two categories. The first
relies on use of a local coordinate frame by choos-
ing four non-coplanar points to form the affine ba-
sis [15, 4, 21, 31]. One drawback is that the error
in the basis points directly affects the precision of
the entire solution. The second category is char-
acterized by the work of Shapiro [24]. Inspired by
the work of Tomasi and Kanade [29] for a long im-
age sequence under orthography, Shapiro uses the
singular value decomposition technique (SVD) to
determine the affine cameras and the scene struc-
ture simultaneously with the whole set of points.
Our work uses also the whole set of points, but we
first recover the affine epipolar geometry and then
determine the scene structure. Instead of conduct-

ing a SVD of a 4 x n matrix as in [24] where n is
the number of point matches, we solve now two
smaller problems:

¢ determination of the affine epipolar geometry,
which involves the computation of the eigen-
vector of a 4 x 4 symmetric matrix associ-
ated with the smallest eigenvalue (see [25] ap-
pendix 7 of this paper for more details);

e 3D reconstruction, which involves an inverse
of a 3 x 3 symmetric matrix, which is the same
for all points, and a multiplication of a 3 x 3
matrix with a 3-vector for each point.

The new technique is thus more efficient.

6. Experimental Results with Affine Re-
construction

We have tested the proposed technique with com-
puter simulated data under affine projection, and
very good results have been obtained. In this sec-
tion, we show the results with data obtained under
full perspective projection but treated as if it were
obtained under affine projection.

6.1. Synthetic Data

The parameters of the camera set-up are taken
from a real stereovision system. The two cam-
eras are separated by an almost pure translation
(the rotation angle is only 6 degrees). The base-
line is about 350 mm (millimeters). An object
of size 400 x 250 x 300 mm? is placed in front
of the cameras at a distance of about 2500 mm.
Two images of this object under full perspective
projection are generated as shown in Fig.1. Line
segments are drawn only for visual effect, and only
the endpoints (12 points) are used in our experi-
ment. The image resolution is 512 x 512 pixels?,
and the projection of the object occupies a surface
of about 130 x 120 pixels?.

The method described in [25] is used to compute
the affine epipolar geometry, and the root of the
mean point-to-point distance is 0.065 pixels. This
implies that even the images are perspective, their
relation can be quite reasonably described by the
affine epipolar geometry. The affine reconstruc-
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tion result obtained with the technique described
in this paper is shown in Fig. 2.

In order to have a quantitative measure of the
reconstruction quality, we estimate, in a least-
squares sense, the affine transformation which
brings the set of affinely reconstructed points to
the original set of 3D points. The reader is re-
ferred to appendix 6 of this paper for details on
how to estimate the affine transformation between
two sets of 3D points. The root of the mean of
the squared distances between the corresponding
points is 10.4 mm, thus the error is less than 5%.
The superposition of the two sets of data is shown
in Fig.3. It is interesting to observe that the re-

of [}

Fig. 1. Two perspective images of a synthetic object

Fig. 2. Two orthographic views of the affine reconstruc-
tion

4

Fig. 3. Two orthographic views of the superposition of
the original 3D data (in solid lines) and the transformed
affine reconstruction (in dashed lines)

Fig. 4. Two original facial images

Fig. 5. Matched points (indicated by crosses) between
two facial images with four corresponding epipolar lines
overlaid

Fig. 6. A new image synthesized from the two real images
shown in Fig. 4

construction of the near part is larger than the
real size while that of the distant part is smaller.
This is because the assumption of an affine camera
ignores the perspective distortion in the image.

6.2. Application to Image Synthesis

In this subsection, we apply the affine reconstruc-
tion technique to synthesize new images from real
images (see [37] for more details). Figure 4 shows
two original facial images differed by a rotation in
depth of about 20 degrees. Although the projec-
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tion is not affine, the images will be considered to
be taken under affine projection.

We first extracted a set of characteristic points
from each image, and then tried to establish an
initial set of point matches using correlation and
relaxation techniques as described in [35]. Finally,
the robust technique described in Appendix B was
applied to detect the false matches and to esti-
mate the affine fundamental matrix between the
two images. The good matches and the epipo-
lar geometry thus obtained are shown in Fig. 5.
(Note that our current version of image matching
uses black-white images.)

Once the affine fundamental matrix is esti-
mated, we can conduct affine reconstruction for
each point match with respect to an implicit affine
coordinate system as described in the last section.
Once the desired position of a new image is spec-
ified, the reconstructed points are projected onto
the new image. Using points as vertices, we can di-
vide the new image into a set of triangular patches.
Finally, textures (colors) from the original images
are mapped to the triangular patches. An example
is shown in Fig. 6, which roughly corresponds to
the intermediate position of the two images shown
in Fig. 4.

7. Conclusion

We have addressed in this paper the problem of
determining the structure and motion from two
uncalibrated images of a scene under full perspec-
tive or under affine projection. Epipolar geometry,
projective reconstruction and affine reconstruc-
tion have been elaborated in a way such that ev-
eryone having knowledge of linear algebra can un-
derstand without difficulty. A unified expression
of the fundamental matrix has been derived which
is valid for any projection model without lens dis-
tortion (including full perspective and affine cam-
era). Affine reconstruction is considered as a spe-
cial projective reconstruction. A new and efficient
technique for affine reconstruction from two affine
images has been developed, which consists in first
estimating the affine epipolar geometry and then
performing a triangulation with respect to an im-
plicit affine basis for each point match.

Appendix A

Estimation of the Affine Epipolar Geome-
try

In this section, we present the technique described
in [25] for estimating the affine epipolar geometry
from a set of point matches. Consider a pair of
matched points: m; = [z;,y;]7 and m/ = [2}, y}]"
The affine epipolar equation (29) can be regarded
as a hyperplane in 4D and rewritten as r! n+ags =
0, where r; = [z, y;, 2}, 9/]T contains the two im-
age coordinates, and n = [a13, as3,as1,asz]’ is
the 4D normal vector. The perpendicular dis-
tance from r; to this hyperplane is given by
(rTn + az3)/||n||. Given n point matches, we can
estimate the affine epipolar geometry by minimiz-
ing the following cost function:

which is the sum of the squared 4D perpendicular
distances.

Since the five coefficients of the affine epipolar
geometry are defined up to a scale factor, we can

impose ||n|| = 1. Using a Lagrange multiplier A,
we get
]:/(n, a33) = Z (r?n + 0,33)2 + A(l — IITII) .

i=1
We solve by setting the partial derivatives of
F'(n,ass3) to zero. Differentiating with respect to
ass gives

/ n
OF(0.033) _ 5§ (T 4 agg) =0,

(90,33

which leads to

L~ 7 T
azsz = n;(rin)— nr,
where T is the centroid of the 4D vectors r;. The
optimal solution n thus passes through the data
centroid r.
Substituting azz into F'(n,az3) and denoting
the centered points by v; = r; — r, we obtain

]:// Zn:

= nTWnJr/\(l —n’n),

24+ 21 —n"n)
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where W = Y v;v7 is a symmetric matrix.
Differentiating with respect to n gives

OF" (n)

=2Wn —-2\n=0,
on

or Wn = An. Thus, n is a unit eigenvector of
W corresponding to the eigenvalue A. To decide
which eigenvalue, we substitute into F”(n),

F'(0)min =0T Wn = \[n|? =X\,

showing that A is the smallest eigenvalue of W
(and n its associated eigenvector).

Although the above solution is optimal in terms
of 4D perpendicular distances, it is shown in [24,
32] that F(n,ass) is equivalent to the sum of
squared distances between the observed image lo-
cations and the locations predicted by projecting
the computed affine structure M; onto an image
using the computed affine cameras (P4 and P7).
This solution is thus also optimal in terms of an
image distance measure.

Appendix B

False Match Detection and Robust Estima-
tion

We have adapted a previously developed robust
technique [35] to affine cameras. It is based on
the least-median-squares method [23], and is able
to detect false matches as many as 50% of the
whole set of data and at the same time produce
an accurate estimation of the affine epipolar ge-
ometry.

Given n point correspondences: {(m;, m})|i =
1,...,n}, we proceed the following steps:

1. A Monte Carlo type technique is used to draw
m random subsamples of p = 4 different point
correspondences (recall that 4 is the minimum
number to determine the affine epipolar geom-
etry).

2. For each subsample, indexed by J, we use
the technique described previously to com-
pute the affine fundamental matrix F' ;.

3. For each F;, we can determine the median of
the squared residuals, denoted by M;, with
respect to the whole set of point correspon-

dences, i.e.,

M ; = median M
R T TP
Here, the squared 4D perpendicular distances
are used, see (1).
4. Retain the estimate F; for which M is min-
imal among all m M ;’s.
5. Compute the robust standard deviation esti-
mate

G = 1.4826[1 +5/(n — p)]v/M; .

6. Declare a point match as a false match if
its 4D perpendicular distance is larger than
(k5)?, where k is set to 2.5.

7. Discard the false matches and re-estimate the
affine fundamental matrix using all remaining
point matches.

More implementation details can be found in [35].

Appendix C

Estimation of the Affine Transformation

In this section, we present a technique which
computes the affine transformation from a set of
affinely reconstructed 3D points, denoted here by
x; = [75,9i,z]T, to a set of 3D reference points,
denoted here by x; = [z}, y},2/]T. Let n be the
number of points. Let A and t be the 3 x 3 ma-
trix and 3-vector representing the affine transfor-
mation. For each pair of points, we then have

X, =Ax; +t.

The estimation of the affine transformation can
be formulated as a least-squares by minimizing the
following cost function:

F(At) =) (Ax;+t—x))"(Ax; +t — X]) .
i=1
The solution of t is obtained by setting the first
derivative of F(A,t) with respect to zero:

OF(A,t)

— _ ) =
o —2;(AXZ+t x;) =0,

which leads to
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where X = 1 3. x; and ¥ = L 3 x! are the cen-
n 7 n 177

troids of the two point sets. The optimal solution
A thus passes through the data centroids X and
S/

x’.
Substituting t into F(A,t) and denoting the
centered points by y; = x; — X and y, = x, — X/,
we get

F(A)=> (Ayi—y)"(Ayi—y}) -
1=1

Now let us define the derivative of a scalar A with
respect to a matrix A:

of of of

Bg 1 Gg 2 851 3

%y %y %P

dazy Oazz Oass

D(f,A) =

The solution for A is then given by setting
D(F'(A),A) = O, where O is the 3 X 3 zero ma-
trix. If we consider only one term in F’(A), it can
be easily verified that

D((Ay; —y;) " (Ay; —y)),A) = 2Ay;y] —2yly! .

We have thus
D(F'(A),A) =2AYY" - 2Y'YT |
where Y and Y’ are 3 X n matrices given by

Y = [Y1a"'aY7l}a
Y = |y},...,y.] -

The solution of A is then given by
A=YY" (YY) .

Appendix D
Epipolar Geometry of N Views

In this appendix, we show that the same algebraic
manipulations can be easily extended to N-view
analysis.

Let us consider first the case of three views
where a set of point matches are available, de-
noted by {m;, m}, m/} (i =1,...,n). To derive
the constraints on the images between three views,
we follow the same idea as that presented in [28]
for calibrated perspective images, but as for the
fundamental matrix, we will not assume any par-

ticular projection model. Therefore, the result will
be valid for both perspective and affine cameras.

Consider one point match (m, m’, m”) (we omit
here the subscript to simplify the notation). Let
the corresponding structure in 3D space be M. In
general (full perspective or affine projection), we
have

sm = PN, (1)
sm’ = PN, (2)
S”ffl” _ P//ﬁ. (3)

Using pseudo-inverse matrices, we can get
M=sPTm+pt. (4)
Substituting this for (2) and (3) yields
sm’ = sP’Ptm+P'pt,
s'm” = sP'Ptm + P//pJ_ )
Define B’ = P'P*, B” = P"P*, b’ = P'p! and
b” = P"p*. Then we have
sm’' =sB'm+ b,
s//[’i’l// — SB//I’i’l+b/l
To eliminate the unknown structure parameters s’
and s”, we take the cross product of the above two

equations with m’ and m”, respectively, which
leads to

sm’' x (B'm)+m’'xb' =0,
s’ x (B"m) +m” xb” =0 .

There is still one unknown s. We rearrange the
terms of these equations as

sm’]«B'm = —[m'[«b’,
—[fﬁ//]xb// — S[I"ﬁII]XB//I’fl .

Remember that [-]« denotes an antisymmetric ma-
trix defined by a vector. To eliminate s, we take
the outer product of both sides of the above two
equations, which gives

), BYAb T[] = (@] b B [
or
(M}, G(m)[m"],c = 05,
where O3 is a 3 X 3 zero matrix, and

G(If‘ﬁ) = b/I"ﬁTB//T _ B/I'i;lbl/T .
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If m = [u,v,t]T (in general t = 1), then G(m)
can be expressed as the sum of three matrices:

G(m) = uK + oL + tM (5)
with
K =b'b{" —bib"", (6)
L =b'by" —b,b"" (7)
M = b’by" — bib"" . (8)

Here, b/ is the i'" column vector of B’ (i.e.,
[bl,b5,bs] = B]); similarly for b} (ie.,
[bY, b5, b%] = B”]). It is easy to see that the
three matrices K, L, and M are all singular. By
defining the following operation:

(K,L,M) «xm = uK + oL +tM , (9)

we finally obtain the following matrix equation for
points between three views

(@] [(K,L,M) ] [@"], =03.  (10)

We have therefore a set of nine equations, of which
not all are independent. And it can be shown that
there are only four linearly independent equations
in the 27 elements of matrices K, L and M, and
that there are exactly three algebraic equations in
the camera parameters. The latter is easily under-
stood: Equations (1) to (3) have 9 scalar equations
but 6 unknowns (M, s, s’ and ¢').

For full perspective, equation (10) is trilinear
in image coordinates, i.e., each term contains at
most one coordinate of a point. For affine cam-
eras, matrices K, L and M are in the following
form:

* % 0 * *x 0 * k%
* % 0] * % 0 , and * % x|,
000 000 * x 0

respectively. Equation (10) is then linear in image
coordinates.

If 4 or more views are considered, no more in-
formation will be available than if we consider any
subset of 3 views among them [11]. A point in an
additional view adds two equations exactly in the
same way as in the third view.
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