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Abstract

The standard approach consists of two stages: (i) using the 8-point algorithm to
estimate the 9 essential parameters defined up to a scale factor; (ii) refining the motion
estimation based on some statistically optimal criteria, which is a nonlinear estimation
problem on a five-dimensional space. Unfortunately, the results obtained are often not
satisfactory. The problem is that the second stage is very sensitive to the initial guess,
and that it is very difficult to obtain a precise initial estimate from the first stage. This is
because we perform a projection of a set of quantities which are estimated in a space of 8
dimensions (by neglecting the constraints on the essential parameters), much higher than
that of the real space which is five-dimensional. We propose in this paper a novel approach
by introducing an intermediate stage which consists in estimating a 3× 3 matrix defined
up to a scale factor by imposing the rank-2 constraint (the matrix has seven independent
parameters, and is known as the fundamental matrix). The idea is to gradually project
parameters estimated in a high dimensional space onto a slightly lower space, namely from
8 dimensions to 7 and finally to 5. The proposed approach has been tested with synthetic
and real data, and a considerable improvement has been observed. Our conjecture from
this work is that the imposition of the constraints arising from projective geometry should
be used as an intermediate step in order to obtain reliable 3D Euclidean motion and
structure estimation from multiple calibrated images. The software is available from the
Internet.

Keywords: Machine Vision, Motion Analysis, Structure from Motion, Gradual Con-
straint Enforcing, Multistage Algorithm, 3D Reconstruction
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1 Introduction

Motion and structure from motion has been of the central interest in Computer Vision since
its infancy, and is still an active domain of research. There are a large number of pieces
of work reported in the literature in this domain. The reader is referred to1–3 for a review.
The problem is usually divided into two steps: (i) extract features and match them between
images; (ii) determine motion and structure from corresponding features. Points or straight
lines are usually used. Line segments have been recently studied by Zhang.4 The earlier
work was mainly on the development of linear algorithms and the existence and uniqueness
of solutions.5–8 More recently, a number of researchers developed algorithms which are noise-
resistant by using a sufficient number of correspondences.9–12 Least-squares or statistical
techniques are used to smooth out noise. In these works, the authors assume that matches
are given and are correct. In real applications, however, among the feature correspondences
established at the first step, several may be incorrect. These false matches (called outliers
in terms of robust statistics), sometimes even only one, will completely perturb the motion
and structure estimation so that the result will be useless. The reader is referred to13,14

and Appendix A for a technique which uses the least-median-squares method to detect false
matches. Instead of perspective views, the structure and motion problem for orthographic
or, more generally, affine projections has also been extensively studied since Ullman’s pioneer
work.15–19 We also mention recent work on recovering motion and structure from long image
sequences.20–26

The standard approach to motion and structure estimation problem from two given sets of
matched image points consists of two stages: (i) using the 8-point algorithm to estimate the
9 essential parameters defined up to a scale factor, which is a linear estimation problem; (ii)
refining the motion estimation based on some statistically optimal criteria, which is a nonlinear
estimation problem on a five-dimensional space. Unfortunately, the results obtained using this
approach are often not satisfactory, especially when the motion is small or when the observed
points are close to a degenerate surface (e.g. plane). The problem is that the second stage is
very sensitive to the initial guess and that it is very difficult to obtain a precise initial estimate
from the first stage. This is because we perform a projection of a set of quantities which are
estimated in a space of 8 dimensions, much higher than that of the real space which is five-
dimensional.27 We propose in this paper a novel approach by introducing an intermediate
stage which consists in estimating a 3× 3 matrix defined up to a scale factor by imposing the
zero-determinant constraint (the matrix has seven independent parameters, and is known as
the fundamental matrix). The idea is to gradually project parameters estimated in a high
dimensional space onto a slightly lower space, namely from 8 dimensions to 7 and finally to
5. The proposed approach has been tested with synthetic and real data, and considerable
improvement has been observed for the delicate situations mentioned above. Note that the
constraints we use in the intermediate stage are actually all constraints existing between two
sets of image points if the images are uncalibrated (the intrinsic parameters are not know).
That is, we are determining projective motion and structure in this stage. Our conjecture from
this work is that the imposition of the constraints arising from projective geometry should be
used as an intermediate step in order to obtain reliable 3D Euclidean motion and structure
estimation from multiple calibrated images. The local minimum problem is less severe in the
projective framework than in the Euclidean one: The optimization for the projective structure
often succeeds in locating the true global minimum starting from the unreliable initial guess
when the Euclidean optimization does not. This has been shown by Oliensis and Govindu in
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their experimental study of the accuracy of projective versus Euclidean reconstruction from
multiple images.28

For readers who are not interested in the implementation details, they can go directly to
Sect. 4 to examine how our new multistage algorithm produces much more reliable results.
In the following sections, we present our formulation of the motion and structure from mo-
tion problem and describe our technique for determining 3D motion and structure. Besides
the introduction of the above-mentioned new stage, our technique differs from the classical
techniques presented in the literature in the work space used. We directly use pixel image
coordinates, instead of normalized image coordinates. We can reasonably assume that the
noise levels in both point coordinates are the same if pixel coordinates are used, but they
are not the same anymore after having been transformed into normalized image coordinates
because the scales in the two axes are usually not equal (the ratio is approximately 0.7 in
our CCD cameras). A criterion based on pixel image coordinates is thus physically more
meaningful. (If the ratio is equal to 1, one can, of course, use either pixel or normalized
image coordinates.)

In the Appendix, a robust technique based on the least-median-squares is developed to
detect false matches. The complete software, called SFM, can be checked out from my home
page:

http://www.inria.fr/robotvis/personnel/zzhang/zzhang-eng.html
The software also determines the uncertainty, in terms of the covariance matrix, of the esti-
mated motion and structure (see29 for details).

The intermediate stage introduced in this paper increases the robustness in recovering
the motion and structure. The final quality of the motion and structure estimate depends,
however, on the criterion used in the final stage. The one we use is based on the maximum
likelihood estimation, which can be justified in the limit of small noise. How to design
statistically optimal estimators when the data are noisy is an important research field. If we
apply naively the statistical techniques described in a textbook of statistics to computer vision
problems, we may sometimes get surprising results. A deeper understanding of geometric
structures in the presence of noise should be promoted. Serious work in this direction includes
that of Kanatani,12 where he also addresses such important problems as the lower bound on
the attainable accuracy and the model selection. For example, the algorithm presented here
assumes a general motion and structure model. If the camera motion between two views is a
pure rotation or if the observed scene is a planar surface, the result given by this algorithm will
be useless. Kanatani30 proposes to test different situations by Akaike information criterion
(AIC).

2 Notation and Problem Statement

In this section, we formulate the problem we want to solve and describe the epipolar equation
which is fundamental in solving motion and structure from motion problems.

2.1 Notation

A camera is described by the widely used pinhole model. The coordinates of a 3-D point
M = [x, y, z]T in a world coordinate system and its retinal image coordinates m = [u, v]T are
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related by

s

uv
1

 = P


x
y
z
1

 or sm̃ = PM̃

where s is an arbitrary scale, and P is a 3×4 matrix, called the perspective projection matrix.
Here, we have used x̃ to denote the augmented vector (adding 1 as its last element) of vector
x, i.e., if x = [x, y, · · · ]T , then x̃ = [x, y, · · · , 1]T .

The matrix P can be decomposed as

P = A [R t] with A =

αu c u0

0 αv v0
0 0 1

 ,
where A is a 3 × 3 matrix, mapping the normalized image coordinates to the retinal/pixel
image coordinates, and (R, t) is the 3D displacement (rotation and translation) from the
world coordinate system to the camera coordinate system. The five parameters in A are
called intrinsic parameters, and can be obtained through calibration.9

The first and second images are respectively denoted by I1 and I2. A point m in the image
plane Ii is noted as mi. The second subscript, if any, will indicate the index of the point in
consideration.

2.2 Problem Statement

We consider two perspective images of a single scene, and we want to determine the relation
between the two images and the structure of the scene. This can arise from several situations:

• The two images are taken by a moving camera at two different time instants in a static
environment. Then the displacement of the camera and the structure of the scene will
be estimated.

• The two images are taken by a fixed camera at two different time instants in a dynamic
scene. We assume the two images are projections of a single moving rigid object, other-
wise a pre-segmentation of images into different regions is necessary. The displacement
and structure of the object will be estimated.

• The two images are taken by two cameras either at the same time or at two different
instants. In the latter case, we assume the scene is static. The relative location and
orientation of the two cameras and the structure of the scene will be estimated.

In either of the above situations, we assume the cameras are calibrated, i.e., their intrin-
sic parameters, or the A matrices, are known. Furthermore, since all these problems are
mathematically equivalent, we only consider the third situation.

2.3 Epipolar Equation

Consider now the case of two cameras as shown in Fig. 1, where C1 and C2 are the optical
centers of the cameras. Let the displacement from the first camera to the second be (R, t).
Let m1 and m2 be the images of a 3-D point M on the cameras. Without loss of generality,
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Figure 1: Geometry of motion and structure from motion

we assume that M is expressed in the coordinate frame of the first camera. Under the pinhole
model, we have the following two equations:

s1m̃1 = A1 [I 0] M̃ , (1)

s2m̃2 = A2 [R t] M̃ , (2)

where A1 and A2 are the intrinsic matrices of the first and second cameras, respectively.
Eliminating M, s1 and s2 from the above equations, we obtain the following fundamental
equation

m̃T
2 A

−T
2 [t]×RA−1

1 m̃1 = 0 , (3)

where [t]× is an antisymmetric matrix defined by t such that [t]×x = t×x for all 3-D vector
x (× denotes the cross product).

Equation (3) is a fundamental constraint underlying any two images if they are perspective
projections of one and the same scene. There are two geometric interpretations:

• Equation (3) expresses the fact that four points (C1, m1, C2 and m2) are coplanar.

• Equation (3) can also be interpreted as the point m2 lying on the epipolar line of m1.
Let

F = A−T
2 [t]×RA−1

1 ,

which is known as the fundamental matrix .31,32 The epipolar line of m1, denoted by
lm1 in Fig. 1, is the projection of the semi-line m1C1 on the second image, which is
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defined, up to a scale factor, by the vector lm1 = Fm̃1 (i.e., for all point m on line lm1 ,
we have m̃TFm̃1 = 0). The fact that m1 and m2 correspond to a single point in space
implies that m2 is on lm1 , which gives equation (3).

For convenience, we use p to denote a point in the normalized image coordinate system,
i.e., p̃1 = A−1

1 m̃1, and p̃2 = A−1
2 m̃2. We can then rewrite equation (3) as

p̃T
2 Ep̃1 = 0 with E = [t]×R , (4)

where E is known as the Essential matrix. It was introduced by Longuet-Higgins,5 and its
property has been studied in the literature.7,8, 33 Because the magnitude of t can never be
recovered from two perspective images, we set ‖t‖ = 1. The relationship between E and F is
readily described by F = A−T

2 EA−1
1 and E = AT

2 FA1.
Since [t]× is a skew-symmetric matrix, the determinant of matrix E = [t]×R must be

zero, i.e., matrix E is of rank two. In turn, matrix F is also of rank two. Furthermore, the
elements of E satisfy the following polynomial equation of degree 4:27,33

‖ε1 × ε2‖2 + ‖ε2 × ε3‖2 + ‖ε3 × ε1‖2 =
1
4
(‖ε1‖2 + ‖ε2‖2 + ‖ε3‖2)2 , (5)

where εi is the ith row vector of matrix E.

3 The New Multistage Motion Algorithm

In this section, we first recall the 8-point algorithm, which ignores the constraints on the es-
sential parameters, and the nonlinear algorithm, which performs an optimization directly over
the five-dimensional motion space. Finally, we show how we can impose the zero-determinant
constraint as an intermediate step in order to provide a better initial estimate for the previ-
ously mentioned nonlinear algorithm.

3.1 The Linear Criterion

Equation (4) can be rewritten as a linear and homogeneous equation in the 9 unknown
coefficients of matrix E:

uT ε = 0 , (6)

where

u = [x1x2, y1x2, x2, x1y2, y1y2, y2, x1, y1, 1]T

ε = [E11, E12, E13, E21, E22, E23, E31, E32, E33]T .

Here p1 = [x1, y1]T , p2 = [x2, y2]T , and Eij is the element of E at row i and column j. If we
are given n point matches, by stacking (4), we have the following linear system to solve:

Uε = 0 ,

where U = [u1, · · · ,un]T . This set of linear homogeneous equations, together with the
constraints described at the end of Sect. 2.3, allow us to solve for the motion (R, t).

The minimum number of point matches is five (n = 5) because the rotation has three
degrees of freedom and the translation is only determined up to a scale factor. Faugeras and
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Maybank7 show that at most ten real solutions are possible in this case, but the algorithm
is quite complex. When n > 5, we usually have a unique solution, but in some special cases
we may have at most three solutions.8,34,35 The algorithm for n = 6 is complex, and is not
addressed here.

For n = 7, rank(U) = 7. Through singular value decomposition, we obtain vectors ε1 and
ε2 which span the null space of U. The null space is a linear combination of ε1 and ε2, which
correspond to matrices E1 and E2, respectively. Because of its homogeneity, the essential
matrix is a one-parameter family of matrices αE1 + (1 − α)E2. Since the determinant of E
must be null, i.e.,

det[αE1 + (1− α)E2] = 0 ,

we obtain a cubic polynomial in α. The maximum number of real solutions is 3. For each
real solution we substitute it into (5) to check if it is satisfied. When data are noisy, none of
the solutions satisfies these constraints. If one solution gives a much smaller absolute value
of the polynomials than the other solutions, it can be considered as the motion between the
two images; otherwise, the three solutions are equally feasible, and must all be considered.

If we are given 8 or more matches and ignore the constraints on the essential parameters,
we will be able, in general, to determine a unique solution for E, defined up to a scale factor.
This can be done by solving the following least-squares problem:

min
ε

‖Uε‖2 .

Several methods are possible to solve this problem. The first uses a closed-form solution via
the linear equations by setting one of the coefficients of E to 1. The second solves the classical
problem:

min
ε

‖Uε‖2 subject to ‖ε‖ =
√
2 . (7)

The constraint on the norm of ε is derived from the fact that R is an orthonormal matrix and
‖t‖ = 1.9 The solution is the eigenvector of UTU associated with the smallest eigenvalue.
This approach, known as the eight-point algorithm, was proposed by Longuet-Higgins5 and
has been extensively studied in the literature.6,11,36 It has been proven to be very sensitive
to noise.

Once we have estimated the essential matrix E, we can recover the motion (R, t). See9,29

for the details.
The advantage of the linear criterion is that it leads to an analytic solution. However, we

have found that it is quite sensitive to noise, even with a large set of data points. There are
two reasons for this:

• We have omitted the constraints on the essential matrix. The elements of E are not
independent from each other.

• The quantity we try to minimize (7) does not have much physical meaning.

3.2 Minimizing the Distances to Epipolar Lines

As was described in Sect. 2.3, Fm̃1 represents actually the epipolar line of m1 in the second
image. Ifm2 corresponds exactly tom1, we would expect the distance fromm2 to the epipolar
line Fm̃1 to be zero. Thus, a natural idea is to use a nonlinear criterion by minimizing:
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∑
i d

2(m̃2i,Fm̃1i) , where d(m̃2,Fm̃1) is the Euclidean distance of point m2 to its epipolar
line Fm̃1 in the second image. It is given by

d(m̃2,Fm̃1) =
m̃T

2 Fm̃1√
(Fm̃1)21 + (Fm̃1)22

,

where (Fm̃1)i is the ith component of vector Fm̃1, and the distance is signed. However, unlike
the case of the linear criterion, the two images do not play a symmetric role. To obtain a
consistent epipolar geometry, we also consider distances in the first image. This yields the
following criterion: ∑

i

(d2(m̃2i,Fm̃1i) + d2(m̃1i,FT m̃2i)) ,

which operates simultaneously in the two images. Using the fact that m̃T
2 Fm̃1 = m̃T

1 F
T m̃2,

it can be rewritten as:∑
i

(
1

(Fm̃1i)21 + (Fm̃1i)22
+

1
(FT m̃2i)21 + (FT m̃2i)22

)
(m̃T

2iFm̃1i)2 . (8)

Unlike the case of the linear criterion which uses the elements of the essential matrix, we
minimize the above functional over the motion parameters. Recall that we deal with calibrated
cameras, i.e., F depends only on R and t. The rotation is represented by a 3D vector, whose
direction is parallel to the rotation axis and whose magnitude is equal to the rotation angle.
The translation is represented by its spherical coordinates. Thus, the minimization is carried
out over these five unknowns. As the minimization is nonlinear, we use the result of the
analytical method as its initial guess.

In the above formulation, we use the pixel image coordinates mij . We can also use
the normalized image coordinates pij with a similar formulation (i.e., replace F and m in
(8) by E and p). We have implemented both criteria. Experiments29 have shown that
better results were obtained using pixel image coordinates, i.e., (8), than using normalized
image coordinates. This is because points are usually extracted in pixel images, but not in
normalized images. We can reasonably assume that the noise levels in both point coordinates
are the same if pixel coordinates are used, but they are not the same anymore after having
been transformed into normalized image coordinates because the scales in the two axes are
usually not equal (the ratio is approximately 0.7 in our CCD cameras). Hence, the criterion
(8) is physically more meaningful than using normalized image coordinates.

The criterion (8) is only empirical. Sect. 3.4 will give a criterion based on the maximum
likelihood principle. It involves both motion and structure parameters, and its optimization
is computational much more expensive. The criterion (8) is used as an approximation in
order to achieve a faster convergence with the maximum likelihood criterion. Kanatani12

has derived, through variational analysis, a better criterion which only involves the motion
parameters.

3.3 3D Reconstruction

Once we know the motion (R, t), given a match (m1,m2), we can estimate the 3D coordinates
M by minimizing the distance between the back-projection of the 3D reconstruction and the
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observed image point, that is

M̂ = argmin
M

(‖m1 − h1(a, M)‖2 + ‖m2 − h2(a, M)‖2
)
,

where h1(a, M) and h2(a, M) are the camera projection functions corresponding to (1) and (2),
respectively.

3.4 Maximum Likelihood Estimation

Let a = [rT ,φT ]T be the 5-D vector composed of three parameters representing the rotation
between the two images and two parameters representing the translation (see Sect. 3.2). Let Mj

be the 3-D vector corresponding to the jth point expressed in the coordinate system associated
with the first camera. The motion and structure parameters are then represented by a vector
of (5 + 3n) dimensions, denoted by

θ = [aT , MT
1 , . . . , M

T
j , . . . , M

T
n ]

T .

Assume that each pointmij is corrupted by additive independent Gaussian noiseN(0,Λij).
The maximum likelihood (ML) estimate, θ̂, of the parameter vector θ is the solution to the
following weighted nonlinear least-squares formulation:

θ̂ = argmin
θ

2∑
i=1

n∑
j=1

δmT
ijΛ

−1
ij δmij with δmij = mij − hi(a, Mj) , (9)

which is actually the sum of squared Mahalanobis distances. Here, h1(a, Mj) and h2(a, Mj)
are the camera projection functions corresponding to (1) and (2), respectively. Due to the
nonlinear nature of perspective projection, the solution to the above problem demands the
use of numerical nonlinear minimization technique such as the Levenberg-Marquardt algo-
rithm implemented in the MINPACK library.37 An initial guess on the motion and structure is
required, which can be obtained by using the techniques described previously.

The exact value of the covariance matrix Λij is very difficult to obtain in practice. It
depends on the point detector used, and on the image intensity variation in the neighborhood
of the feature point. However, qualitatively, we expect, and it is confirmed by our experience,
that the noise is reasonably isotropic in the image plane and identically distributed. Thus,
we can assume Λij = σ2 diag (1, 1), where σ is called the noise level which depends on the
quality of the point detector used. We do not need to know the noise level, because the
minimization is not affected by a multiplication of a constant value. From this assumption,
the problem (9) can be simplified as

θ̂ = argmin
θ

2∑
i=1

n∑
j=1

‖mij − hi(a, Mj)‖2 . (10)

The solution to either (9) or (10) requires a numerical minimization to be performed in a
(5 + 3n)-D space, which is huge for a large n. By examining the above formulation, we find
that the structure parameter Mj is only involved in two terms. We can thus “separate” the
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motion estimation from the structure estimation,11 namely

θ̂ = argmin
a

n∑
j=1

[
min
Mj

(‖m1j − h1(a, Mj)‖2 + ‖m2j − h2(a, Mj)‖2
)]
. (11)

That is, we conduct an outer minimization over a which is 5-dimensional, and n independent
inner minimizations over Mj which is 3-dimensional.

3.5 Imposing the Zero-Determinant Constraint to Refine the Initial Mo-
tion Estimate

The two problems described in Sect. 3.2 and Sect. 3.4 are both highly nonlinear, and their
solutions are very sensitive to the initial guess. The initial guess is obtained by projecting the
essential parameters onto the five-dimensional motion space. Unfortunately, the estimation of
the essential parameters as described in Sect. 3.1 is very sensitive to data noise, especially when
motion is small and the space points are close to a degenerate surface such as a plane. One
major reason is that we have ignored the constraints which exist on the essential parameters
and have used 8 parameters instead of 5 (i.e., three redundant parameters). Here, we propose
to impose the zero-determinant (rank-2) constraint, and to estimate 7 parameters before
projecting onto the motion space.

Indeed, there are only 7 independent parameters in a rank-2 matrix defined up to a
scale factor (the scale factor and the rank-2 constraint remove two free parameters), and
the fundamental matrix in the context of two uncalibrated images31 has exactly the same
properties. There are several possible parameterizations for such a matrix, e.g., one can
express one row (or column) of the fundamental matrix as the linear combination of the other
two rows (or columns). The following parameterization

F =

 a b −ax1 − by1
c d −cx1 − dy1

−ax2 − cy2 −bx2 − dy2 (ax1 + by1)x2 + (cx1 + dy1)y2

 (12)

expresses of course a matrix of rank 2, because both the third row and column are the
combinations of the other two rows and columns. Furthermore, there is a nice geometric
interpretation. The parameters (x1, y1) and (x2, y2) are the coordinates of the two epipoles
e1 (projection of the optical center of the second camera in the first camera) and e2 (projection
of the optical center of the first camera in the second camera) (see Fig. 1). The remaining
four parameters (a, b, c, d) define the relationship between the orientations of the two pencils
of epipolar lines. To take into account the fact that the matrix is defined only up to a scale
factor, the matrix is normalized by dividing the four elements (a, b, c, d) by the largest in
absolute value.

The seven parameters, (x1, y1, x2, y2, and three among a, b, c, d), are estimated by mini-
mizing the sum of distances between points and their epipolar lines. That is, we minimize the
same objective function as the one (8) described in Sect. 3.2, except that the minimization
is conducted over the above 7-dimensional parameter space, instead of the five-dimensional
motion space. The minimization is nonlinear, and we use the matrix estimated in (7) as the
initial guess. The determinant of that matrix, denoted by M for clarity, is in general not
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equal to zero. We use the following technique to compute the initial guess. Let

M = USVT

be the singular value decomposition of matrix M, where S = diag (s1, s2, s3) is a diagonal
matrix satisfying s1 ≥ s2 ≥ s3 ≥ 0 (si is the ith singular value), and U and V are orthogonal
matrices. Then, it can be shown that

F = UŜVT (13)

with Ŝ = diag (s1, s2, 0) is the matrix of rank-2 which minimizes the Frobenius norm of
M− F.38 It is easy to verify that

Fẽ1 = 0 and FT ẽ2 = 0 . (14)

Therefore, ẽ1 = [e11, e12, e13]T and ẽ2 = [e21, e22, e23]T are equal to the last column of V and
U, respectively. From them, we have

xi = ei1/ei3 and yi = ei2/ei3 for i = 1, 2.

In turn, the four remaining elements (a, b, c, d) can be computed from F.
Note that this intermediate stage can be applied to normalized image coordinates as well

as pixel image coordinates, because both the determinant of E and that of F should be equal
to 0.

3.6 Summary of the New Multistage Algorithm

We now summarize the main steps of our multistage algorithm:

Step 1: Estimate the essential parameters with 8-point algorithm (7). The obtained matrix
is denoted by E1.

Step 2: Estimate a rank-2 matrix, denoted by E2, from E1 using (13), and compute the
seven parameters from E2.

Step 3: Refine the seven parameters by minimizing the sum of squared distances between
points and their epipolar lines, i.e., the objective function (8). The obtained matrix is
denoted by E3. The zero-determinant constraint is satisfied.

Step 4: Estimate the motion parameters t and R from E3 (see e.g., 9 for the details).

Step 5: Refine the motion parameters by minimizing the sum of squared distances between
points and their epipolar lines, i.e., the objective function (8).

Step 6: Reconstruct the corresponding 3D points as described in Sect. 3.3.

Step 7: Refine the motion and structure estimate by using the maximum likelihood criterion
(11).

If we bypass steps 2 and 3, we have a standard 2-stage algorithm. The nonlinear minimization
in steps 3, 5, 6, and 7 is done with the Levenberg-Marquardt algorithm implemented in the
Minpack library.37
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The uncertainty in motion and structure parameters can also be estimated, which is
described in.29

4 Experimental Results

In this section, we first describe our Monte-Carlo simulations to show that our new multistage
algorithm yields much more reliable results than the standard one when the level of noise in
data points is high or when data points are located close to a degenerate configuration. We
then present a set of real data with which the standard algorithm does not work while ours
does. In,29 we provide another set of Monte-Carlo simulations and a set of real data which
show that better results can be obtained if we work directly with pixel coordinates rather
than normalized image coordinates, because points are usually extracted from pixel images.

Figure 2: Images of two planar grids hinged together with θ = 45◦. Gaussian noise of σ = 0.5
has been added to each grid point

4.1 Computer Simulated Data

We use the same configuration as that described in.30 The object is composed of two planar
grids which are hinged together with angle π − θ. When θ = 0, the object is planar, which
is a degenerate configuration for the algorithms considered in this paper. Each grid is of size
180 × 360 units2. The object is placed in the scene with a distance of 530 units from the
camera. The two images have the same intrinsic parameters: αu = αv = 600, u0 = v0 = 255,
and c = 0. They differ by a pure lateral translation: t = [−40, 0, 0]T , andR = I. Small lateral
motion is difficult for motion estimation because rotation and translation can be confused.
The grid points are used as feature points. The x- and y-coordinates of each grid point are
perturbed by independent random Gaussian noise of mean 0 and standard deviation σ pixels.

A pair of images with θ = 45◦ and σ = 0.5 pixels is shown in Fig. 2. The motion estimate
given by the 2-stage algorithm is: r = [−7.981238e−05,−7.961793e−02, 3.779707e−04]T (in
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Figure 3: 3D reconstruction of the images shown in Fig. 2 with the 2-stage algorithm: Front
and top views

Figure 4: 3D reconstruction of the images shown in Fig. 2 with the 3-stage algorithm: Front
and top views

radians) for rotation (which should be [0, 0, 0]T ), and t = [2.091024e− 01− 3.089894e− 02−
9.774055e− 01]T for translation (which should be [−1, 0, 0]T ). The corresponding 3D recon-
struction is shown in Fig. 3. Clearly, the 2-stage algorithm fails. When we apply the 3-stage al-
gorithm to the same data, we obtain r = [−6.969567e−04,−1.785441e−03,−2.330740e−04]T

for rotation, and t = [−9.999643e−01,−8.318301e−03, 1.468760e−03]T for translation. The
corresponding 3D reconstruction is shown in Fig. 4. As can be observed, quite reasonable re-
sult has been obtained with our new multistage algorithm, taking into account the fact that
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Table 1: Comparison of the number of success trials out of 100 between the standard 2-stage
(2S) algorithm and our new multistage (3S) algorithm

σ = 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
θ 2S 3S 2S 3S 2S 3S 2S 3S 2S 3S 2S 3S 2S 3S 2S 3S
10 0 23 0 1 0 0 0 0 0 0 0 1 0 0 0 0
20 0 77 0 29 0 6 0 3 0 0 0 0 0 0 0 0
30 12 91 0 66 0 36 0 7 0 6 0 2 0 0 0 1
40 100 100 0 87 0 60 0 33 0 18 0 10 0 5 0 3
50 100 100 2 94 0 83 0 72 0 50 0 32 0 15 0 12
60 100 100 77 99 0 89 0 82 0 76 0 62 0 38 0 25
70 100 100 100 100 2 95 0 91 0 90 0 78 0 57 0 41
80 100 100 100 100 47 99 0 94 0 91 0 86 0 82 0 69
90 100 100 100 100 98 100 0 98 0 93 0 96 0 84 0 85

the object is close to a plane surface.
Now we provide more systematic and statistic results. We vary the angle θ from 10◦ to

90◦ with an interval of 10◦. We also vary the level of the Gaussian noise added to the grid
points. The standard deviation σ varies from 0.25 pixels to 2.0 pixels with an interval of
0.25 pixels. For each θ and each σ, we add 100 times independent noise to the grid points.
For each set of noisy data, we apply the 2-stage algorithm and our multistage algorithm. If
the estimated translation vector and the true one (i.e., [−1, 0, 0]T ) form an angle larger than
45◦, then the algorithm is considered to have failed for this set of data. Among 100 trials for
each θ and each σ, we count the number of times that the algorithm succeeds. The result
is shown in Table 1. For a more direct perception of the difference of the two algorithms in
performance, we show in Fig. 5 the curves of the number of successes with respect to various
noise levels when θ is fixed at 60◦ and 90◦, respectively. In Fig. 6, we show the curves with
respect to various angles θ when the noise level σ is fixed at 0.5 pixels. A general rule is that
the number of success decreases when the angle θ approaches to 0◦ and when the noise level σ
increases. In all cases, our new multistage algorithm outperforms the 2-stage algorithm. The
3-stage algorithm gives much more reliable motion and structure estimate when the points
are close to a planar surface (a degenerate configuration for the motion algorithms considered
here) and when data points are heavily corrupted by noise. A final point is that the two
algorithms give the same result when they both converge to the true solution. This is not
surprising because the same optimization criterion is used in the last stage.

4.2 Real Data

In Fig. 7, we show a real image pair taken in a rock scene. This is a difficult set of data
because the scene is quite flat except at the upper right corner where there is a big rock. We
have overlayed on the images the point matches automatically established by the techniques
described in13 and Appendix A. When the 2-stage algorithm applies to this set of matches,
the motion estimate is r = [−2.566072e − 02, 1.801078e − 03, 2.640767e − 02]T for rotation,
and t = [1.986539e − 02, 3.913866e − 02,−9.990363e − 01]T for translation. We do not have
the ground truth for this image pair, but since the reconstructed scene is not meaningful (and
is thus not shown), we can say that the 2-stage algorithm fails.
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Figure 5: Comparison of the standard and new algorithms for (a) θ = 60◦and (b) θ = 90◦with
respect to noise level
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Figure 6: Comparison of the standard and new algorithms for σ = 0.5 pixels with respect to
the angle θ of the object

When our multistage algorithm applies to the same set of matches, the motion estimate
is r = [−2.101698e− 02, 4.207611e− 02, 1.042726e− 02]T for rotation, and t = [−9.667039e−
01, 1.859049e − 01,−1.758490e − 01]T for translation. The corresponding reconstructed 3D
points are shown in Fig. 8. For a reader who knows how to do cross-eye fusion, we have
generated a pair of stereograms shown in Fig. 9, where points have been linked based on
Delaunay triangulation. Qualitatively, the result is quite good.

15



Figure 7: Two images of a rock scene

Figure 8: Reconstructed 3D points of the rock scene: Front and top views

5 Conclusions

In this paper, we have actually proposed a general scheme of 3D motion estimation from
multiple calibrated images. Instead of projecting directly the essential parameters (defined in
8-dimensional space) onto the motion parameter space (which is 5-dimensional), we consider
the estimation of a rank-2 matrix defined up to a scale factor (i.e., fundamental matrix,
which is defined in 7-dimensional space) as an intermediate step to determine 3D Euclidean
motion and structure. The proposed approach has been tested with synthetic and real data,
and considerable improvement has been observed for the delicate situations such as heavily
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Figure 9: Stereogram of the reconstructed 3D points of the rock scene

noisy data and near-degenerate data. Note that the constraints we used in the intermediate
stage are actually all constraints existing between two sets of image points if the images are
uncalibrated (the intrinsic parameters are not know). That is, we are determining projective
motion and structure in this stage. Our conjecture from this work is that the imposition of the
constraints arising from projective geometry should be used as an intermediate step in order
to obtain reliable 3D Euclidean motion and structure estimation from multiple calibrated
images.

We have also shown in29 through Monte-Carlo simulations and a set of real data that
better results, especially in translation, have been obtained when pixel image coordinates are
used. This is not surprising because independent and identically distributed noise has been
added to pixel coordinates in simulation; and in practice, points are usually extracted from
pixel images.

We have performed a direct projection of a 7-dimensional space to a 5-dimensional one.
It would be interesting to know whether there exists a 6-dimensional space which bridges the
fundamental matrix and the essential matrix.

A Detection of false matches

Given two images, we need to establish some pixel correspondences between them before
computing motion and structure. The only geometric constraint we know between two images
of a single scene is the epipolar constraint . However, when the motion between the two images
is not known, the epipolar geometry is also unknown. The methods reported in the literature
all exploit some heuristics in one form or another, for example, intensity similarity, which are
not applicable to most cases. In,39 we have developed an automatic and robust technique for
matching two uncalibrated images. It consists of the following steps:

• extract high curvature points from each image using a corner detector;

• find match candidates for each high curvature point based on the normalized cross
correlation;

• disambiguate matches through fuzzy relaxation by using neighboring information;
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• detect false matches with the least-median-squares technique based on a criterion defined
by the distances between points and their epipolar lines.

In that work, the intrinsic parameters of the images are not known, and we have to use
the fundamental matrix. This is not the case for the problem described in this paper, and
indeed we have more information available. In the following, we present the adaptation of
the previously developed robust technique to solve the problem at hand.13

In all matches established by some heuristic technique, we may find two types of outliers
due to

bad locations. In the estimation of the motion, the location error of a point of interest is
assumed to exhibit Gaussian behavior. This assumption is reasonable since the error
in localization for most points of interest is small (within one or two pixels), but a few
points are possibly incorrectly localized (more than three pixels). The latter points will
severely degrade the accuracy of the estimation.

false matches. In the establishment of correspondences, only heuristics have been used.
Because the only geometric constraint, i.e., the epipolar constraint, is not yet available,
many matches are possibly false. These will completely spoil the estimation process,
and the final estimate of the motion will be useless.

The outliers will severely affect the precision of the motion if we directly apply the methods
described above. In the following, we give a brief description of the two most popular robust
methods: the M-estimators and the least-median-of-squares (LMedS) method.

Let ri be the residual of the ith datum, i.e., the difference between the ith observation and
its fitted value. The standard least-squares method tries to minimize

∑
i r

2
i , which is unstable

if there are outliers present in the data. The M-estimators replace the squared residuals r2i
by another functions of the residuals, yielding

min
∑

i

ρ(ri) ,

where ρ is a symmetric, positive-definite function with a unique minimum at zero. For
example, Huber40 employed the squared error for small residuals and the absolute error for
large residuals. The M-estimators can be implemented as a weighted least-squares problem.
That is, we use ρ(ri) = wir

2
i with small wi for large ri.

The LMedS method estimates the parameters by solving the nonlinear minimization prob-
lem:

min median
i

r2i .

That is, the estimator must yield the smallest value for the median of squared residuals
computed for the entire data set. It turns out that this method is very robust to false matches
as well as outliers due to bad localization. Unlike the M-estimators, however, the LMedS
problem cannot be reduced to a weighted least-squares problem. It is probably impossible
to write down a straightforward formula for the LMedS estimator. It must be solved by a
search in the space of possible estimates generated from the data. Since this space is too
large, only a randomly chosen subset of data can be analyzed. The algorithm which we have
implemented for robustly estimating the motion follows that structured in [41, Chap. 5], as
outlined below.
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Given n point correspondences: {(m1i,m2i)}. A Monte Carlo type technique is used to
draw m random subsamples of p different point correspondences. For the problem at hand,
we select seven (i.e., p = 7) point matches for the reason to be clearer later. For each
subsample, indexed by J , we use the techniques described in Sect. 3.1 to compute the motion
(R, t), which, in turn, determines the fundamental matrix FJ . For each FJ , we can determine
the median of the squared residuals, denoted by MJ , with respect to the whole set of point
correspondences, i.e.,

MJ = median
i=1,...,n

[d2(m̃2i,FJm̃1i) + d2(m̃1i,FT
J m̃2i)] .

We retain the estimate FJ for which MJ is minimal among all m MJ ’s. The question now
is: How do we determine m? A subsample is “good” if it consists of p good correspondences.
Assuming that the whole set of correspondences may contain up to a fraction ε of outliers,
the probability that at least one of the m subsamples is good is given by

P = 1− [1− (1− ε)p]m . (15)

By requiring that P must be near 1, one can determine m for given values of p and ε. In
our implementation, we assume ε = 40% and require P = 0.99, thus m = 163. Note that
the algorithm can be speeded up considerably by means of parallel computing, because the
processing for each subsample can be done independently.

As described in Sect. 3.1, five correspondences are theoretically sufficient, but we may have
at most ten solutions and the algorithm is quite complex.7 It will take time to compute the
solutions and we need to check each solution against the whole set of data. If p ≥ 8, a simple
linear algorithm is available, however, for the same ε and P , the number of tries (i.e., m) is
much higher than with a smaller p, following (15). For example, if p = 8, then m = 272 for
ε = 40% and P = 0.99, almost doubled compared with that with p = 7. This is because we
decrease the probability to have a good subsample when increasing the number of matches in
each subsample. We think that p = 7 is a good trade-off.

As noted in,41 the LMedS efficiency is poor in the presence of Gaussian noise. The
efficiency of a method is defined as the ratio between the lowest achievable variance for the
estimated parameters and the actual variance provided by the given method. To compensate
for this deficiency, we further carry out a weighted least-squares procedure. The robust
standard deviation estimate is given by

σ̂ = 1.4826[1 + 5/(n− p)]
√
MJ ,

where MJ is the minimal median. The constant 1.4826 is a coefficient to achieve the same
efficiency as a least-squares in the presence of only Gaussian noise; 5/(n−p) is to compensate
the effect of a small set of data. The reader is referred to [41, page 202] for the details of
these magic numbers. Based on σ̂, we can assign a weight for each correspondence:

wi =

{
1 if r2i ≤ (2.5σ̂)2

0 otherwise ,

where r2i = d2(m̃2i,Fm̃1i)+d2(m̃1i,FT m̃2i) . The correspondences having wi = 0 are outliers
and should not be further taken into account. The motion (R, t) is finally estimated by
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solving the weighted least-squares problem:

min
R,t

∑
i

wir
2
i

using the technique described in Sect. 3.2. We have thus robustly estimated the motion
because outliers have been detected and discarded by the LMedS method.

As said previously, computational efficiency of the LMedS method can be achieved by
applying a Monte-Carlo type technique. However, the seven points of a subsample thus
generated may be very close to each other. Such a situation should be avoided because the
estimation of the motion from such points is highly instable and the result is useless. It is a
waste of time to evaluate such a subsample. In order to achieve higher stability and efficiency,
we have developed a regularly random selection method based on bucketing techniques. See29

for the details.
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