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ABSTRACT  

Signaling and regulatory networks are essential for cells to control processes such as growth, 

differentiation and response to stimuli. Although many “omic” data sources are available to 

probe signaling pathways, these data are typically sparse and noisy. Thus, it has been difficult to 

use these data to discover the cause of the diseases and to propose new therapeutic strategies. We 

overcome these problems and use “omic” data to reconstruct simultaneously multiple pathways 

that are altered in a particular condition by solving the prize-collecting Steiner forest problem. 

To evaluate this approach, we use the well-characterized yeast pheromone response.  We then 

apply the method to human glioblastoma data, searching for a forest of trees each of which is 

rooted in a different cell surface receptor. This approach discovers both overlapping and 

independent signaling pathways that are enriched in functionally and clinically relevant proteins, 

which could provide the basis for new therapeutic strategies. Although the algorithm was not 

provided with any information about the phosphorylation status of receptors, it identifies a small 

set of clinically relevant receptors among hundreds present in the interactome.  

Keywords: prize-collecting Steiner forest, signaling pathways, multiple network reconstruction 

  



1. INTRODUCTION 

High-throughput technologies including mass spectrometry, chromatin immunoprecipitation 

followed by sequencing (CHIP-Seq), RNA sequencing (RNA-seq), microarray and screening 

methods have the potential to provide dramatically new insights into biological processes. By 

providing a relatively comprehensive view of the changes that occur for a specific type of 

molecule or perturbation, these approaches can uncover previously unrecognized processes in a 

system of interest. However, interpreting these data types together to provide a coherent view of 

the biological processes is still a challenging task.  In order to discover how changes in different 

classes of molecules relate to each other, it is possible to map the data onto a network of known 

or predicted interactions.  In the ideal case, the observed interactions would all lie near each 

other in a functionally coherent part of the interaction network (the interactome). However, due 

to false positives and false negatives in both the “omic” data and the interactome, the true 

situation is much more complex; advanced algorithms are needed to find meaningful connections 

among the data.  Among the approaches that have been proposed to find these sub-networks 

from the interactome are network flow optimization (Lan, et al., 2011; Yeger-Lotem, et al., 

2009), network propagation (Vanunu, et al., 2010), the Steiner tree approach (Bailly-Bechet, et 

al., 2010a; Dittrich, et al., 2008; Huang and Fraenkel, 2009), network inference from gene 

expression (Bailly-Bechet, et al., 2010b; Friedman, 2004), linear programming (Ourfali, et al., 

2007), maximum-likelihood (Yeang, et al., 2004), electric circuits (Kim, et al., 2011; Missiuro, et 

al., 2009; Suthram, et al., 2008), network alignment (Sharan and Ideker, 2006) and Bayesian 

networks (Akavia, et al., 2010).  

In our previous work, we used the prize-collecting Steiner tree formalism to find an optimum 

tree composed of nodes detected in experiments (terminals) and nodes that were not detected 



(Steiner nodes).  We assigned costs to each interaction reflecting our confidence that the reported 

interaction was real and assigned prizes for excluding any of the terminals from the tree based on 

confidence in the proteomic or transcriptional data.  By minimizing the sum of the total cost of 

all edges in the tree and the total prize of all nodes not contained in the tree, we were able to 

obtain compact and biologically relevant networks (Bailly-Bechet, et. al., 2010a; Huang and 

Fraenkel, 2009). Despite the power of Steiner tree approach for identifying functionally coherent 

networks, it is restricted to discovering a connected subgraph, which may be an inadequate 

representation for many systems.  In particular, we often expect there to be many simultaneously 

acting biological processes in the cell that may not be connected together by interactions in the 

currently known interactome.  These processes may be unconnected either because they may 

involve essentially independent cell functions, or simply due to our imperfect knowledge of the 

interactome.   

In this work, we formulate a forest (defined as a disjoint union of trees) approach to identify 

simultaneously acting pathways in biological networks using both proteomic and transcriptional 

data,  We use a generalization of the message-passing algorithm for the Prize-collecting Steiner 

Tree (PCST) problem (Bailly-Bechet, et. al., 2010a; Bayati, et al., 2008). We first demonstrate 

the forest approach by using it to integrate proteomic and transcriptional data in the yeast 

pheromone response, showing that the forest consists of trees enriched in specific and distinct 

biological processes. As an additional feature, directed edges, which are particularly useful for 

representing the effects of enzymes and transcriptional regulators on their targets, are also 

incorporated. 

We reasoned that the Steiner forest approach could be utilized in modeling mammalian 

signaling where there are many more cell-surface receptors and downstream pathways than in 



yeast.  In principle, the forest approach could uncover multiple, independent components of the 

biological response.  Although the interactome data are much less complete for mammals than 

for yeast, we show that the same methods are applicable.  We built prize-collecting Steiner 

forests derived from proteomic data from a model of glioblastoma multiforme (GBM) in which 

each tree was rooted in a different cell surface receptor representing independent signaling 

pathways and potential points of therapeutic intervention.  The solution reveals several known 

pathways and some unexpected new ones that are altered in the disease and suggests potential 

therapeutic strategies.  The modified algorithm can now be applied to a wide range of complex 

systems. 

 

2. METHODS 

2.1. Datasets 

Throughout this work, two different biological networks are used: the yeast interactome and the 

human interactome. We refer to nodes with prize values greater than zero as terminal nodes. 

2.1.1. Yeast Dataset. The yeast interactome contains 34,712 protein-protein and transcription 

factor to target interactions between 5,957 nodes. The terminal node set contains 106 

differentially phosphorylated proteins detected by mass spectrometry (Gruhler, et al., 2005) and 

118 differentially expressed genes (Issel-Tarver, et al., 2002) detected by microarray in response 

to the mating pheromone alpha factor. The node prizes  are computed from the fold changes 

between treated and non-treated conditions. The edge costs are calculated by taking a negative 

log of the interaction probability. The details are available in (Huang and Fraenkel, 2009). In this 

study, we modified  the transcription factor–DNA interactions to be directed edges. We also 

added to the interactome a set of directed edges that represent phosphorylation and 



dephosphorylation reactions  between kinases, phosphatases and their substrates (Breitkreutz, et 

al., 2010). If these interactions are available in the original interactome, probabilities are 

retained. If they are not, the probabilities of these interactions are set uniformly to 0.8, based on 

the distribution of the probabilities in the original interactome. The final interactome contains 

35,998 edges between 5,957 nodes. In both cases, the resulting interactomes are comprised of 

both undirected and directed edges.  

2.1.2. Human Dataset. Protein-protein interactions in the STRING database (version 8.3) are 

used as the data source for the human interactome (Jensen, et al., 2009). Here, the probabilities 

from experiments and database evidence channels are combined to obtain the final probability of 

the interactions. Interactions with a combined probability greater than 0.8 are included in the 

interactome. The receptor molecules are collected from the Human Plasma Membrane Database 

(Ben-Shlomo, et al., 2003) where 331 receptors are available in the interactome derived from 

STRING. The phosphoproteomics data in (Huang, et al., 2007) is combined with the interactome 

in humans for the GBM test case. From this dataset, 72 proteins containing phophorylated 

tyrosine peptides are present in our human interactome. 

 

2.2. Prize-Collecting Steiner Tree Problem 

For a given, directed or undirected network G(V, E, c(e), p(v)) of node set V and edge set E, 

where a p(v) ≥ 0 assigns a prize to each node v ∈ V and  c(e) ≥ 0 assigns a cost to each edge e ∈ 

E. The aim is to find a tree T(VT,ET), by minimizing the objective function: 
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where the first term is β times the sum of the node prizes not included in the tree T and the 

second part is the sum of the edge costs of T. Note that 
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so that minimizing f(T) amounts to collecting the largest set of high prize vertices while 

minimizing the set of large cost edges in a trade-off tuned by β.  As a starting point, we consider 

the message-passing algorithm for the PCST problem introduced in (Bailly-Bechet, et. al., 

2010a). The message-passing algorithm converts the global problem of finding the optimal tree 

into a set of local problems that can be solved efficiently. These equations are solved iteratively 

in a computationally efficient way. Here we present a generalization of the message passing 

algorithm designed to solve the PCST problem on directed networks (i.e. where in general 

c(e{i,j}) might be different from c(e{j,i})). In this variant, the optimization will be done on 

directed rooted trees, where choice of the root (which will be part of the candidate tree) is an 

external parameter of the algorithm. 

 

2.3. Prize-Collecting Steiner Forest (PCSF) Problem 

A type of PCSF has already been considered in (Chekuri, et al., 2010; Gupta, et al., 2007). In 

these works penalties are assigned to each pair of nodes either directly connected in the tree (i.e. 

edges belonging to the forest), or completely disconnected (i.e. in different forest components). 

Here we consider a different PCSF construction for a given, directed or undirected network G(V, 

E, c(e), p(v)) of node set V and edge set E, where a p(v) ≥ 0 assigns a prize to each node v ∈ V 

and  c(e) ≥ 0 that assigns a cost to each edge e ∈ F. The aim is to find a forest F(VF,EF) that  

minimizes the objective function:  
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where κ is the number of trees in the forest and ω is new tuning parameter explained below. A 

practical way of minimizing f’ consists in casting the PCSF into a PCST on a slightly modified 

graph. The flowchart of this algorithm is illustrated in Figure S1. The idea is to introduce an 

extra root node v0 into the network connected to each node v ∈ V by an edge (v ,v0) with cost ω 

(Bailly-Bechet, et al., 2009). The PCST algorithm is employed on the resulting graph H(V U 

{v0,}, E U Vx{v0,}) and the solution will be called T. We define the forest F as T with all edges 

that point to the root removed. It is straightforward to see that the tree T is minimal for f if and 

only if the forest F is minimal for f’. Typically, the algorithm is run for different values of β and 

ω.   

We used the previously published message-passing approach as the underlying 

implementation for this forest search (Bailly-Bechet, et. al., 2010a), as many of our networks 

exceeded the capacity of the linear programming approaches.  The message-passing approach is 

computationally fast and robust to the noise in the network as well.  Although this algorithm is 

not guarranteed to find the optimal solution, in practice the networks it discovers are very similar 

to the exact solution.  Introducing the artificial edges allows the algorithm to identify one or 

more trees that are only connected to the artificial node and not to each other. Although this 

modification seems algorithmically straightforward, its biological implications are very 

important. The concept is illustrated in Figure 1. In that example, two distinct pathways are 

connected only through spurious edges. The main difference between the tree formalism and the 

forest formalism is that the former one that connects as many of the experimental data as it can in 

a single network.  As a result, it will either have to exclude some of the data that relate to distinct 

biological processes or add spurious edges to force these data to connect to the tree while the 



latter one allows the corresponding nodes to be included in distinct trees. However, the forest 

formalism is able to locate distinct biological processes into different sub-trees through the 

artificial node. The artifical node and edges give the flexibility of generating several sub-trees 

without paying any penalty. 

 

2.4. Tuning the parameters  

The parameters to be tuned in this problem are ω and β. The number of components of the 

solution (κ) depends strongly on the parameter ω, but it also depends on the β value: e.g. for β = 

0  the optimal solution is the empty forest for all values of other parameters. For other values of 

β, while some sub-trees are composed of a single node, some others are composed of large 

number of nodes in the resulting forest. A forest with many very small trees (a single node each) 

would be obtained with very small artificial edges cost. The limiting case in the other direction is 

a single tree resulting from very large artificial edge cost. Therefore, there is a non-trivial 

interaction between the two parameters (β and ω). In principle, this two dimensional (β, ω) space 

of parameters should be explored. In this way, we get many possible types of forest: many small 

trees, many large trees, few small trees, few large trees (see Supplementary text and Figure S2). 

The effect of ω and β intervals highly depends on the distribution of edge costs and node prizes 

in the targeted interactome, so these parameters will be different for different datasets. For the 

yeast dataset, ω values are tuned between [0.005, 0.1] and β values are tuned between [1, 20].  

2.5. Functional Annotation 

For functional enrichment analysis, the BINGO plug-in (Maere, et al., 2005) of Cytoscape 

(Shannon, et al., 2003) was used. The p-value significance threshold of 0.05 was used, which is 

corrected for multiple hypothesis testing, and all yeast proteins were used as the background set 



for the yeast dataset. For the human dataset, the functional enrichment is performed by using all 

human proteins as background set. All network visualizations were performed in Cytoscape 

(Shannon, et. al., 2003). 

3. RESULTS 

3.1. Practical advantages of the message passing solution for biological networks  

Previous work has shown that the message-passing approximation is faster than the branch-

and-cut algorithm and typically finds a comparable value for the objective function. This 

comparison was performed on a benchmark set that is not related to biological data (Bailly-

Bechet, et. al., 2010a). Since the message-passing approach only approximates the exact solution 

found by the branch-and-cut algorithm, we compared the performance of these two algorithms 

on phosphoproteomic and transcriptional data from the yeast pheromone response.  

We performed an initial analysis to determine the appropriate paramater settings.  In the 

branch-and-cut algorithm the size of the network is controlled only by the beta parameter. In the 

message-passing algorithm, there is a second parameter, called depth, that can also be used to 

control the size of the resulting tree. Depth (D) represents the maximum allowed distance 

between the farthest node in the tree and the root node.  Based on these observations, we tested 

several depth values on the yeast interactome and found depth value equal to 20 produces the 

best objective function value in the PCST runs on yeast dataset (see Figure S3a). To check the 

robustness of the message-passing algorithm we added noise to edge-weights and re-ran it (see 

Figure S3b). We refer to the solutions of these noisy inputs as suboptimal solutions. The overlap 

between sub-optimal solutions and the original solution is still very high up to a noise value; 

therefore, the solution is robust to noise on the yeast pheromone data. 



Having identified a suitable range for the parameters, we compared the message-passing 

algorithm to the branch-and-cut algorithm on the original undirected yeast interactome. As 

mentioned previously, message-passing algorithm finds a solution to the PCST problem in a 

computationally very effective way. For example, the branch-and-cut algorithm (Ljubic, et al., 

2006) takes 931 seconds to reach the exact solution with an objective value of 2.2123 while 

message-passing algorithm reports the a solution in 237 seconds with an objective value 2.2178. 

Critically, we find that the overlap of the nodes between these two solutions is 98.5%. This result 

shows that almost the same solution is obtained by both algorithms, but the message-passing 

approach is almost four times faster than the branch-and-cut approach (see Table S1).  The 

difference in speed becomes critical when exploring the space of parameters or testing the 

robustness of solutions. 

To analyze the effect of the directionality in the solution, we added directed edges from 

enzymes to their substrates using the kinase and phophatase interaction network in [16]. The 

algorithm is able to find a smaller network that still includes the same number of terminals as 

when only the transcription factor-DNA edges were directed.  In these two examples, having 

more directed edges in the starting interactome results in more compact PCST solutions that 

connect the same number of protein terminals using fewer intermediate nodes (see Table S1).  

These more compact trees are likely to be more useful for generating testable biological 

hypothesis, since the Steiner nodes that they include are the ones that are most constrained by the 

experimentally derived terminals. Further, by adding directions between transcription factors to 

targets and enzyme to substrate interactions, we are able to obtain condition-specific 

transcription factors and compact networks. 

 



3.2. The PCSF approach reveals parallel working pathways in addition to hidden 

individual proteins or genes in yeast pheromone response. 

High-throughput experimental methods like mass-spectrometry are capable of 

simultaneously detecting changes in many distinct biological processes that will not be 

connected by physical interactions.  However, the PCST approach searches for a tree structure in 

the interactome that connects as many of the experimental data as it can.  As a result, it will 

either have to exclude some of the data that relate to distinct biological process or add spurious 

edges to force these data to connect to the tree. The main advantage of PCSF approach over 

PCST is that PCSF does not force the system to be connected in a single network, and it can 

automatically separate multiple pathways.  

We tested the PCSF algorithm using data from the yeast pheromone response, which we had 

previously analyzed using the prize-collecting Steiner tree approach.  The data consist of 

phosphoproteomic and transcriptional changes induced by mating pheromone, and the network is 

enriched with directed transcription factor-target and kinase/phosphatase-substrate reactions. The 

edge costs of the interactome were computed as the negative log of the interaction probabilities, 

and node prizes were obtained from the scheme detailed in (Huang and Fraenkel, 2009). To 

explore the space of solutions, we tuned the ω and β parameters between [0.005, 0.1] and [1, 20], 

respectively. The minimum, maximum and average size and number of trees in the constructed 

PCSFs are extracted for each (ω, β) pair and the distribution of these values along ω parameter is 

plotted.  We looked for a solution in a region where the number of trees and average size of the 

trees in the forest are closest to each other.  By these criteria, the best solution is found when ω = 

0.025 and β = 13 (see Figure S4). We note that in order to explore these parameters, we 

constructed 400 solutions to the PCST problem.  This number of calculations is only practical 



using the message-passing algorithm, but not with the integer linear programming based 

approaches.  

The solution to PCSF problem places distinct functional classes in seperate sub-trees. In this 

solution, there are six trees, each containing more than 10 nodes. In Figure 2, each tree is labeled 

with its corresponding pathway. Small sub-trees such as T3-6 are enriched in specific biological 

processes including the PKC pathway, actin organization, protein folding and kinetochore, and 

DNA and chromatin pathways, while larger trees contain multiple processes. For example, the 

largest subtree, T1, contains the pheromone core MAPK pathway with CDC28 related proteins 

and the second largest one, T3, contains transcription and transport processes (see Figure 2). 

There are two different yeast MAPK pathways; the pheromone-induced MAPK and the protein 

kinase C (PKC) pathways (Buehrer and Errede, 1997; Zarzov, et al., 1996). The PCSF algorithm 

correctly separates these two pathways into different trees. The largest tree in size is T1 contains 

pheromone-induced MAPK pathway but the PKC pathway is located in T3. While the former one 

induces cells to differentiate and be prepared for mating, the latter one is involved in cell 

integrity and new cell wall synthesis.  

The core pheromone response pathway component in T1 includes the STE2 receptor. In this 

sub-tree, the STE2-GPA1-FUS3 interaction is in the core of pheromone response. In addition, 

the MAP kinase FUS3 activates several transcription factors such as, STE12, DIG1, DIG2 for 

the expression of mating related genes. T1 contains DNA replication proteins and cell cycle 

proteins associated with CDC28 as well. Here, the connection between the MAP kinase pathway 

in the pheromone core and the CDC28 associated sub-network is constructed through the 

interaction between FAR1 and CDC28. FAR1 is a direct inhibitor of CDC28/CLN2 complex and 

functions in orienting cell polarization. This association blocks the cell cycle progression. FUS3 



phosphorylates FAR1, and only phosphorylated FAR1 can associate with CDC28/CLN2 

complex. All these interactions and these connected pathways are correctly located into the same 

sub-tree.  

The algorithm correctly identifies SLT2, which was not detected in the phosphoproteomic 

data, as a key node in regulating new cell wall synthesis. SLT2 is a serine/threonine MAP kinase 

activated in a cascade starting with PKC. The phosphoproteomic data are not sufficient for the 

algorithm to pick up the upstream pathway.  However, in T3, the algorithm links SLT2 to several 

transcription factors that mostly function in cell wall integrity and biosynthesis. SLT2 activates 

RLM1 (Garcia, et al., 2004), SWI4 (Baetz, et al., 2001) and SWI6 transcription factors. RLM1 

functions in the maintenance of cell integrity. SWI4/SWI6 regulates the expression of genes 

functioning in cell wall synthesis and G1/S transition of the cell cycle.  

Transcriptional machinery and transport proteins are located in T2, seperate from other trees. 

The connection between transcriptional machinery and cellular transport part is achieved by the 

interaction between PHO4 and PSE1. Although these two proteins are experimentally 

undetected, the PCSF algorithm locates them in the same sub-tree. Direct association of PSE1 to 

PHO4 is required for the import of PHO4 into the nucleus (Kaffman, et al., 1998). Nuclear pore 

components (NUP60, NUP85, NUP116, NUP159) are located in T2 because nuclear transport is 

achieved through the nuclear pore (Kaffman, et. al., 1998). In this sub-tree, the transcription 

factor PHO2 functions in a combinatorial manner with PHO4 and SWI5 (Bhoite, et al., 2002).    

In addition to the pathway analysis, we utilized GO biological process annotations to find the 

specific biological processes enriched in these trees. In Table 1, the top three annotations for 

each tree are tabulated along with their corrected p-values. These results show that this method 

effectively locates different biological processes into different trees. Instead of forcing all nodes 



to be connected in a single network, this “forest” representation composed of multiple sub-trees 

is more useful for distinguishing distinct pathways. The forest solution retains more enrichment 

for the expected biological process, such as response to stress, cell cycle, signaling and transport 

(see Figure S5). Further, by adding directions between transcription factors to targets and 

enzyme to substrate interactions, we are able to obtain more condition-specific transcription 

factors and a smaller network that still includes the same number of terminals (see Table S1 and 

SI text).  

To evaluate this approach further, we selected terminals from distinct biological processes 

assigned by GO annotations and constructed PCSFs. As we show in the supplemental materials, 

these tests revealed that the approach was able to reconstruct functionally coherent trees based 

solely on the connectivity of the interactome. The detailed results and the list of biological 

processes used in this analysis are added to the Supplementary text, Table S2 and Figure S6. 

 

3.3. The PCSF algorithm reveals coordinately acting receptor molecules functioning in 

human GBM by integrating receptome, interactome and proteomics data. 

Having demonstrated that the PCSF algorithm can successfully distinguish parallel-working 

pathways in yeast, we used it to identify cell surface receptors associated with signaling 

pathways altered in disease.  Cell surface receptors are an interesting class of molecules to study, 

as they may be particularly easy to target with therapeutic agents.  There is increasing evidence 

that some proteins are “undruggable,” in other words hard or impossible to target with small 

molecule-based therapies because their three-dimensional shape does not have any appropriate 

concave sites to which these proteins can bind.  In contrast, cell surface receptors can either be 



targeted with their natural ligand, modified forms of the natural ligand, small molecules that 

insert into the naturally occurring binding pocket or antibodies.   

We modified our approach to identify cell-surface receptors associated with 

phosphoproteomic changes that occur in a model of glioblastoma (Figure S7).  We use the 

artificial node to represent external stimuli (including autocrine loops) that potentially activates 

multiple receptor molecules, by connecting this node only to cell surface receptors, of which 331 

are present in our human interactome.  After running the prize-collecting Steiner tree algorithm 

and removing the artificial node, each sub-tree will contain one receptor as the starting node. The 

receptors selected in the solution of PCSF represent those most closely connected to the 

measured phosphoproteomic data and are therefore likely to be main contributors of the disease. 

We applied this approach to phosphotyrosine data for a model of human GBM (Huang, et. 

al., 2007) representing phosphorylation differences between cells expressing an oncogenic 

mutation in the EGFR protein and cells with an inactive form of this receptor tyrosine kinase.  

The result is a set of eleven compact trees each rooted in one of the 331 potential receptors.  The 

selected receptors in order of their tree sizes are EGFR, ERBB2, CD36, IGF1R, PTCH1, A2MR, 

SDC2, MET, ITGB3, NPR1 and EPHA2  (see Figure 3). Although the algorithm had no direct 

knowledge that the data represented the results of mutation in EGFR, it selected this as the root 

of the largest tree.  In fact, each of the four top receptors has a known link to cancer. EGFR and 

ERBB2 are EGF-family receptors, and it is known that EGFR is mutated in more than 50% 

GBM cases (Cancer_Genome_Atlas_Research_Network, 2008). IGF1R is overexpressed in 

many tumors and mediates proliferation and resistance to apoptosis, and it is currently an anti-

cancer treatment target (Macaulay, 2004). Because IGF1R is also abnormally active in GBM, its 

inhibition is presented as a potential therapy to arrest the tumor growth (Kiaris, et al., 2000).  It 



has been previously shown that the EGF and IGF pathways cross-talk (Adams, et al., 2004), and 

IGF1R mediates resistance to anti-EGFR therapy in glioma cells (Chakravarti, et al., 2002). 

Although CD36 functions in brain specific angiogenic regulation (Kaur, et al., 2009) and the 

interactions between CD36-Fyn-Yes lead to calcium and neurotransmitter release (Silverstein 

and Febbraio, 2009), its relation to GBM has not been studied in detail. Further, the downstream 

interactions in Fyn points out the glutamate related proteins GRIN2B and DLG3.  In addition to 

those receptors pictured in Figure 3, we identified PTCH1 as an important receptor in 

glioblastoma which is the root of a small sub-tree. PTCH1 is a known tumor suppressor (Agren, 

et al., 2004). These less studied receptors, CD36 and PTCH1, suggest novel therapeutic targets 

for glioblastoma treatment. 

Although the algorithm is constrained to identify independent trees, we can observe the 

potential for cross-talk between different receptors by adding back all the edges among the 

selected nodes (see Figure S8).  We noticed two receptors selected by the algorithm, namely 

MET and ITGB3 (integrin-β3), are also very important, despite the fact that their corresponding 

sub-trees each contain only two nodes. When all edges are put back in the Steiner forest we 

observe extensive links between these two receptors and the EGFR sub-tree. MET has links to 

seven proteins out of nine first neighbors of EGFR and to 16 proteins in total of the EGFR rooted 

sub-tree, and ITGB3 has links to seventeen members of the EGFR sub-tree. By contrast, IGF1R 

has links only to three proteins and ERBB2 has link only to two proteins in the first neighbors of 

EGFR. Although this information was not provided to the algorithm, MET is detected as 

differentially phosphorylated in the original data, and a MET inhibitor synergizes with an EGFR 

inhibitor (Huang, et. al., 2007).  



Mammalian signaling systems frequently demonstrate a high degree of cross-talk.  If two 

receptors share many common downstream components, the algorithm need only choose one of 

these as a root node to explain all the terminal nodes. We, therefore, introduce a perturbation-

based approach to improve the sensitivity of the algorithm in identifying receptors that share 

many downstream components with the selected root nodes. In this analysis, selected receptor 

molecules (the root of the largest tree in the forest and other receptors in its corresponding sub-

family available in the forest) and all their interactions are removed from the interactome and 

PCSF algorithm is applied to the remaining network. Through this in silico knock-out 

experiment, we can find the other receptor molecules whose role may be masked in the presence 

of the receptors in the initial forest. 

We first knocked-out two EGF/ERBB sub-family receptors, EGFR and ERBB2, from the 

network and re-generated the PCSF. In the resulting network, 37 out of 42 nodes in the down-

stream of EGFR in the original tree are connected to other receptors. PDGFR (Platelet-derived 

growth factor receptor) is the root of the largest tree, covering 23 nodes linked to EGFR in the 

original network (shown in Figure S9a). This observation suggests that PDGFR may have many 

overlapping functions with EGFR. In fact, several studies have shown that PDGFR is critical in 

brain tumorogenesis (Dai, et al., 2001; Uhrbom, et al., 1998); mutation of PDGFR causes 

alteration in the intracellular signaling (Clarke and Dirks, 2003) and it is a therapeutic target in 

GBM (Ziegler, et al., 2008).  Another 14 nodes down-stream of EGFR are shared by MET 

(seven nodes), IGF1R (five nodes) and ITGB3 (two nodes). Although these four receptors 

(PDGFR, MET, IGF1R and ITGB3) capture many of the nodes that were down-stream of EGFR, 

five nodes are not captured by any other receptors. These may represent signaling that is 

uniquely downstream of EGFR.  



To further explore the network, we removed PDGFR in addition to EGFR and ERBB2.  In 

the new network, the MET receptor partially replaces PDGFR. It has been shown that the  MET 

receptor is activated in GBM and it might be a therapeutic target (Li, et al., 2011). Similar to the 

MET receptor tree, the sub-tree containing ITGB3 receptor also collects several of the nodes 

previously associated with EGFR in its corresponding sub-tree (shown in Figure S9b). It is 

interesting to note that integrins function as both upstream and downstream effectors of growth 

factor receptors, such as EGFR, IGF1R, PDGFR, MET (Alam, et al., 2007). Integrins and their 

relation to GBM have not been studied in detail, which may have clinical importance in GBM.  

During all these leave-one-receptor-out tests, IGF1R is present in the resulting PCSF, and it 

retains all proteins in the original network. The downstream network of IGF1R starts with the 

estrogen receptor (ESR1) interaction and it contains several MAPKs. It has been shown that 

ESR1 and IGF1R are cross-regulated in the brain and activate the MAPK/ERK pathway. This 

system of interactions results in some neural functional regulations in the brain; such as, synaptic 

plasticity, neurotic growth, and neuronal survival (Cardona-Gomez, et al., 2002). The size of the 

trees corresponding to the down-stream of MET and ITGB3 receptors increases at each knock-

out. Also, the FYN related downstream pathway of CD36 is swapped to be downstream of MET 

receptor, although CD36 is not knocked-out. This result implies that FYN-related pathway may 

be activated by several receptors.  

To further validate the relevancy of these receptor molecules (EGFR, ERBB2, IGF1R, CD36, 

PDGFR, MET and ITGB3), we used the TCGA GBM Gene Ranker (http://cbio.mskcc.org/tcga-

generanker/). This server combines available literature information and TCGA data for 

individual genes to score them. All selected receptors are among highly ranked genes (genes 

having a score greater than 2.0) in GBM (calculated scores are as follows: EGFR: 15.75, MET: 



11.75, ERBB2: 9.25, PDGFRB: 7.25, IGF1R: 4.0, ITGB3: 3.75, CD36: 2.0), with EGFR, MET 

and ERBB2 having the highest rank in the database.  

We performed randomization tests to check the reliability of the output of the algorithm. 

Here, terminal nodes, their prizes and the parameter set are kept same with the original PCSF 

analysis of GBM. In addition, number of nodes, edges and edge costs are the same as in the 

original interactome. Only the edges are re-shuffled randomly within the network. The 

randomization test is repeated ten times on different interactomes. The statistics for the average 

of the resulting forests are tabulated in Table S3.These characteristics show that random PCSFs 

contain many more sub-trees when compared to the original PCSF and these sub-trees are not 

structured like the original trees; most of the trees in the random forests are ‘stringy’, composed 

of nine proteins at most. Further, random trees are not enriched for a specific biological process 

and none of the receptors found in the original PCSF are selected in the random PCSFs. The 

algorithm uses substantially more Steiner nodes to connect terminal nodes in random case.  We 

performed another randomization test by reshuffling the nodes in the original interactome. In this 

way, the degree distribution is retained. In these randomizations we retain the same terminal 

nodes, prizes and the parameter set are kept same with the original PCSF analysis, but these 

proteins have now been randomly mapped to other nodes. The results show that the 

characteristics of the sub-trees in the random PCSFs are similar with the previous random case; 

they are ‘stringy’, not structured and not enriched for functions. However, this time the total 

number of nodes included in the PCSF is not as large as in the previous random case. These 

results show that the real PCSF solution is significantly different than the random solutions.  It is 

particularly important that the receptors found by the algorithm run on the GBM data are not 



selected in the randomizations, supporting the hypothesis that these receptors are biologically 

relevant. 

4. DISCUSSION 

We present a method for simultaneously discovery of multiple pathways by searching for 

“forests” consisting of multiple trees. We are able to solve this problem efficiently, even for 

large human networks by a simple modification of the previously published message-passing 

solution for the Steiner tree problem. When applied to the pheromone response data on the 

directed yeast interactome, the PCSF approach reveals several parallel pathways affected by 

yeast pheromone. Some of these parallel pathways contain multiple, coherently acting processes, 

such as pheromone response and the CDC28 associated pathway, or transport and transcriptional 

activity of PHO4. Others contain only one process, such as actin organization or protein folding. 

Independently from the pheromone response network, we also show that this approach can 

identify regions of the yeast interactome enriched in various biological processes using only the 

connectivity information (Supplementary Information). 

The advantages of the forest approach are most apparent when used to study mammalian 

cells, which respond to a large number of hormones, growth factors and cytokines.  Applying 

this approach to proteomic data from a model of GBM results in a forest composed of several 

sub-trees, each of which is rooted from a receptor molecule. The PCSF algorithm is able to select 

receptors relevant to GBM from hundreds of molecules in the human receptome. The solution 

reveals several known pathways and some unexpected new ones. EGFR, ERBB2, IGF1R and 

CD36 are starting nodes of the largest sub-trees in the PCSF. This set of receptor molecules was 

selected by the algorithm among hundreds of receptors, and the literature search shows that each 

of the selected receptors is clinically relevant to GBM.  



To find additional receptors whose downstream signaling pathways overlap with the selected 

receptors, we used an iterative approach that can be thought of as an in silico knock-out 

experiment.  In this analysis, a selected receptor molecule and all its interactions are removed 

from the interactome and PCSF algorithm is applied to the remaining network. These 

calculations revealed the roles of PDGFR, MET and ITGB3 all of which have been previously 

linked to GBM.  

Our method can be efficienly utilized to reconstruct networks that are enriched in 

functionally and clinically relevant proteins. Further, the algorithm is flexible, and can be 

modified for other types of data such as protein-small molecule inhibitor interactions and 

protein-metabolite interactions. 
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TABLES 

Table 1 GO enrichments of the sub-trees in the PCSF illustrated in Fig.2. 

Subtree 

Name 

GO Enrichment - Biological Process Corr p-value 

T1 regulation of cell cycle  

cell division 

cell cycle 

1.97 x 10
-17

 

2.60 x 10
-17

 

3.02 x 10
-17

 

T2 transcription 

regulation of nucleobase, nucleoside, nucleotide and 

nucleic acid metabolic process 

nuclear transport 

7.07 x 10
-13

 

2.36 x 10
-12

 

 

7.30 x 10
-8

 

T3 positive regulation of gene-specific transcription 

regulation of gene-specific transcription  

positive regulation of transcription, DNA-dependent 

2.20 x 10
-5

 

7.75 x 10
-5

 

9.11 x 10
-5

 

T4 actin filament-based process 

endocytosis 

actin cytoskeleton organization 

1.51 x 10
-9

 

4.42 x 10
-9

 

9.32 x 10
-9

 

T5 protein folding  

protein refolding 

kinetochore assembly 

1.60 x 10
-3

 

1.60 x 10
-3

 

4.25 x 10
-3

 

T6 positive regulation of glycolysis 

regulation of glycolysis 

positive regulation of transcription 

2.54 x 10
-4

 

2.54 x 10
-4

 

2.54 x 10
-4

 

 

 

 

 

 

 

 

 

 

 

 



FIGURES 

 

FIG. 1. Conceptual illustration of the PCSF algorithm. The left panel shows an interactome and 

the right panel shows the Steiner forest constructed from that interactome. The direction of 

transcription factor to target and kinase/phosphatase to substrate interactions are pointing 

towards the root node (opposite to the biological direction). In this scenario, there are spurious 

edges between these two pathways in the interactome. The PCSF algorithm provides the 

advantage to connect these distinct pathways artificially. 



 

FIG. 2. Prize-collecting Steiner Forest (PCSF) of the Yeast Pheromone Response Network. 

Functional groups annotated by Gene Ontology (GO) are tagged with red boxes. In this PCSF, 

the rectangular nodes are DNA, triangular nodes are transcription factors and the circular nodes 

are proteins. Terminal nodes are colored red. 



 

FIG. 3. Network representation of the PCSF for human glioblastoma dataset. Each tree is rooted 

from a cell surface receptor. The receptor molecules are represented by the arrowheads, 

transcription factors in triangles and other proteins as circles. Terminal nodes are colored in 

cyan. 
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Tuning parameters for the prize-collecting Steiner forest problem 

The flowchart of PCSF algorithm is illustrated in Figure S1. The idea is to introduce an extra 

root node v0 into the network connected to each node v ∈ V by an edge (v ,v0) with cost ω. We 

first evaluated the effect of the parameters on the forest algorithm by applying it to random 

networks. We generated two random datasets with very different characteristics.  The first one is 

composed of 3,000 nodes and 7,500 edges with each node has a fixed degree 5. Edge costs and 

penalties are uniformly distributed over [0, 1]. All nodes have a penalty value.  The second 

dataset is composed of 3,000 nodes and 15,000 edges where each node has a degree of 10. Edge 

costs follow a bi-modal distribution with modes at 20 and 80.  Node penalties follow a tri-modal 

distribution with modes at 20, 80 and 160 and all of the nodes have a penalty value.  

The PCST runs show that the message passing and branch-and-cut algorithms achieve the same 

objective function value (550 for random set 1, 68,800 for random set 2); however, message-

passing approach reaches the optimum solution faster (10 and 168 sec, respectively) than the 

branch-and-cut algorithm (235 and 1043 sec, respectively). As shown in Figure S2, if the edge 

costs are uniformly distributed, the number and size of the PCSF output are smoothly distributed. 

However, in the case of bi-modal edge weights, subtrees in the PCSF in size are not uniformly 

distributed along the changing ω value. For the first random dataset, the ω values are selected 

between [0.1, 2] and β is calculated from β = ω * β0 with β0 values in the range [1, 20]. In this 

way, 400 different (β, ω) pairs were generated, from which 400 different artificial networks were 

constructed. For the second random dataset, the ω values are selected between [10, 200] and the 

β0 values are changed in the range [1, 20].  

To explore the space of solutions in the yeast pheromone response network, we tuned the ω and 

β parameters between [0.005, 0.1] and [1, 20], respectively. The minimum, maximum and 

average size and number of trees in the constructed PCSFs are extracted for each (ω, β) pair. In 

Figure S4, the distribution of these values along ω parameter is shown.  We looked for a 

solution in a region that the number of trees and average size of the trees in the forest are closest 

to each other. By these criteria, the best solution is found when ω = 0.025 and β = 13. In Figure 

S4, this region is labeled with a red square. We note that in order to explore these parameters, we 

constructed 400 solutions to the PCST problem. This number of calculations is only practical 

using the message-passing algorithm, but not with the ILP-based approach.  



When compared to the Steiner tree solution, the Steiner forest contains fewer non-terminal 

(Steiner) nodes, but the nodes that it retains show more enrichment for the expected biological 

process. The forest solution contains 86 non-terminal nodes, compared to 107 in the tree. Yet the 

more compact solution to the forest problem has a higher fraction of non-terminals relating to 

response to stress, cell cycle, signaling and transport (see Figure S5).   

The PCSF algorithm is able to distinguish different biological processes on the yeast 

interactome.  

We evaluated the PCSF algorithm by examining whether it could identify networks of 

functionally related proteins in the yeast interactome. In our first test, we selected 21 proteins 

annotated to be associated with apoptosis and 34 annotated to the pheromone process response, 

and we assigned these nodes uniform penalties. Applying the PCSF algorithm results in three 

sub-trees (see Fig. S6A), one of which is dominated by apoptotic termini (T2, seven apoptotic 

termini), the other by pheromone response (T3, ten pheromone response termini), and the third 

containing members of each set. Including the Steiner nodes in the analysis, we find that one tree 

(T1) is mostly composed of proteins involved in response to pheromone (p-value=4.13x10
-18

), 

regulation of cell cycle (p-value=5.71x10
-10

) and signal transduction (p-value=4.97x10
-10

); 

another tree (T3) is more enriched in reproduction (p-value=9.11x10
-13

), cell budding (9.83x10
-

4
), actin cytoskeleton organization (p-value=1.49x10

-4
) and in response to pheromone (3.43x10

-

17
); T2 is functioning mostly in apoptosis and biogenesis (p-value= 1.93x10

-9
).  

We compared the forest solution to that obtained by running the tree algorithm and then 

clustering the single tree into subtrees by edge betweenness. The non-terminal nodes in T1 of the 

PCSF are more significantly enriched in cell cycle when compared to the non-terminal nodes in 

the corresponding cluster in PCST (see Fig. S6B). In T2, the non-terminal nodes are more 

enriched in transport process when compared to its corresponding cluster in PCST.  In T3, there 

are eight non-terminal nodes and three of them (CDC24, FAR1 and AKR1) function in 

pheromone-dependent signal transduction involved in conjugation with cellular fusion. Two of 

these non-terminal nodes (CDC24 and AKR1) are present in the corresponding cluster in PCST.  

It is interesting that the algorithm rooted each sub-tree with a Steiner node that turns out to be 

functionally related to its tree.  The proteins connected to the artificial node are CDC14 (in T1), 

DCP1 (in T2) and BEM1 (in T3). The phenotypes of these three proteins (obtained from Yeast 

Genome Database (Issel-Tarver, et al., 2002)) are consistent with the enrichments in the sub-

trees. When Bem1 is knocked-out, the cell shape becomes abnormal and mating efficiency 

decreases. When CDC14 is knocked-out, cells are not viable and cell cycle progression is 

arrested. DCP1 deletion results in decreased apoptosis.  

To conduct a more general analysis of the PCSF algorithm, we selected proteins from 17 

different biological processes as terminal nodes (see Table S2 for details). The resulting PCSF 

consists of 11 sub-trees containing more than 10 nodes each. The enrichment of the biological 



processes shows again that the larger subtrees combine multiple processes. For example, the 

largest sub-tree (178 nodes) in the PCSF is enriched in ubiquitin-dependent protein catabolic 

process (p-value= 1.59x10
-41

), signaling and cell cycle (p-value= 1.65x10
-20

) and its non-terminal 

nodes are enriched in cell cycle (p-value= 2.45x10
-11

). The second and third largest sub-trees are 

enriched only in transcription (p-values are 2.81x10
-54

 and 2.01x10
-54

 respectively). Examples of 

small sized sub-trees include T7, which is enriched in cell division (p-value= 9.91x10
-10

) and 

whose non-terminal nodes are enriched especially in M phase (p-value= 8.59x10
-12

). T8 is 

enriched overall in DNA repair (p-value=1.68x10
-9

) and the non-terminals are enriched in DNA 

repair and replication (p-value= 5.77x10
-8

). T9 is enriched in Golgi vesicle transport including 

and excluding the terminal nodes.  Thus, the algorithm is able to identify efficiently functionally 

coherent subtrees from sparse sets of termini. 

 

 

 

 

 

  

Table S1 Comparison of the PCST results on directed and undirected interactomes. 

Dataset # of 

Nodes 

# of 

Interactions 

PCST 

size 

Included 

Protein 

Terminals 

Included 

DNA 

Terminals 

Time to 

reach 

the 

solution 

(sec)
a
 

Best 

optimum 

solution 

value 

Overlap with 

the solution in  

(Huang and 

Fraenkel, 

2009)
b
 

Yeast Dataset 
(undirected) 

5,957 34,712 269 62 100 237 2.2178 98.5% 

Yeast Dataset  

(with directed 

transcription factor-

target interactions) 

5,957 34,712 221 62 81 115 1.7967 92.7% 

Yeast Dataset 

(with directed 

transcription factor-

target and 

kinase/phosphatase-

substrate 
interactions) 

5,957 35,998 214 62 80 127 1.7975 94.4 % 

a the time to reach solution by using message-passing approach.  
b the overlap is calculated only for the yeast datasets. 

 



Table S2 Biological processes with nodes that are connected to each other by relatively reliable interactome 

data. For each biological process, we generated a histogram illustrating the distribution of the edge costs. If at least 

40% of the edge costs are in the top half of the edge costs in the total interactome and total number of nodes is more 

than 20, proteins in these biological processes are used as terminal nodes in PCSF analysis. 

GO ID Definition 

GO:0006366 transcription from RNA polymerase II promoter 

GO:0016573 histone acetylation 

GO:0019236 response to pheromone 

GO:0006461 protein complex assembly 

GO:0016311 dephosphorylation 

GO:0030242 peroxisome degradation 

GO:0006470 protein dephosphorylation 

GO:0045944 positive regulation of transcription from RNA polymerase II promoter 

GO:0001403 invasive growth in response to glucose limitation 

GO:0006302 double-strand break repair 

GO:0000122 negative regulation of transcription from RNA polymerase II promoter 

GO:0008361 regulation of cell size 

GO:0006511 ubiquitin-dependent protein catabolic process 

GO:0070481 nuclear-transcribed mRNA catabolic process,  non-stop decay 

GO:0045893 positive regulation of transcription,  DNA-dependent 

GO:0007124 pseudohyphal growth 

GO:0006891 intra-Golgi vesicle-mediated transport 

 

  



Table S3 Characteristics of the PCSFs generated from the original interactome and random interactomes using 

original terminal set. 

 Original  

Interactome  

Random  

Interactome (Edge-

reshuffled case) 

Random  

Interactome (Node-

reshuffled case) 

Maximum size of the sub-trees 43 9 15 

Mean size of the sub-trees 8.2 3.8 4.6 

Number of sub-trees 12 47 26 

Total number of nodes in PCSF 98 180 112 

 

 

 

 

 

 

 



 

Figure S1 The flowchart of the Prize-Collecting Steiner Forest algorithm. Here, the loop is initialized 

with i and j each set to 1. We specify that the loop continues while i and j are not equal to itermination and jtermination, 

respectively. In the body of the loop, we increment i and j by 1. Also, α counts the iteration steps. 

  



 

 

 

Figure S2 Effect of the weight of edges to the artificial root node (ω) on mean tree sizes and the number of trees in 

the resulting forest for several β values for (a) the first random set (3,000 nodes and 7,500 edges) and (b) the second 

random set (of 3,000 nodes and 15,000 edges). 

 

(a) 

(b) 



 

 

Figure S3 (a) The effect of maximum network depth (D) on the best optimal solution value. The minimum value is 

achieved when depth equal to 20. (b) Overlap of the sub-optimal solutions. These suboptimal solutions are obtained 

by adding uniform noise to the edge weights. With the increasing noise the percentage of nodes in optimal solution 

decreases and value of the objective function increases. 

  



 

 

 

 

Figure S4 Effect of the weight of edges to the artificial root node (ω) on mean tree sizes and the number of trees in 

the resulting forest for the yeast pheromone response data.  (A) Mean tree sizes and number of trees in the resulting 

forests as the artificial edge weight, ω, is varied for β values within the interval [1,20] (singletons are excluded). (B) 

The number of sub-trees in the PCSF as the artificial edge weight, ω, is varied (singletons are included) for one β 

value. 

 



 

Figure S5 Functional enrichment of the non-terminal proteins in yeast PCST and PCSF. 
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Figure S6 (a) The PCSF of the yeast interactome where the terminal nodes are the part of either the pheromone 

response or apoptosis processes. In the resulting forest, there are three sub-trees. Here, red colored nodes are 

terminals in apoptosis pathway while blue colored nodes are terminal nodes in pheromone response. T1 is enriched 

in in response to pheromone (p-value=4.13x10-18), regulation of cell cycle (p-value=5.71x10-10) and signal 

transduction (p-value=4.97x10-10); T2 is enriched in apoptosis and biogenesis (p-value= 1.93x10-9) and T3 is 

enriched in reproduction (p-value=9.11x10-13), cell budding (9.83x10-4), actin cytoskeleton organization (p-

value=1.49x10-4) and in response to pheromone (3.43x10-17). (b) Comparison of non-terminal nodes in the sub-trees 

in PCSF and in the clusters in PCST.  
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Figure S7 Schematic for identifying signaling from receptors. (a) An artificial node is connected only to cell-surface 

receptors. In the second layer, receptor molecules are connected to all other proteins through the interactome. (b) 

After constructing the prize-collecting Steiner tree and removing the artificial node, the resulting PCSF contains two 

sub-trees where each sub-tree has one receptor as the root node. 



 

Figure S8 The PCSF obtained for GBM is augmented by the edges in the original interactome. 

 



 

 

Figure S9 Solution forests after in silico knockout experiments. (a) Forest obtained after removing EGFR and 

ERBB2. Nodes that are downstream of EGFR in the original network are outlined in red. (b) Forest obtained after 

removing EGFR, ERBB2 and PDGFR. 
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