# Fitting the WHOIS Internet data 

R. M. D’Souza ${ }^{\dagger}$, C. Borgs*, J. T. Chayes*, N. Berger ${ }^{\ddagger}$, and R. D. Kleinberg ${ }^{+}$<br>${ }^{\dagger}$ Dept. of Mechanical and Aeronautical Eng., University of California, Davis<br>*Microsoft Research, Redmond, WA<br>$\ddagger$ Department of Mathematics, University of California, Los Angeles<br>${ }^{+}$Department of Computer Science, Cornell University, Ithaca NY

This short technical manuscript contains supporting information for Ref. [1]. We consider the RIPE WHOIS internet data as characterized by the Cooperative Association for Internet Data Analysis (CAIDA) [2], and show that the Tempered Preferential Attachment (TPA) model [1] provides an excellent fit to this data. First we define the complementary cumulative probability distribution (ccdf), and then derive the ccdf for a TPA graph. Next we discuss the ccdf for the WHOIS data. Finally we discuss the fit provided by the TPA model and by a power law with exponential decay (PLED).

## I. DEFINING THE CCDF

The complementary cumulative probability distribution, $\operatorname{ccdf}(x)$ :

$$
\begin{equation*}
\operatorname{ccdf}(x)=1-\sum_{j=1}^{x-1} p_{j}=\sum_{j=x}^{\infty} p_{j} . \tag{1}
\end{equation*}
$$

## II. THE CCDF PREDICTED BY TPA WITH $A_{1} \neq A_{2}$

## A. First recall the recursion relations

The recursion relations defining the degree distribution for TPA graphs were derived explicitly in Refs. [3] and [4]. Here we derive the corresponding ccdf. These are Eqn's (16) and (17) in [3]:

$$
\begin{equation*}
p_{i}=\left(\prod_{k=2}^{i} \frac{k-1}{k+w}\right) p_{1}=\left(\prod_{k=1}^{i-1} \frac{k}{k+w+1}\right) p_{1}, \quad \text { for } \quad i \leq A_{2}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{i}=\left(\frac{A_{2}}{A_{2}+w}\right)^{i-A_{2}} p_{A_{2}}=q^{i-A_{2}} p_{A_{2}}, \quad \text { for } \quad i \geq A_{2} \tag{3}
\end{equation*}
$$

Note

$$
\begin{equation*}
p_{A_{2}}=\left(\prod_{k=1}^{A_{2}-1} \frac{k}{k+w+1}\right) p_{1} \tag{4}
\end{equation*}
$$

and, for convenience, we defined:

$$
\begin{equation*}
q \equiv\left(\frac{A_{2}}{A_{2}+w}\right) . \tag{5}
\end{equation*}
$$

We will first calculate the CCDF for $i \geq A_{2}$ as we will use that result to determine the CCDF for $i<A_{2}$.

## B. Calculating the CCDF, for $x \geq A_{2}$

Recall the definition of the CCDF from Eqn. (1):

$$
\begin{align*}
\operatorname{ccdf}(x) & =\sum_{j=x}^{\infty} p_{j} \\
& =p_{A_{2}} \sum_{j=x}^{\infty} q^{j-A_{2}} \\
& =p_{A_{2}} \sum_{j=0}^{\infty} q^{j+x-A_{2}} \\
& =p_{A_{2}} q^{x-A_{2}} \sum_{j=0}^{\infty} q^{j} . \tag{6}
\end{align*}
$$

Since $q<1$, the sum in Eqn. (6) is a geometric series; $\sum_{j=0}^{\infty} q^{j}=1 /(1-q)$. Thus we can write:

$$
\begin{equation*}
\operatorname{ccdf}(x)=\left(\frac{p_{A_{2}}}{1-q}\right) q^{x-A_{2}}, \text { for } x \geq A_{2} \tag{7}
\end{equation*}
$$

## C. Calculating the CCDF, for $x<A_{2}$

This is slightly more complicated, as we have different functional forms for $x<A_{2}$ and $x>A_{2}$.

$$
\begin{align*}
\operatorname{ccdf}(x) & =\sum_{j=x}^{\infty} p_{j} \\
& =\sum_{j=x}^{A_{2}-1} p_{j}+\sum_{j=A_{2}}^{\infty} p_{j} \\
& =\sum_{j=x}^{A_{2}-1} p_{j}+\operatorname{ccdf}\left(A_{2}\right) \\
& =\sum_{j=x}^{A_{2}-1} p_{j}+\left(\frac{p_{A_{2}}}{1-q}\right) . \tag{8}
\end{align*}
$$

Plugging in the relation for $p_{i}$ from Eqn. (3), we obtain:

$$
\begin{equation*}
\operatorname{ccdf}(x)=p_{A_{2}}\left(\frac{1}{1-q}+\sum_{j=x}^{A_{2}-1} \prod_{k=j}^{A_{2}-1} \frac{k+w+1}{k}\right), \text { for } x<A_{2} . \tag{9}
\end{equation*}
$$

## D. Standard Normalization

First we can check that Eqns. (7) and (9) give the same value for $\operatorname{ccdf}\left(A_{2}\right)$. They do:

$$
\begin{equation*}
\operatorname{ccdf}\left(A_{2}\right)=\frac{p_{A_{2}}}{1-q} . \tag{10}
\end{equation*}
$$

And we can determine the value of $p_{A_{2}}$ by the normalization condition that

$$
\begin{equation*}
\operatorname{ccdf}(1)=1=p_{A_{2}}\left(\frac{1}{1-q}+\sum_{j=1}^{A_{2}-1} \prod_{k=j}^{A_{2}-1} \frac{k+w+1}{k}\right) . \tag{11}
\end{equation*}
$$

In other words,

$$
\begin{equation*}
p_{A_{2}}=\left(\frac{1}{1-q}+\sum_{j=1}^{A_{2}-1} \prod_{k=j}^{A_{2}-1} \frac{k+w+1}{k}\right)^{-1} . \tag{12}
\end{equation*}
$$

## E. Normalizing without degree $d=1$ nodes

We may want to neglect nodes with degree $d<2$ for various reasons. In that case, the normalization would be:

$$
\begin{equation*}
\operatorname{ccdf}(2)=1=p_{A_{2}}\left(\frac{1}{1-q}+\sum_{j=2}^{A_{2}-1} \prod_{k=j}^{A_{2}-1} \frac{k+w+1}{k}\right) . \tag{13}
\end{equation*}
$$

Thus

$$
\begin{equation*}
p_{A_{2}}=\left(\frac{1}{1-q}+\sum_{j=2}^{A_{2}-1} \prod_{k=j}^{A_{2}-1} \frac{k+w+1}{k}\right)^{-1} \tag{14}
\end{equation*}
$$

with Eqns. (7) and (9) unchanged (except Eqn. (9) now holds for $2 \leq x<A_{2}$, rather than for $1 \leq x<A_{2}$ ).

## III. THE WHOIS CCDF, FOR $d>1$

A. Whois data, renormalize to remove $d<2$

By definition:

$$
\sum_{j=1}^{\infty} p_{j}=1
$$

Thus:

$$
\sum_{j=2}^{\infty} p_{j}=1-p_{1}
$$

We want to renormalize $\left(p_{j}^{\prime}=\eta p_{j}\right)$ such that:

$$
\sum_{j=2}^{\infty} p_{j}^{\prime}=\eta \sum_{j=2}^{\infty} p_{j}=1
$$

Thus $\eta=1 /\left(1-p_{1}\right)$. For the Whois data, $p_{1}=0.0573$. and $\eta=1.0608$.
The complementary cumulative distribution function (ccdf) for the renormalized probabilities:

$$
\operatorname{ccdf}^{\prime}(\mathrm{x})=\sum_{\mathrm{j}=\mathrm{x}}^{\infty} \mathrm{p}_{\mathrm{j}}^{\prime}=\eta \sum_{\mathrm{j}=\mathrm{x}}^{\infty} \mathrm{p}_{\mathrm{j}}=\eta \operatorname{ccdf}(\mathrm{x})
$$

## Whois original CCDF, and p1's removed



FIG. 1: Original CCDF of Whois data, and the renormalized $\operatorname{CCDF}^{\prime}(\mathrm{x})=\eta \operatorname{CCDF}(\mathrm{x})$.

## IV. FITTING TPA TO WHOIS WITH $d \geq 2$

Whois $d \geq 2$ distribution discussed above. TPA with $d \geq 2$ is the same as with $d \geq 1$ except the value of $p_{A_{2}}$ is defined as in Eqn. (14), in terms of $d=2$ instead of $d=1$.


FIG. 2: Whois CCDF for $d \geq 2$. Data points are from the Whois tables. The solid line is the fit to TPA for $d \geq 2$ with $A_{1}=187$ and $A_{2}=90$ (and thus $\gamma=1.83$ ). With this fit, $R=0.986$, thus $R^{2}=0.972$.

## V. FITTING PLED TO WHOIS WITH $d \geq 2$

Assuming a PLED: $p(x)=A x^{-b} \exp (-x / c)$. The normalization constant, $A$, is determined by the relation:

$$
\sum_{x=2}^{\infty} p(x)=1=A \sum_{x=2}^{\infty} x^{-b} \exp (-x / c)
$$

Then the ccdf:

$$
\operatorname{ccdf}(x)=A \sum_{j=x}^{\infty} x^{-b} \exp (-x / c)
$$



FIG. 3: Whois CCDF for $d \geq 2$. Data points are from the Whois tables. The solid line is the fit $\operatorname{ccdf}(x)=$ $A \sum_{j=x}^{\infty} x^{-b} \exp (-x / c)$, where $b=1.63$ and $c=350$. With this fit, $R=0.985$, thus $R^{2}=0.970$.
[1] R. M. D'Souza, C. Borgs, J. T. Chayes, N. Berger and R. D. Kleinberg. Emergence of Tempered Preferential Attachment From Optimization, to appear Proc. Natn. Acad. Sci. USA, 2007. This article will be "open access", and hence freely available for download from the publisher when it appears.
[2] P. Mahadevan, D. Krioukov, M. Fomenkov, B. Huffaker, X. Dimitropoulos, kc claffy, and A. Vahdat. Lessons from three views of the internet topology. CAIDA-TR-2005-02, 2005. P. Mahadevan, D. Krioukov, M. Fomenkov, B. Huffaker, X. Dimitropoulos, kc claffy, and A. Vahdat. The Internet AS-Level Topology: Three data sources and one definitive metric. ACM SIGCOMM Comp Comm Rev, 36(1):1726, 2006.
[3] N. Berger, C. Borgs, J. T. Chayes, R. M. D'Souza, and R. D. Kleinberg. Competition-induced preferential attachment. Lecture Notes in Computer Science (ICALP 2004), 3142:208-221, 2004.
[4] N. Berger, C. Borgs, J. T. Chayes, R. M. D'Souza, and R. D. Kleinberg. Degree distribution of competition-induced preferential attachment graphs. Combinatorics, Probability and Computing, 14(5$6): 697-721,2005$.

