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On the Optimization Criteria Used in
Two-View Motion Analysis

Zhengyou Zhang, Senior Member, IEEE

Abstract—The three best-known criteria in two-view motion analysis are based, respectively, on the distances between points and
their corresponding epipolar lines, on the gradient-weighted epipolar errors, and on the distances between points and the
reprojections of their reconstructed points. The last one has a better statistical interpretation, but is, however, significantly slower
than the first two. In this paper, | show that, given a reasonable initial guess of the epipolar geometry, the last two criteria are
equivalent when the epipoles are at infinity, and differ from each other only a little even when the epipoles are in the image, as
shown experimentally. The first two criteria are equivalent only when the epipoles are at infinity and when the observed object/scene
has the same scale in the two images. This suggests that the second criterion is sufficient in practice because of its computational
efficiency. Experiments with several thousand computer simulations and four sets of real data confirm the analysis. The result is valid

for both calibrated and uncalibrated images.

Index Terms—Motion analysis, multiple-view geometry, 3D reconstruction, optimization criteria, algorithmic comparison, structure

from motion, uncalibrated images.

1 INTRODUCTION

WO-view motion analysis has been an active area of

research in computer vision since the late seventies,
and a number of methods have been proposed. The focus
was on the motion estimation between two images with
known intrinsic parameters (we say they are calibrated).
The reader is referred to [1], [2] for a review. Recently,
analysis of uncalibrated images has attracted quite a num-
ber of researchers since the work of Faugeras [3] and Har-
tley [4]. There are several reasons: the calibration is fastidi-
ous and not very stable; it is impossible in many applica-
tions such as video sequence analysis; etc. The reader is
referred to [5] for a review.

The two domains (calibrated or uncalibrated) share the
same mathematical basis. If lens distortion can be ignored
(see [6], [7] if distortion is considered), two images are re-
lated by a 3 x 3 matrix, which is called the essential matrix
[8], [9] when image are calibrated and normalized image
coordinates are used, and is called the fundamental matrix
[10], [11], [12] when pixel image coordinates are used. The
corresponding points between the two images must satisfy
the epipolar constraint to be presented below. An important
step in motion analysis, after the establishment of point
correspondences, is to estimate the 3 x 3 matrix. The crucial
part is the choice of an appropriate criterion for optimiza-
tion. The three best-known criteria are based on the dis-
tances between points and their corresponding epipolar
lines (denoted by J,), the gradient-weighted epipolar errors
(denoted by J,), and the distance between the observation
and the reprojection of the reconstructed structure (denoted
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by J;). Table 1 lists a few references which use these criteria
for determining Euclidean motion (when camera intrinsic
parameters are known), affine epipolar geometry (when
affine projection model is assumed), and projective epipolar
geometry (i.e., fundamental matrix, when uncalibrated full
perspective projection model is assumed). The optimization
of these criteria is usually performed through an iterative
numerical minimization procedure, which means that a
reasonable initial guess of the epipolar geometry is re-
quired. Hartley’s normalized eight-point algorithm [13] is
recommended to obtain such an initial guess.

In this paper, we study the relationship of these three
criteria. Data points are assumed to be corrupted by inde-
pendent and identically distributed Gaussian noise. False
matches are assumed to be already detected and discarded
(see [5] on this topic). Uncalibrated images are considered,
but the results are equally valid for calibrated images be-
cause only the general matrix form of the epipolar geome-
try is used in the analysis. Analytical analysis is carried out,
which shows that, given a reasonable initial guess of the
epipolar geometry, criteria J, and J; are equivalent when
the epipoles are at infinity, and differ from each other only a
little even when the epipoles are in the image, and that J
and J, are equivalent only when the epipoles are at infinity
and when the observed object/scene has the same scale in
the two images. The bias of J;, although it is very small, is
studied, which tends to make the object scales and the off-

TABLE 1
SAMPLE REFERENCES WHICH USE THE THREE CRITERIA
CONSIDERED IN THiS PAPER (SEE TEXT)

criterion Euclidean Affine Projective
7 14 (5] (2]
T [16] [15] [12]
s [17] (18] [19]
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sets of the epipoles with respect to data points in both im-
ages similar. Experiments with several thousand computer
simulations and four sets of real data confirm the analysis.
In the appendix, the three criteria are reformulated to cases
where the noise property of each point is known. The excel-
lent approximation of J; by J, was also noted experimen-
tally by Oliensis [20, Section 3.4.5].

2 NOTATION AND PROBLEM STATEMENT
2.1 Notation
Let x = [x, y]T, we define X = {x, Y, 1]TA and X = [x, Y, O]T.

Please note the difference: One is added as the last element
in the former while zero is added in the latter. Furthermore,

we define matrix
10
Z=(0 1] )
0 0

We then have X = Zx,x = Z'X,ZZ" = diag(l, 1, 0), and Z'Z
=diag(1, 1).

A camera is described by a 3 x 4 pr0]ect10n matrix P. The
coordinates of a 3D point M = [x, y, ] in a world COOI'dI—
nate system and its retinal image coordinates m = [u, v] are
related by

u '; .
siv|=P or sm'=PM,
N

‘where s is an arbitrary scale factor. Note that the projection
can be full perspective or affine (mcludmg orthographic
and weak perspective).

The quantities related to the second camera are indicated
by ’. For example, if m, is a point in the first image, m; de-
notes its corresponding point in the second image.

A line 1 in the image passing through point m = [u, v]” is
described by equation au + bv + ¢= 0. Let 1=1a, b, c]T, then
the equation can be rewritten as P =0 or @'1=0. Thus,
a 2D line is represented by a homogeneous 3D vector. Mul-
tiplying 1 by any nonzero scalar defines the same line. The
distance from point my = {1, vO]T toline l = [a, b, c]T is given
by
auy +boy +c

\/a +b?

Note that we here use the signed distance.

d(mg, 1) =

2.2 Epipolar Geometry

- The epipolar geometry exists between any two camera Sys-
tems. Consider the case of two cameras as shown in Fig. 1.
Let C and C’ be the optical centers of the first and second
cameras, respectively. Given a point m in the first image, its
corresponding point in the second image is constrained to
lie on a'line called the epipolar line of m, denoted by I,. The
line I is the intersection of the plane II, defined by m, C
and C’ (known as the epipolar plane), with the second image
plane I'. This is because image point m may correspond to

Fig. 1. The epipolar geometry.

an arbitrary point on the semiline CM (M may be at infin-
ity) and that the projection of CM on I is the line 1/,. This is
called the epipolar constraint. Algebraically, in order for m in
the first image and m’ in the second image to be matched,
the following equation must be satisfied [21], [22]:

TR =0, (2)

where ,
F:@vﬂww. 3)

Here, IF’ is the pseudo-inverse of matrix P: P = P ([P’[P’ )_
and p* is any four-vector that is perpendmular to all the row
vectors of P, i.e,, le =0. Thus, p* is a null vector of P, As
a matter of fact, p * indicates the position of the optical cen-
ter (to which all optical rays converge). Geometrically, Fm
defines the epipolar line of point m in the second image.
Equation (2) says no more than that the correspondence in
the right image of point m, lies on the corresponding
epipolar line. Transposing (2) yields the symmetric relation
from the second image to the first image. The expression of
the fundamental matrix given in (3) is a general one, which
is valid for both perspective and affine cameras.

2.3 Problem Statement

The problem considered here is the estimation of F from a
sufficiently large set of point correspondences:

{m,m)ji=1, .., a},

where n 2 7. The point correspondences between two im-
ages can be established by a technique such as that de-
scribed in [23]. We do not assume that the camera’s intrinsic
parameters are known, but the followmg analysis is equally
valid for that case.

3 THREE CRITERIA AND THEIR RELATIONSHIP

There are a number of techniques proposed in the literature
to solve the above problem. The linear eight-point algo-
rithm [8], [13] produces a closed-form solution, but the cri-
terion used is not physically meaningful, and the result
obtained is usually not satisfactory. Thus, this solution is
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usually refined through nonlinear optimization based on
some appropriate criterion. Note, however, Hartley [13]
shows that a simple normalization (translation and scaling)
of image coordinates considerably improves the perform-
ance of the eight-point algorithm.

3.1 Three Criteria

For nonlinear estimation techniques, the three best-known
optimization criteria are the following.

3.1.1 Distances Between Points and Epipolar Lines

The first is based on the distances between points and their
corresponding epipolar lines:

2(d*(m, i) + &% (m,, BTy ).
Since the distance of a point m’ to its corresponding epipo-
lar line 1 = Fi is given by

M Fm

JaTF zZ Fm

d(m’,1) = d(m’, Fin) =
we have the following criterion

le

n 1 + 1 ( - 'TF - )2 ) 4
Z M, FM;) — min
“\ i FzZ Fn, mFZZF @) )

As can be observed, the two images play a symmetric role.

3.1.2 Gradient-Weighted Epipolar Errors

The second is based on the gradient-weighted epipolar er-
rors. When data points are noisy, the epipolar constraint (2)
is not exactly satisfied, i.e., 7, = lﬁ;TFffli # 0. If we assume
that the points are perturbed by independent identically
distributed Gaussian noise with mean zero and covariance
matrix A = o’ diag(1, 1), then the variance of r; is given, un-
der the first order approximation, by

I A
Oy = E)m;+8mi

i om;] om,
= o (] ' ZZ"Fiiy, + i/ FZZ F 1))

We can easily find that ()'fi varies from one point to another.

Therefore, instead of minimizing Ziriz, we should minimize
the Mahalanobis distance, which is in our case the gradient-
weighted quantity:
2
n (;"Fin, )

J, = =
? E ) F ZZ Fi, + m] FZZ'F ]

1

— min. (5)

Note that we have removed the constant ¢® because di-
viding an objective function by a constant does not change
the solution.

3.1.3 Distances Between Points and Reprojections

The third is based on the distances between points and the
reprojections of their reconstructed points, that is

n
Ja = 2 (Jm =+ i s

i=

1 pT ~ 1 p'T ~
m; = T ’1I‘ M;, i} = T }T M;, )
p:M,; | p, p; M; | P2

[)—min,  (6)

with

where piT and p;T are the ith row of camera projection ma-
trices P and I, which are related to F, and M; is the 3D
projective point corresponding to (mi,m;). This criterion
can be derived from the maximum likelihood principle

based on the same assumption on noise as that in the previ-
ous criterion. The minimization process is speeded up by

separating the estimation of Mi from that of F (see [5] for
details).

3.2 Relationship Between J, and J,

Let us first consider J; (6). It is evident that th and @’ sat-
isfy the epipolar constraint (2). Therefore, minimizing J, is
equivalent to minimize

J3 =

> (m; - " +[jm; - &]) - subject tof;"Fiy, =0 (8)

i=1

Define
{Am=m-m,:>{m=ﬁl-mh o

The constraint (2) becomes

' Fm - Am’ Fm — ' TFAm + A FAm = 0. (10)

If we neglect the second order term O, = A FAf (see
the end of this subsection for discussions) and use the La-
grange multiplier, we can transform the constrained mini-
mization problem (8) into an unconstrained one:

n
7= (Am{Am, + Am{" Am] +
i=1
A Fi, — Am!"Z"Fii, - @] FZAm,)) (1
Here we have used the equation t = Zm. If we let the
first-order derivatives of J; with respect to Am; and Am;]
be zero, we have

aJy TyT ~ A o TeT
aAmi=2Am1——/1iZFmi—0 ::AmifTZFmi
aJ3 , TeT o , AT
—a——-——;—=2Ami—/1iZFmi=0 :Amiz—z—'ZFmi

Substituting them into the linearized constraint of (10)
gives

~ T~
m; Fm, -

NS

L[] FTZZ" Fin, + i) FZZTF @] = 0,
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which in turn yields

~ T
m;" Fim,

A =2 :
CURIF ZZ Fm, + ) FZZTF @)

Substituting the obtained A, Am; and Am; back into (11)
finally gives

n

7= Z(AmTAm + Am;" Am))

)

S (] 22 Fn, + i FZZTE TR

(xﬁfFTzzTFrﬁi + i} FZZ'F )

2

. (i)
= 12
~ ! F 22 Fin, + ] FZZ F i’ o1

This is exactly the gradient-based criterion J, (5).
Note that in the above derivation, the only term we ne-
glect is the second-order term

0, = Am;"FAm,.
This implies that if Am"FAm, =0, then the two criteria J,

and J, are equivalent. This is the case if the fundamental ma-
trix is of the following form

00 *
0 0 *|
¥ %

*

F:

For example, when the epipoles are at infinity or when the
cameras are affine, i.e., when the epipolar lines are parallel,
the two criteria are equivalent. The case for affine cameras
has already been shown by Oxford group [15], [24]. If F is

not of the above form, as long as either Am, is much smaller

than m; or Am; is much smaller than m}, then the second-
order term is much smaller than one of the first-order
terms: Alﬁ;TFIYIi or mFAm;. In practice, this condition is
easily satisfied. For a particular point match, neglecting the
second order term O, implies that the epipolar line does not
change the orientation in its neighborhood. If a point is not
close to the epipole, then the orientation of the epipolar line
in the neighborhood does not change much indeed. For
example, for a perturbation of one pixel perpendicular to
the epipolar line, the angle between the new epipolar line
and the original one is inversely related to the distance of the
point to the epipole. If the distance is of 50 pixels, then the
angle is only. one degree. Experimental results provided in
Section 5.3 show that J, is really a good approximation of J;.
3.3 Relationship Between J; and J,
Denote again the epipolar residual by 7, i.e.,

r, = m/ Ff,. (13)

Let w, = i/ FZZ F' & and w/ = m. F' ZZ Ffir,, then J, (4)
can be rewritten as

: Tl w +w 72
J1:Z( 2 wl-lkwl'

i=1

Therefore, J; is obtained by weighting each term of J, with
i

2
= (1+Si) with s; =EU-,.‘
w

i i

(w,rwl)
i~ w;w,

When minimizing the criterion J;, we will minimize both k;
and J,. The minimum of k;, which is equal to four, is
achieved when s; = 1, i.e., when w; = w;". Thus, minimizing k;
is equivalent to estimating the fundamental matrix such
that the contributions from both images are equal. This is
exactly what we need when introducing J;. Remember,
however, that minimizing k; should be accompanied by
minimizing 1;2 / (wi + w{), the latter is usually dominant, as
was observed in our experiments. In consequence, the dif-

ference between the results obtained with J; and with J, is
small, as will be shown in the experimental section.

4 PRACTICAL EQUIVALENCE

In practice, the rotation between two images is usually
small. In order to gain a better understanding of the rela-
t1onsh1p between the three criteria, let us consider a spec1a1
case in this section: a pure translation with t = [x, Y, z]
Note, however, the minimization is not constrained to pure
translations. k

Let the image scale factors be ¢, and @, the coordinates
of the principal point be u, and vy, and the two image axes
are orthogonal. Furthermore, we use ’ to indicate the intrin-
sic parameters of the second camera. Then, the fundamen-
tal matrix is given by

0 _ z 20, +ya,
’ !
auav auav
z Zihy + X,
F=l 2 L (R
, uv , , u-v
4
U tyan, Uzt X, .
s s
auav auav

e

where the term is irrelevant to our discussion here.

4.1 Practical Equivalence Between J; and J,
The only term we neglect in deriving J, from J; is the

second-order term O, = Af/ FAm,. For our special F
given in (14),

o - Z( AuAv] Au{Avij
RN

If z = 0 (i.e., the epipoles are at infinity), then this term is
always zero, and J, and J; are, as we said before, equiva-
lent. It is worth stressing, thanks to one of the reviewers,
that the equality of J, and J, for translations with z = 0 (i.e.,
parallel to the image plane) is not strictly relevant to mo-
tion-recovery techniques minimizing these errors. The point
is that the minimization is not restricted to such translations
even if the exact translation is parallel to the image plane.

If z# 0, let’s consider one of the first-order terms
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! FAm, = z[ " ﬁ] +o.t

u®o
where o.f. represents other terms. It is clear that if Au’; < u;
and Av/ < "UZ-', then O, can be neglected compared to the
first term of the right-hand side of the above equation.
Similarly, if Au; < u; and Av; < v,, then O, can be neglected
compared to Am; Fif,.

4.2 Practical Equivalence Between J, and J,

We consider now the factor k;, by which each term of J, is
multiplied in order to obtain J;. If z # 0, it is easy to com-
pute, from F, the epipole in the first image as

le,, ev]T =[ug + ox/z, vy + %y/z]T
and that in the second image as
[e;,evf = [u(’) tax/z, vi+ayy/ zf.
After some algebra, we finally obtain
W a;zai(ui - ew)2 + aia’vz(vi - ev)z

1
Y ae(-e) s alad(of - )

(15)

The term k; is thus minimized (i.e., s; — 1) if the epipoles in
the two images have the same offset with respect to the
matched points. If z = 0 (i.e., the translation is parallel to the
image plane), then

w =Byt by =x* o) vyt ) o

w{:F321+F322 =x2/a§+y2/a5
W okl e’ + oy
i w; el |\ ot vyt )
We can see that w;, w;, and s; do not depend on a particular

point match. They are the same for all point matches. Fur-

thermore, we see that s; is closely related to the ratio of the
two image scales. If the two images have the same scales
(au =o,anda, = a;), then s; = 1. In that case, the criteria

Jiand J, are equivalent.

5 EXPERIMENTAL RESuULTS WiTH COMPUTER
SIMULATIONS

In this section, we compare the three criteria with four dif-
ferent configurations of the epipolar geometry. In each con-
figuration, a set of 104 noise-free 3D points are projected
onto the images. The image resolution is 512 pixels x 512
pixels. The intrinsic parameters are the same for all images
except for the second image of configuration 2. They are: ¢,
= 700, @, = 1,000, 1, = 255, v, = 255. The field of view is
about 40 degrees. The three synthetic objects are at a dis-
tance of 2,600 mm, 3,200 mm, and 1,400 mm from the cam-
era. Independent Gaussian noise with mean zero and stan-
dard deviation o is added to the image points. The three
criteria are then used to estimate the fundamental matrix
from the same set of noisy image points. The three estimated
fundamental matrices and the true one are compared to
each other. The software Fdiff is used for the comparison. It

TABLE 2
DISTANCES (IN PIXELS) BETWEEN THE ESTIMATED
FUNDAMENTAL MATRICES AND THE TRUE ONE

F, Fs F;
F, 0.00 0.08 1.67
F, 0.08 1.67
F, 1.70
(a)
FZ F3 Ft
F, 0.00 0.08 3.43
F, 0.08 3.43
Fs 3.46
(0)
F, Fs F;
F, 0.01 0.25 7.33
F, 0.24 7.34
Fy 7.37

(©)
Configuration 1. (a) ¢ = 0.25 pixel. (b) 6 = 0.5 pixel. (c) 6 = 1 pixel.

computes the distance between two pencils of epipolar
lines, defined by the two fundamental matrices, through
sampling the whole visible 3D space. If the two fundamen-
tal matrices are equal to each other, then the two pencils of
the epipolar lines coincide; otherwise; there is an difference.
This distance is measured in image pixels (see [5] for more
details). For each noise level ¢, 200 trials have been con-
ducted, and the average distances will be provided below.
Furthermore, we have carried out the experiments with
three noise levels: 0.25, 0.5, and one pixel.

5.1 Comparison of the Estimated Fundamentai
Matrices

The estimated fundamental matrices based on the distances
between points and their corresponding epipolar lines, the
gradient-weighted epipolar errors and the distances be-
tween points and reprojections of the 3D reconstruction will
be denoted by Fy, F,, and F;, respectively. The true funda-
mental matrix is denoted by F,. '

5.1.1 Configuration 1

The second camera is displaced to the left by 100 mm, i.e., a
pure translation with t = [100, 0, 0]". Therefore, the epipoles
in both images are at infinity. The test images are shown in
Fig. 2, and the result is shown in Table 2.

5.1.2 Configuration 2

This configuration is the same as the first one, except that
we simulate a zoom for the second image. The scale of the
second image is 1.2 times that of the first image: a; = 840,
a;, =1,200. The test images are shown in Fig. 3, and the

result is shown in Table 3.

5.1.3 Configuration 3

The second camera first rotates to the left by 30 degrees and
then translates to the right by 1,000 mm. Thus, the epipole
in image 11s e = [1,467.4, 255]", while the epipole in image 2
is at infinity. The test images are shown in Fig. 4, and the
result is shown in Table 4.
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(@ (b)

Fig. 2. The test images used in Configuration 1. Four epipolar lines are shown.

] ]

@ (b)

Fig. 3. The test images used in Configuration 2. Four epipolar lines are shown.

5.1.4 Configuration'4

The second camera advances by 250 mm, i.e., a pure trans- DISTANCES (IN PIXEESBBLEEV?IEEN THE ESTIMATED
lation with t = [0, 0, —250]". The epipoles in both images are FUNDAMENTAL MATRICES AND THE TRUE ONE
at the image center, i.e., [255, 255]". The test images are F F =
shown in Fig. 5, and the result is shown in Table 5. 2 S !
In [17, Section VILB], Weng et al. compared criteria J, and Fy 0.02 0.02 1.59
Js in one experiment, by measuring the rotation and transla- ? 0.00 1:3
A )

tion errors separately, for different degrees of fields of view.
The two criteria do behave approximately the same, but J; @
performs better for smaller fields of view (less than 30 de-

F F F
grees). The error of approximating J; by J, probably becomes : 2 ‘
. o377 F, 0.07 0.07 3.78
larger in that case. Another possibility is probably due to the
) o . X . F, 0.00 3.79
bas-relief ambiguity. In their experiment, the translations are

smaller for small fields of view than for wide fields of view. It Fs 5 8.79
is well known that in case of small translations, it is not easy ® k
to distinguish the image effects of rotating and translating. F, F, F,
Therefore, although J, has larger errors in both rotation and

X . . . F, 0.29 0.29 7.81
translation than J;, the epipolar geometry estimated with J, F, .00 e
may still not be distinguishable, in terms of image errors, F, 7 81

from. the one estimated with J.

(©
Configuration 2. (a) ¢ = 0.25 pixel. (b) 6 = 0.5 pixel. (c) ¢ =1 pixel.
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U

(@)

Fig. 4. The test images used in Configuration 3. Four epipolar lines are shown.

|

(a)

Fig. 5. The test images used in Configuration 4. Four epipolar lines are shown.

TABLE 4
DISTANCES (IN PIXELS) BETWEEN THE ESTIMATED
FUNDAMENTAL MATRICES AND THE TRUE ONE

F, Fa F,
F, 0.00 0.00 0.18
F, 0.00 0.18
Fs 0.18
()
F, Fs F,
F, 0.01 0.01 0.38
F, 0.00 0.38
F3 0.38
(b)
F, Fs F,
F, 0.03 0.03 0.72
F, 0.00 0.72
Fa 0.72

(©

Configuration 3. (a) 6 = 0.25 pixel. (b) & = 0.5 pixel. (c) 6 =1 pixel.

TABLE 5
DISTANCES (IN PIXELS) BETWEEN THE ESTIMATED
FUNDAMENTAL MATRICES AND THE TRUE ONE

F2 F3 Fl
F, 0.09 0.13 4.14
F, 0.06 413
F 416
(a)
F. Fs F:
F, 0.25 0.28 7.65
F, 0.06 7.65
Fa 7.67
(b)
F, Fy F,
F, 117 0.86 15.79
Fo 0.55 15.92
F3 156.75

Configuration 4. (a) 6 = 0.25 pixel. (b) 6 = 0.5 pixel. (c) 6 = 1 pixel.

©

723
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TABLE 6 ,
COMPARISON OF J1 AND J2 WiTH RESPECT TO 5 =W / Wi FOR CONFIGURATION 2
v =095 o =05 =10
mean dev. diff, | mean dev. diff. | mean dev. diff.
7, 1069486 6.40¢-03 0.065 [ 069545 1.21e-02 0.083 | 0.69412 2.49¢-02 0.013
Jo 10.69483 640603 0.060 | 069530 1.21e-02 0.070 | 0.69358 ~2.50e-02 0.035
ratio | 1.00005. 1.81e-05 2.763] 1.00021 6.95¢-05. 3.022 | 1.00079 3.68¢-04 2.148

5.2 Bias of J, With Respect to J,

Now let us examine the relationship between J; and J, that
we have analyzed. When the epipoles are at infinity, the

quantity »
o= w, /) = (B + ER) /(5 + F2)

is a constant, and is closely related to the ratio of the image
scales. For Configuration 1, the two images have the same
scale, therefore s; = 1. For Conflguratlon 2, s, = 1/(1.2)" be-
cause the scale of the second image is 1.2 times that of the
first. We have conducted 200 trials on the data of Configu-
ration 2. In each trial, s; based on Jj, s; based on J,, and their
ratio are estimated. Finally, their means and sample devia-
tions are computed, as shown in Table 6. In the table, the
columns corresponding to “diff.” are the absolute differ-
ence between the mean and the expected value weighted by
the estimated sample deviation. If that value is small, then
no bias is observed. This is clearly not the case for the ratio
of s;s. Indeed, we have observed that the ratio is always
larger than one in all trials. This implies that minimizing
criterion J; indeed tends to bias s; toward one, although the
bias is very small (less than 0.1 percent). We have also ex-
amined the ratio with Configuration 1. The mean of the
ratio is exactly one, which confirms that the two criteria are
equivalent in that case.

For Configuration 4, the epipoles are not at infinity, and,
thus, s; usually changes from one point match to another.
The values are however all around 0.77. From our analysis,
we would expect that s;”s given by J; are larger than s{*’s
given by J, (please note the use of the superscript). If two
images have the same aspect ratio (and this is the case for
Configuration 4), (15) can be reduced to

RS eu)z +(v; - eu)z

s = )
' (v — e;)2 +(v) = e;)2

For each noise level, we conducted 200 trials. For each trial,
we compute the querage ratio of s; as

_2( /62,

which is expected to be larger than one because of the bias
of J;. When o = 0.25, there are nine trials' which give the
average ratio less one, and the mean of the average ratios
is 1.00002. When o = 0.5, there are three trials which give
the average ratio less one, and the mean of the average
ratios is 1.00007. When o = 1, there are five trials which
give the average ratio less one, and the mean of the aver-
age ratios is 1.00017. There is clearly a bias when J; is
used. It tends to favor the fundamental matrix whose
epipoles have the same offset with respect to the image

points in both images. Although small, the bias increases
when the noise in the data points increases.

For general configurations involving rotation out of image
plane between two images, such as Configuration 3, we still
observe the bias with J;. For Configuration 3, the values of s;
are also around 0.77. As for Configuration 4, we compute the

average ratio s(1 / 5(2)

one if a bias does exist. When ¢ = 0.25, there are 46 among
200 trials which give the average ratio less one, and the mean
of the average ratios is. 1.00001. When o = 0.5, there are 24
trials which give the average ratio less one, and the mean of
the average ratios is 1.00003. When ¢ = 1, there are 29 trials
which give the average ratio less one, and the mean of the
average ratios is 1.00022. The bias is not as strong as in Con-~
figuration 4 because one of the epipole is at infinity.

which is expected to be larger than

5.3 Difference Between J, and J;

As said in Section 4.1, J, approximates J; quite well if an
epipolar line does not change its orientation too much in
the mneighborhood. They become equivalent when the
epipoles are at infinity, in which'case the epipolar lines-all
have the same orientation. In this section, we investigate
the approximation error with respect to the distance of
points to the epipoles.

We consider two images which differ from each other by
a pure translation. The fundamental matrix is given by (14).
We fix the translation magnitude to 200 mm and the y com-
ponent to zero. We vary the angle between the translation
vector and the z-axis. Therefore, the translation vector is
given by t = 200[sin6, 0, cosé]". We vary @ from zero degrees
to 90 degrees When 6 = 0 degrees, both epipoles are at
[255, 255]"; when 6 = 5 degrees, both epipoles are at
[316.242, 255]T when 6 = 90 degrees, both epipoles are at
[+os, 255]". We only consider one point match. The point in
the first image is m = [245 255]"; the correspondmg point in
the second image is m’ = [250, 255]". They satisfy the
epipolar constraint for all 6. We consider this point match
because they are close to the image center, and therefore,
when 8= 0 degrees, criterion J, is almost the worst ap-
proximation to J, that we can expect. Independent Gaus-
sian noise with mean zero and standard deviation ois then
added to m and m’. Four noise levels have been experi-
mented: o= 0.5, 1, 2, and 5 pixels. For each noise level, 200
trials have been conducted. For each noisy data, we com-
pute the true reconstruction error based on Jy:

Ejg = min yfm — s + m’ — ],

where th and m’ are the projections of the reconstructed
points, as given in (7), and the first-order approximation

based on J:
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TABLE 7
COMPARISON OF J2 AND J3 WITH RESPECT TO DIFFERENT TRANSLATION DIRECTION 6
oc=0.5 o=1 =2 o=5
8 |dim,e) [ Egs Fabs Fra | g3 Favs  Fro | Fga  Fape  Fra | Bga  EBabe  FBrid
0° 100 [ 041 001 053] 0.87 004 222|174 024 693 | 445 135 173
1° 222042 000 004|077 000 016|155 002 066|400 031 379
2° 3441035 000 001|073 000 005]159 001 023|404 012 152
3| 467[040 000 001]078 000 003164 000 012379 004 0.60
4° 589|044 000 001082 000 002f165 000 00738 003 039
5° 712 038 0.00 0.00 ] 0.80 000 001|158 000 005|405 003 030
6° 836|040 0.00 000087 000 001[ 167 000 003(398 001 0.19
7° 9591043 000 000|079 000 0.01{ 160 000 002]4.00 001 015
8° 1084 | 043 000 000|079 000 0.00( 143 000 002409 001 012
9° 12091 040 000 000,086 000 000|164 000 002} 3.8 001 0.09
10° 1334 | 042 0.00 000|079 000 000 1.53 000 001438 001 0.09
15°f 1976041 000 000)083 000 000157 000 001]397 000 003
20° 2648 | 040 0.00 000081 0.00 000 1.66 000 000|436 000 0.02
25° 3364 1 041 000 000}092 000 000] 149 000 000|445 000 001
30° 4141|042 0.00 000083 000 0.00[ 156 000 000{401 000 001
35° 500.1 | 041 0.00 000084 000 000] 1.63 000 0.00( 418 0.00 001
40°| 5974|041 000 000|079 000 000] 172 000 000|420 000 0.00
45°| 7100 | 042 0.00 0.00] 080 000 000|156 000 0.00|3.99. 0.00 0.00 .
50° 84421 044 000 000|081 000 000] 166 000 000|446 000 000
60° | 12224 | 041 000 000|074 000 000|137 000 000|415 000 0.00
70° 19332 | 041 0.00 0.00 | 0.78 0.00 0.00| 153 0.00 0.00 | 3.89 0.00 000
80° | 3979.9 | 042 000 000}079 000 000|175 000 000|407 000 000
90° o0 | 042 000 000|076 000 000]1.60 000 000382 000 000

d(m, e) is the distance of the point m in the first image to the epipole. The distance of the point in the second image is d(m, e) —5. E 3 is the reconstruction error

in pixels, corresponding to the distance between points and the reprojection of the reconstructed point. E

abs

is the absolute difference between E 3 and its ap-

proximation E p, in pixels. Eq is the relative difference E ../ E 13 in percentage. All values, except d(m, e), are the average of 200 trials.
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Fig. 6. Comparison of J, and J; with respect to different translation direction 9. (a) Absolute difference. (b) Relative difference.
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Furthermore, we compute their absolute difference

Eps = |EJ3 - E]ZI
and the relative difference
Erel = Eabs / E]3'

The average results of the 200 trials are shown in Table 7.
The absolute and relative differences in reconstruction

errors between J, and J; are graphically displayed in Fig. 6.
The approximation error decreases as the distance between
the point and the epipole increases, and increases as the
noise level increases. In all cases, when 8> 3 degrees (ie.,

d(m, e) > 40 pixels), the absolute difference is less than 0.1
pixel and the relative difference is less than 1 percent,
which shows that the approximation of J; by J, is very
good in practice.

6 ExPeRIMENTAL REsuLTs WiTH REAL DATA

In this section, we provide experimental results with four
sets of real data, corresponding roughly to the four configu-
rations described in the last section. The point matches
have been established automatically by the software called
image-matching [23], which is available from the author’s
home page. Fig. 7, Fig. 9, Fig. 11, and Fig. 13 show the four
image pairs, the matched points, and several epipolar lines
estimated with criterion J;. Fig. 8, Fig. 10, Fig. 12, and Fig. 14
show the estimated fundamental matrices and their differ-
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(@)

Fig. 7. Real data 1: Rock scene, 242 point maiches. Epipoles far away.

156 -6 12le—-4 -365e-1 ‘ 1.56e—6 122e—-4 -3.65e—1
-11le—-4 -167¢—6 —4.68¢—2 : ~112e -4 -167¢—-6 —4.68¢—2
3.6be—-1 562e—2 0.8535 365e—-1 56262 0.8535
(a) (b)
F, F;
Fy 0.012 0.010
Fs 0.002

(¢

Fig. 8. Real data 1: Comparison of different estimations of the fundamental matrix. (a) F;. (b) F5. (c) Difference (in pixels)."

(@)

Fig. 9. Real data 2: Indoor scene with two different image scales, 61 point matches. Epipoles far away:

ences for each image pair. The fundamental matrix estimated The three criteria have been implemented in a software
based on J, is not shown for two reasons: The ’first is thatitis called FMatrix, available from
very close to Fy; the second is to save space. The same con-

. . . . http://www.inria.fr/robotvis/personnel/zzhang/
clusion as with computer simulations can be drawn.
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892 -8 291e—-7 5.07¢e-4 9.07¢ -8 252¢-7 526e-4
~1.86e -6 ~243e—-7 -102¢-2 -182e -6 -236e-7 -10le-2
7.54¢~5 819¢—-3 0.9999 558¢~5 818¢-3 0.9999
(=) (b}
FG
F, 0.178 | 0.178
F, 0.002

Fig. 10. Real data 2: Comparison of different estimations of the fundamental matrix. (a) Fy. (b) F3. (c) Difference (in pixels).

Fig. 11. Real data 3: indoor scene, 104 point matches. Epipoles close to the images.

—463¢ -6 -210e—5 6.69 —4 —462¢—6 -210e—5 6.64e—4
213¢e -5 -134e~-6 -—135e-2 213¢ -5 -134e-6 -135¢-2
736e—4 137¢—2 09998 74le-4 137¢-2 09998

(a) (b)
F3
F, 0038 | 0037
F, 0.001

Fig. 12. Real data 3: Comparison of different estimations of the fundamental matrix. (a) F. (b) Fa. (c) Difference (in pixels).

Table 8 compares the execution time of our particular
implementation with the three criteria. They all start from
the same initial guess which is provided by the eight-point
algorithm. The execution time is measured on a Sun Sparc
10 workstation. In the last column, we have also shown the
ratio of the CPU times spent on optimizing J; and J,. This
ratio increases when the number of points, denoted by N,
increases. This is because the number of parameters to be
estimated in J; (motion plus structure) increases with N,
while that in J, remains constant.

7 CONCLUSION

In this paper, I have studied the relationship of the three
best-known criteria, namely the one based on the distances
between points and their corresponding epipolar lines (de-

noted by J;), the one based on the gradient-weighted
epipolar errors (denoted by J,), and the one based the dis-
tances between the observed and reprojected points of the
reconstruction (denoted by J;).

Analytical analysis is carried out, which shows that,
given a reasonable initial guess of the epipolar geometry,
criteria J, and J; are equivalent when the epipoles are at
infinity, and differ from each other only a little even when
the epipoles are in the image, and that J; and J, are
equivalent only when the epipoles are at infinity and when
the observed object/scene has the same scale in the two
images.

The bias of J; has been studied, which tends to make
the object scales and the offsets of the epipoles with re-
spect to data points in both images similar. The bias has
been clearly observed, but is very small. Experiments
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(a)

Fig. 13. Real data 4: Outdoor scene, 51 point matches. Epipoles in the irﬁages.

1.06e—6 293¢ —-4 —712e-2 107e—-6 293 e—-4 ~713e-2].
—293¢~4 815e~6 7.65e-2 =293e -4 813e¢—-6. 7.65e—-2
684e -2 ~7.98e—2 0.9889 6.84e -2  -798¢ -2 0.9890
(@ (b)
F;
F, 0.111 0.112
F, 0.009

~ Fig. 14. Real data 4: Comparison of different estimations of the fundamental matrix. (a) F4. (b) Fs. (¢) Difference (in pixels).

with several thousand computer simulations and four
sets of real data have confirmed our analysis. Since the
optimization of J; is much more time consuming than
the other two (about 50 times slower for 100 points), it is
not recommended.

To summarize, I recommend the second criterion (gradi-
ent-weighted epipolar errors), which is actually a very good

approximation to the third one. If a higher accuracy is re-.

quired, the obtained estimation can be refined by using the
third one, and this refining is much cheaper than if the third
criterion would be directly used.

Note, however, that in the experiments with simulated
data, the estimated fundamental matrix with J, is some-
times closer to the true fundamental matrix. The bias of J;
may constrain the numerical minimization to behave better,
which is a point to be studied in the future.

APPENDIX: GENERAL FORMULATION OF THE THREE
CRITERIA

The three criteria formulated in Section 3.1 assume that
each point is corrupted by independent identically dis-
tributed Gaussian noise with mean zero and covariance
matrix A = ¢ diag(1, 1), where the knowledge of o is not
required. In this section, we reformulate the criteria if the
covariance matrix for each point is different. Let us as-

sume the covariance matrix for point m; is A, . For the
1

first criterion, the Euclidean distance of a point to the
epipolar line in each image is replaced by the Mahalanobis
distance. That is,

i) : 1
= +
! w FZA  Z'Fiw, m) FZA, Z'F i,

i=1

2

() Fin, )

Similarly, the second criterion is reformulated as

" (i Fn, )

Jz:z ~ T T~

S| ®F ZA, 2 FR, + ] FZA,, Z'F ]

and the third one, as

TABLE 8
COMPARISON OF DIFFERENT CRITERIA IN TERMS OF CPU TIME
IN SECONDS ON A SUN SPARC 10 WORKSTATION

Data T b Js T T
set

1 0.55 0.55 53.12 96.6

2 0.18 0.21 5.86 27.9

3 0.24 0.27 13.74 50.9

4 0.21 0.26 7.66 29.5
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n
Ty = 3 (Am] A, Am, + Am!TATL Am)

i=1
with Am; = m; ~ i, and Am] = m] - ], where 1h; and
are the projections of the reconstructed points, as given in
(7). Note that Kanatani [16] derives a more precise formula
for the second criterion which involves the second order
term in computing the variance.
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