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Abstract

In this paper, we tackle the problem of speech enhancement from two fronts: speech modeling and multisensory input. We present a
new speech model based on statistics of magnitude-normalized complex spectra of speech signals. By performing magnitude normaliza-
tion, we are able to get rid of huge intra- and inter-speaker variation in speech energy and to build a better speech model with a smaller
number of Gaussian components. To deal with real-world problems with multiple noise sources, we propose to use multiple heteroge-
neous sensors, and in particular, we have developed microphone headsets that combine a conventional air microphone and a bone sen-
sor. The bone sensor makes direct contact with the speaker’s temple (area behind the ear), and captures the vibrations of the bones and
skin during the process of vocalization. The signals captured by the bone microphone, though distorted, contain useful audio informa-
tion, especially in the low frequency range, and more importantly, they are very robust to external noise sources (stationary or not). By
fusing the bone channel signals with the air microphone signals, much improved speech signals have been obtained.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Speech signals captured by microphones are corrupted
by various noise sources. Speech enhancement, i.e.,
improving the quality of degraded speech, has many appli-
cations such as speech communications and man–machine
interaction. Despite more than three decades of research,
speech enhancement algorithms are not robust to different
operating conditions. The problems related to speech
enhancement may be grouped under two broad categories,
namely, noise modeling and speech modeling. While algo-
rithms have been proposed to rid a speech signal of station-
ary noise sources, non-stationary noise still poses a
challenge. The other dimension to the problem lies in the
difficulty of learning an accurate model of human speech

due to the inherent non-stationarity of speech, huge intra-
and inter-speaker variability, often unpredictable environ-
mental conditions (for example reverberation effects), and
sometimes arbitrary microphone gain setting. An accurate
speech enhancement technique requires explicit and accu-
rate statistical models for the speech signal and noise
processes.

Based on the domain in which removal is done, speech
enhancement algorithms may be classified under two broad
categories, namely, time-domain based algorithms and
spectral-domain based methods. For the former category,
examples include (Paliwal and Basu, 1987; Gannot et al.,
1998; Lee et al., 1995). For the latter, Quatieri (2002)
provides a nice description of various algorithms including
spectral subtraction, Wiener filtering, model-based process-
ing and auditory masking. The spectral domain algorithms
are usually more attractive from the computational stand-
point. Attempts have also been made to model state
changes over time in the frequency domain. Lim and
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Oppenheim (1979) model the short-term speech and noise
signals as an autoregressive process. Ephraim (1992) model
the long-term speech and noise signals as a hidden Markov
process. While autoregressive and hidden Markov models
have proved extremely useful in coding and recognition,
they were not found to be sufficiently refined for speech
enhancement (Ephraim et al., 2005).

Based on the number of channels input, speech enhance-
ment techniques may be classified as single channel and
multi-channel algorithms. A majority of the algorithms
discussed in the previous paragraph are single channel
methods. Multi-channel algorithms make use of informa-
tion from more than one sensor for speech enhancement
(Meyer and Simmer, 1997; Lotter et al., 2003; Nandkumar
and Hansen, 1995). However, the sensors are all usually of
a similar type (e.g., an array of air microphones). (Jeannes
et al., 2001) has a nice survey of multi-channel speech
enhancement algorithms. Prominent multi-channel tech-
niques include adaptive noise cancellation (ANC) and
beamforming. ANC is based on the availability of an aux-
iliary channel known as the reference where a sample of the
contaminating noise is assumed to be present. In practice
though, it is very difficult to find a speech-free noise refer-
ence. In the case of beamforming, the gain of a microphone
in an array is adjusted based on the direction of the noise
source.

In general, while multi-channel methods tend to outper-
form single-channel algorithms, their performance in diffi-
cult environments (for example, non-stationary noise) still
leaves a lot to be desired. One of the down sides of
multi-channel methods is that, while there are multiple sen-
sors at play, all the sensors are of a similar ‘type’, and they
all capture various amounts of signal and noise simulta-
neously. One solution to this problem is to use different
types of sensors, ideally where the sensors contain compli-
mentary information – we refer to this as multisensory

processing. It is important to highlight the fact that, in
multisensory processing, the different sensors have different
properties and thus simple modification of multi-channel
techniques will not yield desired results. One area in the
speech community where multisensory processing has
received a lot of attention is speech recognition, i.e.,
audio–visual speech processing. It involves the use of a reg-
ular microphone along with a camera that captures images
of the speakers mouth/face region. The visual stream is
used to disambiguate between phones that are easily con-
fused when using only the audio stream (Potamianos
et al., 2004). Further, the video stream also lends noise
robustness to the speech recognition engine as the visual
data is immune to noise effecting the audio stream.

In the speech enhancement community though, interest
in multisensory methods has been to some extent limited.
Some examples of previous work in this area include, Gra-
ciarena et al. (2003), where they combined air and throat
microphones for noise robustness in speech recognition.
They trained a mapping from the concatenated features
of both microphone signals in a noisy environment to clean

speech. One down side of their approach, is that the map-
ping is environment dependent. This can lead to generaliza-
tion problems in unseen environments. Further, their
model does not produce an enhanced waveform but rather
only enhances features for speech recognition. Strand et al.
(2003) designed an ear plug to capture the vibrations in the
ear canal, and used the signals for speech recognition with
MLLR adaptation. Heracleous et al. (2003) used a stetho-
scope device to capture the bone vibrations of the head and
used that for non-audible murmur recognition. Like in
Strand et al. (2003), they only used the bone signals for
adapting the recognizer.

Another work that makes use of a bone sensor for
speech enhancement is that of Aliph’s Jawbone headsets
(http://www.jawbone.com/). This device also uses an air
microphone and a bone sensor. The bone sensor is only
used as a voice activity detector. When the speaker is not
speaking, the air microphone signals are used to build a
noise model, and when the speaker is speaking, this adap-
tively built noise model is used to subtract noise from the
air microphone signals. In our work, the bone sensor is
not only used as a voice activity detector to adaptively
build a noise model but also used for speech enhancement
through multisensory processing.

The broad goals of this work are, firstly, to come up
with a solution that makes use of multiple sensor streams
to combat highly non-stationary noise, and secondly, to
develop algorithms that can take advantage of additional
sensor streams to reliably estimate the clean signal. We
hope to replicate the ‘clean signal’ as closely as possible,
so as to improve the overall user experience of speech com-
munication in highly non-stationary noisy environments.

In this paper, we attack the problem of speech enhance-
ment in non-stationary environments on several fronts: (a)
we propose to integrate alternative sensors, in particular
the bone-conductive sensor, with standard air-conductive
microphone to deal with highly non-stationary noise, (b)
we propose a new speech model based on magnitude-nor-
malized spectra, which alleviates the issues related to
intra- and inter-speaker variations and (c) we propose
algorithms/models that can take advantage of the above
in order to produce good quality speech in noisy
environments.

In Section 2, we present details about the new multi-sen-
sory microphone that is robust to noise. We also discuss
some of our previous work using this multi-sensory micro-
phone and highlight its shortcomings. In Section 3 we discuss
the proposed magnitude normalized speech model. Next, in
Section 4 we discuss speech enhancement using the multi-
sensory headset and the proposed speech model. Details of
the experimental setup are in Section 5. Finally, Sections 6
and 7 discuss the results, conclusions and future work.

2. Air-and-bone conductive microphone

We developed an air-and-bone conductive (ABC) micro-
phone that makes use of a bone conduction microphone in
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addition to the regular air microphone (Zhang et al., 2004).
Fig. 1 shows two prototypes of the ABC microphone. In
the case of the first prototype, when the user wears the
device, the bone sensor resides on his/her temple and the
air channel is a close-talking microphone. In the case of
the second prototype, the bone sensor is positioned behind
the ear, while the air channel is a medium-sized boom of
45 mm. Either case, the bone conduction microphone cap-
tures the vibrations caused in the speakers’ bones and skin
during the process of vocalization.

Fig. 2 shows the time and frequency domain renditions
of a speech signal captured using the ABC microphone in a
relatively noise-free office environment. As it can be seen
the bone sensor only captures frequency components up
to 3 KHz. Fig. 3 shows the frequency response of the air
and bone channels averaged over all the speech frames in
the utterance used in Fig. 2. It can be seen that at low fre-
quencies (<700 Hz) the bone sensor follows the air sensor
closely, but tapers down for higher frequencies. Fig. 4
shows a comparison of the frequency response of the air
and bone channels in a noisy environment. The utterance
used to generate this figure was recorded in a cafeteria with
ambient noise level 85 dBc. The first plot shows the average
response in the air channel for speech and non-speech
(noisy) frames. It can be seen that except in the low fre-
quencies, the SNR for frequencies >2 KHz is about 0 dB.
The second plot shows the response for signal captured

by the bone microphone. Here it can be seen that the
speech is on an average 20 dB above the noise. This illus-
trates the noise robustness of the bone sensor.

More information on the ABC microphone and other
alternative sensors to capture speech may be obtained in
(Zhang et al., 2004). In essence, with the use of the addi-
tional sensor, we have one stream with undistorted but
noise corrupted speech (air channel) and another stream
with distorted but fairly uncorrupted speech (bone chan-
nel). This truly exemplifies the complementary relationship

Fig. 1. Two prototypes of air-and-bone conductive (ABC) microphone headsets.
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Fig. 2. Time and frequency domain renditions of the signals captured by the ABC microphone for a female speaker saying ‘‘This advice sounds
questionable.’’. The first row shows the signal captured by the air microphone and the second row shows the signal captured by the bone microphone.
Sampling rate is 16 KHz.
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Fig. 3. Frequency Response of the two channels for the utterance ‘‘This
advice sounds questionable.’’ spoken by a female speaker. The frequency
response was computed by averaging the spectra over all the speech frames
in the above utterance. The x-axis represents frequency on a linear scale
and the y-axis represents magnitude on a log scale.
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that exists in most multisensory problems. The challenge
here is to intelligently fuse the signals from the two sensors
to obtain an estimate of the ‘clean’ signal.

As one of the end goals of this work is to improve the
overall user experience in noisy environments, it is thus
imperative to reproduce both the magnitude and phase of
the ‘cleaned’ signal. Furthermore, we are in pursuit of an
algorithm that is computationally inexpensive and can be
implemented using a low power digital signal processor
(DSP). The above two goals constrain the possible candi-
dates for processing domains. The time domain is ruled
out because of the computational complexity. The
Mel-cepstral domain, though attractive from the percep-
tual point of view, does not take into account the phase
information. The same holds for the real cepstral domain.
As a result, we are left with the spectral domain or its vari-
ants. We choose not to work in the log-spectral domain
because (a) the use of the logarithm leads to non-linearities
in the processing algorithms, and (b) modeling phase in
the log-spectral domain is not entirely straightforward. In
consequence, we choose the complex spectral domain to
process our signals.

In the remainder of this section we discuss some of our
previous work in this area and also highlight some of its
short-comings. In (Zheng et al., 2003), we proposed an
algorithm based on the SPLICE technique to learn the
mapping between the two streams and the clean speech sig-
nal. One drawback of this approach is that it requires prior
training and therefore can lead to generalization difficul-
ties. In the same work, we also proposed a speech detector
based on a histogram of the energy in the bone channel. In
(Liu et al., 2004), we proposed an algorithm called direct
filtering (DF) that does not require any prior training in
order to estimate the clean speech signal. The transfer func-
tion from the close talking channel to the bone-channel is
learned from the given utterance and the clean signal is esti-
mated in a maximum likelihood framework. It was also
shown that the performance of the DF algorithm is better
compared with the algorithm proposed in (Zheng et al.,
2003) for speech enhancement. However, one drawback

with the DF algorithm is the absence of a speech model,
which can lead to distortion in the enhanced signal. In
(Liu et al., 2005), we extended the DF algorithm to deal
with the environmental noise leakage into the bone sensor,
and the teethclack problem that is caused when the users’
upper and lower jaws come in contact with each other dur-
ing the process of articulation. A common factor amongst
all the above approaches (and for that matter any real-time
speech enhancement system) is the requirement of accurate
speech/voice activity detection. The technique proposed in
(Zheng et al., 2003), which makes use of a function of the
energy in the bone sensor, although robust to noise, has a
number of problems, such as (a) some classes of phones
(e.g., fricatives) have low energy in the bone sensor, thus
producing false negatives; and (b) leakage of ambient noise
in the bone sensor can lead to false positives. Furthermore,
by using just the bone sensor for speech detection, we are
not leveraging the two channels of information provided
by the multisensory headset. In (Subramanya et al.,
2005), we proposed an algorithm that takes into account
the correlation between the two channels for speech detec-
tion and also incorporates a speech model within a graph-
ical model (GM) framework thereby reducing the amount
of distortion in the enhanced signal. However, this work
made use of a simplistic speech model (single Gaussian),
and thus led to distortion in the enhanced signal whenever
there was a mismatch between the training and test condi-
tions. Further, there were also issues with gain normaliza-
tion as the model was built in the complex spectral domain.
Another drawback of (Subramanya et al., 2005) was the
inherent lack of temporal smoothness. The model had no
temporal constraints and thus exhibited sudden changes
in state, leading to distortions in the output signal. In this
work we extend the above algorithm with a new magni-
tude-normalized speech model and investigate the benefit
of using multiple Gaussian components. Further we also
propose a dynamic Bayesian network (DBN) that uses
the above speech model and takes into account temporal
constraints to produce a relatively distortionless enhanced
speech signal.
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Fig. 4. Frequency response for speech and noise in the two channels (manually segmented) for the utterance ‘‘This advice sounds questionable’’ spoken by
a female speaker. The frequency responses were computed by averaging the spectra over the speech and non-speech frames respectively in each channel.
The x-axis represents frequency on a linear scale and the y-axis represents magnitude on a log scale. The response due to speech is represented using dashed
lines and the response due to noise is represented using solid lines.
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3. Magnitude-normalized complex spectrum-based speech

model

In Bayesian statistics, prior information on hidden vari-
ables plays a crucial role in inference. If z represents the
hidden variable that we wish to estimate given some obser-
vation o, using Bayes rule we have p(zjo) = kp(ojz)p(z),
where k is a constant independent of z. In the above, p(z)
is the prior information about z, and represents the knowl-
edge about z that is known even before o is observed. In the
case of speech enhancement (and in general speech process-
ing), a speech model lends itself into such a role by provid-
ing a prior on clean speech that is hidden given noisy
speech. However, modeling human speech is an extremely
complex problem owing to its large variability. Some of
the factors contributing to this variability include: differing
spectral profiles for different speakers; changes in loudness,
intonation and stress even for a single speaker due to con-
text, emotive state, environmental conditions, etc.; varia-
tions due to gender, social background, etc.

In general, statistical models of speech have relied on
using mixtures of densities to accurately model speech
(Chen et al., 2002). However, even a mixture model is
not suitable to deal with issues related to changes in loud-
ness and recording device gains (as we would need infinitely
many mixtures to model all possible scenarios). An
approach that has been used to deal with these issues is
to model speech in the cepstral domain, where such
changes are reflected in the first cepstral coefficient that is
then neglected for modeling purpose (Wu et al., 2003). This
approach has been popular when speech enhancement is
done to improve speech recognition performance. However
(as discussed in the last section) working in the cepstral
domain has its own disadvantages, which include issues
with non-linearity and absence of phase in the recon-
structed signal. In the complex spectral domain, however,
it is possible to recover both the magnitude and phase,
but we need some form of gain normalization. Gain nor-
malization has been studied in the past and can be grouped
under two categories, namely, speech gain normalization
(Yoshizawa et al., 2004) and noise gain normalization
(Zhao and Kleijn, 2005). One important distinction
between the work in (Zhao and Kleijn, 2005) and the cur-
rent algorithm is that here we are normalizing the clean
speech signal rather than the noise. In the case of speech
gain normalization, majority of the work has been on gain
normalization in the cepstral domain (Yoshizawa et al.,
2004)1. In our case we work in the complex spectral
domain, where, the normalization problem to some extent
is more challenging than the cepstral domain.

We briefly digress to explain the notation used in this
paper. Lower case alphabets are used to represent signals
in the time-domain; x(k) represents the clean speech signal

that we wish to estimate, k is the time index, y(k) and b(k)
represent the signals captured by the air and bone sensors
respectively. The signals y(k) and b(k) are transformed
using the short-time Fourier transform (STFT) using
appropriate windows yielding Yt and Bt respectively, where
t is the frame index. Note that both Yt and Bt are vectors.
Let Xt be a frame of the clean speech signal that we wish to
estimate given Yt and Bt. As we are dealing with real sig-
nals, the Fourier transform is symmetric about the zero fre-
quency axis and thus we need to consider only one-half of
the spectrum for processing. Thus if 2(N � 1) is the length
of the Fourier transform (FFT), then Yt, Bt (and thus Xt)
are vectors of length N (including the dc and nyquist
terms). We represent this as Y t ¼ ½Y l

t ; . . . ; Y f
t ; . . . ; Y N

t �
T.

Henceforth we use Y f
t to refer to a particular component

of Yt. In other words, Y f
t represents the value of the fth fre-

quency component of the tth frame of y(k). Note that Bt

and Bf
t , Xt and X f

t are defined in a similar fashion. Given
Xt, x(k) may be reconstructed using an inverse Fourier
transform and the overlap-and-add procedure. If Zt is a
random variable that follows a Gaussian (normal) distribu-
tion, this is denoted using p(Zt) � N(Zt; l,R) or N(l,R),
where l and R are the mean and covariance of Zt. Also
� is used to denote ‘‘distributed as’’. Unless otherwise sta-
ted, we use 16 KHz as the default sampling rate for all our
experiments in this work. Other notation will be defined as
required.

3.1. Model definition

We propose the use of magnitude-normalized complex
spectra as features for the speech model. In order to build
such a speech model, the frames of the speech signal are
normalized with their energy, i.e.,

eX t ¼
X t

kX tk
: ð1Þ

Thus all eX t’s are unit vectors and distributed on a unit
hyper-sphere. It can be easily seen that the above step
has a variance reducing effect because instead of attempting
to capture the variations in an n-dimensional space, we are
modeling a region on a unit hyper-sphere. However, as a
result of the above normalization, the model now requires
a gain term gxt

to match the model with the observation.
We will describe an iterative approach to estimating the
gain in Section 4.5.

3.2. Training

In order to train the speech model, we collected data
from a number of speakers in a clean environment. We
then made use of energy-based speech detector to extract
all the speech frames in the above utterances. Let us denote
these frames as fX tgT

t¼1 (assuming T frames of speech in the
training set). The resulting speech frames were then energy
normalized as explained in the previous section to yield
feX tgT

t¼1. We then ran the k-means algorithm (with random

1 They use all the cepstral coefficients for modeling speech, i.e., the first
coefficient is not neglected.
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initialization) on the above energy normalized speech
frames using the following distance metric:

dðeX i; eX jÞ ¼ ½dðeX 1
i ;
eX 1

j Þ; . . . ; dðeX f
i ; eX f

j Þ; . . . ; dðeX N
i ;
eX N

j Þ�
T

��� ���;
1 6 i; j 6 T ;

dðeX f
i ; eX f

j Þ ¼ log jeX f
i j � log jeX f

j j; 1 6 f 6 N ð2Þ

to yield M clusters. We use a mixture of Gaussians to mod-
el the normalized speech. The means and variances of these
Gaussians are set to the mean and variance of the clusters
obtained above. The responsibility of each Gaussian in the
mixtures, ai(0 6 i 6M � 1), is set to N(i)/T, where N(i) is
the number of elements in the ith cluster. Thus we have thatPM

i¼1ai ¼ 1. We discuss more about this model in Section
4.3.

4. A dynamic Bayesian network for speech enhancement

in a multisensory headset

A dynamic Bayesian network (DBN) represents a family
of probability distributions defined in terms of a directed
graph. The nodes in the graph represent random variables,
and the joint probability distribution over the variables is
obtained by taking products over functions on connected
subsets of nodes. By exploiting graph-theoretic representa-
tions, DBNs provide general algorithms for computing
marginal and conditional probabilities of interest (Jordan
and Weiss, 2002; Bilmes, 2000; Zweig et al., 2002; Bilmes,
2001). The popular Hidden Markov Models (HMMs)
maybe represented as a DBN. A characteristic of DBNs
that distinguishes them from other classes of graphical
models is that some (or sometimes all) of the edges in the
graph point in the direction of increasing time. DBNs have
been applied to many tasks in the past including, speech
recognition ( Zweig et al., 2002), vision applications such
as tracking (Beal et al., 2003), natural language processing
(NLP) applications such as parsing, tagging (Klein and
Manning, 2002). In this paper we propose to use a DBN
for speech enhancement using a multi-sensory microphone.
See (Jordan and Weiss, 2002) for more information on
DBNs, their usage and inference.

4.1. Network description

Fig. 5 shows two frames of a DBN used to model the
enhancement process in the complex spectral domain.
Here, all observed variables are shaded. In this model,

• St is a discrete random variable representing the state
(speech/non-speech) of the frame,

• Mt is a discrete random variable acting as an index into
the mixture of distributions modeling speech/non-
speech,

• eX t represents magnitude-normalized speech,
• gxt

scales eX t to match the clean speech Xt,
• Vt is the background noise,

• Ut and Wt represent the sensor noise in the air and bone
channels respectively,

• Ht is the optimal linear mapping from Xt to Bt,
• Gt models the leakage of background noise into the bone

sensor.

Recall that the variables Xt, Yt, Bt have already been
defined in Section 3. Note that the subscript t in the above
variables refers to the value of that particular random var-
iable for the frame at time t. Furthermore, the variables eX t,
Xt, Yt, Vt, Ht, Gt and Bt are all vectors of dimension N. The
physical process that the DBN attempts to model may be
expressed as

Y t ¼ X t þ V t þ U t and Bt ¼ HtX t þ GtV t þ W t: ð3Þ
In other words, we have that the signal captured at the air
microphone (Yt) is a sum of the clean speech signal (Xt),
the corrupting noise (Vt) and the sensor noise in the air micro-
phone (Ut). The signal captured by the bone microphone (Bt)
is a sum of the transformed version of the clean speech signal
(HtXt), the amount of background noise that leaks into the
bone sensor (GtBt) and the sensor noise in the bone micro-
phone (Wt). The reason that GtVt is used in the second equa-
tion is inherent to the operation of the ABC microphone, in
that, we expect that not all the ambient noise that effects the
air microphone is captured by the bone microphone, but a
much attenuated and distorted version is seen at the bone
sensor. For an ideal bone sensor which is perfectly immune
to ambient noise, Gt = 0. Furthermore, the model also recog-
nizes the fact that the clean speech signal Xt undergoes some
form of distortion while being captured by the bone channel,
and HtXt is used to represent this phenomenon.

We make the following assumptions with regards to the
model:

(1) For mathematical tractability we assume that the fre-
quency components of eX t, Xt, Yt, Vt, Ht, Gt, Bt are
independent. It is important to highlight the fact that
we are not making any assumptions on the indepen-
dence of the variables, but rather the independence
of the individual frequency components, i.e.
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Fig. 5. A dynamic bayesian network (DBN) of the proposed enhancement
framework.
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eX f
t and eX fþi

t are independent 8f ; i : �N 6 i 6 N;

i 6¼ 0; 1 6 f þ i 6 N: ð4Þ

(2) The variables St and Mt are scalars and are consid-
ered global over the frame at time t, i.e., the value
of these variables are the same for all the frequency
components for a given frame.

(3) Background noise is modeled using a zero mean
Gaussian, i.e., pðV tÞ � Nð0; r2

vÞ.
(4) Sensor (device) noise in the air microphone channel is

modeled with pðUtÞ � Nð0; r2
uÞ.

(5) Sensor noise in the bone channel is modeled with
pðW tÞ � Nð0; r2

wÞ.
(6) For mathematical tractability we assume that

pðeX tjX tÞ � dðX t; gxt
eX tÞ, where d is the Kronecker

delta function with parameter gxt
. While it is possible

to put a prior on gxt
and estimate it in a Bayesian set-

ting, in this paper, we take a frequentist approach to
estimating gxt

(see Section 4.5).

Information on how the sensor noise variances are cho-
sen is given in Section 5. Also, except for the variances
associated with the sensor noise, all other variances are a
function of time t. However to reduce notational clutter,
we don’t explicitly represent this.

The joint distribution over all the variables in the model
factorizes as follows:

pðY t;Bt;X t; eX t; V t; St;Mt;Ut;W tÞ

¼ pðY tjX t; V t;U tÞpðBtjX t; V t;W tÞpðX tjeX tÞpðeX tjMt; StÞ
� pðMtjStÞpðStÞpðV tÞpðU tÞpðW tÞ: ð5Þ

The above factorization follows directly as a result of the
semantics of DBNs (Jordan and Weiss, 2002). For now,
we ignore the temporal constraint between St and St+1

We discuss the temporal smoothness constraints in Section
4.6. As a result of the frequency independence assumption
(see Eq. (4)), we can re-write the above equation as

pðY f
t ;B

f
t ;X

f
t ;
eX f

t ; V
f
t ; St;Mt;U f

t ;W
f
t Þ

¼ pðY f
t jX f

t ; V
f
t ;U

f
t ÞpðBf

t jX f
t ; V

f
t ;W

f
t ÞpðX f

t jeX f
t Þ

� ðeX f
t jMt; StÞpðMtjStÞpðStÞpðV f

t ÞpðU f
t ÞpðW f

t Þ;
1 6 f 6 N ; ð6Þ

which is essentially N equations (one for each f). Recall
that all terms in the above equation correspond to individ-
ual (frequency) components except for St and Mt (St, Mt

are global over a given frame). In the following, for nota-

tional convenience, we drop the superscript f on all the
variables, i.e. (for example) Yt implies Y f

t unless otherwise
stated. Thus the above equation may be re-written as

pðY t;Bt;X t; eX t; V t; St;Mt;U t;W tÞ

¼ pðY tjX t; V t;UtÞpðBtjX t; V t;W tÞpðX tjeX tÞpðeX tjMt; StÞ

� pðMtjStÞpðStÞpðV tÞpðU tÞpðW tÞ: ð7Þ

Before we discuss inference using the above model, we
briefly digress to comment on how we estimate the transfer
function Ht and the leakage factor Gt.

4.2. Transfer function and leakage factor

In this work, we adopt a frequentist approach to esti-
mate Ht and Gt (similar to Liu et al., 2004). The transfer
function Ht models the relationship between the air and
bone channels. In other words, given a frame of speech
captured by the air channel at time t, Ht is the transform
it would have to undergo to be similar to the frame cap-
tured in the bone channel. In our experiments we have
found that Ht is phone-dependent, i.e, Ht depends on the
class of speech.

However, as a first attempt, we ignore this dependency
and estimate a single Ht for all classes of speech.

The physical process of the ABC microphone is repre-
sented as in Eq. (3). As a result of frequency independence
assumption, the two equations may be decomposed into
2N. This results in a set of 2N equations in 3N unknowns
(assuming that U f

t , W f
t and V f

t are given). While it might
seem that we have a under determined set of equations,
consider the silent regions of an utterance, i.e., regions in
which speech is absent. For such frames we have
X f

t ¼ 0; 8f and thus we get

Y f
t ¼ U f

t þ V f
t ; 1 6 f 6 N;

Bf
t ¼ W f

t þ Gf
t V f

t ; 1 6 f 6 N; ð8Þ

where t 2 Nv and Nv is the set of non-speech frames in the
region [0, t]. Making use of the above formulation, it can be
shown (Liu et al., 2004) that the ML estimate of Gt is given
by

Note that B�t represents the complex conjugate (Hermitian)
of Bt. As a result of our frequency independence assump-
tions, the above equation represents only a single frequency
component and is simply repeated to estimate Gt for the

Gt ¼

P
t2N v
ðr2

v jBtj2 � r2
wjY tj2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t2Nv
ðr2

v jBtj2 � r2
wjY tj2Þ

� �2

þ 4r2
vr

2
wj
P

t2Nv
B�t Y tj2

r
2r2

v

P
t2Nv

B�t Y t
: ð9Þ
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others. Once we have estimated Gt from the non-speech
frames, we can estimate Ht using

where B0t ¼ Bt � GtY t and Ns is the set of speech frames in
the region [0, t]. For more details on estimating the transfer
function, the reader is refereed to (Liu et al., 2004). While a
naive implementation of the above equations to estimate Gt

and Ht would require storing all the relevant speech and
non-speech frames, a more efficient technique is to make
use of accumulators that are appended when we have
new data. In our work we estimate Gt and Ht efficiently
using a recursive implementation based on exponential
aging (see appendix for more details).

4.3. Posterior of magnitude normalized clean

speech – pðeX tjY t;BtÞ

Recall Eq. (7),

pðY t;Bt;X t; eX t; V t; St;Mt;Ut;W tÞ
¼ pðY tjX t; V t;U tÞpðBtjX t; V t;W tÞpðX tjeX tÞpðeX tjMt; StÞ
� pðMtjStÞpðStÞpðV tÞpðU tÞpðW tÞ: ð11Þ

We have already defined pðX tjeX tÞ, p(Vt), p(Ut), and p(Wt)
(see Section 4.1). Further, we have that pðY tjX t; V t;U tÞ �
NðY t; X t þ V t; r2

uÞ and pðBtjX t; V t;W tÞ � NðBt; H tX t þ
GtV t; r2

wÞ. Finally, in our system, speech is modeled using
a mixture of Gaussians (MG),

pðeX tjStÞ ¼
XM�1

m¼0

P ðMt ¼ mjStÞpðeX tjSt;MtÞ; ð12Þ

with pðeX tjSt ¼ s;Mt ¼ mÞ � Nðls;m; r
2
s;mÞ: ð13Þ

In our model, St = 0 indicates the silence (non-speech) state
and St = 1 indicates the speech state. We represent silence
using a single Gaussian, and thus P(Mt = 0jSt = 0) = 1
which implies pðeX tjSt ¼ 0Þ � NðeX t; 0; r2

silÞ. In the case of
speech we use a MG with M = 4 and P(Mt = ijSt = 1) = ai

(see Section 3.2).
As Xt and eX t are related by a delta distribution, given

gxt
, estimating either one of these variables is equivalent.

Thus, integrating out Xt from the joint distribution we haveZ
X t

pðY t;Bt;X t; eX t; V t; St;Mt;Ut;W tÞdX t

¼ pðY t;Bt; eX t; V t; St;Mt;Ut;W tÞ
¼ pðY tjgxt

eX t; V t;UtÞpðBtjgxt
eX t; V t;W tÞpðeX tjMt; StÞ

� pðMtjStÞpðStÞpðV tÞpðU tÞpðW tÞ; ð14Þ

where pðY tjgxt
eX t; V t;UtÞ � Nðgxt

eX t þ V t; r2
uÞ and pðBtj

gxt
eX t; V t;W tÞ � Nðgxt

H eX t þ GV t; r2
uÞ. Now consider

pðeX tjY t;BtÞ ¼
X
s;m

pðeX t; St ¼ s;Mt ¼ mjY t;BtÞ

¼
X
s;m

pðeX tjY t;Bt; St ¼ s;Mt ¼ mÞ

� pðMt ¼ mjY t;Bt; St ¼ sÞpðSt ¼ sjY t;BtÞ;
ð15Þ

where the above equation follows as a result of the recur-
sive application of the chain rule of probability. Let us first
consider evaluating pðeX t j Y t;Bt; St ¼ s;Mt ¼ mÞ. Using the
definition of conditional probability, we have

pðeX tjY t;Bt; St ¼ s;Mt ¼ mÞ

¼ pðeX t; Y t;Bt; St ¼ s;Mt ¼ mÞ
pðY t;Bt; St ¼ s;Mt ¼ mÞ : ð16Þ

But

pðeX t; Y t;Bt; St ¼ s;Mt ¼ mÞ

¼
Z

V t

Z
Ut

Z
W t

pðY t;Bt; eX t; V t; St;Mt;U t;W tÞdUt dW t dV t:

ð17Þ

Integrating out Vt, Ut and Wt we get

pðeX t; Y t;Bt; St ¼ s;Mt ¼ mÞ
� NðeX t; as;m; bs;mÞNðBt; cs;mgs;mÞ
� NðY t; gxt

ls;m; r
2
1ÞpðMt; jStÞpðStÞ ð18Þ

where

as;m ,
r2

s;mðr2
1ðr2

uvls;m þ gxt
Y tÞ þ gxt

H �mðBtr2
uv � Gr2

uvY tÞÞ
r2

1r
2
2 þ g2

xt
r2

s;mr2
uvjH mj2

;

bs;m ,
r2

1r
2
s;mr2

uv

r2
1r

2
2 þ gxt

r2
s;mr2

uvjH mj2
;

cs;m , gxt
;H m

r2
uvls;m þ gxt

r2
s;mY t

r2
2

þ Gr2
vY t

r2
uv

;

gs;m , r2
1 þ gxt

jH mj2
r2

s;mr2
uv

r2
2

;

r2
uv , r2

u þ r2
v ;

r2
1 , r2

w þ
jGj2r2

ur
2
v

r2
uv

;

r2
2 , r2

uv þ g2
xt
r2

s;m;

H m , H � G
r2

v

r2
uv

:

ð19Þ

H t ¼ Gt þ

P
t2Ns
ðr2

v jB0tj
2 � r2

wjY tj2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t2Ns
ðr2

v jB0tj
2 � r2

wjY tj2Þ
� �2

þ 4r2
vr

2
wj
P

t2Ns
ðB0tÞ

�Y tj2
r

2r2
v

P
t2Ns
ðB0tÞ

�Y t
; ð10Þ
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In the above, the parameter gxt
is hidden. We propose an

approach to estimating gxt
in Section 4.5. Using Eq. (18)

in Eq. (16) we get

The above follows as
ReX t

NðeX t; as;m; bs;mÞdeX t ¼ 1. Thus we
have the posterior

pðeX tjY t;Bt; St ¼ s;Mt ¼ mÞ � NðeX t; as;m; bs;mÞ; ð21Þ

where as,m, bs,m are defined in Eq. (19). Note that in order
to compute pðeX tjY t;Bt; St ¼ 0;Mt ¼ 0Þ we follow the same
process and simply replace r2

s;m by r2
sil in Eq. (19). In order

to evaluate the posterior pðeX tjY t;BtÞ in Eq. (15) we still
need to compute p(Mt = mjYt,Bt,St = s) and p(St =
sjYt,Bt).

First consider

pðMt ¼ mjY t;Bt; S
t ¼ sÞ ¼ pðMt ¼ m; Y t;Bt; S

t ¼ sÞ
pðY t;Bt; S

t ¼ sÞ
/ pðY t;Bt; St ¼ s;Mt ¼ mÞ: ð22Þ

But from Eq. (18) we have

pðY t;Bt; S
t ¼ s;Mt ¼ mÞ

¼
Z
eX t

pðeX t; Y t;Bt; St ¼ s;Mt ¼ mÞdeX t

� NðBt; cs;m; gs;mÞNðY t; gxt
ls;mr2

1Þ
� pðMt ¼ mjSt ¼ sÞpðSt ¼ sÞ: ð23Þ

Thus,

pðMt ¼ m j Y t;Bt; S
t ¼ sÞ

/ NðBt; cs;mgs;mÞNðY t; gxt
ls;m; r

2
1Þ

� pðMt ¼ mjSt ¼ sÞpðSt ¼ sÞ: ð24Þ

But, recall that Mt is global over a given frame. Thus let

NðBf
t ; cf

s;m; g
f
s;mÞNðY f

t ; gxt
lf

s;m; r
f 2
1 Þ

� pðMt ¼ mjSt ¼ sÞpðSt ¼ sÞ , kðm; f Þ: ð25Þ

We can compute the value of the posterior using

pðMt ¼ mjY t;Bt; St ¼ sÞ ¼
Q

f jðm; f ÞP
m

Q
f jðm; f Þ

: ð26Þ

The posterior of St may be obtained in a similar manner by
observing that

pðSt ¼ sjY t;BtÞ /
X

m

pðY t;Bt; S
t ¼ s;Mt ¼ mÞ

�
X

m

NðBt; cs;m; gs;mÞNðY t; gxt
ls;m; r

2
1Þ

� pðMt ¼ mjSt ¼ sÞpðSt ¼ sÞ: ð27Þ

Later (see Section 4.4), we show how the above posterior
can be used to build a speech detector. Now, we return
to our original problem, i.e., computing pðeX tjY t;BtÞ: As
it can be seen, we have now computed all the terms needed
to evaluate the posterior - pðeX tjY t;Bt; St ¼ s;Mt ¼ mÞ
(Eq. (21)), p(Mt = mjYt,Bt,St = s) (Eq. (26)), and
p(St = sjYt,Bt) (Eq. (27)). In practice, though, we are more
interested in most likely value of eX t given Yt and Bt. In
other words, we are interested in computing EðeX tjY t;BtÞ.
Thus, taking an expectation w.r.t pðeX tjY t;BtÞ in Eq. (15)
we get,

beX t¼EðeX tjY t;BtÞ¼ pðSt¼ 0jY t;BtÞEðeX tjY t;Bt;St¼ 0;Mt ¼ 0Þ
þpðSt ¼ 1jY t;BtÞ

X
m

pðMt¼mjY t;Bt;St¼ 1Þ

�EðeX tjY t;Bt;St¼ 1;Mt ¼mÞ: ð28Þ

As the the posterior pðeX tjY t;Bt; St ¼ s;Mt ¼ mÞ follows a
Gaussian distribution, EðeX tjY t;Bt; St ¼ s;Mt ¼ mÞ ¼ as;m.
Once again, we would like to remind the reader that the
above equation is for a single frequency component ofeX t. To generate the entire vector eX t, we would need to
use the above equation N times (recall N is the dimension
of eX t). The above equation is intuitively appealing as the
expected value of eX t is given by a sum of its value given
a particular state weighted by the probability of that state

given the observations. Note that
beX t is an MMSE estima-

tor for eX t [Ephraim and Malah, 1984].

4.4. Speech detection

In this section, we discuss how some of the posteriors
obtained in the previous section may be naturally extended

pðeX tjY t;Bt; St ¼ s;Mt ¼ mÞ ¼ pðeX t; Y t;Bt; St ¼ s;Mt ¼ mÞ
pðY t;Bt; St ¼ s;Mt ¼ mÞ

¼ pðeX t; Y t;Bt; St ¼ s;Mt ¼ mÞReX t
pðeX t; Y t;Bt; St ¼ s;Mt ¼ mÞdeX t

�
NðeX t; as;m; bs;mÞNðBt; cs;m; gs;mÞNðY t; gxt

ls;m; r
2
1ÞpðMtjStÞpðStÞReX t

NðeX t; as;m; bs;mÞNðBt; cs;m; gs;mÞNðY t; gxt
ls;m; r

2
1ÞpðMtjStÞpðStÞdeX t

�
NðeX t; as;m; bs;mÞNðBt; cs;m; gs;mÞNðY t; gxt

ls;m; r
2
1ÞpðMtjStÞpðStÞ

NðBt; cs;m; gs;mÞNðY t; gxt
ls;m; r

2
1ÞpðMt; jStÞpðStÞ

� NðeX t; as;m; bs;mÞ:

ð20Þ
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to obtain a speech detector. Recall pðSt ¼ sjY t;BtÞ /P
mpðY t;Bt; S

t ¼ s;Mt ¼ mÞ (see Section 4.3) and Eq. (23)

pðY t;Bt; S
t ¼ s;Mt ¼ mÞ

¼
Z
eX t

pðeX t; Y t;Bt; St ¼ s;Mt ¼ mÞdeX t

� NðBt; cs;m; gs;mÞNðY t; gxt
ls;mr2

1Þ
� pðMt ¼ mjSt ¼ sÞpðSt ¼ sÞ ð29Þ

In the above equation, the first distribution N(Bt; cs,m,gs,m)
models the correlation between the air and bone micro-
phone channels whereas the second term NðY t; gxt

ls;mr2
1Þ

makes use of the prior (along with variance and sensor
noise in the air microphone channel) to explain the obser-
vation in the air microphone channel. The second term is
important because we cannot rely on just the correlation
for classes of phones that are weak in the bone sensor
(e.g. fricatives).

As St is global over a given frame, we rewrite Eq. (29) as

pðY f
t ;B

f
t ; St;MtÞ � Wf

s;mDf
s;mpðMtjStÞpðStÞ; ð30Þ

with Wf
s;m¼NðBf

t ;cf
s;m;g

f
s;mÞ;D

f
s;m¼NðY f

t ;gxt
lf

s;mðr2
1Þf Þ, where

the exponent f represents the fth frequency component.
Thus, as a result of our independence of frequency compo-
nents assumption, the posterior is given by

pðSt ¼ sjY t;BtÞ /
X

m
pðSt ¼ sÞpðMt ¼ mjSt ¼ sÞ

�
Y
allf

Wf
s;mDf

s;m: ð31Þ

But

LðSt ¼ sjY t;BtÞ ¼ pðY t;BtjSt ¼ sÞ

¼ pðSt ¼ sjY t;BtÞpðY t;BtÞ
pðSt ¼ sÞ / pðSt ¼ sjY t;BtÞ

pðSt ¼ sÞ ; ð32Þ

where L(St = sjYt,Bt) is the likelihood of St taking on the
value s given the value of Yt and Bt. Thus a frame may
be classified as speech if L(St = 1jYt,Bt) > L(St = 0jYt,Bt)
and as non-speech otherwise. This is implemented by
defining

Dt ¼
P

mpðMt ¼ mjSt ¼ 1Þ
Q

allf W
f
1;mDf

1;mP
mpðMt ¼ mjSt ¼ 0Þ

Q
allf W

f
0;mDf

0;m

ð33Þ

and the frame is classified as speech if

Dt >
pðSt ¼ 0Þ
pðSt ¼ 1Þ ð34Þ

and as non-speech other wise. Note that the above equa-
tion essentially represents a likelihood ratio test.

4.5. Estimating the gain gxt

As can be noticed, gain gxt is involved in a number of
expressions obtained above. Since we are unable to come
up with a closed-form solution, we resort to the EM algo-
rithm to estimate gxt. Let

qðf Þ ¼ pðeX f
t ; Y

f
t ;B

f
t ; St;MtÞ; ð35Þ

which is given by Eq. (18). Note that q(f) is the joint like-
lihood over some of the variables in the model. Though
V f

t is absent in the above equation, note that eX t was ob-
tained after integrating out V f

t and thus includes belief
about V f

t . The joint log likelihood over the entire frame
is given by

F ¼ log
Y
allf

qðf Þ ¼
X
allf

log qðf Þ; ð36Þ

where the above equation follows as a result of the fre-
quency independence assumption. In order to maximize F

we resort to the EM algorithm. The E-step essentially
consists of estimating the most-likely value of eX t given

the current estimate of gxt, i.e.,
beX t ¼ EðpðeX tjY t;Bt; gxt

ÞÞ,
where E(Æ) is the expectation operator and pðeX tjY t;Bt; gxt

Þ
is given by Eq. (15). The M-step involves maximizing the
objective function F w.r.t. gxt. Taking the derivative of F

w.r.t gxt and solving for gxt yields

gxt
¼
P

allf ½ðY �t eX t þ Y t
eX �t Þr2

w þ Cr2
v �P

allf ½jeX tj2r2
w þ jH � Gj2jeX tj2r2

v �
; ð37Þ

where

C ¼ ðBt � GY tÞ�ðH � GÞeX t þ ðBt � GY tÞðH � GÞ� eX �t :
It should be noted here that we do not estimate gxt for the
Gaussian that models silence, and in that case, gxt is set to
1. Indeed, we do not perform magnitude normalization in
modeling the silence because the energy of a silence frame
is essentially zero (or close to it) and this is true irrespective
of device gains or changes in loudness.

4.6. Dynamics of St

The enhancement process starts off with both St = 0 and
St = 1 being equally likely, i.e., p (St = 0) = p(St = 1) =
0.5. In order to enforce smoothness in the state estimates
we use the following state dynamics:

pðSt ¼ sjSt�1 ¼ sÞ ¼ 0:5þ pðSt�1 ¼ sjY t�1;Bt�1Þ
2

ð38Þ

and p(St = sjSt�1 = 1 � s) = 1 � p(St = sjSt�1 = s). This
way, if the previous frame is a speech, i.e., p(St�1 =
1jYt�1,Bt�1) > 0.5, the prior for the current frame being
speech, i.e., p(St1j = 1St�1 = 1), is larger than 0.5. The
same is true: p(St = 0jSt�1 = 0) > 0.5. This introduces some
bias towards the state of the previous frame, making frame-
to-frame transition smoother. It should be noted here that
p(StjSt�1) is a function of time and thus the model repre-
sents the so called non-homogeneous Markov chain.

5. Experimental setup

In this paper, we make use of Microsoft’s Internal noisy
speech corpus for all our experiments. Details of the corpus
are as follows: a large number of utterances were recorded
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from a number of speakers using the ABC microphone in
various environments including cafeteria (ambient noise
level 85 dBc), office with interfering speakers in the back-
ground, driving on a highway (with windows rolled down
and radio running) and other real-world noisy environ-
ments. It is important to highlight that the utterances are
corrupted by real-world noise, which means that we do
not have the ground-truth (i.e. clean) utterances.

The speech model was learnt offline as described in Sec-
tion 3. The noise model is built in the following way. Given
a noisy utterance, we first remove all teethclacks in the
bone channel using the algorithm proposed in (Liu et al.,
2005). We then run an energy based speech detector
(described in (Zheng et al., 2003)) on the first two seconds
to obtain an initial estimate of r2 and r2

w. As we model
noise using a single, zero-mean Gaussian, we have the
unbiased estimate of the variances given by

r2
v ¼

1

jN vj � 1

X
t2Nv

jY tj2;

r2
w ¼

1

jN vj � 1

X
t2Nv

jBt � GtY tj2; ð39Þ

where {Nv} is the set of non-speech (or noise corrupted)
frames. Recall that r2

v is the variance of the corrupting
noise, and r2

w is the variance of the sensor noise in the bone
microphone. These initial estimates are then used in the
framework described above. Also we set r2

u ¼ 10�4r2
w. This

is based on empirical studies and the observation that
close-talk sensor technology is more advanced than bone-
sensor technology. The transfer functions Ht and Gt are
estimated using the procedure described in Section 4.2.
As each of the above parameters need to be updated for
each frame, this poses a huge computational overhead.
Thus we use a recursive implementation as described in
Appendix A. We have found that this makes the algorithm
computationally efficient and speech enhancement runs in
real-time. The iterative estimation for gxt

usually converged
within 2–3 iterations. For the first frame in the utterance,
gxt

was initialized to 1 at the start of the EM algorithm.
In the case of subsequent frames, gxt

was initialized to the
last converged value (i.e. the value of gxt

for the previous
frame). All utterances for this work were processed using
a Hamming window of size 25 ms at l00 Hz.

As explained in Section 1, for our applications, we are
interested in the overall user experience in noisy environ-
ments. Thus perceptual quality of the processed utterances
is very important. To measure the improvement in quality,
we conducted comparative evaluations based on mean
opinion score (MOS) (Deller et al., 1999). Table 1 shows
the score criteria.

In order to measure the sensitivity of the speech model
to speakers, we trained two speech models. The first (X1)
was trained on clean speech from a single speaker and
the second model (X2) was trained on clean speech utter-
ances from four different speakers (two males and two

females). Each model is a mixture of four Gaussians. The
speaker in X1 is one of the male speakers in X2.

The testing set consisted of 12 noisy utterances, with an
equal male–female ratio, recorded in a number of noisy
environments as explained above. The testing set included
a representative utterance from all different recording con-
ditions in the Microsoft noisy speech corpus. Each utter-
ance in the test set was processed using five different
algorithms:

1. the classical spectral subtraction algorithm (Quatieri,
2002),

2. our previously proposed direct filtering algorithm (Liu
et al., 2004),

3. the algorithm described in (Subramanya et al., 2005)
which uses a single Gaussian for the speech model,

4. the proposed mixture of Gaussians speech model trained
with one speaker (X1), and

5. the proposed mixture of Gaussians speech model trained
with four speakers (X2).

Therefore, each participant in the MOS study was asked
to rate 72 utterances. In the case of spectral subtraction,
noise profile was computed offline using the non-speech
regions of the utterance. There were a total of 17 partici-
pants (subjects) in the MOS test. The evaluators were pre-
sented with a random ordering of the sets of utterances and
random ordering within a set. The participants were blind
to the relationship between the utterances and the process-
ing algorithm.

6. Results

We first discuss some simulation results on the use of the
magnitude normalized speech spectrum. Later we present
the results of our MOS tests.

6.1. Magnitude-normalized speech model

In order to test the proposed magnitude-normalized
speech model, we did two experiments: In the first experi-
ment, we classified the frames (into speech and non-speech)
in a number of utterances using the proposed model. The
second experiment was designed to test the robustness of
the proposed model to mismatch between training and
testing conditions. Fig. 6 shows the spectrogram of four
clusters obtained as a result of the clustering algorithm

Table 1
MOS evaluation criteria

Score Impairment

5 (Excellent) imperceptible
4 (Good) (Just) perceptible but not annoying
3 (Fair) (Perceptible and) slightly annoying
2 (Poor) annoying (but not objectionable)
1 (Bad) very annoying (objectionable)
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described in Section 3. The figure was generated in the fol-
lowing manner: we first ran the algorithm proposed in Sec-
tion 3 on the training set with M = 4 (this step yielded ai, li

and Ri; 0 6 i 6 3). Next, we choose four utterances from
four different speakers outside the training set. These utter-
ances were concatenated, and then transformed into the
complex spectral domain using STFT with a Hamming
window of size 25 ms at l00 Hz. If feX tgT s

t¼1 are the frames
obtained from the STFT (after magnitude normalization),
each eX t was classified using

kt ¼ argminmfdðeX t; lmÞg; 1 6 t 6 T s;

dðeX t; lmÞ ¼ k½dðeX 1
t ; l

1
m . . . ; dðeX f

t ; l
f
mÞ; . . . ; dðeX N

i ; l
N
mÞ�

Tk;
dðeX f

i ; l
f
mÞ ¼ log jeX f

i j � log jlf
mj; 1 6 f 6 N;

ð40Þ

where kt is the label for the frame at time t and lm is the
mean of the mth cluster. Each of the four sub-plots in
Fig. 6 show the frames that were assigned the same label
according to the above distance measure. It can be seen
that one cluster models fricatives (sub-figure in row 1, col-
umn 1), another cluster models purely vowels (sub-figure in
row 2, column 1). This shows that the proposed distance
metric leads to meaningful clusters and thus can be used
as a prior for speech.

In order to test the proposed model for robustness, we
built two speech models using a single Gaussian, one using
the proposed energy-normalized spectra (x1) and the other
using original spectra (x2) in the complex spectral domain.
In other words, x1 used eX t, whereas, x2 made use of Xt.
Note that for comparison, we only use a single Gaussian
in each model. The two models were then used to compute
the likelihood L(St = 1jYt,Bt) for all the frames in an utter-
ance outside the training set. The speaker was outside the
training set, and the gain on the recording device was set
to a different level when compared to the utterances in

the training set. The likelihoods in the two cases are shown
in Fig. 7. It can be seen that the likelihoods resulting from
x1 are always greater than the likelihoods resulting from
x2 suggesting that the magnitude-normalized speech model
can better explain speech signals. A similar trend was
observed even when making use of an utterance recorded
with a similar gain setting as the utterances used in the
training set. It should be noted here that the above does
not imply that a speech frame will be classified as speech
in a practical setting, as this would also depend on the like-
lihoods from the alternate competing model (noise/silence).

6.2. Enhancement results

Table 2 shows the results of the MOS tests. There are a
number of very interesting observations that can be made
from the test results. First, it can be seen from the table
that the subjects on average preferred the original cor-
rupted utterances over those processed by spectral subtrac-
tion. In fact most subjects were more comfortable in
listening to corrupted speech rather than to distorted
speech. It is not surprising that spectral subtraction intro-
duced distortions in the processed signal as most corrupt-
ing noise sources were non-stationary. Second, it can be
seen that the system that uses a single Gaussian to model
speech does worse than the proposed algorithms. Clearly
a single Gaussian is unable to capture all the spectral pro-
files. Third, the multi-speaker model X2 performs only
slightly worse than the single speaker model. This suggests
that our proposed magnitude-normalized speech model is
able to generalize fairly well.

Fig. 8 shows the time and frequency domain renditions
of a noisy utterance used in the above MOS tests2. This
utterance was recorded in an sound proof environment

Fig. 6. Figure shows the clusters obtained from the algorithm detailed in Section 3.2. In each plot, the y-axis is the index of the frequency component (FFT
index), and the x-axis presents the number of frames classified within that cluster.

2 The wave files used to generate this figure can be obtained at http://
research.microsoft.com/~zhang/WITTY/samplewaveforms.htm.
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with two interfering speakers. The ambient noise level was
75 dBc. The first two figures show the time and frequency
domain information captured by the air channel, whereas

the last two figures show the time and frequency domain
information captured by the bone channel. It is evident
that speech energy from only the air channel does not pro-
vide any indication of the speech/non-speech states at any
given instant. The second figure shows the signal captured
by the bone channel. It exemplifies the robustness of the
bone sensor to ambient noise despite a small amount of
leakage. Fig. 9 shows the resulting spectra when the above
utterance was processed using the noise removal techniques
listed in Section 5. The first figure shows the signal cap-
tured by the air channel (repeated from Fig. 8 for conve-
nience). The second figure shows the results of the
spectral subtraction algorithm. As it can be seen the spec-
trum appears distorted and thus gets a lower MOS score.
The third figure shows the result of the direct filtering algo-
rithm (Liu et al., 2004). It can be seen that algorithm does
not successfully rid the the signal of all the corrupting
noise. Furthermore, it can also be observed that the

Table 2
MOS results

Algorithm User preference score Standard deviation

Original 2.58 0.23
Spectral subtraction 2.22 0.42
Direct filtering 2.78 0.61
Single Gaussian 3.03 0.32
Mixture Gaussian (X1) 3.75 0.15
Mixture Gaussian (X2) 3.71 0.1950 100 150 200 250 300 350
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Fig. 7. Comparison of likelihoods of the two speech models. In the first
plot, the y-axis represents the log-likelihood shifted by a constant c

(c = 750) in the positive direction, the likelihood of x1 is represented with
a solid line, and that of x2 is represented with a dotted line. The second
plot shows the spectrogram of the utterance used to compute the
likelihood. In the second plot, the y-axis is the index of the frequency
component (FFT index). In both plots, the x-axis represents time in
seconds.

Fig. 8. Figure showing the time and frequency domain renditions of a noisy utterance from the Microsoft noisy speech corpus. The utterance consists of a
female speaker saying ‘‘this advice sounds questionable most likely it is well intended but fundamentally it is flawed’’. All x-axes represent time in seconds.
While the first two plots show the signal captured by the air microphone, the third and fourth plots show the signal captured by the bone microphone.

240 A. Subramanya et al. / Speech Communication 50 (2008) 228–243



Author's personal copy

processed signal is distorted. Next are the results obtained
using the algorithm proposed in (Subramanya et al., 2005).
While this does better than the (Liu et al., 2004), a single
Gaussian is usually unable to explain all the variations of
speech. The last two figures show the results of X1 and
X2 respectively.

It can be seen that the proposed algorithm not only gets
rid of a significant amount of noise, but does so with little/
no distortion in speech. Also, there is little difference
between the results of X1 and X2 thus, highlighting the fact
that the magnitude normalized model makes it easier for
even single speaker models to explain speech from other
users. Therefore, it is not surprising that subjects prefer
the utterances processed by the proposed algorithm.

7. Conclusion and future work

In this paper we have proposed a new multi-sensory
microphone that makes use two sensor streams to enhance
speech: a standard air microphone and a bone sensor. We
also have proposed a mixture-of-Gaussians speech model
built from magnitude-normalized complex spectra for
speech enhancement. We have shown how the proposed
speech model can be used in the context of speech enhance-
ment with an air- and bone-conductive microphone. Sub-
stantial improvement has been observed in the MOS
evaluation over the best of our previously developed tech-
niques. Comparison between single-speaker trained and
multi-speaker trained models suggests that the proposed

Fig. 9. Results: (a) Noisy signal, (b) enhanced by classical spectral subtraction, (c) enhanced using [Liu et al., 2004], (d) enhanced using [Subramanya et al.,
2005], (e) enhanced using X1, and, (f) enhanced using X2.
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magnitude-normalized speech model is able to generalize
fairly well. Furthermore, the proposed technique is compu-
tationally inexpensive and runs in real time.

For our future work, we are planning to introduce
dynamics on other variables such as eX t and Xt. Using Kal-
man updates coupled with the proposed inference frame-
work may lead to better estimates of the clean speech
signal. We are also working on recursive noise update with
noisy speech frames. Another area of future work includes,
making use of a class dependent transfer function Ht.
While the class independence assumption made in this
work, performs fairly, a class independent Ht will be able
to further the use of the bone sensor for enhancing the
audio in the air channel.

Appendix A. Online estimation of Ht

Recall that in Section 4.2 the mapping function Ht is
estimated over a number of speech frames with the follow-
ing equation:

In this appendix we show how the above equation may be
implemented efficiently using a recursive procedure.

A.1. Exponential aging technique

As can be observed from the above equation, estimation
of Ht requires computing several summations over the last
T frames in the form of

SðT Þ ¼
XT

t¼1

st; ðA:2Þ

where st is r2
v j Btj2 � r2

w j Y tj2 or B�t Y t.
With this formulation, the first frame (t = 1) is as impor-

tant as the last frame (t = T). However, one would prefer
the latest frames contribute more to the estimation of Ht

than the older frames. One technique to achieve this is
the so-called exponential aging. The idea is to replace
(A.2) by

S0ðT Þ ¼
XT

t¼1

cT�tst; ðA:3Þ

where c 6 1. If c = 1, then (A.3) is equivalent to (A.2). If
c < 1, then the last frame is weighted by 1, the before-last
frame is weighted by c (i.e., it contributes less than the last
frame), and the first frame is weighted by cT�1 (i.e., it con-
tributes significantly less than the last frame). Take an
example. Let c = 0.99 and T = 100, then the weight for
the first frame is only 0.9999 = 0.37.

What is interesting is the fact that S 0(T) can be estimated
recursively. Indeed

S0ðT Þ ¼ cS 0ðT � 1Þ þ sT : ðA:4Þ
Since it automatically weighs old data less, we do not need
to keep a fixed window length, and we do not need to save
the data of the last T frames in the memory.

The effective length (memory of past data) is given by

LðT Þ ¼
XT

t¼1

cT�t ¼
XT�1

i¼0

ci ¼ 1� cT

1� c
: ðA:5Þ

The asymptotic effective length is given by

L ¼ lim
T!1

LðT Þ ¼ 1

1� c
ðA:6Þ

or equivalently,

c ¼ L� 1

L
: ðA:7Þ

Therefore, if we want to have an effective length of, say,
200 frames, we can set c = f99/200 = 0.995. We use a recur-
sive implementation similar to the above to estimate r2

u and
r2

v .
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