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Abstract. Motivated by the problem of detecting link-spam, we con-
sider the following graph-theoretic primitive: Given a webgraph G, a
vertex v in GG, and a parameter § € (0, 1), compute the set of all vertices
that contribute to v at least a 6 fraction of v’s PageRank. We call this set
the 6-contributing set of v. To this end, we define the contribution vector
of v to be the vector whose entries measure the contributions of every
vertex to the PageRank of v. A local algorithm is one that produces a
solution by adaptively examining only a small portion of the input graph
near a specified vertex. We give an efficient local algorithm that com-
putes an e-approximation of the contribution vector for a given vertex by
adaptively examining O(1/¢) vertices. Using this algorithm, we give a lo-
cal approximation algorithm for the primitive defined above. Specifically,
we give an algorithm that returns a set containing the é-contributing set
of v and at most O(1/6) vertices from the §/2-contributing set of v, and
which does so by examining at most O(1/6) vertices. We also give a local
algorithm for solving the following problem: If there exist k vertices that
contribute a p-fraction to the PageRank of v, find a set of k vertices that
contribute at least a (p — €)-fraction to the PageRank of v. In this case,
we prove that our algorithm examines at most O(k/e) vertices.

1 Introduction

In numerous applications of PageRank one needs to know, in addition to the rank
of a given web page, which pages or sets of pages contribute most to its rank.
These PageRank contributions have been used for link spam detection [4/10] and
in the classification of web pages [12]. A set of pages that contributes significantly
to the PageRank of a page is often called a contribution set or supporting set of
the page [A/10].

The contribution that a vertex u makes to the PageRank of a vertex v is
defined rigorously in terms of personalized PageRank. For a webgraph G =
(V, E) and a teleportation constant o (sometimes called the restart probability),
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let PRM,, be the matrix whose u*" row is the personalized PageRank vector of
u. The PageRank contribution of u to v, written pr,(u — v), is defined to be
the entry (u,v) of this matrix. The PageRank of a vertex v is the sum of the v*"
column of the matrix PRM,, and thus the PageRank of a vertex can be viewed
as the sum of the contributions from all other vertices. The contribution vector
of v is defined to be the v*" column of the matrix PRM,,, whose entries are the
contributions of every vertex to the PageRank of v.

Given that the web graph is massive and getting larger at a substantial rate,
it is essential to compute contribution vectors and identify supporting sets by
examining as small a fraction of the graph as possible. In particular, it is helpful
to design a local algorithm for computing the supporting sets of a particular
vertex. Local algorithms search for a solution near a specified vertex by adap-
tively examining only a small subset of the input graph. They have been studied
previously in distributed computing [I6] and in graph partitioning and cluster-
ing [2002]. Personalized PageRank vectors can be approximated locally. Using
one of several possible algorithms [T4U51T9)], it is possible to compute an approx-
imation of the personalized PageRank vector of a vertex u by examining only
O(1/€) vertices, where € is the desired amount of error at each vertex.

Problem Formulation. Inspired by local algorithms for computing personalized
PageRank, and motivated by the importance of supporting sets in link-spam
detection, we consider the problem of directly computing the contribution vector
of a given vertex to quickly identify its supporting sets. In particular, we consider
following graph-theoretic primitive: Given a webgraph G, a vertex v in G, and
a parameter 6 € (0,1), compute the set of all vertices each contributing at least
a ¢ fraction to the PageRank of v. We call this set the d-contributing set of v.

Such a primitive is useful for spam detection, since, given a webpage whose
PageRank has recently increased suspiciously, we can quickly identify the set
of pages that contribute significantly to the PageRank of that suspicious page.
The above primitive may also be useful for analyzing social networks. In social
networks in which the links capture the influence of vertices on each other, we
can identify the nodes with the most influence to a given node.

Our Results. We give an efficient, local algorithm for computing an
e-approximation of the contribution vector for a given vertex v, a vector whose
difference from the contribution vector is at most € at each vertex. We prove that
the number of the vertices examined by the algorithm is O(1/¢). The algorithm
performs a sequence of probability-pushing operations on vertices of the graph,
which we call pushback operations. When the pushback operation is applied to
a vertex u, we perform a small amount of computation for each in-neighbor of
u. Particularly, we add a fraction of a number stored at u to a number stored
at each in-neighbor of u. The number of such operations that our algorithm
performs is O(1/¢), and its running time can be bounded by the sum of the
in-degrees of the vertices from which these operations were performed. To derive
this algorithm, we adapt Jeh and Widom’s technique for computing personalized
PageRank vectors [14] to directly compute contribution vectors. To analyze the
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algorithm’s running time and error bounds, we use techniques developed for the
local clustering algorithm in [2].

Using our algorithm for approximating contribution vectors, we give an ap-
proximation algorithm to the primitive defined above. Explicitly, we give a local
algorithm that returns a set containing the é-contributing set of v and at most
O(1/6) vertices from the §/2-contributing set of v. Our algorithm applies at
most O(1/6) pushback operations. We also give a local algorithm for solving the
following problem: If there are k vertices which contribute a p-fraction to the
PageRank of v, find a set of k vertices which contribute at least (p — €)-fraction
to the PageRank of v. In this case, we prove that our algorithm needs at most
O(k/¢€) pushback operations.

Finally, we remark that, in principle, one could directly compute the contri-
bution vector for a vertex v by approximating the personalized PageRank vector
of v in the time-reversal of the random walk Markov chain. We describe the
computation required for this approach, and argue that for most graphs it is not
as efficient as the method we propose.

Related Work. Supporting sets and PageRank contributions have been stud-
ied before as a tool for spam detection, notably in the SpamRank algorithm
of Benczur et al. [], and in the Spam Mass algorithm of Gyongyi et al. [10].
However, none of these papers developed a local algorithm for computing the
contribution vector or supporting set. In the SpamRank algorithm [4], the con-
tribution vectors are computed in the following way. One computes an approxi-
mation of each personalized PageRank vector in the graph to create an approxi-
mate PageRank matrix, and then takes the transpose of this matrix to obtain the
approximate contribution vectors. This method is efficient for the task of com-
puting the contribution vectors for every vertex in the graph, and it leverages
fast algorithms for computing many personalized PageRank vectors simultane-
ously [QUT9], but it does not provide an efficient way to compute the contribution
vectors of a few selected suspicious vertices. Furthermore, the relative error in
the resulting approximate contribution vectors may be larger than the relative
error in the computed personalized PageRank vectors, since this is not preserved
by the transpose operation.

PageRank contributions have also been used to estimate the PageRank of a
target vertex. The algorithm in [7] heuristically identifies the top contributors
to a vertex v by adaptively choosing vertices with high likelihood of being large
contributors, and then locally computes personalized PageRank from those ver-
tices. This is different from our approach of directly computing the contribution
vector, and more difficult to analyze rigorously.

Local algorithms have been studied in distributed computing [I6] and in graph
partitioning and clustering [20/2]. Personalized PageRank vectors can be com-
puted locally using a number of methods [BI2I19], many of which are based on
the algorithm of Jeh and Widom [I4]. None of these algorithms can be used
directly to compute a contribution vector or supporting set.

There are numerous methods for detecting link spam besides the SpamRank-
type algorithms we have mentioned here. Examples include applying machine
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learning to link-based features [3], the analysis of page content [I5/I7], TrustRank
[11] and Anti-TrustRank [I8], and statistical analysis of various page features [§].
Finally, in a follow-up to this paper we use the local algorithm developed here
to design several locally computable page features for link spam detection, and
evaluate these features experimentally [I].

Organization. This paper will be organized as follows. In Section 2] we review the
basic concepts used in this paper, including PageRank, personalized PageRank,
and PageRank contribution vectors. In Section Bl we derive an alternate for-
mula for the PageRank contribution vector. Using this formula, we present an
efficient local algorithm for computing PageRank contribution and analyze its
performance. In Section [4 we consider several notions of supporting sets, which
are sets of vertices that contribute significantly to the PageRank of a target
vertex, and show how to efficiently compute approximate supporting sets. In
Section [l we make a few concluding remarks. We also show that, in principle,
the time-reverse Markov chain can be used to compute the contribution vector,
but argue that our method is more efficient.

2 Preliminaries

The web can be modeled by a directed graph G = (V, E) where V' are webpages
and a directed edge (u — v) € E represents a hyperlink in u that references v.
Although the web graph is usually viewed as an unweighted graph, our discussion
can be extended to weighted models. To deal with the problem of dangling nodes
with no out-edges, we assume an artificial node with a single self-loop has been
added to the graph, and an edge has been added from each dangling node to
this artificial node. Let A denote the adjacency matrix of G. For each u € V', let
dout (1) denote the out-degree of u and let d;,(u) denote the in-degree of u. Let
Dyt be the diagonal matrix of out-degrees.

We will now define PageRank vectors and contribution vectors. For conve-
nience, we will view all vectors as row vectors, unless explicitly stated otherwise.

For a teleportation constant «, the PageRank vector pr, defined by Brin and
Page [0] satisfies the following equation:

pra:a'1+(1_a)'pra'Ma (1)

where M is the random walk transition matrix given by M = DL A and 1 is the
row vector of all 1’s (always of proper size). The PageRank of a page u is then
pr,, (u). When there is no danger of confusion, we may drop the subscript a.. Note
that the above definition corresponds to the normalization ) pr,(u) = [V|.
Similarly, the personalized PageRank vector ppr(«,u) of a page u € V, de-

fined by Haveliwala [13], satisfies the following equation.
ppr(a, u) =o€yt (]- - a) : ppr(a, u) - M, (2)

where e, is the row unit vector whose u!” entry is equal to 1.
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Let PRM,, denote the (personalized) PageRank matrix, whose uth row is the
personalized PageRank vector ppr(«, ). The (global) PageRank vector pr,, is
then 1-PRM,, the sum of all the personalized PageRank vectors. The PageRank
contribution of u to v is defined to be the (u,v)th entry of PRM,, and will be
written ppr,(u — v). The contribution vector cpr(ca,v) for the vertex v is
defined to be the row vector whose transpose is the vth column of PRM,. If
¢ = cpr(q,v) is the contribution vector for v, then we denote by ¢(S) the total
contribution of the vertices in S to the PageRank of v. In particular, we have
c(V) =pr,(v) and c(u) = ppr, (u — v).

3 Local Approximation of PageRank Contributions

In this section, we describe an algorithm for computing an approximation of the
contribution vector ¢ = cpr(a,v) of a vertex v.

Definition 1 (Approximate Contribution). A vectoré is ane-approximation
of the contribution vector ¢ = cpr(a,v) if € > 0 and, for all vertices u,

c(u) —e-pry,(v) <e(u) < c(u).

A wvector € is an e-absolute-approximation of the contribution vector c=cpr(«, v)
if ¢ > 0 and, for all vertices u,

c(u) —e < e(u) < c(u).
Clearly, an e-approximation of cpr(a, v) is an (e-pr,, (v))-absolute-approximation
of cpr(a,v). In the algorithm below, we will focus on the computation of an e-
absolute-approximation of the contribution vector.

The support of a non-negative vector €, denoted by Supp(€), is the set of all
vertices whose entries in ¢ are strictly positive. The vector ¢ has a canonical
e-absolute-approximation. Let ¢ denote the vector

v Je(u)ifc(u) > €
e(u) = { 0 otherwise .
Clearly, c is the e-absolute-approximation of ¢ with the smallest support. More-
over, ||€|l1 < ||c||:1 and thus, |Supp(c)| < ||c||1/€e. Our local algorithm attempts
to find an approximation ¢ of ¢ which has a similar support structure to that
of c.

3.1 High Level Idea of the Local Algorithm

It is well known that for each «, the personalized PageRank vector which satisfies
Equation 2 also satisfies

o0

ppr(a,u) = aZ(l —a)' (e, M"). (3)
t=0
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The contribution of u to v can then be written in the following way.

ppr,(u — v) = (ppr(e,u), ey) (4)

— <a (1—a)t (e MY, e, > (5)

=0

(o]
— <eu, a) (1 —a)t(evMT)t>. (6)
t=0

The standard way to compute the contribution of w to v is based on Equa-
tion[ll We refer to this approach as the time-forward calculation of ppr, (u — v).
Recall that e, M is the t-step random walk distribution starting from w. In the
time-forward calculation, we emulate the random walk from u step by step and
add up the walk distributions scaled by the power sequence of (1 —a)t. Without
knowing in advance which vertices u make large contributions to v, one may
have to perform the time-forward calculation of ppr(«, ) for many vertices u
to obtain a good approximation of cpr(a, v).

To overcome this difficulty, we can directly calculate cpr(«,v) in the manner
suggested by Equation[@l This equation implies that

o0
cpr(a,v) = aZ(l —a)' - (e,(MT)). (7)
t=0
Thus, the contribution vector can be computed by starting with e,, iteratively
computing e,(MT)!, and adding up the resulting vectors scaled by the power
sequence of (1—a)*. Note that the matrix M7 is no longer a random walk matrix,
since the sum of each row will not generally be equal to 1. Unlike the time-forward
calculation, the direct calculation of cpr(a,v) is no longer an emulation of the
random walk starting from v. This fact complicates the error analysis of the next
subsection.

The discussion above provides a way to directly compute cpr(«, v), but our lo-
cal algorithm will perform a different calculation. Instead of iteratively computing
the vectors e,(MT)!, we adapt the technique of Jeh and Widom [14] for comput-
ing personalized PageRank to the task of computing contribution vectors. Using
this method, we can compute the contribution vector in a decentralized way, and
avoid spending computational effort manipulating small numerical values. This
enables us to bound the running time required to obtain a fixed level of error.

Equation[flalso enables us to compute the vector of contributions to a specified
subset S of vertices, which we define to be cpr(a,S) = > .gcpr(a,v). Let
€s =) ,cg € Then,

o0

cpr(a,S) =aY (1-a)' - (es(M")"). (8)
t=0

To further abuse notation, for any non-negative vector s, we define

o0

cpr(a,s) = aZ(l —a)t- (S(MT)t) . 9)

t=0
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3.2 The Local Algorithm and Its Analysis

The theorem below describes our algorithm ApproxContributions for comput-
ing an e-absolute-approximation of the contribution vector of a target vertex v.
We give an upper bound on the number of vertices examined by the algorithm
that depends on pr,, (v), €, and «, but is otherwise independent of the number of
vertices in the graph. The algorithm performs a sequence of operations, which
we call pushback operations. Each pushback operation is performed on a single
vertex of the graph, and requires time proportional to the in-degree of that ver-
tex. We place an upper bound on the number of pushback operations performed
by the algorithm, rather than the total running time of the algorithm. The to-
tal running time of the algorithm depends on the in-degrees of the sequence
of vertices on which the pushback operations were performed. The number of
pushback operations is an upper bound on the number of vertices in the support
of the resulting approximate contribution vector.

Theorem 1. The algorithm ApproxContributions(v,q, €, Pimas) has the fol-
lowing properties. The input is a vertex v, two constants a and € in the interval
(0,1], and a real number Pmas. The algorithm computes a vector € such that
0 <c¢ <c, and either

1. € is an e-absolute approximation of cpr(a,v), or
2. ||é||1 Z Pmaz-

The number of pushback operations P performed by the algorithm satisfies the

following bound,

min (pr,, (v), Pmaz)
e

P < + 1.

The proof of Theorem [ is based on a series of facts which we describe below.
The starting point is the following observation, which is easy to verify from
Equation [0 For any vector s,

cpr(a,s)M” = cpr(a,sM™). (10)
We can further derive the following equation,

cpr(a,s) = as+ (1 — a) - cpr(a,s)M T
=as+ (1 —a)-cpr(a,sM7). (11)

This is the transposed version of the equation that was used Jeh and Widom
to compute approximate personalized PageRank vectors [14]. Very naturally, we
will use it to compute approximate contribution vectors.

The algorithm ApproxContributions(v, @, €, Pmas) Maintains a pair of vec-
tors p and r with nonnegative entries, starting with the trivial approximation
p = 0 and r = e,, and applies a series of pushback operations that increase
IIp||1 while maintaining the invariant p + cpr(q,r) = cpr(q,v). Each pushback
operation picks a single vertex u, moves an « fraction of the mass at r(u) to
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p(u), and then modifies the vector r by replacing r(u)e, with (1—a)r(u)e,M7T.
Note that ||r||; may increase or decrease during this operation. We will define
the pushback operation more formally below, and then verify that each pushback
operation does indeed maintain the invariant.

pushback (u):

Let p’ = p and v’ = r, except for these changes:
1. p/(u) = plu) + ar(u).
2. r'(u) = 0.
3. For each vertex w such that w — u:

r'(w) =r(w) + (1 — a)r(u)/dout (w).

Lemma 1 (Invariant). Let p’ and v’ be the result of performing pushback(u)
on p and r. If p and v satisfy the invariant p + cpr(a,r) = cpr(a,v), then p’
and v’ satisfy the invariant p’ + cpr(a,r’) = cpr(a,v).

Proof. After the pushback operation, we have, in vector notation,

P’ =p+oar(u)e,
v =r—r(ue, + (1 —a)r(u)e,M”.

We will apply equation (IIJ) to r(u)e, to show that p+cpr(«,r) = p’+cpr(a, r’).

cpr(a,r) = cpr(a,r —r(u)e,) + cpr(ao, r(u)e,)

cpr(a,r —r(u)e,) + ar(u)e, + cpr(a, (1 — a)r(u)e, M7)
(
(a

cpr(a,r —r(u)e, + (1 — a)r(u)e, M) + ar(u)e,
cpr(a

') +p —p.

During each pushback operation, the quantity ||pl|/1 increases by ar(u). The
quantity ||p||1 can never exceed |cpr(a,v)||1, which is equal to pr, (v). By per-
forming pushback operations only on vertices where r(u) > €, we can ensure that
IIp||1 increases by a significant amount at each step, which allows us to bound the
number of pushes required to compute an e-absolute-approximation of the con-
tribution vector. This is the idea behind the algorithm ApproxContributions.

ApproxContributions(v, &, €, Pmaz):

1. Let p=0, and r = e,.
2. While r(u) > € for some vertex u:

(a) Pick any vertex u where r(u) > .

(b) Apply pushback (u).

(¢) If [|plli > Pmas, halt and output ¢ = p.
3. Output ¢ = p.
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This algorithm can be implemented by maintaining a queue containing those
vertices u satisfying r(u) > e. Initially, v is the only vertex in the queue. At each
step, we take the first vertex u in the queue, remove it from the queue, and
perform a pushback operation from that vertex. If the pushback operation raises
the value of r(z) above € for some in-neighbor x of u, then z is added to the back
of the queue. This continues until the queue is empty, at which point all vertices
satisfy r(u) < ¢, or until ||p|l1 > Pmaz- We now show that this algorithm has
the properties promised in Theorem [l

Proof (Proof of Theorem [I). Let T be the total number of push operations
performed by the algorithm, and let p; and r; be the states of the vectors
p and r after ¢ pushes. The initial setting of pg = 0 and ro = e, satisfies
the invariant p; + cpr(«,r;) = cpr(«,v), which is maintained throughout the
algorithm. Since r; is nonnegative at each step, the error term cpr(a,r;) is
also nonnegative, so we have cpr(a,v) — p;y > 0. In particular, this implies
Ipill: < llepr(a, v) 11 = pro(v)-

Let ¢ = pr be the vector output by the algorithm. When the algorithm
terminates, we must have either ||€|l1 > Pmaz OF [|r7|loc < €. In the latter
case, the following calculation shows that ¢ is an e-absolute-approximation of
cpr(a,v).

[epr(a, v) = €floc = [lepr(e, rr)llo
< rrfles
<e.

The fact that ||cpr(a, rr)||e < ||rr|lco holds because rp is nonnegative and each
row of M sums to 1.

The vector py—; must have satisfied [|[pr—1]l1 < Pmaz, since the algorithm
decided to push one more time. We have already observed that |[pr_1|1 <
pr, (v). Each push operation increased ||p||1 by at least e, so we have

ae(T = 1) < |lpr-11 < min ([[epr(a, v)[l1; Pmaz)-
This gives the desired bound on T

It is possible to perform a pushback operation on the vertex u, and to perform the
necessary queue updates, in time proportional to d;, (u). Therefore, the running
time of the algorithm is proportional to the sum over all pushback operations of
the in-degree of the pushed vertex.

We can compute an e-approximation of cpr(w,v), provided that pr,(v) is
known, by calling the algorithm ApproxContributions(v, «,¢€ - pr,(v), pr,(v)).

Corollary 1 (e-Approximation of contribution vectors). Given pr,(v),
an e-approximation of cpr(w,v), can be computed with O}E—H pushback operations.

We also observe that, using Equation [ our algorithm can be easily adapted
to compute an e-absolute-approximation and e-approximation of cpr(a, S) for a
group S of vertices, with a similar bound on the number of pushback operations.
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3.3 The Support of the Approximate Contribution Vector

The number of vertices in the support of the e-approximate contribution vector
C is upper bounded by the number of pushback operations used to compute it,
which is at most O}E + 1. In this section we give a stronger upper bound on
the size of the support. To do this, we need to modify the pushback operation
slightly. Instead of moving all the mass from r(u) during the pushback operation,
we move all but €/2 units of mass, and leave €/2 units on r(u). This increases
the running time bound for the algorithm by a factor of 2, but ensures that
r(z) > €/2 at each vertex in Supp(€). We use this fact to give a family of bounds
on the size of Supp(¢).
We will abuse our notation a bit by defining the following,

pra(x—> Y) - <XMDL ] Y>?

where M, = PRM,, is the PageRank matrix. In particular, pr,(x — eg) is the
amount probability from the PageRank vector with starting distribution x on
the set S.

Proposition 1. Let ¢ be the e-approximate contribution vector for v computed
by the modified algorithm described above, and let S = Supp(€). For any non-
negative vector z, we have the following upper bound on S,

2
pr,(z — eg) < 6proé(z — €y).

Proof. Note that ppr(a,v) = e,M, and cpr(a,v) = e,MI. We know that
cpr(a,r) < cpr(a,e,), which can also be written tM! < e,MI. Let S =
Supp(€) and recall that r(x) > €/2 for any vertex € S. Then,

(zMy,e,) = {2z, e,M} ) > (z, rM!) = (zM,,r) > (¢/2)(zM,, es).

In the second step we needed z to be nonnegative, and in the last step we needed
zM, to be nonnegative, which is true whenever z is nonnegative.

In words, this proposition states that for any starting vector z, the amount of
probability from the PageRank vector ppr(«,z) on the set S = Supp(€) is at
most 2/e times the amount on the vertex v. If we let z = ey, then we obtain a
bound on the amount of global PageRank on the set S,

2
b1 (5) < “pr, (v),
To see that this bound is at least as strong as what we knew before, recall
that the PageRank of any given vertex is at least a. If we make the pessimistic
assumption that pr,(u) = a for each v € Supp(¢), then the bound we have just
proved reduces to our earlier bound on the number of pushback operations,

[Supp(€)| < 2pr, (v)/ae.
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4 Computing Supporting Sets

In this section, we use our local algorithm for approximating contribution vec-
tors to compute approximate supporting sets, sets of vertices that contribute
significantly to the PageRank of a target vertex. There are several natural no-
tions of supporting sets, which we define below. For a vertex v, let m, be the
permutation that orders the entries cpr(a,v) from the largest to the smallest.
Ties may be broken arbitrarily.

— top k contributors: the first k£ pages of 7.
— 6-significant contributors: {u | ppr,(u — v) > §}.
— p-supporting set: a set S of pages such that

ppr, (S — v) > p-pry(v).

In addition, let k,(v) be the smallest integer such that

PP (T (1 2 kp(v) — v) > p-pry(v).

Clearly the set of the first k,(v) pages of 7, is the minimum size p-supporting
set for v. Also, we define pi(v) = ppr, (7w, (1 : k) — v)/pr,(v) to be the fraction
of v’s PageRank contributed by its top k contributors.

4.1 Approximating Supporting Sets

Without precisely computing cpr(a,v) it might be impossible to identify sup-
porting sets exactly, so we consider approximate supporting sets. For a precision
parameter €, we define the following.

— e-precise top k contributors: a set of k pages that contains all pages
whose contribution to v is at least ppr,, (m,(k) — v) + €-pr,(v), but no page
with contribution to v less than ppr, (7, (k) — v) — € pr, (v).

— e-precise O-significant contributors: a set that contains the set of 6-
significant contributors and is contained in the set of (6§ — €)-significant con-
tributors.

The results in the remainder of this section assume that pr, (v) is known.

Theorem 2. An e-precise set of top k contributors of a vertex v can be found
by performing 1/ae + 1 pushback operations.

Proof. Call ¢ = ApproxContributions(v, a, €-pr, (v), pr,(v)). Let C = Supp(€).
If |C] > k, then return the vertices with the top k entries in €; otherwise,
return C' together with k—Supp(¢) arbitrarily chosen vertices not in C. Consider
a page u with ecpr(u,v) > cpr(m,(k),v) + € - pr,(v). Clearly u € C because
¢(u) > epr(m,(k),v), implying €(u) is among the top k entries in €. On the
other hand, €(m,(j)) is at least cpr(m,(k),v) — € pr,(v) for all j € [1 : k].
Thus, each of the vertices with the top k entries in ¢ must contribute at least
cpr(my,(k),v) — e pr,(v) to v.
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Theorem 3. An e-precise 6-significant contributing set of a verter v can be
found by performing 1/cae + 1 pushback operations.

Proof. Call ¢ = ApproxContributions(v, o, € - pr,(v),pr,(v)) and return the
vertices whose entries in € are at least (6 — €) - pr,(v). Clearly, the set contains
the é-contributing set of v and is contained in the (6 — €)-supporting set of v.
Moreover, the number of pages not in the §-supporting set that are included is
at most 1/(6 — ¢).

In the remainder of this section, we consider the computation of approximate
p-supporting sets. We give two different algorithms, one for finding a supporting
set on a fixed number of vertices with the largest contribution possible, and
one for finding a supporting set with a fixed contribution on as few vertices as
possible.

Theorem 4. Given a vertex v and an integer k, a set of k vertices that is a
(pr — €)-supporting set for v can be found by performing k/ae + 1 pushback
operations.

Proof. Compute ¢ = ApproxContributions(v, ,epr, (v)/k, pr,(v)). Let S be
the set of k top contributors to v, which are the k vertices with the highest values
in ¢, and let S, be the set of k vertices with the highest values in ¢. The set Sk
meets the requirements of the theorem, since we have

&(Sk) > c(Sk) — k(epr,, (v)/k)
> pi - Pro(v) — € pry(v)
= pry(v)(px — €).

Theorem 5. Assume we are given p but not k,. A set of at most k, vertices
that is a (p — €)-supporting set for v can be found by performing O(k,log k,/ce)
pushback operations.

Proof. The challenge here is that we do not know k,, so we need to use a binary
search procedure to find a proxy for k,. We will proceed in two phases. In
the first phase, we guess a value of k, starting with & = 1, and compute ¢ =
ApproxContributions(v, a, e-pr, (v)/k, pr,(v)). As in Theorem[ let Sy be the
set of k vertices with the highest values in €, which we know satisfies é(S’k) >
(pr — €). If we observe that (Sk) (p — ¢), then we double k and repeat the
procedure. If we observe that &(Sg) > (p — €), then we halt and proceed to the
second phase, and set k1 to be the value of k£ for which this happens. We must
have k; < 2k,, since we are guaranteed to halt if £ > k.

Let ko = k1/2 be the value of k from the step before the first phase halted.
In the second phase, we perform binary search within the interval [kg, k1] to
find the smallest integer ki, for which é(Sk,,, ) > (p — €), which must satisfy
kEmin < k,. We output gkmm«

Each time we call the subroutine ¢ = ApproxContributions(v, a, epr, (v)/k,
pr,(v)), it requires k/ae + 1 push operations. In the first phase we call this
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subroutine with a sequence of £ values that double from 1 up to at most 2k,
so the number of push operations performed is O(k,/ae +1logk,). In the second
phase, the binary search makes at most logk, calls to the subroutine, with &
set to at most 2k, in each step, so the number of push operations performed is
O(k,logk,/ae+1logk,). The total number of push operations performed in both
phases is O(k, log k,/ ).

4.2 Local Estimation of PageRank

Up to this point, we have assumed when computing the supporting set of a vertex
that its PageRank is known. We now consider how to apply our approximate
contribution algorithm when nothing is known about the PageRank of the target
vertex. In particular, we consider the problem of computing a lower bound on
the PageRank of a vertex using local computation.

A natural lower bound on the PageRank pr,, (v) is provided by the contribution
to v of its top k contributors, py = cpr(m,(1 : k),v). The theorem below shows
we can efficiently certify that pr,(v) is approximately as large as py without
prior knowledge of pr,(v) or p. This should be contrasted with the algorithms
from the previous section, for which we needed to know the value pr,, (v) in order
to set € to obtain the stated running times.

Theorem 6. Given k and 6, we can compute a real number p such that
pE(1+6)72 <p < pry(v),

where pr, = cpr(m, (1 : k),v), by performing 10klog(k/ad)/a pushback opera-
tions.

Proof. Fix k and §, choose a value of p, and compute ¢ = ApproxContributions
(v, v, €,p) with € = ép/k. The number of pushback operations performed is at
most

1+p/ae=1+p/a(ép/k) =1+ 10k/c.

When the algorithm halts, we either have ||€||y > p, in which case we have
certified that pr,(v) > p, or else we have ||¢ — cpr(a,v)|e < 6p/k, in which
case we have certified that px < (1 + 8)p, by the following calculation:

pr = cpr(my(1: k),v) < &(my(1: k),v) + (6p/k)k < p+ 6p.

We now perform binary search over p in the range |a, k]. Let pjo be the
largest value of p for which we have certified that pr,(v) > p, and let ppign be
the smallest value of p for which we have certified that pr < (14 6)p. We perform
binary search until prign < piow(1 + 6), which requires at most log(k/ad) steps.
Then, pjow has the property described in the theorem,

pI‘a(’U) zplow zphigh(l +6)71 Zpk(l +6)72.

The total number of pushback operations performed during the calls to
ApproxContributions during the binary search is at most 10k log(k/ad)/a.
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5 Final Remarks

5.1 Improving the Dependency on In-Degrees

In our performance analysis, we give a bound of pr,(v)/(ae) + 1 on the total
number of pushback operations performed by our algorithm. In a pushback at
a vertex u, we update the entry for u in the vector p as well the as entries in r
for all vertices that point to u. As a result, the overall time complexity of our
algorithm is proportional to the sum of the in-degrees of the sequence of vertices
that we pushback from. A possible direction for future research is to devise an
algorithm whose running time can be bounded in terms of the total in-degree
of the supporting set that the algorithm attempts to approximate. This type
of bound would offer stronger control over the running time than the result
obtained in this paper, where the number of pushback operations operations
is bounded in terms of the number of vertices in the supporting set, but the
running time depends on the in-degrees of the vertices from which the sequence
of push operations is performed.

5.2 Computing Contribution Vectors Via the Time-Reverse Chain

As noted earlier, the matrix M7 in the formula of Equation [ may not be
Markov. It is natural ask whether the time-reverse Markov chain of the random
walk matrix M may be used to compute the contribution vector for a vertex v,
and, if so, whether this method is efficient.

For the following discussion, we assume that M has a unique stationary dis-
tribution, which will not be true for general directed graphs. Recall that,

Definition 2 (Time-reverse chain). Given a Markov chain M with transi-
tion probability m,;, and stationary distribution w, the time-reverse chain is the
Markov chain R with transition probability ri; = w(j)m;: /7 (4).

In other words, let IT be the matrix whose (i,7)th entry is m(j)/n (i), then
R = IT - *MT, where the operation -* is the component-wise multiplication of
two matrices. The time-reverse chain has the following properties.

— R has the same stationary distribution as M,

— for all 4, k, and t, consider the t-step random walk starting from ¢ in M and
k in R, then

(eM', o) = (Zi’:f) (e, ) (12)

Recall (e;M* | ey ) is equal to the probability that k is the vertex reached by a
t-step random walk from 4. Let ppr (u — v) denote the personalized PageRank
contribution from u to v in a Markov chain M.
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Theorem 7. Suppose a Markov chain M has a stationary distribution m and R
1s its time-reverse chain. Then

port(u = 0) = (7)) portio = ), (13)

Proof. The result follows from Equations [ and

Thus, if the stationary distribution exists, we can in principle compute the con-
tribution vector of M by computing the personalized PageRank vector for v in
the time-reverse chain. We argue that the method we presented in Section [3] is
preferable to the time-reverse Markov chain method for the following reasons.
Our method does not require that M has a stationary distribution. Computing a
personalized PageRank vector in the time-reverse Markov chain requires that we
first compute the stationary distribution 7 of M, which may be computationally
expensive. Perhaps most important is the difference in the error analysis. If the
stationary distribution exists, one can compute an e-approximate contribution
vector by computing a personalized PageRank vector in R for which the error
at each vertex ¢ is at most en (). If w(7) is extremely small at some vertices, and
it may be exponentially small in the number of vertices in the graph, this will
require a large amount of computation.

We prefer the method presented in Section [3] to the time-reverse method for
most graphs that are likely to be encountered in practice. However, there are
special cases where the time-reverse method will be efficient. In particular, if the
Markov chain has a stationary distribution that is nearly proportional to the in-
degrees of the vertices, as it would be in an undirected graph, then computing
a personalized PageRank vector in the time-reverse chain is an efficient way to
compute a contribution vector.
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