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Abstract. We continue our analysis of the number partitioning problem with
n weights chosen i.i.d. from some fixed probability distribution with density
ρ. In Part I of this work, we established the so-called local REM conjecture of
Bauke, Franz and Mertens. Namely, we showed that, as n →∞, the suitably
rescaled energy spectrum above some fixed scale α tends to a Poisson process
with density one, and the partitions corresponding to these energies become
asymptotically uncorrelated. In this part, we analyze the number partitioning
problem for energy scales αn that grow with n, and show that the local REM
conjecture holds as long as n−1/4αn → 0, and fails if αn grows like κn1/4 with
κ > 0.

We also consider the SK-spin glass model, and show that it has an analogous
threshold: the local REM conjecture holds for energies of order o(n), and fails
if the energies grow like κn with κ > 0.

1. Introduction

1.1. Number Partitioning. In this paper we continue the study of the energy
spectrum of the number partition problem (Npp) with randomly chosen weights.
We refer the reader to [BCMN05] for a detailed motivation of this study, but for
completeness, we repeat the main definitions.

We consider random instances of the Npp with weights X1, . . . , Xn ∈ R taken to
be independently and identically distributed according to some density ρ(X) with
finite second moment (for simplicity of notation, we will choose the second moment
to be one). Given these weights, one seeks a partition of these numbers into two
subsets such that the sum of numbers in one subset is as close as possible to the
sum of numbers in the other subset. Each of the 2n partitions can be encoded as
σ ∈ {−1,+1}n, where σi = 1 if Xi is put in one subset and σi = −1 if Xi is put in
the other subset; in the physics literature, such partitions σ are identified with Ising
spin configurations. The cost function to be minimized over all spin configurations
σ is the energy

E(σ) =
1√
n

∣∣∣∣∣
n∑

i=1

σiXi

∣∣∣∣∣ , (1.1)

where, as in [BCMN05], we have inserted a factor 1/
√

n to simplify the equations
in the rest of the paper.

Note that this scaling implies that the typical energies are of order one, and the
maximal energies are of order

√
n. Indeed, if σ is chosen uniformly at random and

X1, . . . , Xn are i.i.d. with second moment one, the random variable n−1/2
∑

i σiXi

converges to a standard normal as n →∞, implying in particular that for a typical
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configuration, E(σ) is of order one. The maximal energy, on the other hand, is
equal to n−1/2

∑
i |Xi|. By the law of large numbers, this implies that the maximal

energy is asymptotically equal to
√

n times the expectation of |X|.
As usual, the correlation between two different partitions σ and σ̃ is measured

by the overlap between σ and σ̃, defined as

q(σ, σ̃) =
1
n

n∑

k=1

σkσ̃k. (1.2)

Note that the spin configurations σ and −σ correspond to the same partition
and therefore of course have the same energy. Thus there are N = 2n−1 distinct
partitions and (with probability one) also N distinct energies. The energy spectrum
is the sorted increasing sequence E1, ..., EN of the energy values corresponding to
these N distinct partitions. Taking into account that, for each i, there are two
configurations with energy Ei, we define σ(i) to be the random variable which is
equal to one of these two configurations with probability 1/2, and equal to the other
with probability 1/2. Then the overlap between the configurations corresponding
to ith and jth energies is the random variable q(σ(i), σ(j)).

As noted in [BCMN05], neither the distribution of the energies, nor the distri-
bution of the overlaps changes if one replaces the density ρ(X) by the symmetrized
density 1

2 (ρ(X)+ρ(−X)). We may therefore assume without loss of generality that
ρ(X) = ρ(−X). Under this assumption, it is easy to see that the energies E(σ) for
the different configurations σ are identically distributed. Let us stress, however,
that these energies are not independently distributed; the energies between differ-
ent configurations are correlated random variables. Indeed, there are N = 2n−1

energies, E1, . . . En, constructed from only n independent variables X1, . . . Xn.
Consider now a very simple model, the so-called random energy model (REM)

first introduced by Derrida [Der81] in a different context. The defining property
of the REM is that N energies E(σ) are taken to be independent, identically dis-
tributed random variables. In the REM, the asymptotic energy spectrum for large
N can be easily determined with the help of large order statistics: if the energies
are ordered in increasing order and α ≥ 0 is any fixed energy scale, the suitably
rescaled energy spectrum above α converges to a Poisson process. More precisely,
if the distribution of E(σ) has a non-vanishing, continuous density g(α) at α and
Er+1 is the first energy above α, then the rescaled energies (Er+1 − α)Ng(α),
(Er+2 − α)Ng(α), . . . converge to a Poisson process with density one.

In spite of the correlations between the energies E(σ) in the Npp, it had been
conjectured [Mer00, BFM04] that as n →∞, the energy spectrum above any fixed
energy α behaves asymptotically like the energy spectrum of the REM, in the sense
that the suitably rescaled spectrum above α again becomes a Poisson process.
In [BFM04] it was also conjectured that the overlaps corresponding to adjacent
energies are asymptotically uncorrelated, so that the suitably normalized overlaps
converges to a standard normal. These two, at first sight highly speculative, claims
were collectively called the local REM conjecture. This conjecture was supported
by detailed simulations.

In Part I of this paper [BCMN05], we proved the local REM conjecture for the
Npp with a distribution ρ that has finite second moment and lies in L1+ε for some
ε > 0. More precisely, under these conditions, we proved that for all i 6= j, the
suitably normalized overlap between the configurations corresponding to the ith and
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jth energy above α becomes asymptotically normal, and that the rescaled energies
(Er+1 − α)ξ−1

n , (Er+2 − α)ξ−1
n , . . . with rescaling factor

ξn =
√

π

2
2−(n−1)e

α2
2 (1.3)

converge to a Poisson process with density one. Recalling that the normalization
in (1.1) corresponds to typical energies of order one, this this establishes the local
REM conjecture for typical energies.

In [BFM04], the authors expressed the belief that the weak convergence of the
rescaled energies to a Poisson process should extend to values of α that grow slowly
enough with n, although computational limitations prevented them from supporting
this stronger claim by simulations. At first, one might think that the local REM
conjecture could hold for α = o(

√
n). Indeed, since the maximal energy is of order√

n, it is clear that the conjecture is false for α = c
√

n with large enough c. But if
this were the only obstruction, then one might hope that the conjecture could hold
up to α = o(

√
n). As we will see in this paper, this is not the case; the conjecture

will only hold for α = o(n1/4).
Before stating this precisely, let us be a little more careful with the scaling of the

energy spectrum. Note that the scaling factor (1.3) is equal to [Ng(α)]−1, where
N = 2n−1 is the number of energies, and g(α) =

√
2/πe−α2/2 is the density of the

absolute value of a standard normal, in accordance with the expected asymptotic
density of E(σ) according to the local limit theorem. But it is well know that, in
general, the local limit theorem does not hold in the tails of the distribution. For
growing αn, the REM conjecture should therefore be stated with a scaling factor
that is equal to the inverse of 2n−1 multiplied by the density of the energy E(σ) at
α. We call the REM conjecture with this scaling the modified REM conjecture. It is
this modified REM conjecture that one might naively expect to hold for α = o(

√
n).

It turns out, however, that at least for the Npp, this distinction does not make
much of a difference. For α = o(n1/4), the original and the modified conjectures
are equivalent, and the original REM conjecture holds, while for α growing like a
constant times n1/4, both the original and the modified REM conjectures fail. So
for the Npp, the threshold for the validity of the REM conjecture is n1/4, not

√
n

as one might have naively guessed.

1.2. The SK Spin Glass. In a follow-up paper to [BFM04], Bauke and Mertens
generalized the local REM conjecture for the Npp to a large class of disordered
systems, including many other models of combinatorial optimization as well as
several spin glass models [BM04]. Motivated by this conjecture, Bovier and Kurkova
developed an axiomatic approach to Poisson convergence, covering, in particular
many types of spin glasses like the Edwards-Anderson model and the Sherrington-
Kirkpatrick model.

The Sherrington-Kirkpatrick model (SK model) is defined by the energy function

E(σ) =
1√
n

n∑

i,j=1

Xijσiσj . (1.4)

As before, σ is a spin configuration in {−1,+1}n, but now the random input is
given in terms of n2 random variables Xij with i, j ∈ {1, . . . , n}, usually taken to
be i.i.d. standard normals. Again E(σ) = E(−σ), leading to N = 2n−1 a priori
different energies E1 ≤ E2 ≤ · · · ≤ EN . Note, however, that the normalization in
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(1.4) corresponds to typical energies of order
√

n and maximal energies of order n,
in accordance with the standard physics notation.

Consider an energy scale αn ≥ 0, and let Er+1 be the first energy above αn.
To obtain the REM approximation for the SK model, we observe that the random
variable E(σ) is a Gaussian with density

g̃(x) =
1√
2πn

e−x2/2n. (1.5)

The REM approximation for the SK model therefore suggests that the rescaled
energy spectrum (Er+1 − αn)ξ̃−1

n , (Er+2 − αn)ξ̃−1
n , . . . with rescaling factor

ξ̃n =
√

2πn 2−(n−1)e
α2

n
2n (1.6)

converges to a Poisson process with density one. Recalling that typical energies are
now of order

√
n, the local REM conjecture for typical energies in the SK model thus

claims that for αn = O(
√

n), the rescaled energy spectrum converges to a Poisson
process with density one, with overlaps which again tend to zero as n →∞.

This conjecture was proved in a very nice paper by Bovier and Kurkova [BK05a].
In fact, they proved that the conjecture remains valid as long as αn = O(nη)
with η < 1. To get some insight into still faster growing αn, Bovier and Kurkova
then considered the generalized random energy model (GREM) of Derrida [Der85].
For this model, they proved [BK05b] that the local REM conjecture holds up to
αn = β0n, where β0 is the inverse transition temperature of the GREM, and fails
once αn exceeds this threshold. Based on these results for the GREM, Bovier
and Kurkova then suggested [BK05c] that the β0 might be the threshold for other
disordered spin systems as will.

As we will show in this paper, this is not the case, at least not for the SK model,
for which we prove that the REM conjecture holds up to the threshold αn = o(n),
and becomes invalid as soon as lim sup αn/n > 0, see Theorem 2.2 below for the
precise statement. Thus even the scaling with n of the threshold does not obey the
naive expectation derived from the GREM. Note that for the SK model there is no
difference between the original REM conjecture and the modified REM conjecture,
since the density of E(σ) is Gaussian for all energy scales.

1.3. Organization of the Paper. This paper is organized as follows. In the next
section, we precisely state the assumptions on our model and formulate our main
results, see Theorems 2.1 and 2.2. In Section 3, we then describe our main proof
strategy for the Npp. Since the proof strategy for the SK model only requires
minor modifications (the proof is, in fact, much easier), we defer the discussion
of this model to the last subsection, Section 3.7. The next four sections contain
the details of the proof: As a warmup, we start with the Npp with Gaussian
noise, where our strategy is most straightforward. Next, in Section 5, we move
to the Npp with a general distribution. This section contains the meat of our
proof: the establishment of a large deviations estimate for the probability density
of several (weakly dependent) random variables. In Section 6 we give the proof of
Theorem 2.2, and in Section 7 we establish several auxiliary results needed in the
rest of the paper. We conclude the paper with a section summarizing our results
and discussing possible extensions, Section 8.
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2. Statement of Results

2.1. Number Partitioning. Let X1, ..., Xn be independent random variables dis-
tributed according to the common density function ρ(x). We assume that ρ has
second moment one and satisfies the bound

∫ ∞

−∞
|ρ(x)|1+ε

dx < ∞ (2.1)

for some ε > 0. Since neither the distribution of the overlaps nor the energy
spectrum changes if we replace ρ(x) by 1

2 (ρ(x)+ρ(−x)), we will assume that ρ(x) =
ρ(−x). We use the symbol Pn(·) to denote the probability with respect to the joint
probability distribution of X1, ..., Xn, and the symbol En(·) to denote expectations
with respect to Pn(·).

As in the introduction, we represent the 2n partitions of the integers {1, .., n} as
spin configurations σ ∈ {−1, +1}n and define the energy of σ as in (1.1). Recalling
that the distribution of E(σ) does not depend on σ, let gn(·) be the density of
E(σ), and let ξn be the modified scaling factor

ξn =
1

2n−1gn(αn)
. (2.2)

We now introduce a continuous time process {Nn(t) : t ≥ 0} where Nn(t) is defined
as the number of points in the energy spectrum that lie between αn and αn + tξn.

Let E1, . . . , EN be the increasing spectrum of the energy values corresponding
to the N = 2n−1 distinct partitions. Given αn ≥ 0, let rn be the random variable
defined by Ern < αn ≤ Ern+1. For j > i > 0, we then define the rescaled overlap
Qij as the random variable

Qij =
1
4

∑

σ,σ̃

n1/2q(σ, σ̃) (2.3)

where the sum goes over the four pairs of configurations with E(σ) = Ern+i and
E(σ̃) = Ern+j . Instead of the overlap Qij , we will sometimes consider the following
variant: consider two distinct configurations σ and σ̃ chosen uniformly at random
from all pairs of distinct configurations. We then define Qn,t as the rescaled overlap
n1/2q(σ, σ̃) conditioned on the event that E(σ) and E(σ̃) fall into the energy
interval [αn, αn + tξn]. We will refer to Qn,t as the overlap between two typical
configurations contributing to Nn(t).

The main results of this paper are statements ii) and iii) of the following theorem.
The first statement is a corollary of the proof of ii) and iii) and implies that for
αn = o(n1/4), the original and the modified REM conjecture are equivalent.

Theorem 2.1. Let X1, ..., Xn ∈ R be i.i.d. random variables drawn from a prob-
ability distribution with second moment one and even density ρ. If ρ obeys the
assumption (2.1) for some ε > 0 and has a Fourier transform that is analytic in a
neighborhood of zero, then the following holds:

i) Let gn(·) be the density of E(σ), and let g(α) =
√

2/πe−α2/2. If αn = o(n1/4),
then gn(αn) = g(αn)(1 + o(1)).

ii) Let αn = o(n1/4), and let j > i > 0 be arbitrary integers not depending on n.
As n → ∞, the process Nn(t) converges weakly to a Poisson process with density
one, and both Qij and Qn,t converge in distribution to standard normals.
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iii) Let αn = κn1/4 for some finite κ > 0. Then En[Nn(t)] = t + o(1), but the
process Nn(t) does not converge to a Poisson process, and Qn,t does not converge
to a standard normal.

In order to prove the above theorem, we will analyze the factorial moments of
the process Zn(t). We will show that for αn = o(n1/4), they converge to those
of a Poisson process, and for αn = κn1/4 with κ > 0, they do not converge to
the moments of a Poisson process. Together with suitable upper bounds on the
moments of Zn(t), this allows us to establish non-convergence to Poisson for κ > 0,
but, unfortunately, it does not allow us to establish convergence to some other
distribution.

The situation is slightly more “constructive” for the overlap distribution: here
we are able to determine the limiting distribution of Qn,t for αn = κn1/4 with
κ > 0. In this regime, the distribution of Qn,t converges to a convex combination of
two shifted Gaussians: with probability 1/2 a Gaussian with mean κ2 and variance
one, and with probability 1/2 a Gaussian with mean −κ2 and variance one, so
in particular Qn,t is not asymptotically normal. As we will see, this is closely
connected to the failure of Poisson convergence; see Remark 4.2 in Section 4 and
Remark 5.8 in Section 5 below.

2.2. SK Spin Glass. We consider the SK model with energies given by (1.4) and
random coupling Xij which are i.i.d. standard normals. Let N = 2n−1, and let
E1, . . . , EN and σ(1), . . . , σ(N) be as defined in the introduction.

Given an energy scale αn ≥ 0 and two integers j > i > 0, we again introduce
Qij as the random variable defined in (2.3), with rn given by the condition that
Ern < αn ≤ Ern+1. Finally, we define Nn(t) to be the number of points in the
energy spectrum of (1.4) that lie between αn and αn + tξ̃n, with ξ̃n given by (1.6).
We say that the local REM conjecture holds if Nn(t) converges weakly to a Poisson
process with density one, and Qij converges in distribution to a standard normal
for all j > i > 0.

Our proofs for the Npp can then be easily generalized to give the following
theorem.

Theorem 2.2. There exists a constant ε0 > 0 such the following statements hold
for all sequences of positive real numbers αn with αn ≤ ε0n:

(i) E(Nn(t)) → t as n →∞.
(ii) The local REM conjecture for the SK model holds if and only if αn = o(n).

3. Proof Strategy

In this section we describe our proof strategy for Theorems 2.1 and 2.2. We
explain our ideas using the example of the Npp, referring to the SK model only in
the last subsection, Section 3.7.

3.1. Factorial moments. Consider a finite family of non-overlapping intervals
[c1, d1], . . . , [cm, dm] with d` > c` ≥ 0, and let γ` = d` − c`. Weak convergence
of the process {Nn(t) : t ≥ 0} to a Poisson process of density one is equivalent
to the statement that for each such family, the increments Nn(d1) − Nn(c1), . . . ,
Nn(dm) − Nn(cm) converge to independent Poisson random variables with rates
γ1, . . . , γm.
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Let Zn(a, b) be the number of point in the energy spectrum that fall into the
interval [a, b]. We then rewrite Nn(d`)−Nn(c`) as Zn(a`

n, b`
n), where a`

n = α+ c`ξn

and b`
n = α + d`ξn, with ξn defined in equation (2.2). We prove convergence of

the increments to independent Poisson random variables by proving convergence of
the multidimensional factorial moments, i.e., by proving the following theorem. To
simplify our notation, we will henceforth drop the index n on both the symbol En

and Pn.

Theorem 3.1. Let ρ be as in Theorem 2.1, let αn = o(n1/4) be a sequence of
positive real numbers, let m be a positive integer, let [c1, d1], . . . , [cm, dm] be a
family of non-overlapping, non-empty intervals, and let (k1, .., km) be an arbitrary
m-tuple of positive integers. For ` = 1, . . . , m, set a`

n = αn + c`ξn, b`
n = αn + d`ξn,

and γ` = d` − c`. Under these conditions, we have

lim
n→∞

E[
m∏

`=1

(Zn(a`
n, b`

n))k`
] =

m∏

`=1

γk`

` , (3.1)

where, as usual, (Z)k = Z(Z − 1) . . . (Z − k + 1).

Theorem 3.1 establishes that {Nn(t) : t ≥ 0} converges to a Poisson process with
density one if αn = o(n1/4). The convergence of the overlaps is an easy corollary to
the proof of this theorem. The details are exactly the same as in [BCMN05], and
will not be repeated here.

The failure of Poisson convergence for faster growing αn is easiest to explain for
the case in which X1, . . . , Xn are standard normals, since this does not require us
to distinguish between the original and the modified REM conjectures. Our proof
is again based on the analysis of the factorial moments of Nn(t).

More precisely, we will show that E[Nn(t)] converges to t, while the second
factorial moment, E[(Nn(t))2] does not converge to t2. Note that this fact by itself
is not enough to exclude convergence to a Poisson process since convergence of the
factorial moments is, in general, only a sufficient condition for weak convergence to
a Poisson process. But combined with suitable estimates on the growth of the third
moment, the fact that E[(Nn(t))2] does not converge to t2 is enough. This follows
from the following lemma, which is an easy consequence of a standard theorem on
uniformly integrable sequences of random variables (see, e.g., Theorem 25.12 and
its corollary in [Bi94]).

Lemma 3.2. Let Zn ≥ 0 be a sequence of random variables such that E[Zr
n] is

bounded uniformly in n for some r < ∞. If Zn converges weakly to a Poisson
random variable with rate γ > 0, then limn→∞ E[(Zn)k] = γk for all k < r.

Combined with this lemma, the next theorem establishes the third statement of
Theorem 2.1 if the weights X1, . . . , Xn are Gaussian. The proof for non-Gaussian
weights will be given in Section 5.4.

Theorem 3.3. Let X1, ..., Xn ∈ R be i.i.d. random variables with normal distribu-
tion, and let αn = o(

√
n).

(i) E[Nn(t)] = t + o(1) for all fixed t > 0.
(ii) Let m, a`

n, b`
n, γ`, and k1, .., km be as in Theorem 3.1. For k =

∑m
`=1 k` ≥ 2,

we then have

E[
m∏

`=1

(Zn(a`
n, b`

n))k`
] =

( m∏

`=1

γk`

`

)
e

k(k−1)
4n α4

neO(α6
nn−2)+o(1). (3.2)
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Theorem 3.3 will be proved in Section 4, and Theorem 3.1 will be proved in
Section 5. In the remainder of this section, we will map out the general proof
strategy, and in the process, establish several properties which will be used in the
proofs of Theorems 3.1 and 3.3.

3.2. Analysis of first moment. In order to analyze the first moment we rewrite
Zn(a`

n, b`
n) as

Zn(a`
n, b`

n) =
∑
σ

I(`)(σ) (3.3)

where I(`)(σ) is 1/2 times an indicator function of the event that the energy E(σ)
falls into the interval [a`

n, b`
n] (the factor 1/2 compensates for the fact that the sum

in (3.3) goes over all configurations σ ∈ {−1, +1}n, and therefore counts every
distinct partition twice). Taking expectations of both sides we see that

E[Zn(a`
n, b`

n)] =
1
2

∑
σ

P
(
E(σ) ∈ [a`

n, b`
n]

)
. (3.4)

Since we have taken ρ(x) = ρ(−x), the distribution of E(σ) is identical for all σ, so
that the probability on the right hand side is independent of σ. In order to prove
that E[Zn(a`

n, b`
n)] = γ`(1 + o(1)), we will therefore want to prove that

P
(
E(σ) ∈ [a`

n, b`
n]

)
= 2−(n−1)γ`(1 + o(1)). (3.5)

Rewriting the left hand side as

P
(
E(σ) ∈ [a`

n, b`
n]

)
=

∫ b`
n

a`
n

gn(y)dy, (3.6)

where gn(·) is the density of E(σ) with respect to the Lesbesgue measure on R+ =
{x ∈ R : x ≥ 0}, and recalling the definition ξn = [2n−1gn(αn)]−1, we see that the
bound (3.5) is equivalent to the statement that gn(y) = gn(αn)(1 + o(1)) whenever
y = αn + O(ξn).

This bound is easily established in the Gaussian case, where it holds as long as
αn ≤ c

√
n for some c <

√
2 log 2. Indeed, let us write E(σ) as |H(σ)|, where

H(σ) =
1√
n

n∑

i=1

σiXi. (3.7)

If the random variables X1, . . . , Xn are standard Gaussians, the random variables
H(σ) are standard Gaussians as well, implying that E(σ) has density

g(y) =

√
2
π

e−y2/2 (3.8)

with respect to the Lesbesgue measure on R+ = {x ∈ R : x ≥ 0}. If αn ≤ c
√

n
for some c <

√
2 log 2, then ξn = o(e−εn) for some ε > 0, implying that for y =

αn +O(ξn), we have g(y) = g(αn)(1+O(
√

nξn)) = g(αn)(1+o(1)), as desired. This
proves (3.5) and hence the bound E[Zn(a`

n, b`
n)] = γ`(1 + o(1)) provided αn ≤ c

√
n

for some c <
√

2 log 2. Note that this already establishes the first moment bound
stated in Theorem 3.3.

For more general distributions, the proof is more complicated since gn(αn) is no
longer given by a simple formula like (3.8). But given our assumptions on ρ, we
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will be able to show that under the assumption that αn = o(
√

n), it can be written
in the form

gn(αn) =

√
2
π

e−nG(αnn−1/2)(1 + o(1)) (3.9)

where G is an even function which is analytic in a neighborhood of zero and satisfies
the bound

G(x) =
x2

2
+ O(x4). (3.10)

The proof of the representation (3.9) involves an integral representation for gn

combined with a steepest descent analysis and will be given in Section 5.2.
The bounds (3.9) and (3.10) have several immediate consequences. First, they

clearly imply that gn(αn) = g(αn)(1 + o(1)) if αn = o(n1/4), proving the first
statement of Theorem 2.1. Second, they imply that ξn decays exponentially in n
if αn = o(

√
n). Using the bounds (3.9) and (3.10) once more, we conclude that

gn(y) = gn(αn)(1 + o(1) + O(αnξn)) = gn(αn)(1 + o(1)) whenever y = αn + O(ξn).
For αn = o(

√
n), we therefore get convergence of the first moment, E[Zn(a`

n, b`
n)] =

γ`(1 + o(1)), implying in particular that E[Zn(t)] = t + o(1) as claimed in the last
statement of Theorem 2.1.

3.3. Factorial moments as sums over pairwise distinct configurations.
Next we turn to higher factorial moments. Before studying these factorial mo-
ments, let us consider the standard moments E[

∏m
`=1(Zn(a`

n, b`
n))k` ]. In view of

(3.3), these moments can be written as a sum over k configurations σ(1), . . . , σ(k),
where k =

∑m
`=1 k`. As already observed in [BCP01], the factorial moments can

be expressed in a similar way, the only difference being that the sum over con-
figurations is now a sum over pairwise distinct configurations, i.e., configurations
σ(1), . . . , σ(k) ∈ {−1, +1}n such that σ(i) 6= ±σ(j) for all i 6= j. Explicitly,

E
[ m∏

`=1

(Zn(a`
n, b`

n))k`

]
=

∑

σ(1),...,σ(k):

σ(i) 6=±σ(j)

E
[ k∏

j=1

I(`(j))(σ(j))
]

=
1
2k

∑

σ(1),...,σ(k):

σ(i) 6=±σ(j)

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for all j = 1, . . . , k

)
,

(3.11)

where the sums run over pairwise distinct configurations and `(j) = 1 if j =
1, . . . , k1, `(j) = 2 if j = k1 + 1, . . . , k1 + k2, and so on. See [BCMN05] for the
(straightforward) derivation of (3.11).

In order to prove convergence of the higher factorial moments, we therefore would
like to show that the probability

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for all j

)

asymptotically factors into the product
∏

j P(E(σ(j)) ∈ [a`(j)
n , b

`(j)
n ]). Unfortu-

nately, this asymptotic factorization does not hold for arbitrary families of distinct
configurations σ(1) . . . σ(k). This problem is already present for αn that are bounded
as n →∞ (see [BCMN05]), and – in a milder form – it is even present for the special
case of αn = 0 treated in [BCP01].
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3.4. Typical and atypical configurations. As in [BCMN05] and [BCP01], it
is useful to distinguish between “typical” and “atypical” sets of configurations
σ(1), ..., σ(k) when analyzing the right hand side of (3.11). To this end, we con-
sider the matrix M formed by the row vectors σ(1), . . . , σ(k). Given a vector
δ ∈ {−1, 1}k, we then define nδ(σ(1), ..., σ(k)) as the number of times the column
vector δ appears in the matrix M ,

nδ = nδ(σ(1), ..., σ(k)) = |{j ≤ n : (σ(1)
j , ..., σ

(k)
j ) = δ}|. (3.12)

If σ(1), . . . , σ(k) ∈ {−1, +1}n are chosen independently and uniformly at random,
then the expectation of nδ is equal to n2−k for all δ ∈ {−1,+1}k. By a standard
martingale argument, for most configurations, the difference between nδ and n2−k

is therefore not much larger than
√

n. More precisely, for any λn →∞ as n →∞,
all but a vanishing fraction of the configurations σ(1), . . . , σ(k) obey the condition

max
δ
|nδ(σ(1), ..., σ(k))− n

2k
| ≤ √

nλnn, (3.13)

see Lemma 3.9 in [BCMN05] for a proof.
The proof of Theorems 3.1 and 3.3 now proceeds in two steps. First, we show that

the contribution of the configurations that violate (3.13) is negligible as n →∞, and
second we analyze the configurations satisfying (3.13). It turns out that first part is
quite complicated and requires distinguishing several sub-classes of configurations,
but this analysis has already been carried out in [BCMN05], resulting in bounds
that are sharp enough for growing αn as well. So the only additional work needed
is a sharp analysis of the typical configurations.

The next lemma summarizes the main results from [BCMN05] needed in this
paper. To state it, we define Rn,k(λn) as

Rn,k(λn) =
1
2k

∑ ′

σ(1),··· ,σ(k)

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for all j = 1, . . . , k

)
, (3.14)

where the sum runs over pairwise distinct configurations σ(1), . . . , σ(k) that are
either linearly dependent or violate the bound (3.13). We also use the notation

qmax = max
i 6=j

|q(σ(i), σ(j))| (3.15)

for the maximal off-diagonal overlap of σ(1), . . . , σ(k).

Lemma 3.4. Let λn be a sequence of positive numbers.
(1) Then the number of configurations σ(1), ..., σ(k) that violate the condition

(3.13) is bounded by 2nk2k+1e−
1
2 λ2

n .
(2) Assume that both αn and λn are of order o(

√
n). Then there are constants

c, C < ∞ depending only on k, γ1, . . . , γk, and the sequence λn, such that
for n sufficiently large we have

Rn,k(λn) ≤ Cnce
1
2 kα2

n(1+o(1))
(
ξ1/n0
n + e−λ2

n/2
)
. (3.16)

Here n0 = (1 + ε)/ε with ε as in (2.1).
(3) Let σ(1), ..., σ(k) be an arbitrary set of row vectors satisfying (3.13). Then

qmax ≤ 2k λn√
n

, (3.17)
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and hence for λn = o(
√

n) and n sufficiently large, we have that σ(1), ..., σ(k)

are linearly independent.

Proof. Statements (1) and (3) are copied from Lemma 3.8 in [BCMN05], while
statement (2) is a consequence of the bounds (3.65) and (3.67) in [BCMN05] and
the fact that 2nξn = e

1
2 α2

n(1+o(1))eO(1), a bound which follows immediately from
(3.9), (3.10), and the definition (2.2) of ξn. ¤
3.5. Factorization for typical configurations. In view of Lemma 3.4, it will
be enough to analyze the expectations on the right hand side of (3.11) for config-
urations σ(1), ..., σ(k) that satisfy (3.13) and are linearly independent, provided we
choose λn in such a way that αn = o(λn), λn = o(

√
n) and e−λ2

n/2 decays faster
than any power of n.

Consider therefore a family of linearly independent configurations satisfying the
condition (3.13). The main technical result of this paper is that the following
approximate factorization statement

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for all j = 1, . . . , k

)

=
k∏

j=1

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ]

)
eO(α2

nqmax)+o(1)
(3.18)

is valid whenever n is large enough and σ(1), ..., σ(k) obey the condition (3.13). (For
the non-Gaussian case, we will also need that αn = o(n1/4), while the assumption
αn = o(

√
n) stated at the beginning of this subsection is enough in the Gaussian

case.)
If X1, . . . , Xn are standard normals, the bound (3.18) is quite intuitive and not

hard to prove. Indeed, let H(σ) be the random variable defined in (3.7), and let
κ(k)(·) be the joint density of H(σ(1)), . . . , H(σ(k)). Using the notation x and y
for vectors with components x1, . . . , xk and y1, . . . , yk, respectively, we then express
the joint density of E(σ(1)), . . . , E(σ(k)) with respect to the Lebesque measure on
Rk

+ as
g(k)(y) =

∑
x1,...xk:
yi=±xi

κ(k)(x). (3.19)

If X1, . . . , Xn are standard Gaussians, the joint distribution of H(σ(1)), . . . , H(σ(k))
is Gaussian as well, with mean zero and covariance matrix

Cij = E[H(σ(i))H(σ(j))] = q(σ(i), σ(j)), (3.20)

leading to the representation

κ(k)(x) =
1

(2π)k/2

1√
detC

exp
(
−1

2
(x, C−1x)

)
, (3.21)

whenever C is invertible. As usual, C−1 denotes the matrix inverse of C, and
(x, C−1x) =

∑
i,j xiC

−1
ij xj . Observing that C−1

ij = δij + O(qmax), this immediately
leads to the bound (3.18); see Section 4 for details.

In the non-Gaussian case, we do not have an explicit formula for the joint density
of E(σ(1)), . . . , E(σ(k)), thus making the proof of the approximate factorization
formula (3.18) much more difficult. Basically, the proof requires a multi-dimensional
local limit theorem for a case in which the arguments of the probability density
under investigation grow with n. In order to prove this local limit theorem, we will
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use an integral representation for the probabilities on the left hand side of (3.18)
and then use a saddle point analysis to prove (3.18). In contrast to [BCMN05] and
[BCP01], where it was sufficient to analyze the saddle point of the integral in the
original domain of integration, the case with growing αn considered here requires
a more sophisticated analysis, involving the shift to a complex saddle point in a
complex space of dimension k; see Section 5 for the details.

Let us close this section by showing how to complete the proof of Theorem 3.1
once the bound (3.18) is established. To this end, let us first consider the case
where αn grows somewhat more slowly than o(n1/4), in particular assume that αn =
o(n1/6). Choosing λn = n1/6, we then invoke the bound (3.17) from Lemma 3.4
(3) to conclude that qmax = O(n−1/3) and α2

nqmax = o(1) whenever σ(1), ..., σ(k)

satisfy the bound (3.13). For a family of configurations satisfying (3.13), the the
multiplicative error term in the joint probability on the right hand side of (3.18) is
therefore equal to 1 + o(1), leading to asymptotic factorization of the probabilities
on the right hand side of (3.11). Using Lemma 3.4 (2) to bound the sum over
families of configurations not satisfying (3.13), and Lemma 3.4 (1) to show that the
number of families of configurations satisfying (3.13) is equal to 2nk(1 + o(1)), this
gives the bound (3.1) from Theorem 3.1.

For still more quickly growing αn, it is not enough to use the worst case bound
(3.17). Instead, we would like to use that a typical family of configurations has
maximal off-diagonal overlap of order n−1/2. For a typical family of configura-
tions, we therefore get asymptotic factorization as long as αn = o(n1/4). The next
lemma, to be proved in Section 7, implies that the error term coming from atypical
configurations does not destroy the asymptotic factorization.

Lemma 3.5. Let c > 0, let k be a positive integer, and let αn be a sequence of
positive numbers such that αnn−1/4 → 0 as n → ∞. If f is a function from the
set of all families of configurations σ(1), . . . , σ(k) ∈ {−1, +1}n into R such that
|f(σ(1), . . . , σ(k))| ≤ cα2

nqmax, then

2−nk
∑

σ(1),...,σ(k)

ef(σ(1),...,σ(k)) = 1 + o(1) (3.22)

as n →∞.

We will now show that Lemmas 3.4 and 3.5 combined with (3.18) and (3.5)
immediately imply Theorem 3.1. Indeed, let us choose λn in such a way that
αn = o(λn), λn = o(

√
n) and e−λ2

n/2 decays faster than any power of n. Invoking
(3.11) and using Lemma 3.4 (2) to bound the sum over configurations which do not
satisfy (3.13) and the bounds (3.18) and (3.5) to approximate the remaining terms
on the right hand side of (3.11), we get the estimate

E
[ m∏

`=1

(Zn(a`
n, b`

n))k`

]
= (1 + o(1))

( k∏

i=1

γ`(i)

)
2−nk

∑ ′′

σ(1),...,σ(k)

eO(α2
nqmax)+o(1)

(3.23)
where the sum

∑ ′′ runs over families of linearly independent configurations σ(1),
. . . , σ(k) that satisfy (3.13). Using Lemma 3.4 (1) to extend the sum to a sum
over all families of configurations σ(1), . . . , σ(k) ∈ {−1, +1}n, we then refer to the
statement of Lemma 3.5 to complete the proof of Theorem 3.1.

The above considerations also indicate why the asymptotic factorization of the
factorial moments fails if αn grows faster than o(n1/4). Indeed, expressing the
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matrix elements of C as Cij = δij + q̃ij where q̃ij = q(σ(i), σ(j)) if i 6= j and q̃ij = 0
if i = j, (x, C−1x) =

∑
j x2

j −
∑

i 6=j xiq̃ijxj + O(q2
max‖x‖22), where, as usual, ‖x‖2

denotes the `2 norm of x. This in turn leads to the more precise estimate

E
[ m∏

`=1

(Zn(a`
n, b`

n))k`

]

=
( k∏

i=1

γ`(i)

)
2−nk

∑

σ(1),...,σ(k)

e
α2

n
2

∑
i6=j qij+O(α2

nq2
max)+o(1) + o(1)

(3.24)

for the case where X1, . . . , Xn are standard normals. While the term α2
n

2

∑
i 6=j qij

is negligible if αn = o(n1/4), it becomes important as soon as αn grows like n1/4 or
faster, leading to the failure of asymptotic factorization for the factorial moments.
The details are straightforward but a little tedious and are given in Section 4 for
the Gaussian case, and in Section 5.4 for the non-Gaussian case.

3.6. Integral representation. As discussed in the preceding subsections, the con-
vergence of the factorial moments of Zn reduces to the proof of the approximate
factorization formula (3.18). Following a strategy that was already used in [BCP01]
and [BCMN05], our proof for the case where X1, . . . , Xn are not normally dis-
tributed uses an integral representation for the probabilities on the left hand side
of (3.18).

To derive this integral representation we first express the indicator function
I(`)(σ) in terms of the function rect(x) defined to be 1 if |x| ≤ 1/2 and 0 oth-
erwise. Using Fourier inversion and the fact that the Fourier transform of the
function rect(x) is equal to sinc(f) = sin πf

πf this leads to the representation

I(`)(σ) = qn,`

∫ ∞

−∞
sinc(fqn,`) cos(2πft`n

√
n)e2πif

∑n
s=1 σsXsdf, (3.25)

where t`n = (a`
n + b`

n)/2 denotes the center of the interval [a`
n, b`

n], and qn,` =
γ`ξn

√
n. Taking the expectation of both sides of (3.25) and exchanging the expec-

tation and the integral on the right hand side (the justification of this exchange is
given by Lemma 3.2 in [BCMN05]), we get the representation

P
(
E(σ) ∈ [a`

n, b`
n]

)
= 2E[I(`)(σ)]

= 2qn,`

∫ ∞

−∞
sinc(fqn,`) cos(2πft`n

√
n)ρ̂n(f)df

(3.26)

where ρ̂(f) = E[e2πifX ] is the Fourier transform of ρ.
When deriving an integral representation for the terms on the right hand side

of (3.11), we will have to take the expectation of a product of integrals of the
form (3.25). Neglecting, for the moment, problems associated with the exchange of
integrations and expectations, this is not difficult. Indeed, rewriting the product of
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integrals as
k∏

j=1

∫ ∞

−∞
sinc(fjqn,`(j)) cos(2πfjt

`(j)
n

√
n)e2πifj

∑n
s=1 σsXsdfj

=
∫∫∫ ∞

−∞

n∏
s=1

e2πivsXs

k∏

j=1

sinc(fjqn,`(j)) cos(2πfjt
`(j)
n

√
n)dfj

(3.27)

where

vs =
k∑

j=1

σ(j)
s fj , (3.28)

and taking expectations of both sides, we easily arrive at the representation

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for all j = 1, . . . , k

)
=

m∏

`=1

(2qn,`)k`

×
∫∫∫ ∞

−∞

n∏
s=1

ρ̂(vs)
k∏

j=1

sinc(fjqn,`(j)) cos(2πfjt
`(j)
n

√
n)dfj .

(3.29)

But here a little bit more care is needed to justify the exchange of expectation and
integrals. Indeed, this exchange can only be justified if σ(1), . . . , σ(k) are linearly
independent (see Lemma 3.5 in [BCMN05]), but luckily, this will be all we need.

3.7. The SK Model. As in the proof for the Npp, we define Zn(a, b) to be the
number of points in the energy spectrum that fall into the interval [a, b], where the
energy of a configuration σ is now given by (1.4). Given a family of non-overlapping
intervals [c1, d1], . . . , [cm, dm] with c` ≥ 0, and d` = c` + γ` > c` for ` = 1, . . . , m,
we now consider the intervals [a`

n, b`
n] with a`

n = α + c`ξ̃n and b`
n = α + d`ξ̃n, where

ξ̃n is defined in (1.6). Theorem 2.2 now follows immediately from the following two
theorems.

Theorem 3.6. Let αn = o(n) be a sequence of positive real numbers, let m be a
positive integer, and for ` = 1, . . . , m, let a`

n and b`
n be as above. For an arbitrary

m-tuple of positive integers (k1, .., km) we then have

lim
n→∞

E[
m∏

`=1

(Zn(a`
n, b`

n))k`
] =

m∏

`=1

γk`

` . (3.30)

Theorem 3.7. There exists a constant ε0 > 0 such the following statements hold
for all c ≥ 0 and γ > 0, all sequences of positive real numbers αn with αn ≤ ε0n,
and an, bn of the form an = αn + cξ̃n, bn = αn + (c + γ)ξ̃n.

(i) limn→∞ E[Zn(an, bn)] = γ.
(ii) E[(Zn(an, bn))3] is bounded uniformly in n.
(iii) If lim sup αn

n > 0, then lim supn→∞ E[(Zn(a, b))2] > γ2.

By now, the proof strategy for these theorems is straightforward: As before, the
first moment is given as an integral over the energy density. For the SK model, this
density is given by(1.5), leading to E[Zn(a`

n, b`
n)] = γ`(1+o(1)) as long as ξ̃n = o(1).

To analyze the higher factorial moments, we again use a representation of the form
(3.11). Neglecting for the moment the issue of bounding the sum over atypical
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configurations, we will again study the factorization properties of probabilities of
the form

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for all j = 1, . . . , k

)
. (3.31)

For the SK model, this is even easier than for the Npp with Gaussian noise, since
E(σ) is now itself a Gaussian random variable, rather than the absolute value of a
Gaussian. The joint distribution of E(σ(1)), . . . , E(σ(k)) therefore has density

g̃(k)(x) =
1

(2π)k/2

1√
det C

exp
(
−1

2
(x, C−1x)

)
, (3.32)

where C is the covariance matrix

Cij = E[E(σ(i))E(σ(j))] = n(q(σ(i), σ(j)))2. (3.33)

Expanding C−1
ij as C−1

ij = 1
n (δij + O(q2

max)), we then get the following analogue of
the factorization formula (3.18):

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for all j = 1, . . . , k

)

=
k∏

i=1

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ]

)
eO(α2

nn−1q2
max)+o(1).

(3.34)

In the exponent of the above expression, note that the additional factor of n−1

relative to the analogous expression for the Npp is simply a consequence of the
different normalizations of the energies. The more significant difference is the factor
of q2

max rather than qmax, a consequence of the difference between the covariance
matrices for the two problems. For typical configurations with overlap qmax =
O(n−1/2), equation (3.34) suggests that there will be asymptotic factorization if
and only if αn = o(n). That this is indeed the case is established in Section 6.

4. The Npp with Gaussian densities

In this section we analyze the factorization properties of the probabilities

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for j = 1, . . . , k

)
(4.1)

for the case where X1, . . . , Xn are standard normals. Throughout this section, we
will assume that αn = o(

√
n).

In a preliminary step, we show that it is possible to approximate the joint density
g(k)(y) of E(σ(1)), . . . , E(σ(k)) by its value at yi = αn. To this end we combine
the representations (3.19) and (3.21) with the fact that C−1 is bounded uniformly
in n if qmax = o(1). For yi ∈ [a`(i)

n , b
`(i)
n ], we then have

g(k)(y) = g(k)(αn)(1 + O(αnξn) + O(ξ2
n)) = g(k)(αn)(1 + o(1)), (4.2)

implying that

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for j = 1, . . . , k

)
=

( m∏

`=1

(ξnγ`)k`

)
g(k)(αn)(1 + o(1)).

(4.3)
Having established this approximation, we now proceed to prove the factorization
formula (3.18).
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4.1. Proof of the factorization formula (3.18). Let us express the right hand
side of (4.3) as a sum over vectors x ∈ Rk with |xi| = αn, see (3.19). Recalling the
representation (3.21), we expand (x, C−1x) as (x, C−1x) = ‖x‖22(1 + O(qmax)) =
kα2

n+O(qmaxα
2
n), where, as before, ‖x‖2 denotes the `2-norm of x. For qmax = o(1),

we further have det C = 1 + o(1), implying that

g(k)(αn) =
( 2

π

)k/2

e−
k
2 α2

n+O(qmaxα2
n)+o(1) = (g(αn))keO(qmaxα2

n)+o(1). (4.4)

Recalling the approximation P
(
E(σ) ∈ [a`

n, b`
n]

)
= g(αn)γ`ξn(1 + o(1)) established

in Section 3.2, the bounds (4.3) and (4.4) imply the approximate factorization
formula (3.18). Note that the only conditions needed in this derivation were the
conditions αn = o(

√
n) and qmax = o(1). Taking into account Lemma 3.4 (iii), we

therefore have established that (3.18) holds whenever αn = o(
√

n) and σ(1), ..., σ(k)

obey the condition (3.13) for some λn of order o(
√

n).
As shown in Section 3.5, the approximate factorization formula (3.18) immedi-

ately leads to Poisson convergence if αn = o(n1/4). To establish that this conver-
gence fails for faster growing αn, requires a little bit more work. This is done in
the next subsection.

4.2. Proof of Theorem 3.3. We start again from (4.3), but this time we expand
the inverse of C a little further. Explicitly, expressing the matrix elements of C as
Cij = δij + q̃ij where q̃ij = q(σ(i), σ(j)) if i 6= j and q̃ij = 0 if i = j, we clearly have

(x, C−1x) =
∑

j

x2
j −

∑

i 6=j

xiq̃ijxj + O(q2
max‖x‖22)

= kα2
n −

∑

i 6=j

xiq̃ijxj + O(q2
maxα

2
n)

(4.5)

whenever qmax = o(1) and |xi| = αn for all i. With the help of (4.3), (1.3), (3.19)
and (3.21), this implies that

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for j = 1, . . . , k

)

=
( m∏

`=1

γk`

`

)
2−nk

∑
x1,...xk:
xi=±αn

exp
(1

2

∑

i 6=j

xiq̃ijxj + O(q2
maxα

2
n) + o(1)

)
.

(4.6)

Let us now choose λn in such a way that αn = o(λn), λn = o(
√

n) and e−λ2
n/2

decays faster than any power of n. Combining (4.6) with the representation (3.11)
and Lemma 3.4 (2), we then have

E
[ m∏

`=1

(Zn(a`
n, b`

n))k`

]
=

( k∏

i=1

γ`(i)

)
2−nk

∑ ′′

σ(1),...,σ(k)

2−k

×
∑

x1,...xk:
xi=±αn

exp
(1

2

∑

i6=j

xiq̃ijxj + O(q2
maxα

2
n) + o(1)

)
+ o(1)

(4.7)

where the sum
∑ ′′ runs over families of linearly independent configurations σ(1),

. . . , σ(k) that satisfy (3.13). Next we claim that we can extend this sum to a sum
over all families of configurations σ(1), . . . , σ(k) at the cost of an additional addi-
tive error o(1). Indeed, by Lemma 3.4 (1) and (3), the number of configurations
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σ(1), . . . , σ(k) that are linearly dependent or violate the bound (3.13) is bounded
by a constant times 2nke−λ2

n/2. Since the terms in the above sum are all bounded
by eO(α2

n) = eo(λ2
n), the extension from the sum

∑ ′′ to a sum over all families of
configurations σ(1), . . . , σ(k) indeed only introduces an additive error o(1). Ob-
serving finally that the exponent

∑
i 6=j xiq̃ijxj is invariant under the transformation

xi → |xi| = αn and σ(i) → sign(xi)σ(i), we obtain the approximation (3.24), which
we restate here as

E
[ m∏

`=1

(Zn(a`
n, b`

n))k`

]

=
( k∏

i=1

γ`(i)

)
2−nk

∑

σ(1),...,σ(k)

exp
(α2

n

2

∑

i 6=j

q̃ij + O(q2
maxα

2
n) + o(1)

)
+ o(1).

(4.8)
With the approximation (4.8) in hand, the second statement of Theorem 3.3 now
follows immediately from the following lemma.

Lemma 4.1. Let C < ∞, let βn = o(n), let Ek denote expectation with respect to
the uniform measure on all families of configurations σ(1), . . . , σ(k), and let R de-
note a function on families of configurations such that |R(σ(1), . . . , σ(k))| ≤ Cq2

max.
Then

Ek

[
exp

(
βn

(∑

i 6=j

q̃ij + R
))]

= exp
(k(k − 1)

n
β2

n + O(β3
nn−2) + o(1)

)
. (4.9)

Proof. The complete proof of the lemma will be given in Section 7.2. Here we only
show that the leading term behaves as claimed, namely

Ek

[
exp

(
βn

∑

i 6=j

q̃ij

)]
= exp

(k(k − 1)
n

β2
n + O(β3

nn−2)
)
. (4.10)

To this end, we observe that

∑

i 6=j

q̃ij =
∑

i,j

q(σ(i),σ(j))− k =
1
n

n∑
s=1

( k∑

i=1

σ(i)
s

)2

− k. (4.11)

As a consequence, we have

Ek

[
eβn

∑
i 6=j q̃ij

]
= e−kβnEk

[ n∏
s=1

exp
(βn

n

( k∑

i=1

σ(i)
s

)2)]

= e−kβnẼk

[
exp

(βn

n

( k∑

i=1

δi

)2)]n

,

(4.12)

where Ẽk denotes expectation with respect to the uniform measure on all configu-
rations δ = (δ1, . . . , δk) ∈ {−1, +1}k. Next we expand the expectation on the right
hand side into a power series in βn/n (recall that we assumed βn = o(n)). Using
that the expectation of (

∑
i δi)2 is equal to k, while the expectation of (

∑
i δi)4 is

equal to 3k2 − 2k, this gives

Ẽk

[
exp

(βn

n

( k∑

i=1

δi

)2)]
= exp

(βn

n
k +

β2
n

n2
k(k − 1) + O(β3

nn−3)
)

(4.13)
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and hence

Ek

[
eβn

∑
i6=j q̃ij

]
= exp

(k(k − 1)
n

β2
n + O(β3

nn−2)
)
. (4.14)

¤

Remark 4.2. For the special case where αn grows like n1/4, Theorem 3.3 implies that
the density of the process Nn(t) converges to one, while the process itself does not
converge to Poisson. Another interesting consequence of our proof is the following:
Consider the rescaled overlap Qn,t of two typical configurations contributing to
Nn(t) (see Section 2.1 for the precise definition of Qn,t). Then Qn,t converges in
distribution to the superposition of two Gaussians with mean ±κ2, where κ =
limn→∞ αnn−1/4,

lim
n→∞

P(Qn,t ≥ y) =
1
2

1√
2π

∫ ∞

y

e−
1
2 (x−κ2)2 + e−

1
2 (x+κ2)2

2
dx. (4.15)

This follows again from (4.6); in fact, now we only need this formula for k = 2,
where the sum over x just gives a factor cosh(α2

nq(σ, σ̃)). This factor is responsible
for the shift of ±κ2 in the limiting distribution of Qn,t = n1/2q(σ, σ̃).

5. The Npp with general distribution

In this section we prove the first moment estimate (3.5) and the factorization
formula (3.18) for arbitrary distributions ρ obeying the assumptions of Theorem 2.1,
see Propositions 5.2 and 5.6 below. As discussed in Section 3, this immediately gives
Theorem 3.1. We also show in Section 5.4 how the proof of non-convergence can
be generalized from the Gaussian case to the general distributions considered in
Theorem 2.1.

5.1. Properties of the Fourier transform. Throughout this section, we will
use several properties of the Fourier transform in ρ̂ which we summarize in this
subsection.

(i) For any n ≥ no, where n0 is the solution of 1
1+ε + 1

no
= 1 with ε as in (2.1),

we have ∫ ∞

−∞
|ρ̂(f)|n ≤

∫ ∞

−∞
|ρ̂(f)|n0 = C0 < ∞. (5.1)

(ii) There exists µ0 > 0 such that ρ̂(f) is analytic in the region |=mf | < µ0.
(iii) For any µ1 > 0 there exists c1 > 0 and µ2 > 0 and such that

|ρ̂(f)| ≤ e−c1 (5.2)

whenever |=mf | ≤ µ2 and |<ef | ≥ µ1.

These properties easily follow from our assumptions on the density ρ. The bound
(5.1) is a direct consequence of (2.1). Analyticity of ρ̂ in a neighborhood of the
origin implies existence of exponential moments and this in turn implies analyticity
in a strip about the real line. To see that the bound (5.2) is true, we first observe
that it obviously holds when f is real. From the fact that dρ̂(z)/dz is bounded
uniformly in z as long as the imaginary part of z is small enough, we can choose
µ2 in such a way that the bound (5.2) extends to |=mf | ≤ µ2 (with c1 replaced by
a slightly smaller constant, which we again call c1).
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5.2. First Moment. In this section we establish the representation (3.9) for the
density gn(·), see Proposition 5.2 below. As explained in Section 3.2, this represen-
tation immediately give the first moment estimate (3.5) for αn = o(

√
n).

We will start from the integral representation

gn(α) = 2
√

n

∫ ∞

−∞
cos(2πfα

√
n)ρ̂n(f)df, (5.3)

This formula can easily be derived by first expressing the density of H(σ) in terms
of the n-fold convolution of ρ with itself, using Fourier inversion to express this
density as an integral over ρ̂n, and then summing over the two possible choices for
the sign of H(σ) given E(σ) (alternatively, the formula can be derived from (3.26)
by sending γ` to 0).

In order to determine the asymptotic behavior of gn(α), one might want to
expand ρ̂n(f) about its maximum, i.e. about f = 0. While this strategy works well
for bounded αn, it needs to be modified in the case of growing αn. Here we will
use the method of steepest descent, a method which was first introduced into the
analysis of density functions by a paper of Daniels [Dan54], though of course the
ideas go back to Laplace.

Before explaining this further, let us first note that, asymptotically, the integral
in (5.3) can be restricted to a bounded interval about zero. Indeed, let µ1 > 0 be
an arbitrary constant, let µ2 be as in (5.2), and let n0 be as in (5.1). For n ≥ n0

and |f | ≥ µ1, we then have |ρ̂n(f)| ≤ |ρ̂n0(f)|e−c1(n−n0). As a consequence, the
contribution to the integral (5.3) from the region |f | ≥ µ1 is bounded by a constant
times

√
ne−c1n, giving the estimate

gn(α) = 2
√

n

∫ µ1

−µ1

cos(2πfα
√

n)ρ̂n(f)df + O(
√

ne−c1n). (5.4)

Next we observe that both the range of integration and the function f 7→ ρ̂(f) are
invariant under the change f → −f , implying that we can rewrite the integral as

2
√

n

∫ µ1

−µ1

e2πifαn
√

nρ̂n(f)df = 2
√

n

∫ µ1

−µ1

e
−n(F (f)−2πi αn√

n
f)

df (5.5)

where F (f) is defined by
ρ̂(f) = e−F (f). (5.6)

As defined earlier, let µ0 be such that ρ̂(f) is analytic in the region |=mf | < µ0.
Further let 0 < η ≤ µ0, and let C be the path in the complex plane obtained
by concatenating the three line segments that join the point −µ1 to the point
−µ1 + iη, the point −µ1 + iη to the point µ1 + iη, and the point µ1 + iη to the
point µ1, respectively. Let G be the region bounded by C and the line segment
from −µ1 to µ1. Then the function f 7→ ρ̂(f) and hence the integrand in (5.5) is
analytic in G, implying that the integral on the right hand side of (5.5) is equal to
the integral over C. Our next lemma states that the contribution of the first and
third line segment to this integral is negligible, effectively allowing us to “shift the
path of integration” into a parallel line segment in the complex plane.

Lemma 5.1. Given µ1 > 0, there are constants c1 > 0 and µ2 > 0 such that

gn(αn) = 2
√

n

∫ µ1+iη

−µ1+iη

e
−n(F (f)−2πi αn√

n
f)

df + O(
√

ne−c1n) (5.7)

provided αn ≥ 0 and 0 ≤ η ≤ µ2.
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Proof. Taking into account (5.4), we need to analyze the integral on the right of
(5.5) which in turn is equal to the integral over the path C defined above, provided
we choose µ2 ≤ µ0.

Consider the integral
∫ −µ1+iη

−µ1

e
−n(F (f)−2πi αn√

n
f)

df. (5.8)

For f in the line segment joining −µ1 to −µ1 + iη, the imaginary part of f is
non-negative, implying that |e2πin αn√

n
f | ≤ 1. Due to property (5.2) of the Fourier

transform ρ̂, we furthermore have that |ρ̂(f)| = |e−F (f)| ≤ e−c1 on this line segment.
As a consequence, the above integral is bounded by ηe−c1n = O(e−c1n). In a similar
way, the integral over the third line segment is bounded by O(e−c1n). Taking into
account the multiplicative factor of

√
n in (5.4) and the fact that the error term in

(5.4) is bounded by O(
√

ne−c1n), this proves (5.7). ¤

Note that the above lemma holds for arbitrary η ≥ 0. As usual when applying
the method of steepest descent, the value of η will be chosen in such a way that
the asymptotic analysis of the integral on the right becomes as simple as possible.
Here this amounts to requiring that at f = iη, the first derivative of the integrand
is zero. In other words, we will choose η as the solution of the equation

F ′(iη) = 2πi
αn√

n
, (5.9)

where F ′(z) = dF (z)
dz denotes the complex derivative of F . This leads to the follow-

ing proposition.

Proposition 5.2. There is an even function G(x) which is real analytic in a neigh-
borhood of zero such that

gn(αn) =

√
2
π

e−nG(αnn−1/2)(1 + o(1)) (5.10)

whenever αn = o(
√

n). In a neighborhood of zero, G(x) can be expanded as

G(x) =
x2

2
+ O(x4). (5.11)

For αn = o(
√

n) and a`
n, b`

n and γ` as in Theorem 3.1 we therefore have

P
(
E(σ) ∈ [a`

n, b`
n]

)
= 2−(n−1)γ`(1 + o(1)). (5.12)

Proof. We first argue that the equation (5.9) has a unique solution which can be
expressed as an analytic function of x = αn/

√
n. Consider thus the equation

F ′(iη) = 2πix. (5.13)

Since ρ̂ is an even function which is analytic in a neighborhood of zero with ρ̂(0) = 1,
the function F is even and analytic in a neighborhood of zero as well. Taking into
account that the second moment of ρ is one, we now expand F (f) as

F (f) =
1
2
(2πf)2 + O(f4) (5.14)

and F ′(f) as
F ′(f) = (2π)2f + O(f3). (5.15)
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By the implicit function theorem, the equation (5.13) has a unique solution η(x) in
a neighborhood of zero, and η(x) is an analytic function of x. Taking into account
that F ′ is odd, we furthermore have that η(x) is an odd function which is real
analytic in a neighborhood of zero, and expanding η(x) as η(x) = 1

2π x + O(x3) we
see that η(x) ≥ 0 if x ≥ 0 is sufficiently small.

Having established the existence and uniqueness of η(x) for small enough x, we
are now ready to analyze the integral in (5.7) for η = η(x) and x = αn/

√
n = o(1).

To this end, we rewrite the integral as∫ µ1

−µ1

e−n
(
F (iη(x)+f)+2πx(η(x)−if)

)
df = e−nG(x)

∫ µ1

−µ1

e−nF̃ (f)df (5.16)

where
G(x) = F (iη(x)) + 2πxη(x), (5.17)

and
F̃ (f) = F (iη(x) + f)− F (iη(x))− 2πixf. (5.18)

Next we would like to show that the integral on the right hand side of (5.16) can
be restricted to |f | ≤ log n/

√
n. To this end, we expand F̃ (f) about f = 0. Taking

into account the fact that the first derivative at f = 0 vanishes by the definition of
η(x), we get

F̃ (f) =
1
2
F (2)(iη(x))f2 +

1
6
F (3)(iη(x))f3 + O(f4). (5.19)

Using again that F is an even function of its argument, we conclude that F (2)(iη(x))
is real, while F (3)(iη(x)) is purely imaginary, so that

<e F̃ (f) =
1
2
F (2)(iη(x))f2 + O(f4). (5.20)

Since η(x) = O(x) = o(1) and F (2)(iη(x)) = 4π2 + O(η(x)2), we have that
<e F̃ (f) ≥ f2 provided µ1 is sufficiently small and n is sufficiently large. As a
consequence, we get that

∫ µ1

−µ1

e−nF̃ (f)df =
∫ n−1/2 log n

−n−1/2 log n

e−nF̃ (f)df + O
( 1√

n
e− log2 n

)
. (5.21)

For |f | ≤ log n/
√

n, we now expand

e−nF̃ (f) = exp
(
−n

2
F (2)(iη(x))f2 + O(nf3)

)

= exp
(
−n

2
F (2)(iη(x))f2

)(
1 + O(nf3)

)
,

(5.22)

leading to the approximation
∫ n−1/2 log n

−n−1/2 log n

e−nF̃ (f)df =

√
2π

nF (2)(iη(x))
(
1 + O(n−1/2)

)
=

1√
2πn

(
1 + o(1)

)
.

(5.23)
Combined with (5.7), (5.16) and (5.21) this proves (5.10).

Next, we show that G(x) is an even function which is real analytic in a neigh-
borhood of zero and obeys the bound (5.11). But this is almost obvious by now.
Indeed, combining the fact that F is an even function which is real analytic in
a neighborhood of zero with the fact that η(x) is an odd function which is real
analytic in a neighborhood of zero, we see that G(x) is an even function which is
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real analytic in a neighborhood of zero. With the help of (5.14), the bound (5.11)
finally follows by inserting the expansion η(x) = 1

2π x + O(x3) into the definition
(5.17) of G.

As we already argued in Section 3.2, the bound (5.12) finally follows immediately
from the remaining statements of the proposition. ¤

5.3. Higher Moments. In order to establish convergence of the higher factorial
moments, we start from the integral representation (3.29). Recalling the definition
(3.12), let

nmin = nmin(σ(1), ..., σ(u)) = min{nδ : δ ∈ {−1, +1}u}. (5.24)

In a first step, we show that under the condition that nmin ≥ n0 where n0 is the
solution of 1

1+ε + 1
no

= 1 with ε as in (2.1), the integral in (3.29) is well approximated
by an integral over a bounded domain, with the product of the sinc factors replaced
by one and the various midpoints t`n replaced by αn.

Lemma 5.3. Given µ1 > 0 there exists a constant c1 > 0 such that for αn = o(
√

n)
and nmin = nmin(σ(1), .., σ(k)) ≥ n0 we have

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for j = 1, . . . , k

)
=

m∏

`=1

(2qn,`)k`

×
( ∫∫∫ µ1

−µ1

∏

δ

ρ̂(f · δ)nδ

k∏

j=1

cos(2πfjαn

√
n)dfj + O(e−c1nmin) + O(

√
nξn)

)
.

(5.25)
Here the product over δ runs over all δ ∈ {−1, +1}k and f · δ stands for the scalar
product

∑
j fjδj.

Proof. Consider the integral on the right hand side of (3.29). In a first step, we will
consider the contribution of the region where |fj | > µ1 for at least one j and show
that it is negligible. To this end, it is clearly enough to bound the contribution of the
region where

∑k
j=1 |fj | > µ1. But if

∑k
j=1 |fj | > µ1, then there is a δ ∈ {−1, +1}

such that |∑k
j=1 δjfj | > µ1. Since nδ ≥ 1 for all δ ∈ {−1, +1}k, we conclude that

there exists an s ∈ {1, . . . , n} such that |vs| > µ1.
Thus consider the event that one of the |vs|’s, say |vt1 |, is larger than µ1. Let

δ1 = {σ(1)
t1 , .., σ

(k)
t1 }, and let δ2, ..., δk be vectors such that the rank of the matrix

∆ formed by δ1, .., δk is k. Let {vt2 , ..., vtk
} be defined by

vti =
k∑

j=1

δj
i fj . (5.26)

Since ∆ has rank k, we can change the variables of integration from fj to vtj . Let
the Jacobian of this transformation be Jk, i.e., let Jk = |det ∆|−1 where det ∆ is
the determinant of ∆. Since ∆ has entries ±1 and is non-singular, we conclude that
|det ∆| ≥ 1, implying that |Jk| ≤ 1. We therefore may bound the integral over the
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region where where |vt1 | > µ1 by∣∣∣∣∣∣

∫∫∫ ∞

−∞

∫

|vt1 |>µ1

Jk

n∏
s=1

ρ̂(vs)
k∏

j=1

sinc(fjqn,`(j)) cos(2πfjt
`(j)
n

√
n)dvtj

∣∣∣∣∣∣

≤
∫∫∫ ∞

−∞

k∏

j=2

|ρ̂(vtj
)|nδj dvtj

×
∫

|vt1 |>µ1

|ρ̂(vt1)|nδ1 dvt1

≤ (C0)k−1

∫

|vt1 |>µ1

|ρ̂(vt1)|nδ1 dvt1 ≤ Ck
0 e−c1(nmin−n0),

(5.27)

where C0 and c1 are as in (5.1) and (5.2). Since the number of choices for δt1 is
bounded by 2k, the bound (5.27) implies that the contribution of the region where
at least one of the |fj |’s is larger than µ1 is bounded by O(e−c1nmin), with the
constant implicit in the O-symbol depending on k.

Noting that qn,`(j) = O(
√

nξn), we finally observe that in the region where
|fj | ≤ µ1 for all j, we may expand sinc(qn,`(j)fj) as 1+O(

√
nξn) and cos(2πfjtn

√
n)

as cos(2πfjαn
√

n) + O(
√

nξn). Rewriting the product
∏

s ρ̂(vs) as
n∏

s=1

ρ̂(vs) =
∏

δ∈{−1,+1}k

ρ̂(f · δ)nδ , (5.28)

this gives (5.25). ¤

Next we rewrite the integral in (5.25) as the average
∫∫∫ µ1

−µ1

∏

δ

ρ̂(f · δ)nδ

k∏

j=1

cos(2πfjαn

√
n)dfj

= 2−k
∑

x∈{− αn√
n

, αn√
n
}k

∫∫∫ µ1

−µ1

e2πinf ·x ∏

δ

ρ̂(f · δ)nδ

k∏

j=1

dfj

(5.29)

where the sum goes over all sequences x = (x1, . . . , xk) ∈ {− αn√
n
, αn√

n
}k and f · x

stands again for the scalar product, f ·x =
∑

j fjxj . In order to analyze the integrals
on the right hand side, we will again use the method of steepest decent. To this
end, we first prove the following analog of Lemma 5.1. As before, µ0 is a constant
such that ρ̂(f) is analytic in the strip |=mf | < µ0.

Lemma 5.4. Given µ1 > 0 there are constants c1 > 0 and µ2 ∈ (0, µ0) such that
the following bound holds whenever nmin ≥ 2−(k+1)n and η1, . . . , ηk is sequence of
real numbers with

∑
j |ηj | ≤ µ2 and ηjxj ≥ 0 for all j:

∫∫∫ µ1

−µ1

∏

δ

ρ̂(f · δ)nδ

k∏

j=1

e2πinxjfj dfj

=
∫∫∫ µ1

−µ1

e2πn(ix·f−x·η)
∏

δ

ρ̂(f · δ + iη · δ)nδ

k∏

j=1

dfj + O(e−
1
2 c1nmin).

(5.30)

Proof. For j = 1, . . . , k, let Cj be the path consisting of the three line segments
which join the point −µ1 to the point −µ1 + iηj , the point −µ1 + iηj to the point
µ1 + iηj , and the point µ1 + iηj to the point µ1, respectively. For j = 1, . . . , k, we



24 CHRISTIAN BORGS1, JENNIFER CHAYES1, STEPHAN MERTENS2, CHANDRA NAIR1

replace, one by one, the integrals over the variables fj by integrals over the paths Cj

and then bound the contribution over the part coming from the two line segments
joining −µ1 to −µ1 + iηj and µ1 + iηj to µ1, respectively. In each of step, we then
have to bound integrals of the form

∫∫∫ ∏

δ

ρ̂(f · δ)nδ

k∏

j′=1

e2πinxj′fj′dfj′ (5.31)

where f1, . . . , fj−1 run over the line segments from −µ1 + iηj to µ1 + iηj , fj runs
either over the the line segment from −µ1 to −µ1 + iηj or the line segment from
µ1 + iηj to µ1, and fj+1, . . . , fk run over the interval [−µ1, µ1]. To bound these
integrals, we note that in this domain of integration the real part of fj has absolute
value µ1, implying in particular that

µ1 ≤
∑

i

|<efi| ≤ kµ1. (5.32)

As a consequence, |<ef · δ| ≤ kµ1 for all δ, and further there exists at least one δ
for which |<ef · δ| ≥ µ1. (In fact it is easy to see that there are at least 2k−1 such
δ’s.) On the other hand, the assumption

∑
j |ηj | ≤ µ2 implies that |=mf · δ| ≤ µ2

for all δ.
Consider first a vector δ for which µ1 ≤ |<ef · δ| ≤ kµ1, and assume that

µ2 ≤ µ0 is chosen in such a way that (5.2) holds. Under this assumption, we have
|ρ̂(f · δ)| ≤ e−c1 , implying that the term ρ̂(f · δ)nδ contributes a factor that is at
most e−nminc1 .

To bound |ρ̂(z)| when we only know that |<ez| ≤ kµ1, we use continuity in
conjunction with the fact that |ρ̂(z)| ≤ 1 for all real z. Decreasing µ2, if necessary,
we conclude that |ρ̂(z)| ≤ ec12

−k−2
whenever |<ez| ≤ kµ1 and |=mz| ≤ µ2. As a

consequence, the first product in (5.31) can be bounded by
∏

δ

∣∣∣ρ̂(f · δ)nδ

∣∣∣ ≤ e−nminc1ec12
−k−2n ≤ e−

1
2 nminc1 . (5.33)

Since the second product is bounded by one as before, and the integral only con-
tributes a constant, this proves the lemma. ¤

Next we have to determine the values of the shifts η1, . . . , ηk. According to the
method of steepest decent, we again choose a saddle point of the integrand. Since
the integrand is now a function of k variables, this now gives a system of k equations
for η = (η1, . . . , ηk): ∑

δ

nδ

n
δjF

′(iδ · η) = 2πixj . (5.34)

Assume for a moment that this equation has a unique solution η = η(x). We then
define a function

Gn,k(x) =
∑

δ

nδ

n
F (iδ · η(x)) + 2πη(x) · x. (5.35)

Lemma 5.5. Let 0 ≤ αn = o(
√

n), let qmax = o(1), and let x ∈ Rk be such that
|xi| = αn/

√
n. Then the equation (5.34) has a unique solution η = η(x),

ηi(x) =
( 1

2π

k∑

j=1

C−1
ij xj

)(
1 + O

(α2
n

n

))
(5.36)
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and ηj(x)xj ≥ 0 for all j ∈ {1, . . . , k}. In addition, for sufficiently small µ1,
∫∫∫ µ1

−µ1

e2πn(ix·f−x·η)
∏

δ

ρ̂(f · δ + iη · δ)nδ

k∏

j=1

dfj

= e−nGn,k(x)

(
1

2πn

)k/2(
1 + O(n−1/2) + O(α2

n/n) + O(qmax)
)
.

(5.37)

Proof. For x = 0, the equation (5.34) is obviously solved by η = 0. To obtain
existence and uniqueness of a solution in the neighborhood of zero, we consider the
derivative matrix of the function on the left hand side,

Aij(η) = i
∑

δ

nδ

n
δiδjF

′′(iδ · η). (5.38)

Using the fact that F ′′(f) = (2π)2 + O(f2) we may expand Aij(η) as

Aij(η) = Aij(0) + O(‖η‖22), (5.39)

and for η = 0 we have

Aij(0) = (2π)2i
∑

δ

nδ

n
δiδj = (2π)2iCij , (5.40)

where Cij is the overlap matrix Cij = q(σ(i), σ(j)). If the maximal off-diagonal
overlap qmax is o(1), the matrix C is invertible, implying in particular that Aij(η)
is non-singular in a neighborhood of zero. By the implicit function theorem, we
conclude that for x sufficiently small, the equation (5.34) had a unique solution
η(x), and by (5.39), we may expand η(x) as

ηi(x) = 2πi

k∑

j=1

A−1
ij (0)xj + O(‖x‖32)

=
1
2π

k∑

j=1

C−1
ij xj + O(‖x‖32).

(5.41)

For qmax = o(1), the matrix C−1 can be approximated as C−1
ij = δij + o(qmax),

implying in particular that for |xj | = αn/
√

n, the leading term on the right hand
side is of order αn/

√
n. As a consequence, we can convert the additive error into a

multiplicative error 1+O(α2
n/n), giving the desired bound (5.36). Using once more

that C−1
ij = δij + o(qmax), the fact that xjηj(x) ≥ 0 is an immediate corollary of

(5.36).
We are left with the proof of (5.37). To this end, we rewrite the left hand side

as ∫∫∫ µ1

−µ1

e2πn(ix·f−x·η)e−
∑

δ nδF (f ·δ+iη·δ)
k∏

j=1

dfj

= e−nGk(x)

∫∫∫ µ1

−µ1

e−nG̃n,k(f)
k∏

j=1

dfj

(5.42)

with
G̃n,k(f) =

∑

δ

nδ

n

(
F (f · δ + iη · δ)− F (iη · δ)

)− 2πix · f . (5.43)
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Observing that the derivatives of G̃n,k(f) at f = 0 vanish by the definition of η(x),
we now expand G̃n,k(f) as

G̃n,k(f) =
∑

δ

nδ

n

(1
2
(f · δ)2F ′′(iη · δ) +

1
3!

(f · δ)3F (3)(iη · δ) + O((f · δ)4)
)
. (5.44)

Arguing as in the proof of Proposition 5.2 we now have that

<eG̃n,k(f) ≥
∑

δ

nδ

n
(f · δ)2 =

∑

i,j

fiCijfj (5.45)

provided µ1 is sufficiently small and n is sufficiently large. Since the maximal
off-diagonal overlap qmax is of order o(1), we conclude that <eG̃n,k(f) ≥ 1

2‖f‖22
provided µ1 is sufficiently small and n is sufficiently large. As a consequence, the
integral in (5.42) is dominated by configurations for which ‖f‖2 is smaller than, say,
log n/

√
n. More quantitatively, we have

∫∫∫ µ1

−µ1

e−nG̃n,k(f)
k∏

j=1

dfj

=
∫∫∫

‖f‖2≤log n/
√

n

e−nG̃n,k(f)
k∏

j=1

dfj + O
(∫∫∫

‖f‖2≥log n/
√

n

e−n‖f‖2/2
k∏

j=1

dfj

)

=
∫∫∫

‖f‖2≤log n/
√

n

e−nG̃n,k(f)
k∏

j=1

dfj + O
(
e−

1
2 log2 n

)
.

(5.46)
For ‖f‖2 ≤ log n/

√
n we expand e−nG̃n,k(x) as

G̃n,k(f) = exp
(
−1

2

∑

δ

nδ

n
(f · δ)2F ′′(iη · δ) + O(n‖f‖3)

)

= e−
1
2

∑
ij fiMijfj

(
1 + O(n‖f‖3)

) (5.47)

where M is the matrix with matrix elements

Mij =
∑

δ

nδ

n
δiδjF

′′(iη · δ) = (2π)2Cij + O(‖η‖2)

= (2π)2δij + O(α2
n/n) + O(qmax).

(5.48)

As a consequence,

∫∫∫

‖f‖2≤log n/
√

n

e−nG̃n,k(f)
k∏

j=1

dfj =
( 1

2πn

) k
2
(
1+O(n−1/2)+O(α2

n/n)+O(qmax)
)
.

(5.49)
Combined with (5.42) and (5.46), this implies the desired bound (5.37). ¤

Lemma 5.3, Lemma 5.4, the relation (5.29), Lemma 5.4 and Lemma 5.5 we now
easily prove the following proposition.
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Proposition 5.6. Let 0 ≤ αn = o(
√

n) and let 0 ≤ λn = o(
√

n). If n is sufficiently
large and σ(1) . . . , σ(k) obey the condition (3.13), then

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for j = 1, . . . , k

)
=

( m∏

`=1

γk`

`

)

×
(

ξn√
2π

)k ∑

x∈{− αn√
n

, αn√
n
}k

e−nGn,k(x)
(
1 + o(1)

)
.

(5.50)

If we strengthen the condition αn = o(
√

n) to αn = o(n1/4), we have

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for all j = 1, . . . , k

)

=
k∏

i=1

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ]

)
eO(α2

nqmax)+o(1).
(5.51)

Proof. Observe that under the condition (3.13), we have that nmin = n2−k + o(n)
and qmax = o(1). We may therefore use Lemma 5.3, Lemma 5.4, the relation
(5.29), Lemma 5.4 and Lemma 5.5 to conclude that under the conditions of the
proposition, there is a constant c > 0 such that

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for j = 1, . . . , k

)
=

m∏

`=1

(2qn,`)k`

× 2−k
∑

x∈{− αn√
n

, αn√
n
}k

(
e−nGn,k(x)

(
1

2πn

)k/2(
1 + o(1)

)
+ O(e−cn) + O(

√
nξn)

)
.

(5.52)
Next we expand Gn,k(x) with the help of the bounds (5.14) and (5.36), yielding
the approximation

Gn,k(x) = −1
2

∑

δ

nδ

n
(2πδ · η)2 + 2πη · x + O(‖x‖42)

= − (2π)2

2
(η, Cη) + 2πη · x + O(‖x‖42)

=
1
2
(x, C−1x) + O

(α4
n

n2

)
.

(5.53)

Note that this implies in particular that nGn,k(x) = O(α2
n) + O(α4

n/n) = o(n).
The leading term on the right hand side of (5.52) is therefore much larger than
the additive error terms, which both decay exponentially in n. These additive
error terms can therefore be converted into a multiplicative error term (1 + o(1)).
Inserting the value of qn,`(= γ`ξn

√
n) and using the fact that

∑
` k` = k, this yields

the approximation (5.50).
To infer the bound (5.51), we use the assumption αn = o(n1/4) to expand the

factor (ξn/
√

2π)k as 2−nkekα2
n/2(1 + o(1)), and the factor e−nGn,k(x) as

e−
n
2 (x,C−1x)+O(α4

n/n) = e−
n
2 ‖x‖22+O(n‖x‖22qmax)

(
1 + O(α4

n/n)
)

= e−
k
2 α2

n+O(α2
nqmax)

(
1 + o(1)

)
.

(5.54)
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Inserting these estimates into (5.50) and taking into account the bound (5.12), this
gives (5.51). ¤

5.4. Failure of Poisson convergence for faster growing αn. In this section,
we prove the last statement of Theorem 2.1 for general distributions. Throughout
this section, we will assume that αn = O(n1/4) and λn = o(

√
n). Near the end of

the section, we will specialize to αn = Θ(n1/4), for which we will prove absence of
Poisson convergence.

We start from (5.50), but instead of (5.53) we use a more accurate approximation
for Gn,k(x). To this end, we use the fact that ρ̂(f) = ρ̂(−f) is analytic in a
neighborhood of zero to infer the existence of a constant c4 such that

F (z) =
(2π)2

2
z2 + c4(2π)4z4 + O(|z|6)

and

F ′(z) = (2π)2z + 4c4(2π)4z3 + O(|z|5).

Remark 5.7. Using the fact that E(X4) ≥ E(X2)2 = 1 and expanding the log ˆρ(f)
one can see that c4 ≤ 1

12 , with equality holding if and only if X2 = 1 with probability
one. Thus for all random variables whose density satisfies assumption (2.1) we have
c4 < 1/12.

Using these expressions and the fact that C−1
ij = δij+O(qmax) = δij+O(λnn−1/2)

when σ(1) . . . , σ(k) obey the condition (3.13), we then expand the solution of (5.34)
as

ηi =
1
2π

(C−1x)i +
4c4

2π

∑

δ

nδ

n
(C−1δ)i(δ, C−1x)3 + O(‖x‖5)

=
1
2π

(C−1x)i +
4c4

2π

∑

δ

nδ

n
δi(δ · x)3 + O(‖x‖5) + O(‖x‖3λnn−1/2).

(5.55)

In order to analyze the sum over δ, we use the condition (3.13) to estimate

∑

δ

nδ

n
δiδjδkδl = 2−k

∑

δ

δiδjδkδl + O(λnn−1/2).

The first term is zero unless i, j, k, l are such that either all of them are equal or
are pairwise equal for some pairing of i, j, k, l. Observing that there are 3 possible
ways to pair four numbers into two pairs of two, this leads to the estimate

ηi =
1
2π

(C−1x)i +
4c4

2π
xi

(
x2

i + 3
∑

k 6=i

x2
k

))
+ O(‖x‖3λnn−1/2) + O(‖x‖5)

=
1
2π

(C−1x)i + (1 + 3(k − 1))
4c4α

2
n

2πn
xi + O(‖x‖3λnn−1/2) + O(‖x‖5)

(5.56)

where we used the fact that |xi| = |xj | = αn/
√

n in the last step. Inserting this
expression into the definition (5.35) and expanding the result in a similar way as
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we expanded η above, this leads to the approximation

Gn,k(x) = − (2π)2

2

∑

δ

nδ

n
(δ · η)2 + c42−k

∑

δ

(δ · x)4 + 2πη · x

+ O(‖x‖6) + O(‖x‖4λnn−1/2)

= − (2π)2

2
(η, Cη) + c4k(1 + 3(k − 1))

α4
n

n2
+ 2πη · x

+ O(‖x‖6) + O(‖x‖4λnn−1/2)

= −1
2
(x, C−1x)− k(1 + 3(k − 1))

4c4α
4
n

n2
+ c4k(1 + 3(k − 1))

α4
n

n2

+ (x, C−1x) + k(1 + 3(k − 1))
4c4α

4
n

n2
+ O(‖x‖6)

+ O(‖x‖4λnn−1/2)

=
1
2
(x, C−1x) + c4k(1 + 3(k − 1))

α4
n

n2
+ O

(α6
n

n3

)
+ O(

α4
n

n2
λnn−1/2).

(5.57)

Using that αn = O(n1/4) and λn = o(
√

n), this gives

nGn,k(x) =
n

2
(x, C−1x) + c4k(1 + 3(k − 1))

α4
n

n
+ o(1).

As a consequence, we have that

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for j = 1, . . . , k

)
=

( m∏

`=1

γk`

`

)

×
(

ξn√
2π

)k ∑

x∈{− αn√
n

, αn√
n
}k

e−
n
2 (x,C−1x)e−c4k(1+3(k−1))

α4
n

n

(
1 + o(1)

) (5.58)

whenever σ(1) . . . , σ(k) obey the condition (3.13).
Next we expand ξn, using that ξn = (2(n−1)gn(αn))−1 with gn(αn) given by

(5.10). To this end, we approximate η(x) as η(x) = x
2π (1 + 4c4x

2) + O(x5) and
G(x) as

G(x) = −1
2
(2πη(x))2 + c4(2πη(x))4 + 2πxη(x) + O(x6) =

x2

2
+ c4x

4 + O(x6),

giving the expansion

ξn =
√

π

2
2−(n−1) exp

(1
2
α2

n + c4
α4

n

n

)(
1 + o(1)

)
. (5.59)

Inserting this expansion into (5.58) we then continue as in the proof of Theorem 3.3
to get that

E[
m∏

`=1

(Zn(a`
n, b`

n))k`
] =

( m∏

`=1

γk`

`

)
exp

(α4
n

n

(k(k − 1)
4

− 3c4k(k − 1)
))(

1 + o(1)
)
.

(5.60)
Specializing now to αn = κn1/4, this implies in particular that all moments of Zn(t)
are bounded, and

lim
n→∞

E[(Zn(t))k] = tk exp
(
κ4(k − 1)k

(
1/4− 3c4

))
. (5.61)
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In view of Lemma 3.2 and the fact that c4 < 1/12 by Remark 5.7, this is incom-
patible with weak convergence to a Poisson random variable. This establishes the
failure of the modified REM conjecture for limn→∞ α

−1/4
n = κ > 0.

Note that the original REM conjecture also fails if limn→∞ αnn−1/4 = κ > 0.
Indeed, in this range, the original scaling (1.3) and the modified scaling differ by
the asymptotically constant factor e−c4κ4

(1+o(1)). This makes things worse, since
now even the first moment does not converge to the desired value unless c4 = 0,
in which case the original and the modified REM conjecture remain equivalent for
αn = O(n1/4). This completes the proof of the last statement of Theorem 2.1.

Remark 5.8. It is not hard to see that for αn = κn1/4 the distribution of the overlap
Qn,t converges again to a superposition of two shifted Gaussians, see Remark 4.2,
where this was discussed for the case where X1, . . . , Xn where standard normals.
Indeed, the only difference with the situation discussed in that remark is the extra
factor of e−c4(k−1)(1+3k)κ4

. But this factor does not depend on the overlap, and
hence does not influence the overlap distribution.

6. Analysis of the SK model

For αn = O(nη) and η < 1, the local REM conjecture for the SK model has been
proved in [BK05a]. To extend the proof up to the threshold αn = o(1), a little bit
more care is needed, but given the analysis of the Npp with Gaussian noise from
the Section 4, this is still relatively straightforward, even though the details vary
at several places. But for αn of order n we have to be quite careful, since now
several error terms which went to zero before are not vanishing anymore. It turns
out, however, that for αn/n ≤ ε0 and ε0 sufficiently small, we can at least control
the first three moments, which is enough to prove absence of Poisson convergence
if lim sup αn/n > 0.

We start with the analysis of the first moment.

6.1. First moment. For the SK model, the energy E(σ) is a Gaussian random
variable with density given by (1.5). For αn = O(n) and ξ̃n = o(1), the first moment
can therefore be approximated as

E[Zn(a`
n, b`

n)] =
2n−1

√
2πn

∫ b`
n

a`
n

e−
1
2n x2

dx

=
γ`ξ̃n2n−1

√
2πn

e−
1
2n α2

n

(
1 + O

(αnξ̃n

n

)
+ O

( ξ̃2
n

n

))

= γ`(1 + o(1)).

(6.1)

This proves the convergence of the first moment for αn ≤ cn and c <
√

2 log 2.

6.2. Families of linearly independent configurations. When analyzing the
factorization properties of the joint distribution of E(σ(1)), . . . , E(σ(k)), we will
want to use the representation (3.32), which at a minimum, requires that the co-
variance matrix C defined in (3.33) is invertible. The following Lemma 6.1 shows
that a family of linearly independent configurations leads to an invertible covari-
ance matrix, and gives a bound on the contribution of the families which are not
linearly independent. It serves the same purpose as Lemma 3.4 (2) served for the
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Npp. Note that statements similar to those in Lemma 6.1 were proved in [BK05a]
under the more restrictive condition that αn = O(n−η) with η < 1.

To state the lemma, we define R̃n,k as

R̃n,k =
1
2k

∑ ′

σ(1),··· ,σ(k)

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for all j = 1, . . . , k

)
, (6.2)

where the sum runs over pairwise distinct configurations σ(1), . . . , σ(k) which are
linearly dependent.

Lemma 6.1. Let k < ∞. Then there exists a constant εk > 0 such that the
following statements are true.

(1) If σ(1), . . . , σ(k) are linearly independent, the matrix C defined in (3.33) is
invertible, and

g̃(k)(x) ≤
( n

2π

)k/2

e−
1
2 (x,C−1x). (6.3)

(2) If αn ≤ nεk, then

R̃n,k → 0 as n →∞. (6.4)

Proof. (1) This statement is quite easy and must be known to most experts in the
field. First, we rewrite the matrix elements of C as Cij = nq(η(i), η(j)), where
η(1), . . . , η(k) are vectors in {−1,+1}n2

. Indeed, setting η
(i)
r,s = σ

(i)
s σ

(i)
r , where

r, s = 1, . . . n and i = 1, . . . k, we see that q(η(i), η(j)) =
(
q(σ(i), σ(j))

)2, implying
the above representation for C. Next we observe that that the linear independence
of σ(1), . . . , σ(k) implies linear independence of η(1), . . . , η(k), which in turn can
easily be seen to imply linear independence of the row vectors of the matrix with
matrix elements q(η(i),η(j)). This gives that C is non-degenerate. But C is a
k× k matrix with entries which are multiples of n−1, so if detC 6= 0, we must have
|det C| ≥ n−k. This implies the bound (6.3).

(2) To prove (2), we decompose the sum in (6.2) according to the rank of the
matrix M formed by the vectors σ(1), . . . , σ(k). Assume that the rank of M is equal
to u < k. Reordering the vectors σ(1), . . . , σ(k), if necessary, let us further assume
that σ(1), . . . , σ(u) are linearly independent. With the help of (1), we then bound
the probability on the right hand side of (6.2) by

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for all j = 1, . . . , k

)

≤ P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for all j = 1, . . . , u

)

≤
( n

2π

)u/2 u∏

j=1

(ξ̃nγ`(j)) = O((
√

nξ̃n)u)

(6.5)

To continue, we use the following two facts, proven, e.g., in [BCP01] (see also
Lemma 3.9 in [BCMN05]:

(1) If σ(1), . . . , σ(k) are pairwise distinct, the rank of M is u < k and σ(1), . . . ,
σ(u) are linearly independent, then nδ(σ(1), . . . , σ(u)) = 0 for at least one
δ ∈ {−1,+1}u.

(2) Given u < k linearly independent vectors σ(1), . . . , σ(u), there are at most
2u(k−u) ways to choose σ(1), . . . , σ(k) in such a way that the rank of M is
u.
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As a consequence, of (1), we have

|max
δ
|nδ(σ(1), . . . , σ(u))− 2−un| ≥ 2−un.

Combined with Lemma 3.4 (1) and the property (2) above, we conclude that there
are at most O(2nue−2−(2u+1)n) = O(2nue−2−(2k−1)n) ways to choose k pairwise dis-
tinct configurations σ(1), . . . , σ(k) such that the rank of M is u. Using the fact
that (

√
nξ̃n)u = O(nue

u
2n α2

n2−nu), we immediately see that for αn ≤ εkn and εk

sufficiently small, the contribution of all configurations σ(1), . . . , σ(k) such that the
rank of M is smaller than k decays exponentially in n, so in particular it is o(1). ¤

Consider now a family of linearly independent configurations σ(1), . . . , σ(k). We
claim that for such a family and αn ≤ cn with c <

√
2 log 2, we have

P
(
E(σ(j)) ∈ [a`(j)

n , b`(j)
n ] for all j = 1, . . . , k

)

=
m∏

`=1

(ξ̃nγ`)k`
1

(2π)k/2

1
(detC)1/2

e−
1
2 (α,C−1α)(1 + o(1)),

(6.6)

where α is the vector (αn, . . . , αn) ∈ Rk and C is the covariance matrix de-
fined in (3.33). To prove this approximation, we have to show that (x, C−1x) =
(α, C−1α) = o(1) whenever x is a vector with xi = αn + O(ξ̃n). This in turn
requires an upper bound on the inverse of C. To prove such a bound we use that
the matrix elements of C are bounded by n, while detC is bounded from below by
n−k. Using Cramer’s rule, we conclude that the norm of C−1 is O(n2k−1), which
in turn implies that (x, C−1x) = (α, C−1α) + O(n2k−1αnξ̃n) + O(n2k−1ξ̃2

n). For
αn ≤ cn with c <

√
2 log 2, the error term is o(1), as desired.

Assume that αn ≤ cn with c < min{√2 log 2, εk}. Using first the representation
(3.11), then Lemma 6.1 and the bound (6.6), and finally the explicit formula (1.6)
for ξ̃n, we now approximate the kth factorial moment as

E
[ m∏

`=1

(Zn(a`
n, b`

n))k`

]
=

( m∏

`=1

γk`

`

)

× 2−nk
∑ ′′

σ(1),...,σ(k)

nk/2

(detC)1/2
e

1
2n‖α‖22e−

1
2 (α,C−1α)

(
1 + o(1)

)
+ o(1)

(6.7)

where the sum goes over families of linearly independent configurations σ(1), . . . ,
σ(k).

6.3. Poisson convergence for αn = o(n). In this section, we prove Theorem 3.6.
To this end, we again choose λn in such a way that αn = o(λn

√
n), λn = o(

√
n) and

e−λ2
n/2 decays faster than any power of n. Recalling Lemmas 3.4 (1) and (3), we may

then restrict the sum in (6.7) to a sum over configurations with qmax = O(λn/
√

n).
Expanding the inverse of C as C−1

ij = 1
n (δij +O(q2

max)), we then approximate detC

as det C = nk(1 + o(1)), and (α, C−1α) as (α, C−1α) = ‖α‖22 + O(n−1α2
nq2

max).
Using Lemma 3.4 and Lemma 6.1 a second time to extend the sum over families of
configurations back to a sum over all families of configurations in {−1,+1}n, the
proof of Theorem 3.6 is therefore reduced to the proof of the bound

2−nk
∑

σ(1),...,σ(k)

eO( 1
n α2

nq2
max) = 1 + o(1). (6.8)
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Since typical configurations lead to a maximal off-diagonal overlap qmax of order
O(n−1/2), we expect that such a bound holds as long as αn = o(n). Lemma 7.1 in
Section 7.2 implies that this is indeed the case.

6.4. Absence of Poisson convergence for faster growing αn. In this section,
we prove Theorem 3.7. We start by proving the following lemma.

Lemma 6.2. Given a positive integer k, there are constants ε̃k > 0 and Ck < ∞
such that

E
[ m∏

`=1

(Zn(a`
n, b`

n))k`

]
≤ Ck

m∏

`=1

γk`

` + o(1) (6.9)

whenever αn ≤ ε̃kn, k =
∑

` k` and n is large enough.

Proof. Starting from the approximation (6.7), we will again restrict ourselves to
configurations obeying the condition (3.13), but this time we will choose λn of the
form λn =

√
2knε̃k where ε̃k > 0 will be chosen in such a way that ε̃k <

√
2 log 2

and ε̃k ≤ εk. Note that our choice of λn guarantees that for αn ≤ nε̃n, the sum
over families of configurations violating the condition (3.13) decays exponentially
with n. Note further that the condition (3.13) with λn =

√
2knε̃k guarantees that

q2
max ≤ 22k+1kε̃2k. Expanding det C as det C = nk(1 + O(q2

max)), we therefore have
that det C ≥ 1

2nk provided ε̃k is chosen small enough.
Let us finally write the matrix C as C = 1

n (Ik + A), where Ik is the identity
matrix of size k, and A is the matrix with zero diagonal and off-diagonal entries
q2(σ(i), σ(j)). Expanding C−1 as C−1 = 1

n (Ik −A + A2

1+A ), we see that

(α, C−1α) ≥ 1
n

(
‖α‖22 − (α, Aα)

)
≥ 1

n

(
‖α‖22 − k2q2

maxα
2
n

)
. (6.10)

Together with our lower bound on det C, we see that the proof of the lemma now
reduces to the bound

2−nk
∑

σ(1),...,σ(k)

√
2e

1
2n (kαnqmax)2 ≤ Ck. (6.11)

For ε̃k small enough, this bound again follows from Lemma 7.1 in Section 7.2. ¤

Note that Lemma 6.2 implies statement (ii) of Theorem 3.7, while the bound
(6.1) implies statement (i). We are therefore left with the proof of (iii), i.e., the
statement that lim supn→∞ E[(Zn(a, b))2] > γ2 when lim sup αn/n > 0. Recalling
the representation, this in turn requires us to prove that

lim sup
n→∞

2−2n
∑ ′′

σ(1),σ(2)

n

(det C)1/2
e

1
2n‖α‖22e−

1
2 (α,C−1α) > 1. (6.12)

Let q = q(σ(1), σ(2)) be the off-diagonal overlap of the two configurations σ(1) and
σ(2). Since C is now just a 2× 2 matrix, both its inverse and its determinant can
be easily calculated, giving detC = n2(1− q4), and, using that ‖α‖22 = kα2

n = 2α2
n,

(α, C−1α) =
1

n(1− q4)
(2α2

n − 2q2α2
n) =

2α2
n

n(1 + q2)
=

2α2
n

n
(1− q2

1 + q2
). (6.13)

As a consequence, we will have to prove a lower bound on the expression

2−2n
∑ ′′

σ(1),σ(2)

1√
1− q4

e
α2

n
n

q2

1+q2 . (6.14)
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Taking subsequence, if necessary, let us assume that αn/n converges to some κ, with
0 < κ < min{ε2,

√
2 log 2}. We then bound the sum

∑ ′′ from below by restricting
it to all configurations for which |q| ≤ 2κ. Under this restriction, the summand is
bounded from below by 1√

1−16κ4 eβnq2
, with βn = α2

n/(n(1 + 4κ2)). Observing that
q2 ≤ 1 we may then use Lemma 3.4 (1) and (3) to extend the sum back to a sum
which runs over all configurations σ(1) and σ(2), leading to the lower bound

2−2n
∑ ′′

σ(1),σ(2)

1√
1− q4

e
α2

n
n

q2

1+q2 ≥ 2−2n

√
1− 16κ4

∑

σ(1),σ(2)

eβnq2
+ o(1). (6.15)

Let E2 denote expectations with respect to the uniform measure over families of
configurations σ(1), σ(2) ∈ {−1,+1}n. Using Hölder and the fact that E2[q2] = 1

n ,
we then lower bound the right hand side by

2−2n

√
1− 16κ4

∑

σ(1),σ(2)

eβnq2
+ o(1)

≥ eβn/n

√
1− 16κ4

+ o(1) =
1√

1− 16κ4
exp

( κ2

1 + 4κ2

)
+ o(1).

(6.16)

For κ sufficiently small, the right hand side is asymptotically larger than 1, proving
the desired lower bound (6.12), which completes the proof of Theorem 3.7.

7. Auxiliary results

7.1. Proof of Lemma 3.5.

Proof of Lemma 3.5. We will have to prove that

2−nk
∑

σ(1),...,σ(k)

ef(σ(1),...,σ(k)) = 1 + o(1). (7.1)

Recalling the assumption |f(σ(1), . . . , σ(k))| ≤ cα2
nqmax, let θn = o(n) be a sequence

of positive integers such that θn →∞ as n →∞ and α2
nθn = o(

√
n).

We now split the sum on the left hand side of (7.1) into two parts: the sum
over all families of configurations σ(1), . . . , σ(k) that satisfy (3.13) with θn taking
the place of λn and the sum over the configurations that violate the bound (3.13),
again with θn replacing λn.

Consider the first sum. By Lemma 3.4, the number of terms in this sum is

bounded between 2nk(1−2k+1e−
θ2

n
2 ) and 2nk. For all these configurations we know

from Lemma 3.4 that qmax ≤ 2k θn√
n

and hence |f(σ(1), . . . , σ(k))| ≤ c2kα2
n

θn√
n

=
o(1) as n → ∞. Using the fact that θn → ∞ as n → ∞ we obtain that the
contribution from the first summation is 1 + o(1) as n →∞.

Thus, to establish Lemma 3.5 it suffices to show that the contribution from the
second sum is o(1) as n → ∞. To this end we partition the interval [θn, n] into
subintervals [κi, κi+1] of length one. Now consider the families of configurations
σ(1), . . . , σ(k) that satisfy (3.13) when λn is replaced by κi+1 but violate it if λn

is replaced by κi. It is easy to see that for n large enough, the contribution from
these terms is bounded by

2k+1e−κ2
i /2e

cα2
n2k κi+1√

n = 2k+1e−κ2
i /2eo(κi) ≤ e−κ2

i /4.
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Adding up these error terms, we obtain that the second sum is of order O(e−θ2
n/4) =

o(1). This completes the proof of Lemma 3.5. ¤
7.2. Proof of Lemma 4.1. The proof of Lemma 4.1 will be based on the following
lemma.

Lemma 7.1. Let k be a positive integer, and let β < n
k(k−1) be a non-negative real.

If |g(σ(1), . . . , σ(k))| ≤ βq2
max for all families of configurations σ(1), . . . , σ(k), then

(
1− k(k − 1)

2
β

n

)
≤ 2−nk

∑

σ(1),...,σ(k)

eg(σ(1),...,σ(k)) ≤
(
1− k(k − 1)

β

n

)−1/2

(7.2)

Proof. Let Ek[·] denote expectations with respect to the uniform measure over all
families of configurations σ(1), . . . , σ(k) ∈ {−1, +1}n. With the help of Jensen’s
inequality, we then immediately obtain the lower bound

Ek[eg] ≥ exp(−βEk[q2
max]) ≥ exp

(
−β

∑

i<j

Ek[q2
ij ]

)

= exp
(
−β

k(k − 1)
2

1
n

)
≥ 1− β

k(k − 1)
2

1
n

.

(7.3)

To obtain an upper bound, we first use Hölder’s inequality to obtain the estimate

Ek[eg] ≤ Ek[e
∑

i<j q2
ij ] ≤

∏

i<j

Ek[eKβq2
ij ]1/K ≤ max

i<j
Ek[eKβq2

ij ] (7.4)

with K = k(k − 1)/2. Next we rewrite the expectation on the right hand side as

Ek[eKβq2
ij ] =

1√
2π

∫ ∞

−∞
e−

x2
2 Ek[e

√
2Kβqijx]dx. (7.5)

But now we can calculate the expectation exactly. Together with the inequality
cosh(y) ≤ exp(y2/2), this leads to the estimate

Ek[e
√

2Kβqijx] =
(
cosh(

√
2Kβxn−1)

)n

≤ exp
(
Kβx2n−1

)
.

Inserting this into (7.5) and (7.4), we have

Ek[eg] ≤ 1√
2π

∫ ∞

−∞
e−(1−2Kβn−1) x2

2 dx =
1√

1− 2Kβn−1
=

1√
1− k(k − 1)βn−1

,

the desired upper bound. ¤
Having established the above lemma, we are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. Let f1(σ(1), . . . , σ(k)) =
∑

i 6=j q̃ij and f = f1 + R, and define

F (β) = Ek[eβf ], F1(β) = Ek[eβf1 ], and F2(β) = Ek[eβR].

Since (by (4.10))

F1(βn) = exp
(k(k − 1)

n
β2

n + O(β3
nn−2)

)
, (7.6)

we only have to prove that F (βn) = F1(βn)eO(β3
nn−2)+o(1) whenever βn = o(n).

Let εn = 2k(k − 1)C βn

n where C is the constant from Lemma 4.1. Applying
Hölder’s inequality to Ek[ef ] we obtain

F (βn) ≤ F1(βn(1 + εn))
1

1+εn F2(βn
1 + εn

εn
)

εn
1+εn
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and hence
F (βn)
F1(βn)

≤ F1(βn(1 + εn))
1

1+εn

F1(βn)
F2(βn

1 + ε

ε
)

εn
1+εn .

Using equation (7.6) one obtains

F1(βn(1 + εn))
1

1+εn

F1(βn)
= exp(β2

nεnn−1 + O(β3
n/n2)) = exp(O(β3

n/n2)).

Recalling that |R| ≤ Cq2
max, we would like to use Lemma 7.1 to bound the second

factor. To this end, we need to guarantee that k(k−1) 1+εn

εn
C βn

n < 1. By our choice
of εn this will be the case as soon as n is large enough to ensure that εn < 1. For
n large enough, we therefore have

F2(βn
1 + ε

ε
)

ε
1+ε ≤

(
1− k(k − 1)

1 + εn

εn
C

βn

n

)− εn
2(1+εn)

= exp(O(βn/n)).

Putting everything together, we get

F (βn)
F1(βn)

≤ exp
(
O(β3

n/n2) + O(βnn−1)
)

= exp
(
O(β3

n/n2) + o(1)
)
.

Applying Hölder’s inequality to Ek[e(1+εn)−1βn(f−R)] we obtain that

F1

( βn

1 + εn

)1+εn ≤ F (βn)F2

(
−βn

εn

)εn

.

This implies that

F (βn)
F1(βn)

≥ F1((1 + εn)−1βn)1+εn

F1(βn)
1

F2(−βn
1
εn

)εn
.

Proceeding along similar lines as for the upper bound, we obtain that

F (βn)
F1(βn)

≥ exp
(
O(β3

n/n2) + o(1)
)
.

Combining the two applications of Hölder’s inequality we finally obtain that

F (βn)
F1(βn)

= exp
(
O(β3

n/n2) + o(1)
)
.

This completes the proof of the lemma. ¤

8. Summary and Outlook

8.1. Summary of Results. In this paper, we considered the local REM conjecture
of Bauke, Franz and Mertens, for both the Npp and the SK spin glass model. For
the Npp we showed that the local REM conjecture holds for energy scales αn of
order o(n1/4), and fails if αn grows like κn1/4 with κ > 0. For the SK model we
established a similar threshold, showing that the local REM conjecture holds for
energies of order o(n), and fails if the energies grow like κn with κ > 0 sufficiently
small.

Although we believe that the local REM conjecture also fails for still faster
growing energy scales, our analysis did not allow us to make this rigorous since
we could not exclude that the moments of the energy spectrum diverge, while the
spectrum itself undergoes a re-entrance transition and converges again to Poisson
for faster growing energy scales.
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8.2. Proof Strategy. Before discussing possible extensions, let us recall our proof
strategy. Both the proof of Poisson convergence, and the proof that Poisson con-
vergence fails after a certain point, relied on a precise asymptotic analysis of the
factorial moments.

For the purposes of this discussion, let us restrict to the one-dimensional factorial
moments E[(Zn(an, bn))k] of the number of points in the energy spectrum between
some an and bn in the vicinity of αn. We expressed these factorial moments in
terms of the probability that the energies E(σ(1)), . . . , E(σ(k)) of k pairwise distinct
configurations σ(1), . . . , σ(k) all lie in the interval [an, bn], see (3.11).

The technical meat of our proof then consisted of two steps: a bound on the
sum over “atypical configurations” (see Lemmas 3.4 and 6.1), and a proof that
for typical configurations, the probability that the energies of σ(1), . . . , σ(k) all
lie in the interval [a, b] is asymptotically equal to the product of the probabilities
P(E(σ(i) ∈ [an, bn])).

For both the Npp and the SK model, the value of the threshold can already be
understood by considering the factorization properties of typical configurations, see
(3.24). Taking, e.g., the case k = 2, our results say that for typical configurations
in the Npp with Gaussian noise, we have factorization up to a factor

eα2
n(q+O(q2))(1 + o(1)), (8.1)

where q is the overlap between the two configurations. Since the overlap between
typical configurations is of order n−1/2, we obtain factorization if and only if αn =
o(n1/4). To obtain the same result for the Npp with general distribution was much
more work, since it required establishing a large deviation density estimate for k a
priori highly dependent variables, but the heuristic for the threshold of n1/4 is still
the same.

By contrast, the threshold for the SK model is easier to establish than that for
the Npp. The main reason is the restriction to Gaussian noise, which made the
proof of a large deviation density estimate unnecessary, in addition to simplifying
the proof of the bound on atypical configurations. But on a heuristic level, there is
not much of a difference: now we obtain factorization up to multiplicative factor of

e
α2

n
n (q2+O(q4))(1 + o(1)), (8.2)

giving the threshold of αn = o(n) for Poisson convergence.

8.3. p-Spin models. In the physics literature, one often considers a generalization
of the SK model which involves interactions between p different spins, instead of
the two-body interaction of the standard SK model. For our purpose, these p-spin
SK models are best defined as Gaussian fields indexed by the spin configurations
σ ∈ {−1, +1}n. Recalling that a Gaussian field is uniquely defined by its mean
and covariance matrix, we then define the p-spin SK-Hamiltonian H(p)(σ) as the
Gaussian field with mean 0 and covariance matrix E[H(p)(σ)H(p)(σ̃)] = nq(σ, σ̃)p

where p = 1, 2, . . . , and q(·, ·) is the overlap defined in (1.2). Note that the energy
of the Npp with Gaussian noise is nothing but the absolute value of the p = 1 SK
Hamiltonian divided by

√
n. Up to a rescaling by

√
n, the energy spectrum of the

Npp with Gaussian noise is therefore identical to the positive energy spectrum of
the p = 1 SK model.

It was shown in [BK05a] that the local REM conjecture holds for p = 1 if
αn = O(n3/4−ε) for some ε > 0, and for p ≥ 2 if αn = O(n1−ε). For p = 1, 2 our
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results establish a little bit more, namely the validity of the REM conjecture for
αn = o(n3/4) if p = 1, and for αn = o(n) if p = 2. More importantly, our results
prove that these are actually the thresholds for the validity of the REM conjecture.

This raises the question about the true threshold for p ≥ 3. Starting with the
factorization properties for typical configurations, one easily sees that the joint
density of H(σ(1)), . . . ,H(σ(k)) is again given by a formula of the form (3.32),
where C is now the matrix with matrix element Cij = n(q(σ(i),σ(j)))p. This then
leads to factorization up to a multiplicative error term

e
α2

n
n O(qp

max)(1 + o(1)), (8.3)

where qmax is the maximal off-diagonal overlap of σ(1), . . . , σ(k). If αn = O(n), this
gives factorization for typical configurations as long as p > 2. But unfortunately,
our control over atypical configurations is not good enough to allow a proof of the
REM conjecture for energies that grow that fast. Indeed, it is easy to see that
Lemma 6.1 can be generalized to p > 2; but an application of the lemma to control
the error for the kth factorial moment requires the condition αn ≤ nεk where εk is
a positive constant that goes to zero as k →∞.

We therefore see that our methods can easily be used to prove the local REM
conjecture for αn = o(n3/4) and p = 1 as well as αn = o(n) and all p ≥ 2, but they
are not strong enough to answer the question whether this is the actual threshold
for p ≥ 3, or whether the REM conjecture remains valid if p ≥ 3 and αn grows like
nκ for some small κ > 0.

An even more challenging question is the question of what happens after the
local REM conjecture fails. This question seems quite hard, and so far it has only
been answered for the hierarchical GREM-model. For this model it has been shown
[BK05b, BK05c] that the suitably rescaled energy spectrum converges to a mixed
Poisson process with density given in terms of a Poisson cascades on R`, where
the dimension ` becomes larger and larger as κ passes through an infinite series of
thresholds, the first threshold being the value where the local REM conjecture fails
for the GREM.

8.4. A Simple Heuristic. Returning now to the Npp, we note that the rigorous
moment analysis of the threshold is somewhat unintuitive and rather involved.
Alternatively, let us present a simple heuristic to explain the threshold scale n1/4.
To this end it is useful to introduce the gauge invariant magnetization

M(σ) =
1
n

∑
σisgnXi,

and consider the joint distribution of M̃(σ) =
√

nM(σ) and the “signed” energy
H(σ) introduced in (3.7) with, as usual, X1, . . . , Xn chosen i.i.d. with density ρ,
and σ chosen uniformly at random.

The covariance matrix C of M̃(σ) and H(σ) is easily calculated to be

C =
[
1 µ
µ 1

]

where µ = E[|X1|] < 1, and its inverse C−1 is given by

C−1 =
1

1− µ2

[
1 −µ
−µ 1

]
.
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Assuming, for the moment, that the joint density of M̃(σ) and H(σ) obeys a local
limit theorem, we now approximate this density by the Gaussian density

g(H, M̃) =
1

2π
√

detC
e−

1
2 (H2C−1

11 +M̃2C−1
22 +2HM̃C12)

=
1

2π
√

detC
e
− 1

2(1−µ2)
(H2+M̃2−µHM̃)

=
1

2π
√

detC
e−

1
2 H2

e
− 1

2(1−µ2)
(M̃−µH)2

.

(8.4)

In this approximation, the distribution of M̃ conditioned on H = α is therefore
Gaussian with mean αµ and covariance 1 − µ2, implying in particular that the
expectation of M is equal to αµ/

√
n.

Consider now two configurations σ, σ′, both chosen uniformly at random among
all configurations with magnetization M . Then the expected overlap between σ
and σ′ is M2(1 + o(1)).

Finally, consider two configurations σ, σ′ both chosen uniformly at random
among all configurations with signed energies in the range H ∈ [α, α + dα], for
some small dα. Since the energies of σ and σ′ are correlated, it follows that
their magnetizations are also correlated. Under the assumptions that (1) the
joint distribution g(H, M̃) obeys a local limit theorem, as in (8.4), and (2) the
only correlation between these configurations is due to the correlation in their
magnetizations, it would follow that the expected overlap E[q(σ,σ′)] is given by
M2(1 + o(1)) = α2µ2/n(1 + o(1)).

Note that the above heuristic focuses on the “signed energy” H(σ) rather than
the true energy E(σ) = |H(σ)|. Conditioning instead on E(σ), E(σ′) ∈ [α, α+dα],
the above heuristic therefore suggests a bimodal distribution of q(σ, σ′) with peaks
at ±α2µ2/n(1 + o(1)).

Now recall that the local REM conjecture says that the overlap, rescaled by√
n, is asymptotically normal. However, our above heuristic says that

√
nq(σ, σ′)

cannot be asymptotically normal for α growing like n1/4 or faster, in agreement
with our rigorous results. Thus this heuristic correctly predicts the scale at which
the REM conjecture breaks down, and suggests that the breakdown could be due
to correlations in the magnetization of configurations with similar energies of scale
n1/4 or greater.

A detailed calculation, however, suggests that we exercise some caution in the
application of this heuristic. Although the heuristic correctly predicts the scale of
the threshold, and the double peak structure of the overlap at the threshold, it
does not predict the correct position of the peaks when α = κn1/4. Indeed, for this
scaling, we rigorously showed that the rescaled overlap distribution converges to a
convex combination of two Gaussians centered at ±κ2, in contrast to the heuristic
prediction of ±κ2µ2. This, in turn, suggests that there are additional correlations
besides those induced by the magnetization.

8.5. Algorithmic Consequences. Over twenty years ago, Karmarkar and Karp
[KK82] gave a linear time algorithm for a suboptimal solution of the number par-
titioning problem. For i.i.d. weights with densities of the form studied in the
current paper, the typical energy EKK of the KK solution is of order n−θ(log n),
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[KK82, Yak96], while the minimal energy is known to be much smaller [KKLO86,
Lue98, BCP01], namely of order 2−θ(n).

This raises the question of whether one can do better than the KK solution – a
question which has received much study due to the numerous applications of the
number partitioning problem. This work has led to many different heuristics, but to
our knowledge no algorithm with guaranteed performance significantly better than
KK has emerged. In the absence of a good global alternative to KK, one might try
to base an improved solution of the problem on a local search algorithm starting
from the KK solution. But such an approach is unlikely to produce better results,
as the following argument shows.

Consider the random Npp as defined in this paper, and let σ be a partition with
energy E(σ) of the order of EKK , i.e., E(σ) = n−θ(log n). Let σ̃ be a local pertur-
bation of σ, i.e., let σ̃ be a configuration such that σ and σ̃ differ on a small subset
K ⊂ {1, . . . , n}, with k = |K| bounded uniformly in n. The signed energies H(σ)
and H(σ̃) then differ by n−1/2∆K(σK), where ∆K(σK) is the random variable

∆K(σK) = 2
∑

i∈K

σiXi

and σK is the restriction of σ to K. Under mild assumptions on the probability
density ρ of the weights X1, . . . , Xn, the density of ∆K(σK) is a continuous function
near zero, and the probability that |∆K | ≤ ε for some small ε is of order θ(ε) with
the constants implicit in the θ symbol depending only on k.

Obviously, any local improvement algorithm that changes exactly k bits will lead
to a change in the unsigned energies that is bounded from below by

δ
(−)
k = n−1/2 min

K:|K|=k
min
σK

|∆K(σK)|.

Taking into account that there are only
(
n
k

) ≤ nk possible choices for K, we see that
the probability that δ

(−)
k ≤ ε is bounded by O(εnk+1/2). We conclude that with high

probability, δ
(−)
k is at least θ(n−1/2−k), much larger than the energy n−θ(log n) of

our starting configuration σ. Thus any local improvement algorithm that changes
k bits moves us with high probability far away from the starting configuration with
energy of order n−θ(log n).

Note that this simple argument does not use very much; in particular, it is not
related to REM conjecture, which suggests a much deeper reason for the apparent
difficulty of the Npp. Indeed, applying our local REM Theorem to α = EKK , it
says that in the vicinity of EKK , the energy behaves like a random cost function of
2n−1 independent random variables. If the energy of the Npp were truly a random
cost function of 2n−1 independent random variables, this would imply that there
is no algorithm faster than exhaustive search, implying a running time exponential
in n. But of course, we have not come near to proving anything as strong as this.

In fact, even on a non-rigorous level some caution is required when applying
the above heuristic. Indeed, only n linear independent configurations σ(1), . . . ,
σ(n) are needed to completely determine the random variables X1, . . . , Xn from the
energies E(σ(1)), . . . , E(σ(n)), implying that the energy spectrum lies in a subspace
of dimension n, not 2n. Still, our REM Theorem proves that the energy spectrum
behaves locally like that of a random cost function, suggesting several possible
conjectures.
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The first conjecture is best described in an oracle setting, where the oracle, O,
keeps the n weights X1, . . . , Xn secret from the algorithm A. The algorithm is
given the KK-solution σ(KK) and its energy EKK , and successively asks the oracle
for the energy of some configurations σ(1), . . . , σ(m), where m is bounded. Given
this information, the algorithm then calculates a new approximation σ̃ 6= ±σ(KK).
Given our REM Theorem, we conjecture that with high probability (tending to one
as n → ∞), the energy of the new configuration σ̃ is much larger than EKK ; in
fact, we conjecture that with high probability E(σ̃)/EKK →∞ as n →∞.

The second conjecture gives the algorithm much more input, namely the ` first
energies above a threshold α and the configurations corresponding to these energies.
The task of the algorithm is now to find a new partition σ̃ whose energy is as near
possible to α, which we assume to grow only slowly with n (say like o(n−1/4), to stay
in the realm of our Theorem 2.1). Again, the algorithm has no access to the original
weights, but may ask the oracle O for the energies of m additional configurations
σ(1), . . . , σ(m), adapting the next question to the answer of the preceding ones. For
m and ` bounded uniformly in n, we then conjecture that with high probability the
algorithm produces a configuration σ̃ with (E(σ̃) − α)ξ−1

n → ∞, while the actual
value of the next configuration above α is with high probability equal to α + O(ξn)
by our Theorem 2.1.

One finally might want to consider the above conjectures in a setting where the
oracle only reveals the relative order of the energies E(σ(1)), . . . , E(σ(m)), but keeps
the numerical values of E(σ(1)), . . . , E(σ(m)) secret. In such a setting, there is no
a priori reason to assume that m < n. Instead, it seems reasonable to conjecture
inapproximability results for values of m and ` that are polynomial in n.
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