Conditional Random Fields and Direct Decoding for Speech and Language Processing

Eric Fosler-Lussier
The Ohio State University

Geoff Zweig
Microsoft
What we will cover

* Tutorial introduces basics of direct probabilistic models
 * What is a direct model, and how does it relate to speech and language processing?
 * How do I train a direct model?
 * How have direct models been used in speech and language processing?
Overview

- **Part 1: Background and Taxonomy**
 - Generative vs. Direct models
 - Descriptions of models for classification, sequence recognition (observed and hidden)
- **Break**
- **Part 2: Algorithms & Case Studies**
 - Training/decoding algorithms
 - CRF study using phonological features for ASR
 - Segmental CRF study for ASR
 - NLP case studies (if time)
Part 1: Background and Taxonomy
A first thought experiment

- You’re observing a limousine – is a diplomat inside?
 - Can observe:
 - Whether the car has flashing lights
 - Whether the car has flags
The Diplomat problem

- We have observed Boolean variables: lights and flag
- We want to predict if car contains a diplomat

\[P(\text{Diplomat} \mid \text{Lights, Flag}) \]
A generative approach: Naïve Bayes

- Generative approaches model observations as being generated by the underlying class – we observe:
 - Limos carrying diplomats have flags 50% of the time
 - Limos carrying diplomats have flashing lights 70%
 - Limos not carrying diplomats: flags 5%, lights 30%
- NB: Compute posterior by Bayes’ rule

\[
P(\text{Diplomat} \mid \text{Lights}, \text{Flag}) = \frac{P(\text{Lights}, \text{Flag} \mid \text{Diplomat})P(\text{Diplomat})}{P(\text{Lights}, \text{Flag})}
\]
A generative approach: Naïve Bayes

- Generative approaches model observations as being *generated* by the underlying class – we observe:
 - Limos carrying diplomats have flags 50% of the time
 - Limos carrying diplomats have flashing lights 70%
 - Limos not carrying diplomats: flags 5%, lights 30%
- NB: Compute posterior by Bayes’ rule
 - ...and then assume conditional independence

\[
P(D\text{mat} \mid \text{Lights,Flag}) = \frac{P(\text{Lights} \mid D\text{mat})P(\text{Flag} \mid D\text{mat})P(D\text{mat})}{P(\text{Lights,Flag})}
\]
A generative approach: Naïve Bayes

- NB: Compute posterior by Bayes’ rule
 - ...and then assume conditional independence
 - $P(\text{Lights, Flag})$ is a normalizing term
 - Can replace this with normalization constant Z

$$P(Dmat \mid \text{Lights, Flag}) = \frac{P(\text{Lights} \mid Dmat)P(\text{Flag} \mid Dmat)P(Dmat)}{Z}$$
Graphical model for Naïve Bayes

\[P(Dmat \mid Lights, Flag) = \frac{P(Lights \mid Dmat)P(Flag \mid Dmat)P(Dmat)}{Z} \]
Graphical model for Naïve Bayes

\[P(Dmat \mid Lights, Flag) = \frac{P(Lights \mid Dmat)P(Flag \mid Dmat)P(Dmat)}{Z} \]
Correlated evidence in Naïve Bayes

- Conditional independence says “given a value of Diplomat, Lights and Flag are independent”
- Consider the case where lights are always flashing when the car has flags
 - Evidence gets double counted; NB is overconfident
 - May not be a problem in practice – problem dependent
 - (HMMs have similar assumptions: observations are independent given HMM state sequence.)

\[
P(D_{mat} | \text{Lights},\text{Flag}) = \frac{P(\text{Lights} | D_{mat})P(\text{Flag} | D_{mat})P(D_{mat})}{Z}
\]
Reversing the arrows: Direct modeling

- $P(\text{Diplomat}|\text{Lights, Flag})$ can be directly modeled
 - We compute a probability distribution directly without Bayes’ rule
 - Can handle interactions between Lights and Flag evidence

- $P(\text{Lights})$ and $P(\text{Flag})$ do not need to be modeled
Direct vs. Discriminative

- Isn’t this just discriminative training? (No.)
- Direct **model**: directly predict posterior of hidden variable
- Discriminative **training**: adjust model parameters to {separate classes, improve posterior, minimize classification error,...}

![Diagram](Image)
Direct vs. Discriminative

- Generative models can be trained discriminatively
- Direct models inherently try to discriminate between classes

![Diagram showing the difference between generative and direct models](image)
Pros and cons of direct modeling

Pro:
- Often can allow modeling of interacting data features
- Can require fewer parameters because there is no observation model
 - Observations are usually treated as fixed and don’t require a probabilistic model

Con:
- Typically slower to train
- Most training criteria have no closed-form solutions
A simple direct model: Maximum Entropy

- Our direct example didn’t have a particular form for the probability $P(Dmat|Lights, Flag)$
- A maximum entropy model uses a log-linear combination of weighted features in probability model

$$P(Dmat = j \mid Lights, Flag) = \frac{\exp(\sum_i \lambda_{i,j} f_{i,j})}{\sum_{j'} \exp(\sum_i \lambda_{i,j'} f_{i,j'})}$$
A simple direct model: Maximum Entropy

- Denominator of the equation is again normalization term (replace with \(Z \))
- Question: what are \(f_{i,j} \) and how does this correspond to our problem?

\[
P(Dmat = j \mid Lights, Flag) = \frac{\exp(\sum_i \lambda_{i,j} f_{i,j})}{Z}
\]
Diplomat Maximum Entropy

Here are two features \((f_{i,j}) \) that we can use:
- \(f_{0,\text{True}} = 1 \) if car has a diplomat and has a flag
- \(f_{1,\text{False}} = 1 \) if car has no diplomat but has flashing lights
 - (Could have complementary features as well but left out for simplification.)

Example dataset with the following statistics
- Diplomats occur in 50% of cars in dataset
- \(P(\text{Flag}=\text{true}|\text{Diplomat}=\text{true}) = 0.9 \) in dataset
- \(P(\text{Flag}=\text{true}|\text{Diplomat}=\text{false}) = 0.2 \) in dataset
- \(P(\text{Lights}=\text{true}|\text{Diplomat}=\text{false}) = 0.7 \) in dataset
- \(P(\text{Lights}=\text{true}|\text{Diplomat}=\text{true}) = 0.5 \) in dataset
Diplomat Maximum Entropy

- The MaxEnt formulation using these two features is:

\[
P(Dmat = true \mid Flag, Light) = \exp(\lambda_{true} + \lambda_{0,T} f_{0,T}) / Z
\]
\[
P(Dmat = false \mid Flag, Light) = \exp(\lambda_{false} + \lambda_{1,F} f_{1,F}) / Z
\]

where \(\lambda_{true}\) and \(\lambda_{false}\) are bias terms to adjust for frequency of labels.

- Fix the bias terms to both be 1. What happens to probability of Diplomat on dataset as other lambdas vary?

\[f_{0,T}=1\] if car has a diplomat and has a flag
\[f_{1,F}=1\] if car has no diplomat but has flashing lights
Log probability of Diplomat over dataset as MaxEnt lambdas vary
Finding optimal lambdas

- Good news: conditional probability of dataset is convex for MaxEnt
- Bad news: as number of features grows, finding maximum in so many dimensions can be slow.
 - Various gradient search or optimization techniques can be used (coming later).

Same picture in 3-d:
Conditional probability of dataset
MaxEnt-style models in practice

- Several examples of MaxEnt models in speech & language processing
 - **Whole-sentence language models** (Rosenfeld, Chen & Zhu, 2001)
 - Predict probability of whole sentence given features over correlated features (word n-grams, class n-grams, ...)
 - Good for rescoring hypotheses in speech, MT, etc...
 - **Multi-layer perceptrons**
 - MLP can really be thought of as MaxEnt models with automatically learned feature functions
 - MLP gives local posterior classification of frame
 - Sequence recognition through Hybrid or Tandem MLP-HMM
 - Softmax-trained Single Layer Perceptron == MaxEnt model
MaxEnt-style models in practice

- Several examples of MaxEnt models in speech & language processing
 - Flat Direct Models for ASR (Heigold et al. 2009)
 - Choose complete hypothesis from list (rather than a sequence of words)
 - Doesn’t have to match exact words (auto rental=rent-a-car)
 - Good for large-scale list choice tasks, e.g. voice search
 - What do features look like?
Flat Direct Model Features:
Decomposable features

- Decompose features $F(W,X) = \Phi(W)\Psi(X)$
- $\Phi(W)$ is a feature of the words
 - e.g. “The last word ends in s”
 - “The word Restaurant is present”
- $\Psi(X)$ is a feature of the acoustics
 - e.g. “The distance to the Restaurant template is greater than 100”
 - “The HMM for Washington is among the 10 likeliest”
- $\Phi(W)\Psi(X)$ is the conjunction; measures consistency
 - e.g. “The hypothesis ends is s” and my “s-at-the-end” acoustic detector has fired
Generalization

- People normally think of Maximum Entropy for classification among a predefined set.
- But $F(W,X) = \Phi(W)\Psi(X)$ essentially measures consistency between W and X.
- These features are defined for arbitrary W.
- For example, "Restaurants is present and my s-at-the-end detector has fired" can be true for either "Mexican Restaurants or Italian Restaurants".
Direct sequence modeling

- In speech and language processing, usually want to operate over sequences, not single classifications.
- Consider a common generative sequence model – the Hidden Markov Model – relating states \(S \) to obs. \(O \).

\[
P(S,O) = \prod_{i} P(O_i \mid S_i)P(S_i \mid S_{i-1})
\]
Direct sequence modeling

- In speech and language processing, usually want to operate over sequences, not single classifications.
- What happens if we “change the direction” of arrows of an HMM? A direct model of $P(S|O)$.

$$P(S \,|\, O) = P(S_1 \,|\, O_1) \prod_{i>1} P(S_i \,|\, S_{i-1}, O_i)$$
MEMMs

- If a log linear term is used for \(P(S_i|S_{i-1},O_i) \) then this is a Maximum Entropy Markov Model (MEMM) (Ratnaparkhi 1996, McCallum, Freitag & Pereira 2000)

- Like MaxEnt, we take features of the observations and learn a weighted model

\[
P(S | O) = P(S_1 | O_1) \prod_{i>1} P(S_i | S_{i-1}, O_i) \\
= \exp \left(\sum_j \sum_i \lambda_j f_j (S_{i-1}, S_i, O, i) \right)
\]
MEMMs

- Unlike HMMs, transitions between states can now depend on acoustics in MEMMs
 - However, unlike HMM, MEMMs can ignore observations
 - If \(P(S_i=x|S_{i-1}=y)=1 \), then \(P(S_i=x|S_{i-1}=y,O_i)=1 \) for all \(O_i \) (label bias)
 - Problem in practice?
MEMMs in language processing

- One prominent example in part-of-speech tagging is the Ratnaparkhi “MaxEnt” tagger (1996)
 - Produce POS tags based on word history features
 - Really an MEMM because it includes the previously assigned tags as part of its history
- Kuo and Gao (2003-6) developed “Maximum Entropy Direct Models” for ASR
 - Again, an MEMM, this time over speech frames
 - Features: what are the IDs of the closest Gaussians to this point?
Joint sequence models

- Label bias problem: previous “decisions” may restrict the influence of future observations
 - Harder for the system to know that it was following a bad path
- Idea: what if we had one big maximum entropy model where we compute the joint probability of hidden variables given observations?
 - Many-diplomat problem:
 \[P(D\text{mat}_1...D\text{mat}_N|\text{Flag}_1...\text{Flag}_N,\text{Lights}_1...\text{Lights}_N) \]
 - Problem: State space is exponential in length
 - Diplomat problem: \(O(2^N) \)
Factorization of joint sequences

- What we want is a *factorization* that will allow us to decrease the size of the state space
 - Define a Markov graph to describe factorization: *Markov Random Field (MRF)*
 - Neighbors in graph contribute to the probability distribution
 - More formally: probability distribution is factored by the cliques in a graph
Markov Random Fields (MRFs)

- MRFs are undirected (joint) graphical models
- Cliques define probability distribution
 - Configuration size of each clique is the effective state space
 - Consider 5-diplomat series

One 5-clique (fully connected)
Effective state space is 2^5 (MaxEnt)

Three 3-cliques (1-2-3, 2-3-4, 3-4-5)
Effective state space is 2^3

Four 2-cliques (1-2, 2-3, 3-4, 4-5)
Effective state space is 2^2
Hammersley-Clifford Theorem

- Hammersley-Clifford Theorem related MRFs to Gibbs probability distributions
 - If you can express the probability of a graph configuration as a product of potentials on the cliques (Gibbs distribution), then the graph is an MRF

\[
P(D) = \prod_{c \in \text{cliques}(D)} \phi(c)
\]

- The potentials, however, must be positive
 - True if \(\phi(c) = \exp(\Sigma \lambda f(c)) \) (log linear form)
Conditional Random Fields (CRFs)

- When the MRF is conditioned on observations, this is known as a Conditional Random Field (CRF) (Lafferty, McCallum & Pereira, 2001)

- Assuming log-linear form (true of almost all CRFs), then probability is determined by weighted functions \(f_i \) of the clique \((c) \) and the observations \((O) \)

\[
P(D \mid O) = \frac{1}{Z} \prod_{c \in \text{cliques}(D)} \exp \left(\sum_{i} \lambda_i f_i(c, O) \right)
\]

\[
P(D \mid O) = \frac{1}{Z} \exp \left(\sum_{c \in \text{cliques}(D)} \sum_{i} \lambda_i f_i(c, O) \right)
\]

\[
\log(P(D \mid O)) = \sum_{c \in \text{cliques}(D)} \sum_{i} \lambda_i f_i(c, O) - \log(Z)
\]
Conditional Random Fields (CRFs)

- When the MRF is conditioned on observations, this is known as a Conditional Random Field (CRF) (Lafferty, McCallum & Pereira, 2001)
- Assuming log-linear form (true of almost all CRFs), then probability is determined by weighted functions \(f_i \) of the clique \(c \) and the observations \(O \)

\[
P(D \mid O) = \frac{1}{Z} \prod_{c \in \text{cliques}(D)} \exp \left(\sum_i \lambda_i f_i(c, O) \right)
\]

\[
P(D \mid O) = \frac{1}{Z} \exp \left(\sum_{c \in \text{cliques}(D)} \sum_i \lambda_i f_i(c, O) \right)
\]

\[
\log(P(D \mid O)) = \sum_{c \in \text{cliques}(D)} \sum_i \lambda_i f_i(c, O) - \log(Z)
\]

For general graphs, computing this quantity is \#P-hard, requiring approximate inference.

However, for special graphs the complexity is lower. For example, linear chain CRFs have polynomial time algorithms.
Log-linear Linear Chain CRFs

• Linear-chain CRFs have a 1st order Markov backbone
 • Feature templates for a HMM-like CRF structure for the Diplomat problem

 - $f_{\text{Bias}}(D_i=x, i) \text{ is 1 iff } D_i=x$
 - $f_{\text{Trans}}(D_i=x, D_{i+1}=y, i) \text{ is 1 iff } D_i=x \text{ and } D_{i+1}=y$
 - $f_{\text{Flag}}(D_i=x, \text{Flag}_i=y, i) \text{ is 1 iff } D_i=x \text{ and } \text{Flag}_i=y$
 - $f_{\text{Lights}}(D_i=x, \text{Lights}_i=y, i) \text{ is 1 iff } D_i=x \text{ and } \text{Lights}_i=y$

• With a bit of subscript liberty, the equation is

$$P(D_1...D_5 | F_1...5, L_1...5) = \frac{1}{Z(F,L)} \exp \left(\sum_{i=1}^{5} \lambda_B f_{\text{Bias}}(D_i) + \sum_{i=1}^{5} \lambda_F f_{\text{Flag}}(D_i, F_i) + \sum_{i=1}^{5} \lambda_L f_{\text{Lights}}(D_i, L_i) + \sum_{i=1}^{4} \lambda_T f_{\text{Trans}}(D_i, D_{i+1}) \right)$$
Log-linear Linear Chain CRFs

- In the previous example, the transitions did not depend on the observations (HMM-like)
 - In general, transitions may depend on observations (MEMM-like)

- General form of linear chain CRF groups features as state features (bias, flag, lights) or transition features
 - Let s range over state features, t over transition features
 - i indexes into the sequence to pick out relevant observations

$$P(D | O) = \frac{1}{Z(O)} \exp \left(\sum_{s \in \text{stateFtrs}} \sum_{i=1}^{n} \lambda_s f_s(D_i, O, i) + \sum_{t \in \text{transFtrs}} \sum_{i=1}^{n-1} \lambda_t f_t(D_i, D_{i+1}, O, i) \right)$$
A quick note on features for ASR

- Both MEMMs and CRFS require the definition of feature functions
 - Somewhat obvious in NLP (word id, POS tag, parse structure)
- In ASR, need some sort of “symbolic” representation of the acoustics
 - What are the closest Gaussians (Kuo & Gao, Hifny & Renals)
 - Sufficient statistics (Layton & Gales, Gunawardana et al)
 - With sufficient statistics, can exactly replicate single Gaussian HMM in CRF, or mixture of Gaussians in HCRF (next!)
- Other classifiers (e.g. MLPs) (Morris & Fosler-Lussier)
- Phoneme/Multi-Phone detections (Zweig & Nguyen)
Sequencing: Hidden Structure (1)

- So far there has been a 1-to-1 correspondence between labels and observations
 - And it has been fully observed in training
Sequencing: Hidden Structure (2)

- But this is often not the case for speech recognition
- Suppose we have training data like this:

 "The Dog"

 Transcript

 Audio (spectral representation)
Sequencing: Hidden Structure (3)

Is “The dog” segmented like this?
Sequencing: Hidden Structure (3)

Or like this?
Sequencing: Hidden Structure (3)

Or maybe like this?

=> An added layer of complexity
This Can Apply in NLP as well

Hey John Deb Abrams calling how are you

Hey John Deb Abrams calling how are you

How should this be segmented?
Note that a segment level feature indicating that “Deb Abrams” is a ‘good’ name would be useful
Approaches to Hidden Structure

- Hidden CRFs (HRCFs)
 - Gunawardana et al., 2005
- Semi-Markov CRFs
 - Sarawagi & Cohen, 2005
- Conditional Augmented Models
 - Layton, 2006 Thesis – Lattice C-Aug Chapter; Zhang, Ragni & Gales, 2010
- Segmental CRFs
 - Zweig & Nguyen, 2009

- These differ in
 - Where the Markov assumption is applied
 - What labels are available at training
 - Convexity of objective function
 - Definition of features
Approaches to Hidden Structure

<table>
<thead>
<tr>
<th>Method</th>
<th>Markov Assumption</th>
<th>Segmentation known in Training</th>
<th>Features Prescribed</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCRF</td>
<td>Frame level</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Semi-Markov CRF</td>
<td>Segment</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Conditional Augmented Models</td>
<td>Segment</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Segmental CRF</td>
<td>Segment</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Consider all segmentations consistent with transcription / hypothesis
Apply Markov assumption at frame level to simplify recursions
Appropriate for **frame level features**
Another View of Structure

Consider all segmentations consistent with transcription / hypothesis
Apply Markov assumption at segment level only – “Semi Markov”
This means long-span segmental features can be used
Examples of Segment Level Features in ASR

- Formant trajectories
- Duration models
- Syllable / phoneme counts
- Min/max energy excursions
- Existence, expectation & levenshtein features described later
Examples of Segment Level Features in NLP

- Segment includes a name
- POS pattern within segment is DET ADJ N
- Number of capitalized words in segment
- Segment is labeled “Name” and has 2 words
- Segment is labeled “Name” and has 4 words
- Segment is labeled “Phone Number and has 7 words”
- Segment is labeled “Phone Number and has 8 words”
Is Segmental Analysis any Different?

- We are conditioning on all the observations
- Do we really need to hypothesize segment boundaries?
- YES – many features undefined otherwise:
 - Duration (of what?)
 - Syllable/phoneme count (count where?)
 - Difference in C_0 between start and end of word

- Key Example: Conditional Augmented Statistical Models
Conditional Augmented Statistical Models

- As features use
 - Likelihood of segment wrt an HMM model
 - Derivative of likelihood wrt each HMM model parameter
- Frame-wise conditional independence assumptions of HMM are no longer present
- Defined only at segment level
Now for Some Details

- Will examine general segmental case
- Then relate specific approaches
We will consider feature functions that cover both transitions and observations

- So a more accurate representation actually has diagonal edges
- But we’ll generally omit them for simpler pictures

Look at a segmentation q in terms of its edges e

- s_{l}^{e} is the label associated with the left state on an edge
- s_{r}^{e} is the label associated with the right state on an edge
- $O(e)$ is the span of observations associated with an edge
The Segmental Equations

\[P(s \mid o) = \frac{\sum_{q \text{ st } |q|=|s|} \exp\left(\sum_{e \in q, i} \lambda_i f_i(s_l^e, s_r^e, o(e)) \right)}{\sum_{s' q \text{ st } |q|=|s'|} \exp\left(\sum_{e \in q, i} \lambda_i f_i(s_l'^e, s_r'^e, o(e)) \right)} \]

We must sum over all possible segmentations of the observations consistent with a hypothesized state sequence.
Conditional Augmented Model (Lattice version) in this View

\[
P(\mathbf{s} | \mathbf{o}) = \sum_{q} \sum_{q'=\mathbf{s}} \frac{\exp(\sum_{e \in \mathbf{q},i} \lambda_i f_i(s^e_l, s^e_r, o(e)))}{\sum_{\mathbf{s}'} \sum_{q'=\mathbf{s}} \exp(\sum_{e \in \mathbf{q},i} \lambda_i f_i(s'^e_l, s'^e_r, o(e)))}
\]

\[
\exp(\sum_{e \in \mathbf{q},i} \lambda_i f_i(s^e_l, s^e_r, o(e))) \equiv \exp(\sum_{e \in \mathbf{q}} \tilde{\lambda}_{s^e_r} [L_{HMM(s^e_r)}(o(e)) \nabla L_{HMM(s^e_r)}(o(e))])^T
\]

Features precisely defined
HMM model likelihood
Derivatives of HMM model likelihood wrt HMM parameters
HCRF in this View

\[
P(s \mid o) = \sum_{q \in Q} \sum_{s' \in Q} \frac{\exp(\sum_{e \in q,i} \lambda_i f_i(s_l^e, s_r^e, o(e)))}{\sum_{q \in Q} \sum_{s' \in Q} \exp(\sum_{e \in q,i} \lambda_i f_i(s'_l^e, s'_r^e, o(e)))}
\]

\[
\exp(\sum_{e \in q,i} \lambda_i f_i(s_l^e, s_r^e, o(e))) \equiv \exp(\sum_{k=1..N, i} \lambda_i f_i(s_{k-1}^e, s_k^e, o_k))
\]

Feature functions are decomposable at the \textit{frame} level

Leads to simpler computations
Semi-Markov CRF in this View

\[
P(s \mid o) = \sum_{q} \sum_{s \mid |q|=|s|} \frac{\exp\left(\sum_{e \in q,i} \lambda_i f_i(s^e_l, s^e_r, o(e)) \right)}{\sum_{s'} \sum_{q' \mid |q'|=|s'|} \exp\left(\sum_{e \in q',i} \lambda_i f_i(s'^e_l, s'^e_r, o(e)) \right)}
\]

\[
\sum_{q} \sum_{s \mid |q|=|s|} \exp\left(\sum_{e \in q,i} \lambda_i f_i(s^e_l, s^e_r, o(e)) \right) = \exp\left(\sum_{e \in q*} \lambda_i f_i(s^e_l, s^e_r, o(e)) \right)
\]

A fixed segmentation is known at training
Optimization of parameters becomes convex
Structure Summary

- Sometimes only high-level information is available
 - E.g. the words someone said (training)
 - The words we think someone said (decoding)
- Then we must consider all the segmentations of the observations consistent with this
- HCRFs do this using a frame-level Markov assumption
- Semi-CRFs / Segmental CRFs do not assume independence between frames
 - Downside: computations more complex
 - Upside: can use segment level features
- Conditional Augmented Models prescribe a set of HMM based features
Part 2: Algorithms
Key Tasks

- Compute optimal label sequence (decoding)
 \[\arg\max_s P(s \mid o, \lambda) \]
- Compute likelihood of a label sequence
 \[P(s \mid o, \lambda) \]
- Compute optimal parameters (training)
 \[\arg\max_\lambda \prod_d P(s_d \mid o_d, \lambda) \]
Key Cases

<table>
<thead>
<tr>
<th>Viterbi Assumption</th>
<th>Hidden Structure</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>NA</td>
<td>Log-linear classification</td>
</tr>
<tr>
<td>Frame-level</td>
<td>No</td>
<td>CRF</td>
</tr>
<tr>
<td>Frame-level</td>
<td>Yes</td>
<td>HCRF</td>
</tr>
<tr>
<td>Segment-level</td>
<td>Yes (decode only)</td>
<td>Semi-Markov CRF</td>
</tr>
<tr>
<td>Segment-level</td>
<td>Yes (train & decode)</td>
<td>C-Aug, Segmental CRF</td>
</tr>
</tbody>
</table>
Decoding

- The simplest of the algorithms
- Straightforward DP recursions

<table>
<thead>
<tr>
<th>Viterbi Assumption</th>
<th>Hidden Structure</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>NA</td>
<td>Log-linear classification</td>
</tr>
<tr>
<td>Frame-level</td>
<td>No</td>
<td>CRF</td>
</tr>
<tr>
<td>Frame-level</td>
<td>Yes</td>
<td>HCRF</td>
</tr>
<tr>
<td>Segment-level</td>
<td>Yes (decode only)</td>
<td>Semi-Markov CRF</td>
</tr>
<tr>
<td>Segment-level</td>
<td>Yes (train & decode)</td>
<td>C-Aug, Segmental CRF</td>
</tr>
</tbody>
</table>

Cases we will go over
Flat log-linear Model

\[p(y \mid x) = \frac{\exp \left(\sum_i \lambda_i f_i(x, y) \right)}{\sum_{y'} \exp \left(\sum_i \lambda_i f_i(x, y') \right)} \]

\[y^* = \arg \max_y \exp \left(\sum_i \lambda_i f_i(x, y) \right) \]

Simply enumerate the possibilities and pick the best.
A Chain-Structured CRF

\[
P(s | o) = \frac{\exp\left(\sum_j \sum_i \lambda_i f_i(s_{j-1}, s_j, o_j) \right)}{\sum_{s'} \exp\left(\sum_j \sum_i \lambda_i f_i(s'_{j-1}, s'_j, o_j) \right)}
\]

\[
s^* = \arg \max_s \exp\left(\sum_j \sum_i \lambda_i f_i(s_{j-1}, s_j, o_j) \right)
\]

Since \(s \) is a sequence there might be too many to enumerate.
The best way of getting here is the best way of getting here somehow and then making the transition and accounting for the observation.

\[\delta(m, q) \] is the best label sequence score that ends in position \(m \) with label \(q \)

\[
\delta(m, q) = \arg \max_{q'} \delta(m - 1, q') \exp \left(\sum_i \lambda_i f_i(q', q, o_m) \right)
\]

\[\delta(0, \bullet) = 1 \]

Recursively compute the \(\delta \)s
Keep track of the best \(q' \) decisions to recover the sequence
Segmental/Semi-Markov CRF

\[
P(s | o) = \frac{\sum_{q \; s \; \mid q = \mid s \mid} \exp \left(\sum_{e \in q, i} \lambda_i f_i(s_l^e, s_r^e, o(e)) \right)}{\sum_{s'} \sum_{q \; s' \; \mid q = \mid s' \mid} \exp \left(\sum_{e \in q, i} \lambda_i f_i(s_l'^e, s_r'^e, o(e)) \right)}
\]
Segmental/Semi-Markov Recursions

\[\delta(m, y) \] is the best label sequence score that ends at observation \(m \) with state label \(y \)

\[
\delta(m, y) = \arg \max_{y', d} \delta(m - d, y') \exp(\sum_i \lambda_i f_i(y', y, o^m_{m-d+1}))
\]

\[\delta(0, \bullet) = 1 \]

Recursively compute the \(\delta \)s
Keep track of the best \(q' \) and \(d \) decisions to recover the sequence
Computing Likelihood of a State Sequence

<table>
<thead>
<tr>
<th>Viterbi Assumption</th>
<th>Hidden Structure</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>NA</td>
<td>Flat log-linear</td>
</tr>
<tr>
<td>Frame-level</td>
<td>No</td>
<td>CRF</td>
</tr>
<tr>
<td>Frame-level</td>
<td>Yes</td>
<td>HCRF</td>
</tr>
<tr>
<td>Segment-level</td>
<td>Yes (decode only)</td>
<td>Semi-Markov CRF</td>
</tr>
<tr>
<td>Segment-level</td>
<td>Yes (train & decode)</td>
<td>C-Aug, Segmental CRF</td>
</tr>
</tbody>
</table>

Cases we will go over
Flat log-linear Model

\[p(y | x) = \frac{\exp\left(\sum_i \lambda_i f_i(x, y) \right)}{\sum_{y'} \exp\left(\sum_i \lambda_i f_i(x, y') \right)} \]

Enumerate the possibilities and sum.

Plug in hypothesis
A Chain-Structured CRF

\[
P(s | o) = \frac{\exp\left(\sum_j \sum_i \lambda_i f_i(s_{j-1}, s_j, o_j)\right)}{\sum_{s'} \exp\left(\sum_j \sum_i \lambda_i f_i(s'_{j-1}, s'_j, o_j)\right)}
\]

Need a clever way of summing over all hypotheses
To get normalizer Z
CRF Recursions

\[\alpha(m, q) = \sum_{s_1^m \text{ s.t. } s_m = q} \exp \sum_{j=1}^{m} \sum_{i} \lambda_i f_i(s_{j-1}, s_j, o_j) \]

\(\alpha(m,q) \) is the sum of the label sequence scores that end in position \(m \) with label \(q \)

\[\alpha(m, q) = \sum_{q'} \alpha(m - 1, q') \exp(\sum_{i} \lambda_i f_i(q', q, o_m)) \]

\(\alpha(0, \bullet) = 1 \)

\[Z = \sum_{q'} \alpha(N, q') \]

Recursively compute the \(\alpha \)s
Compute Z and plug in to find \(P(s|o) \)
Segmental/Semi-Markov CRF

\[
P(s | o) = \frac{\sum_{q \text{ st } |q| = |s|} \exp(\sum_{e \in q, i} \lambda_i f_i(s^e_l, s^e_r, o(e)))}{\sum_{s'} \sum_{q \text{ st } |q| = |s|} \exp(\sum_{e \in q, i} \lambda_i f_i(s'^e_l, s'^e_r, o(e)))}
\]

For segmental CRF numerator requires a summation too

Both Semi-CRF and segmental CRF require the same denominator sum
SCRF Recursions: Denominator

\[\alpha(m, y) = \sum_{s \text{ st last}(s) = y} \sum_{q \text{ st } |q| = |s|, \text{ last}(q) = m} \exp \sum_{e \in q,i} \lambda_i f_i(s_l^e, s_r^e, o(e)) \]

\(\alpha(m, y) \) is the sum of the scores of all labelings and segmentations that end in position \(m \) with label \(y \)

\[\alpha(m, y) = \sum_{y'} \sum_d \alpha(m - d, y') \exp \left(\sum_i \lambda_i f_i(y', y', o_m^{m-d+1}) \right) \]

\(\alpha(0, \bullet) = 1 \)

\[Z = \sum_{y'} \alpha(N, y') \]

Recursively compute the \(\alpha \)s

Compute \(Z \) and plug in to find \(P(s|o) \)
Recursion is similar with the state sequence fixed. $\alpha^*(m,y)$ will now be the sum of the scores of all segmentations ending in an assignment of observation m to the y^{th} state.

Note the value of the y^{th} state is given! y is now a positional index rather than state value.
Numerator (con’t.)

\[\alpha^*(m, y) = \sum_{q_{st|q|=y}} \exp \left(\sum_{e \in q, i} \lambda_i f_i (s_l^e, s_r^e, o(e)) \right) \]

\[\alpha^*(m, y) = \sum_d \alpha^*(m - d, y - 1) \exp \left(\sum_i \lambda_i f_i (s_{y-1}, s_y, o_{m-d+1}^m) \right) \]

\[\alpha^*(0, \bullet) = 1 \]

Note again that here \(y \) is the position into a given state sequence \(s \)
Summary: SCRF Probability

$$P(s | o) = \frac{\sum_{q \in q \mid q = s} \exp \left(\sum_{e \in q, i} \lambda_i f_i (s_t^e, s_r^e, o(e)) \right)}{\sum_{s' \in q \mid q = s} \sum_{q' \in q} \exp \left(\sum_{e \in q, i} \lambda_i f_i (s_t'^e, s_r'^e, o(e)) \right)}$$

$$= \frac{\alpha^* (N, |s|)}{\sum_q \alpha (N, q)}$$

Compute alphas and numerator-constrained alphas with forward recursions
Do the division
Training

<table>
<thead>
<tr>
<th>Viterbi Assumption</th>
<th>Hidden Structure</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>NA</td>
<td>Log-linear classification</td>
</tr>
<tr>
<td>Frame-level</td>
<td>No</td>
<td>CRF</td>
</tr>
<tr>
<td>Frame-level</td>
<td>Yes</td>
<td>HCRF</td>
</tr>
<tr>
<td>Segment-level</td>
<td>Yes (decode only)</td>
<td>Semi-Markov CRF</td>
</tr>
<tr>
<td>Segment-level</td>
<td>Yes (train & decode)</td>
<td>C-Aug, Segmental CRF</td>
</tr>
</tbody>
</table>

Will go over simplest cases. See also
- Gunawardana et al., Interspeech 2005 (HCRFs)
- Mahajan et al., ICASSP 2006 (HCRFs)
- Sarawagi & Cohen, NIPS 2005 (Semi-Markov)
- Zweig & Nguyen, ASRU 2009 (Segmental CRFs)
Training

- Specialized approaches
 - Exploit form of Max-Ent Model
 - Iterative Scaling (Darroch & Ratcliff, 1972)
 - $f_i(x,y) \geq 0$ and $\Sigma_i f_i(x,y) = 1$
 - Improved Iterative Scaling (Berger, Della Pietra & Della Pietra, 1996)
 - Only relies on non-negativity

- General approach: Gradient Descent
 - Write down the log-likelihood for one data sample
 - Differentiate it wrt the model parameters
 - Do your favorite form of gradient descent
 - Conjugate gradient
 - Newton method
 - R-Prop
 - Applicable regardless of convexity
Training with Multiple Examples

- When multiple examples are present, the contributions to the log-prob (and therefore gradient) are additive.

\[
L = \prod_j P(s_j | o_j)
\]

\[
\log L = \sum_j \log P(s_j | o_j)
\]

- To minimize notation, we omit the indexing and summation on data samples.
Flat log-linear model

\[
p(y \mid x) = \frac{\exp\left(\sum_{i} \lambda_i f_i(x, y)\right)}{\sum_{y'} \exp\left(\sum_{i} \lambda_i f_i(x, y')\right)}
\]

\[
\log P(y \mid x) = \sum_{i} \lambda_i f_i(x, y) - \log \sum_{y'} \exp\left(\sum_{i} \lambda_i f_i(x, y')\right)
\]

\[
\frac{d}{d\lambda_k} \log P(y \mid x) = f_k(x, y) - \frac{\frac{d}{d\lambda_k} \sum_{y'} \exp\left(\sum_{i} \lambda_i f_i(x, y')\right)}{\sum_{y'} \exp\left(\sum_{i} \lambda_i f_i(x, y')\right)}
\]
Flat log-linear Model Con’t.

\[
\frac{d}{d\lambda_k} \log P(y \mid x) = f_k(x, y) - \frac{\sum \frac{d}{d\lambda_k} \exp(\sum \lambda_i f_i(x, y'))}{Z} \\
= f_k(x, y) - \frac{\sum f_k(x, y') \exp(\sum \lambda_i f_i(x, y'))}{Z} \\
= f_k(x, y) - \sum_{y'} f_k(x, y') P(y' \mid x)
\]

This can be computed by enumerating y’
A Chain-Structured CRF

\[P(s|o) = \frac{\exp\left(\sum_j \sum_i \lambda_i f_i(s_{j-1}, s_j, o_j) \right)}{\sum_{y'} \exp\left(\sum_j \sum_i \lambda_i f_i(s'_{j-1}, s'_j, o_j) \right)} \]
Chain-Structured CRF (con’t.)

\[
\log P(s \mid o) = \sum_{j} \sum_{i} \lambda_{i} f_{i}(s_{j-1}, s_{j}, o_{j}) - \log \sum_{s'} \exp \left(\sum_{j} \sum_{i} \lambda_{i} f_{i}(s'_{j-1}, s'_{j}, o_{j}) \right)
\]

\[
\frac{d}{d\lambda_{k}} \log P(s \mid o) = \sum_{j} f_{k}(s_{j-1}, s_{j}, o_{j})
\]

\[
= \sum_{j} f_{k}(s_{j-1}, s_{j}, o_{j}) - \sum_{s'} \sum_{j} P(s' \mid o) f_{k}(s'_{j-1}, s'_{j}, o_{j})
\]

Easy to compute first term

Second is similar to the simple log-linear model, but:
* Cannot enumerate \(s'\) because it is now a sequence
* And must sum over positions \(j\)
Forward/Backward Recursions

\[
\alpha(m, q) = \sum_{s_1^m \text{ st } s_m = q} \exp \left(\sum_{j=1..m} \sum_i \lambda_i f_i(s_{j-1}, s_j, o_j) \right)
\]

\[
= \sum_{q'} \alpha(m-1, q') \exp \left(\sum_i \lambda_i f_i(q', q, o_m) \right)
\]

\[
\alpha(0, \bullet) = 1
\]

\[
Z = \sum_q \alpha(N, q)
\]

\[
\beta(m, q) = \sum_{s_m^N \text{ st } s_m = q} \exp \left(\sum_{j=m+1..N} \sum_i \lambda_i f_i(s_{j-1}, s_j, o_j) \right)
\]

\[
= \sum_{q'} \beta(m+1, q') \exp \left(\sum_i \lambda_i f_i(q, q', o_{m+1}) \right)
\]

\(\alpha(m, q)\) is sum of partial path scores ending at position \(m\), with label \(q\) (inclusive of observation \(m\))

\(\beta(m, q)\) is sum of partial path scores starting at position \(m\), with label \(q\) (exclusive of observation \(m\))
Gradient Computation

\[
\frac{d}{d\lambda_k} \log P(s \mid o) = \sum_j f_k(s_{j-1}, s_j, o_j)
\]

\[
- \frac{1}{Z} \sum_{s'} \left(\sum_j f_k(s'_{j-1}, s'_j, o_j) \right) \exp \left(\sum_j \sum_i \lambda_i f_i(s'_{j-1}, s'_j, o_j) \right)
\]

\[
= \sum_j f_k(s_{j-1}, s_j, o_j)
\]

\[
- \frac{1}{Z} \sum_j \sum_q \sum_{q'} \alpha(j, q) \beta(j+1, q') \exp \left(\sum_i \lambda_i f_i(q, q', o_{j+1}) \right) f_k(q, q', o_{j+1})
\]

1) Compute Alphas
2) Compute Betas
3) Compute gradient
Segmental Versions

- More complex; See
 - Sarawagi & Cohen, 2005
 - Zweig & Nguyen, 2009
- Same basic process holds
 - Compute alphas on forward recursion
 - Compute betas on backward recursion
 - Combine to compute gradient
Once We Have the Gradient

- Any gradient descent technique possible

1) Find a direction to move the parameters
 - Some combination of information from first and second derivative values

2) Decide how far to move in that direction
 - Fixed or adaptive step size
 - Line search

3) Update the parameter values and repeat
Conventional Wisdom

- Limited Memory BFGS often works well
 - Liu & Nocedal, Mathematical Programming (45) 1989
 - Sha & Pereira, HLT-NAACL 2003
 - Malouf, CoNLL 2002
- For HCRFs stochastic gradient descent and Rprop are as good or better
 - Gunawardana et al., Interspeech 2005
 - Mahajan, Gunawardana & Acero, ICASSP 2006
- Rprop is exceptionally simple
Rprop Algorithm

- Basic idea:
 - Maintain a step size for each parameter
 - Identifies the “scale” of the parameter
 - See if the gradient says to increase or decrease the parameter
 - Forget about the exact value of the gradient
 - If you move in the same direction twice, take a bigger step!
 - If you flip-flop, take a smaller step!
Regularization

• In machine learning, often want to simplify models
 • Objective function can be changed to add a penalty term for complexity
 • Typically this is an L₁ or L₂ norm of the weight (lambda vector)
 • L₁ leads to sparser models than L₂

• For speech processing, some studies have found regularization
 • Necessary: L₁-ACRFs by Hifny & Renals, Speech Communication 2009
 • Unnecessary if using weight averaging across time: Morris & Fosler-Lussier, ICASSP 2007
Case Studies (1)

CRF Speech Recognition with Phonetic Features

Acknowledgements to Jeremy Morris
Top-down vs. bottom-up processing

- State-of-the-art ASR takes a top-down approach to this problem
 - Extract acoustic features from the signal
 - Model a process that generates these features
 - Use these models to find the word sequence that best fits the features

“speech” / s p iy ch/
Bottom-up: detector combination

- A bottom-up approach using CRFs
 - Look for evidence of speech in the signal
 - Phones, phonological features
 - Combine this evidence together in log-linear model to find the most probable sequence of words in the signal

(Morris & Fosler-Lussier, 2006-2010)
Phone Recognition

- What evidence do we have to combine?
 - MLP ANN trained to estimate frame-level posteriors for phonological features
 - MLP ANN trained to estimate frame-level posteriors for phone classes
Phone Recognition

- Use these MLP outputs to build *state feature functions*

\[s_{/l/t/ \mid P(l/t \mid x)}(y, x) = \begin{cases}
MLP_{/l/t/ \mid x}(x), & \text{if } y = /l/t/ \\
0, & \text{otherwise}
\end{cases} \]
Phone Recognition

- Use these MLP outputs to build state feature functions

\[
s_{l/t/\mathcal{P}(l/t|x)}(y, x) = \begin{cases}
\text{MLP}_{\mathcal{P}(l/t|x)}(x), & \text{if } y = /t/ \\
0, & \text{otherwise}
\end{cases}
\]

\[
s_{l/t,\mathcal{P}(l/d|x)}(y, x) = \begin{cases}
\text{MLP}_{\mathcal{P}(l/d|x)}(x), & \text{if } y = /t/ \\
0, & \text{otherwise}
\end{cases}
\]
Phone Recognition

- Use these MLP outputs to build *state feature functions*

\[
s_{/tt, P(/t|\{x})}(y, x) = \begin{cases}
MLP_{P(/t|\{x})}(x), & \text{if } y = /t/ \\
0, & \text{otherwise}
\end{cases}
\]

\[
s_{/tt, P(stop|\{x})}(y, x) = \begin{cases}
MLP_{P(stop|\{x})}(x), & \text{if } y = /t/ \\
0, & \text{otherwise}
\end{cases}
\]
Phone Recognition

- Pilot task – phone recognition on TIMIT
 - ICSI Quicknet MLPs trained on TIMIT, used as inputs to the CRF models
 - Compared to Tandem and a standard PLP HMM baseline model

- Output of ICSI Quicknet MLPs as inputs
 - Phone class attributes (61 outputs)
 - Phonological features attributes (44 outputs)
Phone Recognition

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM (PLP inputs)</td>
<td>68.1%</td>
</tr>
<tr>
<td>CRF (phone classes)</td>
<td>70.2%</td>
</tr>
<tr>
<td>HMM Tandem16mix (phone classes)</td>
<td>70.4%</td>
</tr>
<tr>
<td>CRF (phone classes + phonological features)</td>
<td>71.5%*</td>
</tr>
<tr>
<td>HMM Tandem16mix (phone classes + phonological features)</td>
<td>70.2%</td>
</tr>
</tbody>
</table>

*Significantly (p<0.05) better than comparable Tandem system (Morris & Fosler-Lussier 08)
What about word recognition?

- CRF predicts phone labels for each frame
- Two methods for converting to word recognition:
 1. Use CRFs to generate local frame phone posteriors for use as features in an HMM (ala Tandem)
 - CRF + Tandem = CRANDEM
 2. Develop a new decoding mechanism for direct word decoding
 - More detail on this method
CRANDEM observations

The Crandem approach worked well in phone recognition studies but did not immediately work as well as Tandem (MLP) for word recognition.

- Posterior from CRF are smoother than MLP posteriors.

- Can improve Crandem performance by flattening the distribution.
CRF Word Recognition

\[
\arg \max_W P(W \mid O) \approx \arg \max_{W, \Phi} P(O \mid \Phi)P(\Phi \mid W)P(W)
\]

- The standard model of ASR uses likelihood based acoustic models
- But CRFs provide a conditional acoustic model \(P(\Phi \mid O)\)
CRF Word Recognition

\[
\text{arg max}_W P(W \mid O) \approx \text{arg max}_{W, \Phi} \frac{P(\Phi \mid O)}{P(\Phi)} \frac{P(\Phi \mid W)}{P(W)}
\]
CRF Word Recognition

- Models implemented using OpenFST
 - Viterbi beam search to find best word sequence
- Word recognition on WSJo
 - WSJo 5K Word Recognition task
 - Same bigram language model used for all systems
 - Same MLPs used for CRF-HMM (Crandem) experiments
 - CRFs trained using 3-state phone model instead of 1-state model
 - Compare to original MFCC baseline (ML trained!)
CRF Word Recognition

<table>
<thead>
<tr>
<th>Model</th>
<th>Dev WER</th>
<th>Eval WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFCC HMM reference</td>
<td>9.3%</td>
<td>8.7%</td>
</tr>
<tr>
<td>CRF (state only) – phone MLP input</td>
<td>11.3%</td>
<td>11.5%</td>
</tr>
<tr>
<td>CRF (state+trans) – phone MLP input</td>
<td>9.2%</td>
<td>8.6%</td>
</tr>
<tr>
<td>CRF (state+trans) – phone+phonological ftr MLPs input</td>
<td>8.3%</td>
<td>8.0%</td>
</tr>
</tbody>
</table>

NB: Eval improvement is not significant at p<0.05

- Transition features are important in CRF word decoding
- Combining features via CRF still improves decoding
The above experiments were done with the ASR-CRaFT toolkit, developed at OSU for the long sequences found in ASR

- Primary author: Jeremy Morris
- Interoperable with the ICSI Quicknet MLP library
 - Uses same I/O routines
- Will be available from OSU Speech & Language Technology website
 - www.cse.ohio-state.edu/slate
Case Studies (2)

Speech Recognition with a Segmental CRF
The Problem

- State-of-the-art speech recognizers look at speech in just one way
 - Frame-by-frame
 - With one kind of feature

- And often the output is wrong
 “Oh but he has a big challenge” ≠ “ALREADY AS a big challenge”
The Goal

- Look at speech in multiple ways
- Extract information from multiple sources
- Integrate them in a segmental, log-linear model

Multiple information sources, e.g. phoneme, syllable detections

States represent whole words (not phonemes)
Baseline system can constrain possibilities

Log-linear model relates words to observations
Model Structure

For a hypothesized word sequence s, we must sum over all possible segmentations q of observations

$$P(s|o) = \frac{\sum_{q \text{ s.t. } |q| = |s|} \exp\left(\sum_{e \in q, k} \lambda_k f_k(s^e_l, s^e_r, o(e))\right)}{\sum_{s'} \sum_{q \text{ s.t. } |q| = |s'|} \exp\left(\sum_{e \in q, k} \lambda_k f_k(s'^e_l, s'^e_r, o(e))\right)}$$

Training done to maximize product of label probabilities in the training data (CML).
The Meaning of States: ARPA LM

States are actually language model states
States imply the last word

s_l^e

e

s_r^e

$o(e) = o_3^4$

States imply the last word

Example diagram with states and transitions.
Embedding a Language Model

At minimum, we can use the state sequence to look up LM scores from the finite state graph. These can be features.

And we also know the actual arc sequence.
The SCARF Toolkit

- A toolkit which implements this model
- Talk on Thursday --
 - Interspeech 2010
Inputs (1)

- Detector streams
 - (detection time) +
- Optional dictionaries
 - Specify the expected sequence of detections for a word
Inputs (2)

- Lattices to constrain search
Inputs (3)

- User-defined features
Detector-Based Features

- Array of features automatically constructed
- Measure forms of consistency between expected and observed detections
 - Differ in use of ordering information and generalization to unseen words
- Existence Features
- Expectation Features
- Levenshtein Features
- Baseline Feature
Existence Features

- Does unit X exist within the span of word Y?
- Created for all X,Y pairs in the dictionary and in the training data
- Can automatically be created for unit n-grams
- No generalization, but arbitrary detections OK

Hypothesized word, e.g. “kid”

Spanned units, e.g. “k ae d”
Expectation Features

- Use dictionary to get generalization ability across words!
- Correct Accept of u
 - Unit is in pronunciation of hypothesized word in dictionary, and it is detected in the span of the hypothesized word
 - ax k or d (dictionary pronunciation of accord)
 - ih k or (units seen in span)
- False Reject of u
 - Unit is in pronunciation of hypothesized word, but it is not in the span of the hypothesized word
 - ax k or d
 - ih k or
- False Accept of u
 - Unit is not in pronunciation of hypothesized word, and it is detected
 - ax k or d
 - ih k or
- Automatically created for unit n-grams
Levenshtein Features

- Match of u
- Substitution of u
- Insertion of u
- Deletion of u

Expected: \text{ax} \ k \ or \ d
Detected: \text{ih} \ k \ or \ *

\begin{align*}
\text{Sub-ax} &= 1 \\
\text{Match-k} &= 1 \\
\text{Match-or} &= 1 \\
\text{Del-d} &= 1
\end{align*}

- Align the detector sequence in a hypothesized word’s span with the dictionary sequence that’s expected
- Count the number of each type of edits
- Operates only on the atomic units
- Generalization ability across words!
Language Model Features

- Basic LM:
 - Language model cost of transitioning between states.

- Discriminative LM training:
 - A binary feature for each arc in the language model
 - Indicates if the arc is traversed in transitioning between states

Training will result in a weight for each arc in LM – discriminatively trained, and jointly trained with AM
A Few Results from 2010 JHU Summer Workshop
Data Sets

- Wall Street Journal
 - Read newspaper articles
 - 81 hrs. training data
 - 20k open vocabulary test set
- Broadcast News
 - 430 hours training data
 - ~80k vocabulary
- World class baselines for both
 - 7.3% error rate WSJ (Leuven University)
 - 16.3% error rate BN (IBM Attila system)
Bottom Line Results

<table>
<thead>
<tr>
<th>Wall Street Journal</th>
<th>WER</th>
<th>% Possible Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (SPRAAK / HMM)</td>
<td>7.3%</td>
<td>0%</td>
</tr>
<tr>
<td>+ SCARF, template features</td>
<td>6.7</td>
<td>14</td>
</tr>
<tr>
<td>(Lattice Oracle – best achievable)</td>
<td>2.9</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Broadcast News</th>
<th>WER</th>
<th>% Possible Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (HMMw/ VTLN, HLDA, fMLLR, fMMI, mMMI, MLLR)</td>
<td>16.3%</td>
<td>0%</td>
</tr>
<tr>
<td>+ SCARF, word, phoneme detectors, scores</td>
<td>15.0</td>
<td>25</td>
</tr>
<tr>
<td>(Lattice Oracle – best achievable)</td>
<td>11.2</td>
<td>100</td>
</tr>
</tbody>
</table>
Case Studies (3)

A Sampling of NLP Applications
Intention of Case Studies

- Provide a sense of
 - Types of problems that have been tackled
 - Types of features that have been used
- Not any sort of extensive listing!
- Main point is ideas not experimental results (all good)
MEMM POS

- Task: Part-of-Speech Tagging
- Model: Maximum Entropy Markov Model
 - Details Follow
- Features
 - Details Follow
MEMM POS Model

\[
p(t_i | h_i) = \frac{\exp\left(\sum_j \lambda_j f_j(h_i, t_i)\right)}{\sum_{t'} \exp\left(\sum_j \lambda_j f_j(h_i, t')\right)}
\]

\[t^* = \arg \max_t \prod_{i} P(t_i | h_i)\]

Tag \(t_i\)

History \(h_i\)

Found via beam search
MEMM POS Features

<table>
<thead>
<tr>
<th>Condition</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_i is not rare</td>
<td>$w_i = X$ & $t_i = T$</td>
</tr>
<tr>
<td>w_i is rare</td>
<td>X is prefix of w_i, $</td>
</tr>
<tr>
<td></td>
<td>X is suffix of w_i, $</td>
</tr>
<tr>
<td></td>
<td>w_i contains number & $t_i = T$</td>
</tr>
<tr>
<td></td>
<td>w_i contains uppercase character & $t_i = T$</td>
</tr>
<tr>
<td></td>
<td>w_i contains hyphen & $t_i = T$</td>
</tr>
<tr>
<td>$\forall w_i$</td>
<td>$t_{i-1} = X$ & $t_i = T$</td>
</tr>
<tr>
<td></td>
<td>$t_{i-2}t_{i-1} = XY$ & $t_i = T$</td>
</tr>
<tr>
<td></td>
<td>$w_{i-1} = X$ & $t_i = T$</td>
</tr>
<tr>
<td></td>
<td>$w_{i-2} = X$ & $t_i = T$</td>
</tr>
<tr>
<td></td>
<td>$w_{i+1} = X$ & $t_i = T$</td>
</tr>
<tr>
<td></td>
<td>$w_{i+2} = X$ & $t_i = T$</td>
</tr>
</tbody>
</table>
Voicemail Information Extraction

- Task: Identify caller and phone number in voicemail
 - “Hi it’s Peggy Cole Reed Balla’s Secretary... reach me at x4567 Thanks”
- Model: MEMM
- Features:
 - Standard, plus class information:
 - Whether words belong to numbers
 - Whether a word is part of a stock phrase, e.g. “Talk to you later”
Shallow Parsing

- Task: Identify noun phrases in text
 - Rockwell said it signed a tentative agreement.
 - Label each word as beginning a chunk (B), continuing a chunk (I), or external to a chunk (O)
- Model: CRF
- Features: Factored into transition and observation
 - See following overhead
Shallow Parsing Features

$$f(y_{i-1}, y_i, x, i) = p(x, i)q(y_{i-1}, y_i)$$

Examples:

“The current label is ‘OB’ and the next word is “company”.

“The current label is ‘BI’ and the POS of the current word is ‘DET’”
Named Entity Recognition

- Task: NER
 - City/State from addresses
 - Company names and job titles from job postings
 - Person names from email messages
- Model: Semi-Markov CRF
- Features:
 - Word identity/position
 - Word capitalization
- Segmental Features:
 - Phrase presence
 - Capitalization *patterns* in segment
 - Combination non-segment features with segment initial/final indicator
 - Segment length
Whole Sentence Language Models

- Task: Rescoring speech recognition nbest lists with a whole-sentence language model
- Model: Flat Maximum Entropy
- Features:
 - Word ngrams
 - Class ngrams
 - Leave-one-out ngrams (skip ngrams)
 - Presence of constituent sequences in a parse
Tutorial summary

- Provided an overview of direct models for classification and sequence recognition
 - MaxEnt, MEMM, (H)CRF, Segmental CRFs
 - Training & recognition algorithms
 - Case studies in speech & NLP

- Fertile area for future research
 - Methods are flexible enough to incorporate different representation strategies
 - Toolkits are available to start working with ASR or NLP problems
Future Research Directions

- Feature design for ASR – have only scratched the surface of different acoustic representations
- Feature induction – MLPs induce features using hidden nodes, can look at backprop methods for direct models
 - Multilayer CRFs (Prabhavalkar & Fosler-Lussier 2010)
 - Deep Belief Networks (Hinton, Osindero & Teh 2006)
- Algorithmic design
 - Exploration of Segmentation algorithms for CRFs
- Performance Guarantees

Gunawardana, Mahajan, Acero & Platt, “Hidden Conditional Random Fields for Phone Classification,” Interspeech 2005

Other good overviews of CRFs:
