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Abstract

A whiteboard can be an easy tool for collaboration such as brainstorming, and is widely used, but the content on a whiteboard
is hard to archive and share. While digital cameras can be used to capture whiteboard content, the images are usually taken from
an angle, resulting in undesired perspective distortion. They may contain other distracting regions such as walls and shadows.
The visual quality of those images is usually poor. This paper describes a system that automatically locates the boundary of a
whiteboard, crops out the whiteboard region, rectifies it into a rectangle, and corrects the color to make the whiteboard completely
white. In case a single image is not enough (e.g., large whiteboard and low-resolution camera), we have developed a robust feature-
based technique to automatically stitch multiple overlapping images. The system has been tested extensively, and very good results
have been obtained.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

A whiteboard provides a large shared space for collaborative meetings or lectures. It is not only effective but also
economical and easy to use—all you need is a flat board and several dry-ink pens. While whiteboards are widely
used, they are not perfect. The content on the whiteboard is hard to archive or share with others who are not present
in the session. Imagine that you had a fruitful brainstorming session with all the nice drawings on the whiteboard, and
you have to copy them in your laptop. If you have another meeting right after, you may not have time to copy the
contents; if other people reserve the meeting room and use it right after, the contents on the whiteboard will be erased.
Because digital cameras are becoming accessible to average users, more and more people are using digital cameras to
take images of whiteboards instead of copying manually, thus significantly increasing the productivity. The system we
describe in this paper aims at reproducing the whiteboard content as a faithful, yet enhanced and easily manipulable,
electronic document through the use of a digital (still or video) camera.

However, images are usually taken from an angle to avoid highlights created by flash, resulting in undesired per-
spective distortion. They can also contain other distracting regions such as walls. Our system uses a series of image
processing algorithms. It automatically locates the boundary of a whiteboard as long as there is a reasonable contrast

✩ A short version of this paper, entitled “Notetaking with a Camera: Whiteboard Scanning and Image Enhancement,” appears in Proc. IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), Montreal, Quebec, 17–21 May, 2004.

* Corresponding author.
E-mail address: zhang@microsoft.com (Z. Zhang).
URL: http://research.microsoft.com/~zhang/.

1051-2004/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.dsp.2006.05.006



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Z. Zhang, L.-W. He / Digital Signal Processing 17 (2007) 414–432 415

near the edges, crops out the whiteboard region, rectifies it to a rectangle with the estimated aspect ratio, and finally
corrects the colors to produce a crisp image.

Besides image enhancement, our system is also able to scan a large whiteboard by stitching multiple images
automatically. Imagine that you only have a built-in camera with maximum resolution 640 × 480; this is usually not
high enough to produce a readable image of a large whiteboard. Our usability study shows that we need about 25
pixels per inch1 in order to read whiteboard images with normal writing. Our system provides an intuitive interface to
assist a user in taking multiple images of the whiteboard with overlap. It then stitches them automatically to produce
a high-resolution image. The stitched image can finally be processed and enhanced as mentioned earlier.

The whiteboard scanning subsystem is similar to the ZombieBoard system developed at Xerox PARC [1]. The
difference is that they reply on a pan-tilt video camera while we can use a free-moving (still or video) camera as long
as there is an overlap between successive views.

The only commercial product we are aware of is Whiteboard Photo from PolyVision [2]. Compared with our
system, it lacks two features:

• Aspect ratio estimation: Whiteboard Photo uses either the original image size or the aspect ratio of the bounding
box for the final image, therefore aspect ratio of the final image does not correspond to the actual aspect ratio of
the whiteboard.

• Whiteboard scanning: Whiteboard Photo does not have the functionality to scan a large whiteboard and stitch
multiple images together.

In ICASSP 2003, we presented a whiteboard capture system for a conference room setup [3]. In that system, a
high-resolution digital camera is mounted on the opposite wall of the whiteboard and fixed toward the whiteboard,
and a microphone is installed in the middle of the table. Both whiteboard content and audio signals are captured
during the meeting. The whiteboard image sequence is post-analyzed, and strokes and keyframes are produced and
time-stamped. Therefore the whiteboard content serves as a visual index to efficiently browse the audio meeting. On
the other hand, the system presented in this paper is very light-weight. It can be used to archive whiteboard content
whenever the user feels necessary.

The paper is organized as follows. Section 2 provides an overview of the system. Section 3 describes some details of
the image processing techniques implemented in the system. Section 4 presents the whiteboard scanning subsystem.
Extensive experimental results with real data are provided. A shorter version of this article appeared in ICASSP
2004 [4].

2. Overview of the system

Before going further, let us look in Fig. 1. On the top is an original image of a whiteboard taken by a digital camera,
and on the bottom is the final image produced automatically by our system. The content on the whiteboard gives a
flow chart of our system.

As is clear in the diagram shown in Fig. 1b, the first thing we need to decide is whether it is enough to take a single
image of the whiteboard. If the whiteboard is small (e.g., 40′ by 40′) and a high-resolution digital camera (e.g., 2 mega
pixels) is used, then a single image is usually enough. Otherwise, we need to call the whiteboard scanning subsystem,
to be described separately in Section 4, to produce a composite image that has enough resolution for comfortable
reading of the whiteboard content. Below, we assume we have an image with enough resolution.

The first step is then to localize the boundaries of the whiteboard in the image. Because of perspective projection,
the whiteboard in an image usually appears to be a general quadrangle, rather than a rectangle. The quadrangle is
localized by detecting four strong edges satisfying certain criteria. If a whiteboard does not have strong edges, a GUI
(graphical user interface) is provided for the user to manually specify the quadrangle.

The second step is image rectification. For that, we first estimate the actual aspect ratio of the whiteboard from the
detected quadrangle based on the fact that it is the projection of a rectangle in space (see Appendix A for details).
Besides the aspect ratio, we can also estimate the focal length of the camera. From the estimated aspect ratio, and by

1 1 inch (1′) ≈ 2.54 cm.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

416 Z. Zhang, L.-W. He / Digital Signal Processing 17 (2007) 414–432

Fig. 1. Diagram of the system architecture drawn on a whiteboard. (a) Original image, (b) processed image.

choosing the “largest” whiteboard pixel as the standard pixel in the final image, we can compute the desired resolution
of the final image. A planar perspective mapping (a 3 × 3 homography matrix) is then computed from the original
image quadrangle to the final image rectangle, and the whiteboard image is rectified accordingly.

The last step is white balancing of the background color. This involves two procedures. The first is the estimation
of the background color (the whiteboard image under the same lighting if there were nothing written on it). This is not
a trivial task because of complex lighting environment, whiteboard reflection and strokes written on the board. The
second concerns the actual white balancing. We make the background uniformly white and increase color saturation
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of the pen strokes. The output is a crisp image ready to be integrated with any office document or to be sent to the
meeting participants.

Although we have not yet implemented in our current system, image vectorization is logically the final step. It
transforms a bitmap image into vector drawings such as free-form curves, lines and arcs. TabletPC inks use a vector
representation, and therefore a whiteboard image after vectorization can be exported into TabletPC.

3. Details of image enhancement

We now provide details of the image processing techniques used in our system. The whiteboard scanning system
will be described in Section 3.1.

3.1. Automatic whiteboard detection

As was mentioned in the introduction, this work was motivated by developing a useful tool to capture the white-
board content with a digital camera rather coping the notes manually. If the user has to click on the corners of the
whiteboard, we have not realized the full potential with digital technologies. In this section, we describe our im-
plementation of automatic whiteboard detection. It is based on Hough transform, but needs a considerable amount
of engineering because there are usually many lines which can form a quadrangle. The procedure consists of the
following steps:

(1) Edge detection.
(2) Hough transform.
(3) Quadrangle formation.
(4) Quadrangle verification.
(5) Quadrangle refining.

Combining with the technique described earlier, we have a complete system for automatically rectifying whiteboard
images. Experiments will be provided in Section 3.1.2.

3.1.1. Technical details
We describe the details of how a whiteboard boundary is automatically detected.

Edge detection. There are many operators for edge detection (see any textbook on image analysis and computer
vision, e.g., [5–7]). In our implementation, we first convert the color image into a gray-level image, and use the Sobel
filter to compute the gradient in x- and y-direction with the following masks:

Gx =
−1 −2 −1

0 0 0

1 2 1

and Gy =
−1 0 1

−2 0 2

−1 0 1

We then compute the overall gradient approximately by absolute values: G = |Gx | + |Gy |. If the gradient G is larger
than a given threshold TG, that pixel is considered as an edge. TG = 40 in our implementation.

Hough transform. Hough transform is a robust technique to detect straight lines, and its description can be found
in the books mentioned earlier. The idea is to subdivide the parameter space into accumulator cells. An edge detected
earlier has an orientation, and is regarded as a line. If the parameters of that line fall in a cell, that cell receives a
vote. At the end, cells that receive a significant number of votes represent lines that have strong edge support in the
image. Our implementation differs from those described in the textbooks in that we are detecting oriented lines. The
orientation information is useful in a later stage for forming a reasonable quadrangle, and is also useful to distinguish
two lines nearby but with opposite orientation. The latter is important because we usually see two lines around the
border, and if we do not distinguish them, the detected line is not very accurate. We use the normal representation of
a line:

x cos θ + y sin θ = ρ.
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Fig. 2. An example of bad quadrangles.

The range of angle θ is [−180◦,180◦]. For a given edge at (x0, y0), its orientation is computed by θ = atan2(Gy,Gx),
and its distance ρ = x0 cos θ + y0 sin θ . In our implementation, the size of each cell in the ρθ -plane is 5 pixels by 2◦.

Quadrangle formation. First, we examine the votes of the accumulator cells for high edge concentrations. We
detect all reasonable lines by locating local maxima whose votes are larger than five percent of the maximum number
of votes in the Hough space. Second, we form quadrangles with these lines. Any four lines could form a quadrangle,
but the total number of quadrangles to consider could be prohibitively high. In order to reduce the number, we only
retain quadrangles that satisfy the following conditions:

• The opposite lines should have quite opposite orientations (180◦ within 30◦).
• The opposite lines should be quite far from each other (the difference in ρ is bigger than one fifth of the image

width or height).
• The angle between two neighboring lines should be close to ±90◦ (within 30◦).
• The orientation of the lines should be consistent (either clockwise or counter-clockwise).
• The quadrangle should be big enough (the circumference should be larger than (W + H)/4).

The last one is based on the expectation that a user tries to take an image of the whiteboard as big as possible.

Quadrangle verification. The lines detected from Hough space are infinite lines: they do not say where the sup-
porting edges are. For example, the four lines in Fig. 2 would pass all the tests described in the previous paragraph,
although the formed quadrangle is not a real one. To verify whether a quadrangle is a real one, we walk through the
sides of the quadrangle and count the number of edges along the sides. An edge within 3 pixels from a side of the
quadrangle and having similar orientation is considered to belong to the quadrangle. We use the ratio of the number
of supporting edges to the circumference as the quality measure of a quadrangle. The quadrangle having the highest
quality measure is retained as the one we are looking for.

Quadrangle refining. The lines thus detected are not very accurate because of the discretization of the Hough space.
To improve the accuracy, we perform line fitting for each side. For that, we first find all edges with a small neighbor-
hood (10 pixels) and having similar orientation to the side. We then use least-median squares to detect outliers [8],
and finally we perform a least-squares fitting to the remaining good edges [5].

3.1.2. Experimental results on automatic whiteboard detection
We have tested the proposed technique with more than 50 images taken by different people with different cameras

in different rooms. All the tuning parameters have been fixed once for all, as we already indicated earlier. The success
rate is more than 90%. The four failures are due to poor boundary contrast, or to too noisy edge detection. In this
section, we provide three examples (Figs. 3–5).

Figure 3 is a relatively simple example because the whiteboard boundary is very clear. The image resolution is
2272 × 1704 pixels. The detected edges are shown in white in Fig. 3b. As can be seen in the Hough image (Fig. 3c),
the peaks are quite clear. The corners of whiteboard are accurately estimated, as shown in small white squares in
Fig. 3a. The cropped and rectified image is shown in Fig. 3d. The estimated aspect ratio is 1.326, very close to the
ground truth 4/3. The estimated focal length is 2149 pixels.
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Fig. 3. Example 1. Automatic whiteboard detection and rectification: (a) original image together with the detected corners shown in small white
squares, (b) edge image, (c) Hough image with ρ in horizontal axis and θ in vertical axis, (d) cropped and rectified whiteboard image.

Figure 4 shows a different example. The image resolution is still 2272 × 1704 pixels. As can be seen in the edge
image (Fig. 4), the actual lower border of the whiteboard does not have strong edge information. Our technique thus
detects the line corresponding to the pen holder, which is perfectly reasonable. The whiteboard corners estimated by
intersecting the detected lines are shown in small red dots in Fig. 4a. The cropped and rectified image is shown in
Fig. 4d. The estimated aspect ratio is 1.038. The ground truth is 1.05 (the whiteboard is of the same type as in Fig. 7).
Since the detected whiteboard includes the pen holder, the estimated aspect ratio (width/height) should be a little bit
smaller than 1.05. The estimated focal length is 3465 pixels. We cannot compare the focal lengths because of different
zoom settings.

Figure 5 shows yet another example. The resolution is 1536 × 1024 pixels. This example has one particular thing
to notice: the upper right corner is not in the image. It does not affect the performance of our technique since we first
detect boundary lines rather than corners. In Fig. 5a, the three detected visible corners are shown in small red discs.
The fourth corner, although invisible, is also accurately estimated, as can be verified by the cropped and rectified image
shown in Fig. 5d, where the invisible region (upper right corner) is filled with black pixels due to lack of information.
The estimated aspect ratio is 1.378. We do not have the ground truth because the image was provided by an external
person. The estimated focal length is 2032 pixels.

3.2. Determining the physical aspect ratio of a whiteboard

Because of the perspective distortion, the image of a rectangle appears to be a quadrangle. However, since we know
that it is a rectangle in space, we are able to estimate both the camera’s focal length and the rectangle’s aspect ratio.

Single-view geometry of a plane, including plane rectification and mensuration, was addressed in [9]. The case of a
rectangular shape was studied in detail in [10]. Here, we address the problem of determining the physical aspect ratio
of a whiteboard, which is assumed to be a rectangle, from a single image. Section 3.2.1 derives the basic constraints
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Fig. 4. Example 2. Automatic whiteboard detection and rectification: (a) original image together with the detected corners shown in small red dots,
(b) edge image, (c) Hough image with ρ in horizontal axis and θ in vertical axis, (d) cropped and rectified whiteboard image.

from a single view of a rectangle. Section 3.2.2 describes how to use these constraints to estimate the camera’s focal
length and the actual aspect ratio of the rectangle. Section 3.2.4 provides experimental results with real images.

For general description of projective geometry in computer vision, the reader is referred to [5,11–13].

3.2.1. Geometry of a rectangle
Consider Fig. 6. Without loss of generality, we assume that the rectangle is on the plane z = 0 in the world coor-

dinate system. Let the width and height of the rectangular shape be w and h. Let the coordinates of the four corners,
Mi (i = 1, . . . ,4), be (0,0), (w,0), (0, h), and (w,h) in the plane coordinate system (z = 0). The projection of the
rectangle in the image is an quadrangle. The observed corners in the image are denoted by m1, m2, m3, and m4,
respectively. Furthermore, we will use x̃ to denote the augmented x vector by adding 1 as the element to vector x, i.e.,
x̃ = [x1, . . . , xn,1]T if x = [x1, . . . , xn]T .

We use the standard pinhole model to model the projection from a space point M to an image point m:

λm̃ = A[R t]M̃ (1)

with

A =
[

f 0 u0
0 sf v0
0 0 1

]
and R = [r1 r2 r3]

where f is the focal length of the camera, s is the pixel aspect ratio, and (R, t) describes the 3D transformation
between the world coordinate system, in which the rectangle is described, and the camera coordinate system. (In the
above model, we assume that pixels are rectangular.) Substituting the 3D coordinates of the corners yields
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Fig. 5. Example 3. Automatic whiteboard detection and rectification: (a) original image together with the detected corners shown in small red
dots (note that the upper right corner is outside of the image), (b) edge image, (c) Hough image with ρ in horizontal axis and θ in vertical axis,
(d) cropped and rectified whiteboard image.

Fig. 6. Geometry of a rectangle.

λ1m̃1 = At, (2)

λ2m̃2 = wAr1 + At, (3)

λ3m̃3 = hAr2 + At, (4)

λ4m̃4 = wAr1 + hAr2 + At. (5)

Performing (3)–(2), (4)–(2), and (5)–(2) gives, respectively,

λ2m̃2 − λ1m̃1 = wAr1, (6)

λ3m̃3 − λ1m̃1 = hAr2, (7)

λ4m̃4 − λ1m̃1 = wAr1 + hAr2. (8)
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Performing (8)–(6)–(7) yields

λ4m̃4 = λ3m̃3 + λ2m̃2 − λ1m̃1. (9)

Performing cross product of each side with m̃4 yields

0 = λ3m̃3 × m̃4 + λ2m̃2 × m̃4 − λ1m̃1 × m̃4. (10)

Performing dot product of the above equation with m̃3 yields

λ2
(
m̃2 × m̃4

) · m̃3 = λ1
(
m̃1 × m̃4

) · m̃3,

i.e.,

λ2 = k2λ1, k2 ≡ (m̃1 × m̃4) · m̃3

(m̃2 × m̃4) · m̃3
. (11)

Similarly, performing dot product of (10) with m̃2 yields

λ3 = k3λ1, k3 ≡ (m̃1 × m̃4) · m̃2

(m̃3 × m̃4) · m̃2
. (12)

Substituting (11) into (6), we have

r1 = λ1w
−1A−1n2 (13)

with

n2 = k2m̃2 − m̃1. (14)

Similarly, substituting (12) into (7) yields

r2 = λ1h
−1A−1n3 (15)

with

n3 = k3m̃3 − m̃1. (16)

From the properties of a rotation matrix, we have r1 · r2 = 0. Therefore, from (13) and (15), we obtain

nT
2 A−T A−1n3 = 0. (17)

Again, from the properties of a rotation matrix, we have r1 · r1 = 1 and r2 · r2 = 1. Therefore, from (13) and (15),
we obtain, respectively,

1 = λ2
1w

−2nT
2 A−T A−1n2, (18)

1 = λ2
1h

−2nT
3 A−T A−1n3. (19)

Dividing these two equations gives the aspect ratio of the rectangular shape:(
w

h

)2

= nT
2 A−T A−1n2

nT
3 A−T A−1n3

. (20)

This equation says clearly that the absolute size of the rectangle cannot be determined from an image. This is obvious
since a bigger rectangular shape will give the same image if it is located further away from the camera.

3.2.2. Estimating camera’s focal length and rectangle’s aspect ratio
In the last section, we derived two fundamental constraints (17) and (20). We are now interested in extracting all

useful information from the quadrangle in the image.
We do not assume any knowledge of the rectangle in space (i.e., unknown width and height). Since we only have

two constraints, we have to assume some knowledge of the camera. Fortunately, with modern cameras, it is very
reasonable to assume that the pixels are square (i.e., s = 1) and the principal point is at the image center (i.e., known
u0 and v0). Given u0, v0 and s, we are able to compute the focal length f from Eq. (17). Indeed, we have
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f 2 = − 1

n23n33s2

{[
n21n31 − (n21n33 + n23n31)u0 + n23n33u

2
0

]
s2

+ [
n22n32 − (n22n33 + n23n32)v0 + n23n33v

2
0

]}
(21)

where n2i (respectively n3i ) is the ith component of n2 (respectively n3). There exists singularity, and we will address
it in Section 3.2.3.

As soon as f is estimated, the camera’s intrinsic parameters are all known, and the aspect ratio of the rectangle is
readily computed by Eq. (20).

Equation (20) can be used in a different way. If the aspect ratio of the rectangle is given, we can also use that
equation to estimate the focal length. Together with (17), we’ll have two equations to estimate the focal length,
leading a more reliable estimation. However, this is not what we assume in this work.

Once A is known, the pose of the rectangular shape can be determined. We have from (13)

r1 = A−1n2
/∥∥A−1n2

∥∥ (22)

and from (15)

r2 = A−1n3
/∥∥A−1n3

∥∥. (23)

In turn,

r3 = r1 × r2. (24)

The translation vector can be determined from (2), i.e.,

t = λ1A−1m̃1. (25)

Note that the translation can only be determined up to a scale factor λ1, which depends on the size of the rectangle as
can be seen in (18) and (19). This is obvious since a bigger rectangular shape will give the same image if it is located
further away from the camera.

3.2.3. Singularity
Obviously, no solution to (21) exists when n23 = 0 or n33 = 0. It occurs when k2 = 1 or k3 = 1, respectively. Let

us examine it in details.
If k2 = 1, then from (11), we have

(m̃2 − m̃1) · (m̃4 × m̃3) = 0 (26)

or in other words,

m̃2 − m̃1 = α(m̃4 − m̃3) or m2 − m1 = α(m4 − m3) (27)

where α is a non-zero scalar. That is, side m1m2 must be parallel to side m3m4.
This leads to n2 = m̃2 − m̃1. Because the third element of n2 is zero, and without loss of generality assuming

u0 = v0 = 0 and s = 1 (since they are known), constraint (17) becomes

(m̃2 − m̃1) · n3 = 0 or (m̃2 − m̃1) · (k3m̃3 − m̃1) = 0. (28)

Note that the focal length f has been canceled out. The above equation can be rewritten as

(k3 − 1)m̃3 · (m̃2 − m̃1) + (m̃3 − m̃1) · (m̃2 − m̃1) = 0. (29)

Because m̃2 − m̃1 is parallel to the image plane, in order for the first term to be 0, either k3 = 1 or m3 = 0 (i.e., at the
image center, which is a very special case and will not be considered further). In order for the second term to be 0,
side m1m2 must be orthogonal to side m1m3.

Since k3 = 1, from (12), we have

(m̃3 − m̃1) · (m̃4 × m̃2) = 0. (30)

This means that side m1m3 must be parallel to side m2m4.
In summary, the degenerate case for estimating the focal length when k2 = 1 is when the projection of the rectangle

onto the image plane is a rectangle. When k3 = 1, we arrive at the same conclusion.
Fortunately, even though f cannot be estimated when the image of the rectangle is a rectangle (no perspective

effect), we can still estimate the aspect ratio. Indeed, since n23 = 0 and n33 = 0 because k2 = 1 and k3 = 1 in the
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Fig. 7. Six images of the same whiteboard, taken from different angles.

Table 1
Results with images shown in Fig. 7

Image a b c d e f

Aspect ratio 1.028 1.035 1.031 1.021 1.019 0.990
Error (%) 2.1 1.4 1.8 2.8 3.0 5.7

Bounding box 0.966 1.035 0.981 0.892 0.843 0.727
Difference (%) 5.1 1.4 6.6 15.1 19.7 30.8

Focal length 2202 2442 2073 2058 2131 2030

degenerate case, after simple algebra, Eq. (20) becomes(
w

h

)2

= (n2
21 + n2

22)

(n2
31 + n2

32)
. (31)

Not surprisingly, the physical aspect ratio is equal to the aspect ratio of the rectangle image in this special case.

3.2.4. Experimental results on aspect ratio estimation
In this section, we provide experimental results with real data. Six images of the same whiteboard, as shown in

Fig. 7, were taken from different angles. The most frontal view is image b. We manually measured the whiteboard
with a ruler, and the size is about 42′ × 40′ (note: 1′ ≈ 2.54 cm). The aspect ratio is therefore 1.05, and we use this as
the ground truth.

In each image, we manually clicked on the four corners of the whiteboard, and use the technique described in the
last section to estimate the focal length of the camera and the aspect ratio of the whiteboard. The results are shown
in Table 1. The second row shows the estimated values of the aspect ratio, while the third row shows its relative error
compared with the ground truth. The error is mostly less than 3%, except for image f which was taken from a very
skewed angle. There are two major sources contributing to the errors: the first is the precision of the manually clicked
points; the second is lens distortion that is currently not modeled. Lens distortion can be clearly observed in Fig. 7. The
error of the estimated aspect ratio tends to be higher for images taken from a larger angle. This is expected because the
relative precision of the corner points is decreasing. For reference, we also provide the aspect ratio of the bounding
box of the whiteboard image in the fourth row of Table 1, and its relative difference with respect to the ground truth
in the fifth row. The relative difference can go up to 30%. It is clear that it is not reasonable to use the aspect ratio of
the bounding box to rectify the whiteboard images. The sixth row of Table 1 shows the estimated focal length, which
varies around 2200.
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Fig. 8. Rectification of an whiteboard image. Left: original shape, right: rectified shape.

Fig. 9. Rectified version of the first two images shown in Fig. 7, using the estimated aspect ratios.

Note that when an image of the rectangle is close to be rectangular (e.g., Fig. 7b), it is near the singularity for
estimating the focal length, so the estimated focal length is not accurate. On the other hand, the physical aspect ratio
is closer to the aspect ratio of the bounding box, so the estimated aspect ratio is most accurate.

3.3. Rectification

The next task is to rectify the whiteboard image into a rectangular shape with the estimated aspect ratio. For that,
we need to know the size of the final image. We determine the size in order to preserve in the rectified image maximum
information of the original image. In other words, a pixel in the original image should be mapped to at least one pixel
in the rectified image. Refer to Fig. 8. The side lengths of the quadrangle in the original image are denoted by W1
and W2 for the upper and lower sides, and by H1 and H2 for the left and right side. Let Ŵ = max(W1,W2) and
Ĥ = max(H1,H2). Let r̂ = Ŵ/Ĥ . Denote the estimated aspect ratio by r . We determine the size of the rectified
image as follows: W = Ŵ and H = W/r if r̂ � r ; otherwise, H = Ĥ and W = rH . Once the size is determined, the
rectifying matrix H (homography) can be easily computed, and the color in the rectified image is computed through
bilinear or bicubic interpolation from the original image.

Figure 9 shows two rectified images of the whiteboard using the estimated aspect ratios. They correspond to images
a and b in Fig. 7. The rectified images look almost identical despite that the original images were taken from quite
different angles. Other rectified images are also similar, and are thus not shown.

In the examples shown in Figs. 3, 4, and 5, the last picture is respectively the rectified image in each example.

3.4. White balancing and image enhancement

The goal of color enhancement is to transform the input whiteboard image into an image with the same pen
strokes on uniform background (usually white). For each pixel, the color value Cinput captured by the camera can be
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Fig. 10. An example of the S-shaped curve.

Fig. 11. Whiteboard image enhancement of Example 2, shown in Fig. 4: (a) estimated whiteboard color, (b) final enhanced image.

approximated by the product of the incident light Clight, the pen color Cpen, and the whiteboard color Cwb. Since the
whiteboard is physically built to be uniformly color, we can assume Cwb is constant for all the pixels, the lack of
uniformity in the input image is due to different amount of incident light to each pixel. Therefore, the first procedure
in the color enhancement is to estimate Clight for each pixel, the result of which is in fact an image of the blank
whiteboard.

Our system computes the blank whiteboard image by inferring the value of pixels covered by the strokes from their
neighbors. Rather than computing the blank whiteboard color at the input image resolution, our computation is done
at a coarser level to lower the computational cost. This approach is reasonable because the blank whiteboard colors
normally vary smoothly. The steps are as follows:

1. Divide the whiteboard region into rectangular cells. The cell size should be roughly the same as what we expect
the size of a single character on the board (15 by 15 pixels in our implementation).
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Fig. 12. Whiteboard image enhancement of Examples 1 and 3: (a) enhanced image from Example 1, shown in Fig. 3, (b) enhanced image from
Example 3, shown in Fig. 5.

Fig. 13. Whiteboard image enhancement in a cluttered office: (a) original image together with the detected corners shown in small red dots, (b) final
enhanced image.

2. Sort the pixels in each cell by their luminance values. Since the ink absorbs the incident light, the luminance of
the whiteboard pixels is higher than stroke pixels’. The whiteboard color within the cell is therefore the color with
the highest luminance. In practice, we average the colors of the pixels in the top 25 percentile in order to reduce
the error introduced by sensor noise.

3. Filter the colors of the cells by locally fitting a plane in the RGB space. Occasionally there are cells that are
entirely covered by pen strokes, the cell color computed in Step 2 is consequently incorrect. Those colors are
rejected as outliers by the locally fitted plane and are replaced by the interpolated values from its neighbors.

Once the image of the blank whiteboard is computed, the input image is color enhanced in two steps:

1. Make the background uniformly white. For each cell, the computed whiteboard color (equivalent to the incident
light Clight) is used to scale the color of each pixel in the cell: Cout = min(1,Cinput/Clight).

2. Reduce image noise and increase color saturation of the pen strokes. We remap the value of each color channel of
each pixel according to an S-shaped curve: 0.5 − 0.5 cos(Cp

outπ ). The steepness of the S-curve is controlled by p.
In our implementation, p is set to 0.75, and the corresponding curve is shown in Fig. 10.

3.4.1. Experimental results on image enhancement
Figure 11 shows the result on the example shown in Fig. 4. Figure 11a shows the estimated whiteboard color as if

there were nothing written on it, and Fig. 11b shows the final enhanced image.
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Fig. 14. Diagram of the scanning subsystem: (a) original image, (b) processed image.

Fig. 15. User interface for whiteboard scanning. Note that half of the previous acquired image and half of the live video are shown in transparent to
guide the user to take the next snapshot.

Figure 12 shows the enhanced images from the examples shown in Figs. 3 and 5, respectively.
Figure 13 shows a whiteboard in a cluttered office. As can be seen, the image contains a significant portion of

distracting objects, and our software correctly identifies the whiteboard, and does a great job in cleaning up the image.

4. Whiteboard scanning subsystem

The major steps of the Whiteboard Scanning system is illustrated in Fig. 14, and will be explained below. The
mathematic foundation is that two images of a planar object, regardless the angle and position of the camera, are
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Fig. 16. An example of whiteboard scanning. (a) Original images overlayed with detected points of interest, (b) stitched image, (c) processed image
using the technique described in the last section.

related by a plane perspectivity, represented by a 3 × 3 matrix called homography H [12,13]. The stitching process
is to determine the homography matrices between successive images, and we have developed an automatic and ro-
bust technique based on points of interest. This has several advantages over classical stitching techniques based on
minimizing color differences: (1) less sensitive to color changes between images due to, e.g., different focus; (2) less
likely converged to local minima because the points of interest contain the most useful information and because other
textureless whiteboard pixels, which would be distracting in color-based optimization, are discarded; (3) robust to
large motion because a global search based on random sampling is used.

During whiteboard scanning, we start taking a snapshot from the upper left corner, a second by pointing to the
right but having overlap with previous snapshot, and so on until reaching the upper right corner; move the camera
lower and take a snapshot, then take another one by pointing to the left, and so on until reaching the left edge; the
process continues in the “S” way until the lower border is captured. Successive snapshots must have overlap to allow
later stitching, and this is assisted with visual feedback during acquisition, as shown in Fig. 15. In the viewing region,
we show both the previously acquired image and the current video view. To facilitate the image acquisition, half of
the previously acquired image is shown in opaque, while the other half, which is in the overlapping region, is shown
in semi-transparent. The current live video is also shown in half opaque and half semi-transparent. This guides the
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Fig. 17. A second example of whiteboard scanning. (a) Three original images, (b) stitched image, (c) final processed image.

user to take successive images with overlap. Note that the alignment does not need to be precise. Our program will
automatically align them. There are also a few buttons to indicate the direction in which the user wants to move the
camera (down, up, left, right). The overlapping region changes depending on the direction. We have designed the
default behavior such that only the “down” button is necessary to realize image acquisition in the “S” way.

Referring to Fig. 14. For each image acquired, we extract points of interest by using the Plessey corner detector, a
well-known technique. These points correspond to high curvature points in the intensity surface, if we view an image
as a 3D surface with the third dimension being the intensity. An example is shown in Fig. 16a, where the extracted
points are displayed in red +.

Next, we try to match the extracted points between image. For each point in the previous image, we choose an
15 × 15 window centered at it, and compare that window with windows of the same size, centered at the points in
the current image. A zero-mean normalized cross correlation between two windows is computed. It ranges from −1,
for two windows which are not similar at all, to 1, for two windows which are identical. If the largest correlation
score exceeds a prefixed threshold (0.707 in our case), then that point in the current image is considered to be the
match candidate of the point in the previous image. The match candidate is retained as a match if and only if its match
candidate in the previous image happens to be the point being considered. This two-way symmetric test reduces many
potential matching errors.
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The geometric constraint between two images is the homography constraint. If two points are correctly matched,
they must satisfy this constraint, which is unknown in our case. The set of matches established by correlation usually
contains false matches because correlation is only a heuristic and uses only local information. Inaccurate location
of extracted points because of intensity variation or lack of strong texture features is another source of error. If we
estimate the homography between the two images based on a least-squares criterion, the result could be completely
wrong even if there is only one false match. This is because least-squares is not robust to outliers. We developed a
technique based on a robust estimation technique known as the least median squares (see, e.g., [8]) to detect both false
matches and poorly located corners, and simultaneously estimate the homography matrix H.

This incremental matching procedure stops when all images have been processed. Because of incremental na-
ture, cumulative errors are unavoidable. For higher accuracy, we need to adjust H’s through global optimization by
considering all the images simultaneously.

Once the geometric relationship between images (in terms of homography matrices H’s) are determined, we are
able to stitch all images as a single high-resolution image. There are several options, and currently we have imple-
mented a very simple one. We use the first image as the reference frame of the final image, and map subsequent
original images to the reference frame. If a pixel in the reference frame appears several times in the original images,
then the one in the newest image is retained.

Two examples are shown in Figs. 16 and 17.

5. Conclusions

We have presented a digital notetaking system by scanning the content on a whiteboard into the computer with a
camera. Images are enhanced for better visual quality. The system has been tested extensively, and very good results
have been obtained. Because digital cameras are becoming ubiquitous, our technology may contribute to a significant
increase in productivity.
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