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Robust and Accurate Visual Echo Cancelation

in a Full-duplex Projector-camera System
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Abstract

In this paper we study the problem of “visual echo” in a full-duplex projector-camera system for tele-collaboration

applications.Visual echois defined as the appearance of projected contents observed by the camera. It can potentially

saturate the projected contents, similar to audio echo in telephone conversation.

Our approach to visual echo cancelation includes an off-line calibration procedure that records the geometric and

photometric transfer between the projector and the camera in a look-up table. During run-time, projected contents in the

captured video are identified using the calibration information and suppressed, therefore achieving the goal of canceling

visual echo. Our approach can accurately handle full color images under arbitrary reflectance of display surfaces and

photometric response of the projector or camera. It is robust to geometric registration errors and quantization effect,

therefore particularly effective for high-frequency contents such as texts and hand drawings. We demonstrate the

effectiveness of our approach with a variety of real images in a full-duplex projector-camera system.

Index Terms

visual echo cancelation, projector-camera system, geometric calibration, photometric calibration, whiteboard-

camera system, teleconferencing, collaboration.

I. I NTRODUCTION

During the last few years, driven by the diminishing costandsize of digital light projectors and cameras, we have

seen a proliferation of research projects in using them for a variety of applications. The combination of projectors

and cameras in a common space provides both the input and the output capabilities that enable a new paradigm for

human-computer interactions, from motion tracking (e.g. [17], [12]), immersive self-calibrating displays (e.g., [16],

[13], [23], [3], [14], [7]), to remote collaboration tools that bring geographically distributed participants to share

virtually the same physical space(e.g. [15], [6], [19]).

In a typical remote collaboration setup, two or more projector-camera pairs are “cross-wired”, as shown in

Figure 1, to form a full-duplex system for two-way communication. A whiteboard can be used as the projector

screen, and in that case, the whiteboard serves as an output device as well as an input device. Users can write on

the whiteboard to comment on what is projected or to add new thoughts in the discussion. That is, images from the
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projector are mixed with real objects (such as papers, writings, and hands) to create a shared space. Such a setup

offers several immediate advantages:

1) seamless integration: computer presentations (such as PowerPoint) and whiteboard discussions are combined

into one session. Participants will not be distracted by switching from the computer screen to the whiteboard,

or vice versa.

2) shared workspace: both local and remote participants can collaborate on a shared workspace similar to face-

to-face discussions.

3) ease of deployment: It can be easily installed in existing meeting environments. It is therefore much more

economical than most remote collaboration systems that require special equipment.

Fig. 1. A typical setup for remote collaboration using projector-camera pairs. The projection screen is used as both an output area for display

and an input area captured by the camera. Camera images from the remote site are mixed with computer contents, typically shared, and projected

locally.

In such a setup (shown in Figure 1), the captured video contains writings or user gesture (foreground) along with

projected contents. If we simply send the image for display on the other end, there could be a feedback loop that

will distort the projected image. As shown in Figure 2 (top), the captured image is directly projected back. After

a few frames, some part of the image becomes saturated and some part of the real writing has ghosting effect.

Analogous to auido echo in telephone communication, we call this effectvisual echo, i.e., the appearance of the

projected contents viewed by the camera. ThereforeVisual Echo Cancellationis defined as extracting the physical

foreground from the video containing both the foreground and the projected contents. Such a separation will not

only improve the participants’ experience in tele-collabrations, but also brings other advantages:

1) It dramatically reduces the bandwidth requirement for teleconferencing, because both extracted foreground

and the computer-projected contents can be transmitted with very low bandwidth, comparing with the original

mixed video, since the video is affected by shadow and lighting variation.

2) By feeding the results to an OCR (Optical Character Recognition) system, the meeting archive can be more

easily accessed or transferred into other forms.
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Fig. 2. The problem of visual echo in a full duplex projector-camera system. (Top row) In the leftmost photo, a user is annotating a presentation

slide. A camera is capturing his annotations as well as the projected slide. The image is displayed directly, causing a visual echo. The right two

images show the effect after four and seven frames, respectively. As expected, the visual echo becomes worse as time goes by. (Bottom row)

To suppress visual echo, we present techniques to segment the captured image (left) into projected contents and foreground. The right image

shows the foreground (i.e., the user’s writing and gesture). The light-colored checkerboard is used to illustrate the transparent background.

To suppress visual echo boils down to a classification problem. That is, one needs to distinguish whether or

not a pixel in the camera image only contains projected pixels reflected off the screen, i.e., an “echo”. If so, the

echo content should be removed. Given an image to be projected (i.e., the framebuffer content), one needs to first

predict accurately its appearance in the camera’s view and then compare it with the actual camera image to make

the identification on a pixel-by-pixel basis.

We here present a comprehensive set of techniques to address the visual echo cancelation problem in general.

Drawn upon the extensive research on projector calibration, we developed a simple and accurate procedure to find

a complete photometric and geometric mapping between projector and camera pixels. It is a per-pixel mapping

that allows arbitrary color transfer between the projector and the camera. From the mapping, we designed a robust

classification scheme to find out echo pixels in the presence of quantization errors that are unavoidable when warping

images from projector to camera. Figure 2 (bottom) shows the camera image before and after classification.

II. RELATED WORK

The use of projectors and cameras for augmented reality applications has long been proposed [22], [15], [6], [11].

But it was until recently that the problem of “visual echoing” received attention. In the Telegraffiti system [19], a

user’s sketch is captured by a camera and projected on a piece of paper in a remote site. To avoid visual echoing in

two-way communication, they increase the ambient lighting so that the real sketch (in black) is significantly darker

than the projected sketch [21]. But the amount of lighting necessary is tricky to adjust. In their technical report [20],
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the visual echo problem is formally studied. The proposed solution is to adjust gain properly. It is demonstrated

that it works quite well for extracting sketches from a clean background, but has difficulties with color or complex

patterns.

Geometric calibration of projectors and cameras has been very well studied [16], [13], [3], [14]) under the context

of constructing tiled projection-based display that areseamless. Many of these techniques are able to register images

with sub-pixel accuracy. Interested readers are referred to a recent survey of camera-based calibration techniques [1].

On the other hand, photometric calibration has received much less attention. Most projector-based displays simply

blend linearly the pixels in the overlap regions. Previous methods mainly attack the intensity or color variations

within or between projectors [18], [10], [9]. To deal with visual echo, we need more accurate chromatic estimation

between the projector color space and the camera color space.

The issue of predicting a projected image from the camera’s perspective has been studied under the context

of shadow removal [2], [8] and adaptive projection on colored-surfaces [5]. In [2], the projected images are pre-

captured by the cameras in the absence of any other object. In other words, the predicted images are captured

directly. Therefore this method cannot deal with dynamic images not known a priori. The approach in [8] is a step

forward: it estimates the photometric transfer function so it can process dynamic contents. They assume that the

three color-channels in the projector can be mapped to the corresponding channels in the camera via independent

intensity transfer functions. This assumption is valid for projectors and cameras that are color balanced and have

narrow-band spectral responses. However, the typical spectral responses of cameras and projectors are wideband

and have large overlaps [5]. The photometric model in [5] is probably the most general one to measure the color

transfer between a projector and a camera. They have achieved some of the most accurate predictions, but they

require the projector and camera to be co-axial to avoid the geometric alignment issue. This requirement does not

scale to a multi-projector setup. Our photometric model is similar to that in [5], but instead of trying to solve the

color transfer matrix numerically, we use a look-up-table based approach to deal with projectors with non-linear

responses.

Finally it should be noted that it is possible to avoid the visual echo problem in design. In [15], the cameras

and projectors are synchronized, so the camera takes an image only when the projector is off or showing a specific

pattern. This effectively interleaves the operation of the projector and camera in a time-sequential manner. To avoid

visual flicking, DLP projectors have to be used to provide a fast enough switching rate (> 1000Hz). This approach

is probably the most robust way to avoid visual echoes. But it requires modifications in hardware and it is usually

difficult to synchronize a large network of projectors and camera in practice.

The termvisual echo cancelationwas introduced in our earlier work [26], in which the basic steps to address

such a problem were also articulated. To find the color transfer, they proposed the use of a large 5D look-up-table,

i.e., for each pixel(x, y) in the project, iterate through its full range(r, g, b) and record the observed color in the

camera. This requires a prohibitively large table (e.g.,2563×1024×768). We show in this paper that by linearizing

the camera’s spectral response, the 5D look-up table can be factorized into several independent tables that are orders

smaller.
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One motivation to this work is our desire of developing tools to facilitate tele-collaboration on physical white-

boards by using a camera and a microphone [25]. A physical whiteboard is an economical but great collaboration

tool. However, the contents on the board is hard to archive or share with others who are not present in the session.

Our tools allow a user to take digitally enhanced notes, to transmit the whiteboard contents to remote participants

in real time and in an efficient way, and to archive the whole whiteboard session for efficient post-viewing. The

work described in this paper goes one step further, allowing a user to use a whiteboard as the projecting surface

(output) as well as the writing surface (input).

III. O UR METHODS

Our processing pipeline for visual echo cancelation starts with a calibration procedure to find out the geometric

and photometric mapping between projector and camera pixels. For the scope of our paper, we assume that the

projector, the camera, and the display surface are fixed. Therefore the calibration only needs to be done once per

setup. At run-time, a classification procedure determines for each pixel in the camera image if it is a visual echo

or from a real object, given the corresponding projector image. In the next few sections, we present in details how

we perform these tasks.

A. Geometric Calibration

For visual echo cancellation, we need to know the relationship between the pixels in the camera view and the

pixels in the projector screen. This is the task of geometric calibration. We present two methods. The first method

assumes a linear model, i.e., both camera and projector are linear projective with no lens distortions and the display

surface is flat. The second method is non-linear and does not make any of these assumptions and therefore it can

be used for any display setup. Both methods are easy to implement by leveraging the fact that the projector can

actively project the patterns we want.

a) Linear Method:Under the linear assumption, it can be easily shown that the mapping between a point in

the camera view and a point in the projector screen is a homography, and can be described by a3 × 3 matrix H

defined up to a scale factor.

Camera captureCamera capture Corner detectionCorner detection

Homography
estimation

Homography
estimation

Screen

Project 
rectangular patterns

Project 
rectangular patterns

Fig. 3. A flow chart for linear geometric calibration

Figure 3 shows the flowchart for linear geometric calibration. The main steps are:
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1) Sequentially projectN (N = 40 in our implementation) rectangles and simultaneously capture their images

using a fixed camera.

2) Detect the 4 corners of each rectangle in the images.

3) Use the4 ×N detected corners and their corresponding known positions in the projector space to estimate

the homography between the projector screen and the image plane of the camera.

Note that in theory, only 4 points (i.e., one rectangle) are necessary to estimate the homography. In order to achieve

higher accuracy, we use more rectangles and they are projected in different locations of the whiteboard.

Our method takes advantage of the fact that the relative position between the camera and the projection surface

is fixed during the calibration. Therefore correspondences detected in different images can be used for estimating

a single homography, which increases the accuracy and robustness of our method without complicating the corner

detection algorithm.

The corner detection process consists of the following main steps:

1) Convert color images to grayscale images.

2) Detect edges on the grayscale image.

3) Use hough transform to detect straight lines on the edge map.

4) Fit a quadrangle using the lines.

5) Find the corners of the quadrangle.

In order to reduce the noise in edge map, we need to find the region inside and outside the rectangle and quantize

the grayscale value. Since the inside region is bright and homogeneous, it forms a peak (p1) at the higher range of

the histogram, while the background forms another peak (p2) at the lower range. We use a coarse-to-fine histogram-

based method to find the two peaks and set the higher thresholdh1 = 3
4 × p1 + 1

4 × p2 and the lower threshold

h2 = 1
4 × p1 + 3

4 × p2. The grayscale levels of all pixels aboveh1 are set toh1, while those belowh2 are set to

h2, and those in between remain unchanged.

b) Non-linear Method:Another way to find out the geometric mapping between the projector and the camera

is to turn on one projector pixel at a time, and record its position in the camera’s frame. This approach is valid for

any type of projector-camera configuration, even if the display surface is not planar. Furthermore, it can also deal

with the lens distortions in both the projector and the camera. In [13], the structure-light technique is adopted to

reduce the running time fromO(n) to O(log(n)) wheren is the number of projector pixels. It is also reported that

the projector pixels can be sub-sampled on a regular grid to reduce the number of pixels to record. Those that are

not sampled can be approximated by linear interpolation. Compared to the linear method based on homography,

this non-linear approach is usually more accurate with typical errors less than one pixel. On the other hand, it takes

longer to find the non-linear mapping and requires more storage.

B. Photometric Calibration

In order to identify visual echo, for a given pixel in the projector space, we know its corresponding position in the

camera space through geometric calibration described above; furthermore, we need to know what the corresponding
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color should look like in the captured video, and this is the task of photometric calibration. Due to the different

color spectra responses the two devices have, the same color in the project space appears very different in the

camera space. The issue of color non-uniformity in the projected image further complicated this matter. The same

input color, when displayed in the projector’s corner, is different from that in the projector’s center. This is due to

many factors, including intensity variation in the projector lamp, ambient light, and non-uniformity on the display

surface. Therefore, photometric calibration should be both color- and position-dependent.

We now describe the photometric model we use. For a single pointM on the display surface, it is illuminated

by a point light source—a projector pixel. For the sake of discussion, let us for now assume that the projector and

the camera have just one channel each. LetI be the pixel value to be projected andP be the projector brightness,

then we have

P = h(I), (1)

whereh is the non-linear response function of the projector. Typically, the response curve is “gamma” like.

The projector brightness is then modulated by the spectral responses(λ) of the projector whereλ is the

wavelength. Considering the effect of ambient illumination, the irradiance atM is written as

D(λ) = f(λ) + P · s(λ), (2)

where f(λ) is the ambient light. We found that the inclusion of the ambient light term is important since most

commodity projectors leak a substantial amount of light even when a blank image is projected.

Let r(λ) be the spectral reflectance ofM in the viewing direction of the camera.M ’s radiance in this direction

is therefore:

L = (f(λ) + P · s(λ))r(λ). (3)

If t(λ)is the spectral response for the camera, then the irradiance detected by the camera sensor is:

Q =
∫

L · t(λ)dλ

=
∫

f(λ)r(λ)t(λ)dλ + P
∫

s(λ)r(λ)t(λ)dλ
(4)

For a fixed setup, the integrations remain constant, therefore equation 4 can be simply written as

Q = A + P · v, (5)

where:

v =
∫

s(λ)r(λ)t(λ)dλ, andA =
∫

f(λ)r(λ)t(λ)dλ (6)

Finally the measured irradianceQ is converted to a pixel valueC via a camera response functiong() that is typically

non-linear too. So the entire transform from a projector pixel valueI to a camera pixel valueC is

C = g(Q) = g(A + h(I) · v). (7)
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Now let us consider the case that the projector and the camera have three color channels (R, G, B). Following

the similar analysis outline above, we can expand and rewrite equation (7) to:

Q =


g−1

R (CR)

g−1
G (CG)

g−1
B (CB)

 = A + VP, (8)

where :

A =


AR

AG

AB

 ,V =


vR

R vR
G vR

B

vG
R vG

G vG
B

vB
R vB

G vB
B

 ,P =


h(IR)

h(IG)

h(IB)

 .

The vectorA is the contribution due to the environmental light, including the black level of the projector. The

matrixV, typically referred to as thecolor mixing matrix, is the interaction of the spectral responses of the projector

and camera. The superscript and subscript ofv indicate the response from the corresponding projector and camera

color channel, respectively.

Note that because of the non-linear transforms (h(), g()), the color transfer from the projector to the camera

is not linear, directly recording the transfer function will result in a prohibitively large table—224 color images.

However, if we find out the camera response curveg(), we can recover the irradiance value from a pixel value.

Then we can decompose equation (8) as:

Q = (A + VP1) + (A + VP2) + (A + VP3)− 2A, (9)

where:

P1 =


h(IR)

0

0

 ,P2 =


0

h(IG)

0

 ,P3 =


0

0

h(IB)

 .

The camera’s response curve and its inverse can be estimated as in [4].

Now we can use four separate look-up tables, three for RGB and one for ambient, to record the color transfer

function because the resulting irradiance values are linear and additive. For a projector pixel valueI(r, g, b), its

predicted color could be obtained by subtracting the ambient contribution twice from the sum of the responses of

all three channels.

Our photometric model is similar to that in [5], but we did not solve the color transfer matrixV numerically.

Instead we use a look-up-table based approach to avoid the step for projector calibration (i.e., finding out the

function h()). It is also worth mentioning that some previous approaches [21], [8] to predict camera images treat

the three RGB channels independently, i.e, red maps only to red, green maps only to green, and blue maps only to

blue. This is equivalent to assuming the color mixing matrixV is diagonal.

Our photometric calibration procedure is summarized in Algorithm 1.

After calibration, for each pixel(x, y) in the camera, there is a256 × 3 look-up table, each table cell, indexed

by a color channel and an intensity value, holds alinearizedRGB tuple. In addition, there is a table to record the
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Algorithm 1 Photometric Calibration
1: Estimate the camera response curves (gR(), gG(), gB()) and their inverse as in [4];

2: Project the scene with a blank image (i.e., color value← [0 0 0])

3: Capture the projected imageA0 = [R0, G0, B0]

4: Initialize the ambient look-up tableA such that

A[x, y] = linearize(A0[x, y])

5: for all color channeli ∈ {R,G,B} do

6: for all intensity valuej ∈ [0 · · · 255] do

7: Project the pure-color image forj in i and capture the camera viewC = [R,G,B]

8: Initialize the color look-up tableLUT such that

LUT[x, y][i][j]=linearize(C[x, y])

9: end for

10: end for

11: function linearize([R,G,B])

12: return [g−1
R (R), g−1

G (G), g−1
B (B)]

ambient lighting term. Thus, if a projector pixel with colorI(r, g, b) is warped to a pixel location(x, y) in the

camera’s view, its predicted color could be obtained by:

Q(r, g, b) = LUT[x, y][R][r] + LUT[x, y][G][g]+

LUT[x, y][B][b]− 2A[x, y]
(10)

Note that each LUT contains ambient light; that is why we need to subtract the ambient look-up table in the above

equation.

We assume the irradianceC detected by camera is linear in output intensity. This may not be true for most

consumer cameras. In these cases, the camera response curve can be easily calibrated and linearized as introduced

in [4].

C. Online Visual Echo Removal

After the calibration, we are ready to segment camera images to remove visual echo. Given a projector image

and its corresponding camera image, the following three steps are applied:

1) Geometric warp.The projector image is warped into the camera’s reference frame, either through a direct

mapping or a homography;

2) Color Transfer.For every pixel in the warped projector imageIp, its appearance in the camera is predicted

by equation (10). The captured camera image is also transferred by the recovered camera response curveg()

to obtain an “irradiance” imageIc.
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3) Image Classification.The color difference is computed betweenIp andIc, i.e.,

e = ‖Ip(x, y)− Ic(x, y)‖. (11)

If e is smaller than a threshold, then it is a visual echo.

The output from the above procedure is a segmented image in which all the “echo” pixels have been removed.

That image can be sent for display on the remote site without causing any visual echo. Note that in this on-line

process we make a simplification of sending the remaining “non-echo” pixels directly. These pixels can in fact

include projected contents as well, i.e., some pixels could be a mix of the projected pixels and foreground. If

the foreground is on the projection screen, such as marker writings, we can remove the contribution of projected

contents and recover the foreground-only color (as we will discuss in section III-C.3). If the foreground is in front

of the screen, such as user gesture, removing the remaining projection contents requires 3D reconstruction of the

foreground. Nevertheless, simply making a binary decision regarding echo or non-echo is sufficient to remove the

ghosting and saturation effect due to visual echo since the foreground pixels will never be transmitted back.

1) Feature-based Post-processing:In practice we found that there are quite some false negatives in the identified

echo pixels. This is primarily due to the error in the geometric calibration and color quantization. Here we introduce

a novel procedure to increase the classification robustness.

For a pixelIc(x, y) in the camera image, if it is an echo, it should appear somewhere nearIp(x, y) if not exactly

at Ip(x, y). So we could search aroundIp(x, y) in a small neighborhood, typically less than3× 3, to find if there

is a corresponding matching pixel. To increase the robustness in differentiate the echo pixels from non-echo ones,

we match over a small window area. Instead of using a square window that poses difficulty on mixed regions that

contain both echo and non-echo pixels, we adopted the adaptive weight approach from [24]. The basic idea is to

compute the similarity score based on both color and geometric proximity. Given a pixelp, and a pixell in its

support window, the matching cost froml is weighted by the color difference (∆cpl) betweenp and l, and the

Euclidian distance (∆gpl) betweenp and l on the image plane. The formulation for the weightw(p, l) is:

w(p, l) = exp
(
−(

∆cpl

γc
+

∆gpl

γg
)
)

, (12)

whereγc andγg are weighting constants determined empirically. The aggregated cost is computed as aweighted

sum of the per-pixel cost. We compute the costs of all neighboring pixels ofIp(x, y). If one of them is less than a

certain threshold, we classifyIc(x, y) as an echo. We have found that this methoddramatically reduces the false

negative rate for echo pixels. Figure 4 shows the effectiveness of our approach with one example.

This feature-base search is the most time-consuming part in the whole procedure, so we implemented it on

the graphics processing unit (GPU), which enables our system to run at real-time. To further suppress noise,

we also apply a3 × 3 median filter to the non-echo (foreground) images, which is also implemented on the

GPU. Our implementation uses the programmable pixel shader to manipulate each pixel in an image. Readers

interested in this type of image processing on GPU are referred to the general purpose computing on GPU web

site: http://www.gpgpu.org .
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Fig. 4. The effectiveness of post-processing. From left to right, captured image, predicted images, non-echo (foreground) pixels using intensity

thresholding as in equation 11, and non-echo pixels after post-processing using template matching.

2) Projector-Camera Image Synchronization:Another practical issue we discovered in building our projector-

camera pairs is image synchronization. The display and the capture routine are in two different threads. Both the

projector and camera have certain delays in processing the imagery, and these delays vary due to many factors.

Therefore, for dynamic contents, we need to have a means to establish frame correspondences between projector

images and camera images. To address this, every time we project an image, we draw a four-digit bar code in a

small corner of the image and store this image with its ID in a circular buffer. When the camera captures an image,

we first decode the bar code on the image, and then based on the ID, retrieve the corresponding projector image

in the buffer. Note that since we know the projector-camera mapping from calibration, there is no need to search

for the bar code in the camera image, yielding a very efficient algorithm. Furthermore the bar code can be made

very small to avoid causing distractions.

3) Marker Color Classification and Recovery :The segmented foreground image typically includes user annota-

tions written by color markers. These writings appears to be quite dark due to the limited dynamic range of camera

images—it is very difficult to clearly capture the writing while keeping the projected contents not saturated. In

order to better recover the color, we compute the albedo change by estimating thealbedo ratioa of the pixel [x, y]

in color channelc ∈ {R,G,B}, which is given by

ac(x, y) =
Ic
p(x, y)

Ic
e(x, y)

(13)

Note that writings on the screen absorb light, soIc
p(x, y) ≤ Ic

e(x, y), and consequentlyac(x, y) ≤ 1. For each pixel

[x, y] classified as foreground (non-echo), we can recover its colors as

W c(x, y) = ac(x, y)× 255 (14)

assuming the color intensity ranges from 0 to 255.

In practice, the above procedure can sometime generate noisy color output in dark regions in which the albedo

ratio is biased by the sensor noise or camera demosaicing. We further developed techniques to recover, or more

precisely, recognize annotation colors. The basic idea is that most foreground are annotations written with color

markers and these markers have a very limited number in color. Therefore we can use a classification method to

September 9, 2006 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , VOL. X, NO. X, YY 2006 12

recover the colors of user annotations. We choose the four most commonly used markers (red, black, blue and

green) as classesM0 ∼M3. For supervised training, we use Equations (13) and (14) to recover a set of annotations

W , and then convert it from RGB color space to HSI (hue, saturation and intensity) color space, and denoting the

new image asW ′. We label the training data for classMk by manually selecting the region of written by Marker

k, and collect its histogramnk(h, s, i).

To classify a pixelW (x, y) obtained from Equation (14), we convert its RGB value toW ′(x, y) in HSI space

and evaluate the likelihood that it belongs to Clusterk (k = 0, . . . , 3) as

p((x, y)|Mk) =
nk(W ′(x, y)h,W ′(x, y)s,W

′(x, y)i)
Ni

, (15)

whereNi is the total number of data points in Histogramk.

Due to noise in camera sensor, a MAP decision rule may not give spatially consistent results, so we use a61×61

window to collect votes from all the pixels in the neighborhood and classify the center pixel based on the maximum

votes.

While the above scheme may produce incorrect colors for foreground other than marker writings, we point out

that it is the annotation’s color that is important for collaborations, and color bias in transient effects such as gestures

is more acceptable.

IV. EXPERIMENTAL RESULTS

camera A

projector A projector B

Site A Site B

camera B

Fig. 5. Experimental setup with one projector-camera pairs on each site.

We have set up a full duplex experimental system as shown in Figure 5. At each end, we use an XGA projector

and a video camera, both pointing to a white matte surface. The projector-camera pair is connected to a computer

equipped with a 3GHz CPU, 1G RAM, and a Geforce 6800 graphics card. Both PCs are connected via LAN

to transfer image data. The whiteboard covers approximately an area of 500×500 pixel-squared in the camera.

Therefore we set the color look-up table to be256× 512× 512× 3, with a (r, g, b) tuple in each table cell.
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Since our display surface is flat, we estimated the homography between the projector and the camera. During

our experiments we found that the surface is not very rigid and the projector image is not stable (each projector is

connected to a PC via a 30-foot long VGA cable). All these resulted in the inaccuracy in our geometric calibration.

Nevertheless, our feature-based post-processing successfully overcame this limitation.

Figure 6 shows our visual echo cancelation results on various projected background. Notice the busy background

both in color and contents. Figure 7 shows the differences between the camera images and images predicted by

different photometric calibration methods. We can see that our method achieved more accurate prediction with the

least pixel error. Figure 7 also highlights the problem of misalignment due to quantization and non-rigid setup. This

is addressed by the post-processing step.

Fig. 6. Visual echo cancelation results produced by our method. From left to right, (1st column) original projector images; (2nd column)

predicted images by our photometric calibration method; (3rd column) images captured by the camera; (4th column) images after visual echo

cancelation; only non-echo foreground pixels are shown.

In Figure 8 we show some annotations with recovered color. The recovered writing is much more vivid than that

from the camera image.

Our accelerated implementation using the GPU allows the full system to run at a speed of about 8 fps on a

NVIDIA GeForce 6800 card. This speed is fast enough to enable two users to collaborate. The effects ofwithout

visual echo cancellation are demonstrated in Figure 9. We show the images from both sites to better illustrate the

problem. Figure 10 shows the full duplex operations in which two people from different sites collaborate in the

shared space with projected contents.More results can be found in the companion video.
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Pixel error:           <10         10~25         25~65          >65

Fig. 7. The pixel color error (measured by absolute difference) between the captured images and predicted images by other photometric

calibration method. From left to right, (1st column) images captured by the camera. (2nd column) color error from images predicted by three

(RGB) independent intensity transfer functions—an assumption made in [21], [8]. (3rd column) color error from our predicted images.

Fig. 8. Marker Color Recovery. The first one is the projected content, the second is the camera image, and the last is the foreground image

with recovered color.

V. CONCLUSION

We have demonstrated a comprehensive pipeline for visual echo cancelation in a full-duplex projector camera

system. Both ends conduct a geometric and photometric calibration off-line. With the recorded calibration informa-

tion at each end, the camera-view image predicted from the projector image is compared against the real captured

image to remove visual echo at run-time. Only non-echo foreground pixels are transferred in network and used for

display, therefore achieving the goal of suppressing visual echo.

Compared to some previous methods, our color look-up-table model obtained in the photometric calibration

shows a significant advantage in initial echo-pixel classification. The following feature-based post-processing method

further reduces the false negative rate for classifying each pixel, which leads to dramatically improved segmentation
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Fig. 9. Images from the live system with visual echo cancallationdisabled. The two rows show images from two different sites. There is only

one participant in one site (top image row).

result.

Looking into the future there are some places for improvement. Our system currently can only work at night or

under weak constant environment light, it cannot deal with sun light, because it is too strong and it changes all the

time at daytime. We would like to address this problem to make our system more robust. We also want to make

the off-line geometric and photometric calibration on-line in order to reduce the overhead of these manual work.
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