
DemoWiz: Re-Performing Software Demonstrations
for a Live Presentation

Pei-Yu (Peggy) Chi1,2, Bongshin Lee1, Steven M. Drucker1
1Microsoft Research

{bongshin, sdrucker}@microsoft.com

2University of California, Berkeley

peggychi@cs.berkeley.edu

ABSTRACT

Showing a live software demonstration during a talk can be

engaging, but it is often not easy: presenters may struggle

with (or worry about) unexpected software crashes and

encounter issues such as mismatched screen resolutions or

faulty network connectivity. Furthermore, it can be difficult

to recall the steps to show while talking and operating the

system all at the same time. An alternative is to present with

pre-recorded screencast videos. It is, however, challenging to

precisely match the narration to the video when using

existing video players. We introduce DemoWiz, a video

presentation system that provides an increased awareness of

upcoming actions through glanceable visualizations.

DemoWiz supports better control of timing by overlaying

visual cues and enabling lightweight editing. A user study

shows that our design significantly improves the presenters’

perceived ease of narration and timing compared to a system

without visualizations that was similar to a standard playback

control. Furthermore, nine (out of ten) participants preferred

DemoWiz over the standard playback control with the last

expressing no preference.

Author Keywords

Demonstration; demo; software demo; presentation; video

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

INTRODUCTION

Performing a software demonstration can be an effective way

to communicate with the audience during a live presentation.

By illustrating actions within a working system, presenters

can guide the audience through an interaction flow and show

results in real time. However, it is not always easy to perform

an effective live demo. Problems such as software crashes,

network connectivity issues, and configuration changes (e.g.,

screen resolution) may break a demonstration. Furthermore,

talking while interacting with the system creates a high

cognitive load on presenters. In addition, the stress of public

speaking, especially during a high-stakes presentation,

makes it difficult for presenters to deliver effective messages

in a timely manner without forgetting to cover a set of core

values of the system. An alternative is to present with pre-

recorded screencast videos that capture the correct flow and

information. Even though technical problems are less likely

to occur with a video, it is challenging for presenters to talk

over a video with appropriate timing because they have to

mainly rely on their memories for the sequence and timing

of interactions. Such a “canned” demo can often result in a

less understandable or engaging presentation when a video is

not tightly prepared to attract the audience’s attention to

anticipate the results [6].

The presenter view in PowerPoint or Keynote attempts to

help presenters during slide show presentations by showing

notes along with an upcoming slide. A teleprompter,

commonly used for news programs or political speeches,

prompts presenters with an electronic visual text of a speech

or script. With this, speakers can appear to be speaking

spontaneously as they look at the audience while reading the

script. Inspired by these tools, we built DemoWiz (Figure 1),

a system that assists presenters in giving software

demonstrations with a screencast demo video during a live

presentation. DemoWiz augments a screencast video with

visualizations, enabling presenters to anticipate the video

content rather than react to it; overlaying glyphs to guide

presenters to the next action along with the time remaining

before the action occurs.

DemoWiz supports the entire authoring process from

capturing a screencast video; to rehearsing it and adjusting

timings; to performing live presentation of the demo. During

the recording phase, DemoWiz captures the screen pixels

and logs input events, including event types and locations

with timestamps. This event information is then processed

and provided to presenters in the form of an adjustable

timeline of events. During the rehearsal phase, presenters can

speed up or slow down specific segments while navigating

through the video recording using the timeline. In addition,

they can add pause markers and short text notes. During the

presentation, similar to current presentation tools like

PowerPoint and Keynote, DemoWiz shows two views–one

for the presenter and the other for the audience. The

Presenter View is augmented with timed notes and a

visualization of the captured events to help presenters

synchronize their narration with the video.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

CHI 2014, April 26 - May 01 2014, Toronto, ON, Canada

Copyright 2014 ACM 978-1-4503-2473-1/14/04$15.00.

http://dx.doi.org/10.1145/2556288.2557254

Session: Presentation Technologies CHI 2014, One of a CHInd, Toronto, ON, Canada

1581

To explore the effectiveness of the DemoWiz system, we

performed a user study, comparing it with a version similar

to a conventional video player. Our results show that, with

DemoWiz, participants anticipated upcoming actions better

and rated themselves as having narrated the video better.

Moreover, 9 out of 10 participants preferred DemoWiz to a

system without visualizations.

The contributions of this work are:

 An interactive video playback interface to help presenters

control demo videos during a live presentation. It is

combined with visual augmentation of screencast videos

to enable presenters to anticipate upcoming actions and to

be better aware of timing for narration.

 A lightweight workflow for presenters to record, rehearse

and edit, and present demo videos. To support automatic

video segmentation, we employ a hybrid approach to

combine screencast videos and input event logs.

 Evaluation of the overall effectiveness of DemoWiz,

incorporating visualizations into the presenter view of a

video, across the workflow.

RELATED WORK

Workflow Capturing and Tutorials

There has been a considerable amount of research and many

commercial tools devoted to revealing input events and

operation sequences for software applications. Researchers

have shown that visualizing input events in real-time during

operations can provide better learnability of applications [8].

Tools such as Mouseposé1 and ScreenFlow2 capture mouse

and keyboard events and apply special effects, such as

drawing a circle around a mouse cursor. Workflows can also

1 Mouseposé http://www.boinx.com/mousepose

be captured from existing screencast videos [1] and

screenshots [34]. In addition to visually enhancing events,

presenting operation history helps users review the

workflow. Approaches include annotating screenshot images

with markers and arrows [15, 29], showing a list of before

and after thumbnails and video clips [17], and creating a

union graph of operations for workflow comparison [21].

These projects demonstrate the benefits of recognizing and

visualizing events. Our work is related in that we use the

stream of input events, but is focused on enhancing a

speaker’s experience in a live presentation by visualizing

events in advance of the happening moments.

Another closely related area is the design of various tutorial

formats that help viewers operate an interactive system.

Work includes embedding video snippets in application

tooltips [16], mixed-media tutorials that combine operation-

based video segments with text descriptions and screenshots

[5], and application-in-tutorial design enhanced by

community-shared workflows [22]. These designs show

possible ways for viewers to explore application features

interactively, but again, differ from our goal of real-time

assistance for presenters.

Visualizing and Navigating Video Content

Videos can be navigated at the content level beyond log

events, such as visualizing subject movements in a

storyboard design [12] and enabling direct manipulation of a

target in 2D [9, 13, 20] or 3D [30]. These techniques help

viewers understand content flow and playback videos, and

have been applied to screencast videos [7]. It is also possible

to automate video control based on user actions for scenarios

such as operating software applications [31] and block

assembling tasks [18]. Such novel forms of video navigation

2 ScreenFlow http://www.telestream.net/screenflow

Figure 1. DemoWiz visualizes input events in a screencast video to help presenters anticipate the upcoming event for narrating a

software demonstration in a live presentation.

Session: Presentation Technologies CHI 2014, One of a CHInd, Toronto, ON, Canada

1582

inspired us to explore new visual designs for revealing the

video content that support live presentations.

Presentation Tools

Modern presentation tools have supported embedding video

recordings and animation. Recent research has proposed

advanced designs for content creation and navigation beyond

simple slideshow composition, including: tools that help

presenters compose content in a large canvas [14] as a path

[26] or a directed graph [33] derived from zoomable

graphical interfaces [3]; structure slides using markup

languages [11] or sketching [25]; and define animation

programmatically [35]. There has also been work on

analyzing slide content for search and reuse [4, 32] and

comparing revisions in a design process [10]. Our work

shares similar goals of structuring a presentation based on

event inputs that can be navigated and edited. However, we

focus more on presentation enhancements of video content

specifically for software demonstrations rather than on the

authoring experience of the presentation itself.

Research on presenting information that can be perceived at

a glance [28] helps presenters recall the content during a

presentation, such as a callout to show finer resolution of an

overall view [2]. Closely related, Time Aura provides

ambient cues of a pile of slides using colors and a timeline

for pacing [27]. Recent research shows that people like to

have better control of the presentation even though it requires

more effort [23], and earlier studies suggest that designing an

integrated presentation tool for complicated tasks could be

challenging [19]. These findings inspired our design on

revealing content of a demo video with information that can

be perceived with minimum attention.

DEMOWIZ DESIGN

To motivate and inform the design of a tool to support live

presentations, we collected preferences for software

demonstrations using an online survey. We describe the three

design goals derived from the survey results.

Understanding Demo Preferences

To understand both presenters’ and audiences’ preferences

for performing and viewing system demonstrations, we

conducted an online survey in a software company and a

university research lab. Our goal was to collect people’s

feedback on giving and seeing software demonstrations

during live presentations. We received 73 responses from

researchers, graduate students, software engineers, and

designers. Their main research areas include human-

computer interaction (64.4%), software engineering

(21.9%), and machine learning (20.6%); 66.7% were male.

Among all the respondents, 35.6% indicated that they were

very experienced at giving software demos to the audience

during a live presentation; 46.6% had demoed at least once;

13.7% had not demoed but attended talks that showed a

software demonstration.

We asked respondents who had demo experience (N = 60)

how they preferred to perform a demo. Their answers were:

a live demo (25 out of 60), pre-recorded videos (15), a mixed

format of a live demo and videos (12), static screenshots (4),

and other (4). In Table 1, we list the top 2-3 reasons for their

preferences. Giving a live demo can be more engaging with

a working system and match the audience’s interests, but

presenters can encounter unexpected problems and forget to

show important features within a given time constraint. On

the other hand, presenting with a demo video avoids such

problems by extracting the most important parts, and can

allow visual highlighting (labelling or zooming), but can be

less engaging. In addition, it is hard to narrate.

We were also interested in reactions as an audience member.

For respondents who had seen software demos (N = 70), we

asked how they preferred to see the demonstration

performed. We found a slightly different preference: a live

demo (36 out of 70), a mixed format of a live demo and

videos (24), pre-recorded videos (7), and other (3). However,

the reasons were well aligned with presenters’ concerns. A

live demo shows a working system and can be more

engaging, but the audience might need to wait for system

problems to be resolved or sometimes see presenters

rambling. A demo video can show the most important parts,

sometimes assisted by visual highlighting, but it can be hard

to tell which parts of a demo are real, and can be less

engaging to the audience.

Design Goals

From the survey results, we understand that giving a live

demo is often more preferable than showing demo videos.

However, we cannot, in general, address some of the main

concerns with giving a live demo – that is, stability of the

software system and variations in the presentation

environment which can cause the demo to fail. Therefore, we

 Presenters Audience

Live

Demo

Advantages Disadvantages Advantages Disadvantages

 More engaging (88.3%)

 Show a working system (86.7%)

 Easy to adjust a demo based on

audience’s interests (45%)

 May encounter unexpected

system problems (86.4%)

 May forget to show important

features (33.9%)

 Hard to control time (35.6%)

 Show that it’s a working system

(97.1%)

 More engaging (72.9%)

 May need to wait for problems

to be solved (78.6%)

 Presenters may end up

rambling (37.1%)

Demo

Video

 Avoid system problems (95%)

 Work with a partially working

system or a mockup (51.7%)

 Can edit to remove mistakes or

add highlights (51.7%)

 Less engaging (57.6%)

 Hard to match their narration to

the video content (30.5%)

 Avoid problems (81.4%)

 Show the most important parts with

visual highlights (60%)

 Work with a partially working

system or a mockup (45.7%)

 Hard to tell which parts are

real (62.9%)

 Want to see how the actual

system works (44.3%)

 Less engaging (37.1%)

Table 1: Survey of software demonstration preferences from presenters’ (N=60) and audience’s (N=70) point of views.

Session: Presentation Technologies CHI 2014, One of a CHInd, Toronto, ON, Canada

1583

instead aim to address some of the drawbacks with demo

videos while preserving their advantages. More specifically,

our goal is to make demo videos more engaging by assisting

presenters in adjusting their narration to guide the audience

through the material. In this section, we describe our design

goals to support more effective demo video presentations.

G1. Show what’s coming next, where and when it will occur.

To engage the audience with the demonstration, it is

important for presenters to guide the audience’s attention to

the right place at the right time. To do so, presenters should

be fully aware of upcoming actions – specifically what

actions will happen, where they will occur on the screen, and

when they will happen.

G2. Minimize required attention or interpretation.

While it is our desire to help presenters understand and

anticipate impending events, we should not overburden a

presenter who is already narrating a specific set of talking

points. As a tradeoff between providing more information

and minimizing cognitive load, any augmentation of the

video needs to be offered in a glanceable fashion, i.e.,

information can be interpreted quickly and without the

presenter’s full attention.

G3. Support light-weight editing during rehearsal.

Different presentations may require more or less extensive

explanations, and when first recording a demo video, it may

not be possible to perform the demo at the same rate

necessary for a live presentation (e.g., typing can be difficult

or system response times may be variable). In addition, it

should be easy to review, practice, and modify the pace for a

particular presentation. For all these reasons, lightweight

editing and rehearsal are necessary.

Using these principles as a guiding rubric for our design, we

iterated on several versions of the DemoWiz system.

DEMOWIZ

Augmented Workflow

For presenters to narrate “live” over a video recording, we

propose augmenting a typical workflow from capturing a

screencast video; to rehearsing it and adjusting timings; and

finally to live presentation of the demo video (Figure 2).

DemoWiz first captures a screencast video and input events

during a software demonstration from a user-defined

rectangular region. Once the recording is done, DemoWiz

analyzes the low-level event stream and transforms it into

higher-level events such as mouse clicks, double-clicks, and

drags. DemoWiz then allows presenters to edit the timing

and notes while practicing their presentations with the

presenter view equipped with an adjustable event timeline

(Figure 1a). Finally, presenters can give a live presentation

using the same UI (i.e., presenter view) and show the

audience view without visualization to the viewers.

Visualizations

To enable presenters to focus on their narration and the

original video contents, DemoWiz augments the screencast

recording by automatically overlaying simple glyphs.

Input Event Glyphs

DemoWiz overlays visual annotations of events on the

screencast recording in a graphical way where the events

happen. For example, in Figure 1, the presenter clicks and

drags the map view to the right. DemoWiz uses the following

simple, distinctive glyphs to differentiate event types as

Figure 3 shows:

 Mouse click: a red circle with a radius of 20-pixels,

 Double-click: a green circle with a radius of 20-pixels,

 Mouse drag: a thin, orange line with a dot at the start point

and an arrowhead at the end point,

 Mouse scroll: a thin, yellow line, 80 pixels long, with an

arrowhead, and

 Keystrokes: text in blue.

At any given time during the video playback, DemoWiz

shows the current event and the upcoming event on the video.

We tried to show more than two events within a fixed time

period in our initial prototypes. However, we noticed several

issues. First, the view becomes too cluttered to understand at

a glance, especially when the original video is visually

complex. Second, it is not easy to convey the order of the

events. Third, it is difficult to observe when multiple events

are spatially close. Therefore, we provide minimum but

essential events for recall.

Visual Guides to the Next Events

In order to help guide the presenter’s attention, DemoWiz

overlays a motion arrow between the current and upcoming

events on the demo video (Figure 1c). This is inspired by

storyboard design used in filming where an arrow effectively

shows the movement of a camera or an actor in a single shot

[12]. We expand the idea of guiding attention for a specific

purpose: the arrow in DemoWiz shows the movement from

one action (e.g., click a checkbox) to another action (e.g.,

click a button). By overlaying this motion arrow, the

visualization matches the flow of a presenter’s attention

when they observe the video content.

Figure 2. DemoWiz workflow: Presenters captures a software

demonstration, edit the recording while rehearsing with our

playback UI, and present the edited video to the audience

using a presenter view.

Figure 3. DemoWiz visualizes input events in a graphical way.

From the left to right we show a mouse click, double-click, a

drag, a mouse scroll, and keystroke events. These glyphs are

overlaid on the video recordings.

Session: Presentation Technologies CHI 2014, One of a CHInd, Toronto, ON, Canada

1584

Since the distance between two consecutive event segments

vary, we created three visual designs to make sure the arrows

are visible to lead a presenter’s attention:

 For two events that are located far away (e.g., clicking an

“OK” button after selecting a checkbox on a page), apply

a straight arrow (Figure 4a).

 For events that are nearly at the same location (e.g., click

the “Next” button twice to navigate a list of selections),

apply a round arrow that points to the current location

(Figure 4b).

 Otherwise, apply a curved arrow (Figure 4c).

Sense of Timing

DemoWiz provides a sense of timing for an upcoming action

so that presenters can adjust their narration. First, DemoWiz

embeds a progress bar in the motion arrow to show relative

time (Figure 1c). The green bar shows the proportional time

that has been passed before reaching the next event (Figure

5 top). When a motion arrow is filled up with green, it fades

away and guides the presenter to the next action. We were

concerned that people may associate the length of an arrow

to the length of time. Therefore, we also incorporated a

countdown visualization where circles will fade out in the

last three seconds before the next action starts (Figure 5

bottom) to convey absolute timing.

Visualization Examples

Figure 6 presents examples of DemoWiz visualizations with

four different systems. The glyphs effectively show the start

and end points of mouse drags and the locations of mouse

clicks. Motion arrows help direct the presenter’s attention

between events, such as start the end of the drag event to

clicking a button (Figure 6a, 6b), clicking between several

options (Figure 6c), or selecting a specific slide after

scrolling down (Figure 6d).

Lightweight Editing During Rehearsal

During rehearsal for their demonstration, presenters can

modify the video timing and add reminder notes for their

narration. DemoWiz shows the type and length of each event

in a sequence in a timeline (Figure 1a). Each segment is

shown as a block whose width indicates its length in time.

To simplify the timeline and avoid fine-grained adjustment,

lengths of event blocks are rounded to the second. Presenters

can modify the playback speed of a segment by dragging the

boundaries of a segment on the timeline. For example,

presenters can speed up to shorten long text inputs, and slow

down for fast mouse drag inputs that select multiple objects.

Sometimes a change in the playback speed may result in an

awkward effect that is noticeable to the audience, especially

when showing a UI transition. Therefore, DemoWiz supports

two special time control markers to enable breaks in the

narration. Presenters can add an adjustable pause segment, at

which the system will pause at the last frame of the previous

segment for the specified length of time. If presenters prefer

full control on pause length, a stop marker ensures the video

stays paused at the last frame of the previous segment and

will not proceed until presenters manually resume the

playback of the video.

DemoWiz enables presenters to add a short text note (such

as the reminder “Move and zoom…” in Figure 1) so that they

could remind themselves of upcoming actions at a higher

level. The note can be positioned manually at any location

on a video so that it does not block important video content,

and will be shown for 3 seconds before the associated event.

For every edit that is associated with time changes (including

playback speed and pauses), DemoWiz computes and

updates the total presentation time as well as updating the

progress bar and countdown to provide accurate timing.

Presenter View

During presentation, DemoWiz shows two views in separate

windows. Presenters can observe visualizations using the

presenter view, while the audience will see the audience view

with a full-screen video that has no enhanced information.

DemoWiz synchronizes the videos in both views based on

Figure 4. Three types of motion arrows in DemoWiz that guide

presenters to the next event of different distances at a (A) far,

(B) nearly the same, and (C) near location.

Figure 6. Examples of DemoWiz visualizations with four

different systems and input event sequences.

Figure 5. A progress in time guides the presenter from the

current event (left) gradually to the upcoming action (right)

using relative timing with a progress bar (top) and absolute

timing (bottom).

Session: Presentation Technologies CHI 2014, One of a CHInd, Toronto, ON, Canada

1585

presenters’ editing decisions to ensure the same playback

speed and time. As with a conventional video player,

presenters can control the video, to pause and play at any

time. In addition, when a video is paused (or stopped),

presenters can hover the mouse over the demo video in the

presenter view to point out an important area, as many

presenters currently do in a live demo. DemoWiz then

simulates and synchronizes a mouse cursor in the audience

view to help the audience follow the demonstration.

Implementation Details

During recording, DemoWiz captures the screen within a

specified region and logs low-level system input data with

timestamps (with an accuracy of 0.1 seconds) from the

operating system, including:

 Mouse events (mouse downs, mouse ups, and mouse wheel

movements) and their positions (in x-y coordinates relative

to the screen-captured region).

 Key-press events (keyboard input).

Once presenters finish their demonstrations, DemoWiz

analyzes the low-level event stream and transforms it into

high-level event metadata. For mouse events, we pair each

mouse down and up into mouse clicks, double-clicks, or

drags. We group any consecutive mouse wheel events within

a time threshold of 2 seconds to one scroll event and any key-

press events within the same threshold to one keystroke event

(e.g., combine keys d-o-w-n-t-o-w-n to “downtown”). For

each high-level event, we log the start and end time

(timestamps of the first and the last low-level event).

Based on the start and end times of these high-level events,

DemoWiz segments the screencast video recording into

event segments. Any gap between two consecutive input

events is marked as an inactive segment, which may include

mouse hovering, UI transitions of the demo system, or static

frames with no visual changes. DemoWiz adjusts the

boundaries of these event segments to avoid any short visual

effect that cannot be observed. DemoWiz examines

segments in a linear order to ensure each segment lasts at

least tmin seconds long, which is set as one second based on

our early testing. For an event segment Si of time (tstart, tend)

that tend −tstart < tmin, DemoWiz expands 0.5 second forward

and backward if Si-1 and Si+1 are inactive. If the adjusted S’i-1

and S’i+1 are shorter than tmin, DemoWiz merges it to the

shorter neighbor segment. Currently, DemoWiz does not

analyze these inactive segments, but techniques including

computer vision and video analysis [1, 5] can be applied for

finer segmentation.

The capturing program is implemented in C#. Two APIs

were used: 1) the Windows Event Log API for mouse and

keyboard hooks and 2) the Expression Encoder 4 API for

screen recording running on Microsoft Windows 7. The

recorded metadata (stored in a JSON object) and screencast

video (in MP4) are read by the Presenter UI, which is

implemented using standard Web technologies, including

HTML5, CSS3, JavaScript, and jQuery. In particular, the

visualization is rendered on the canvas element on top of the

video object on the fly based on the video playback time. The

audience view is generated by the main browser window of

presenter view for video control.

EVALUATION

To evaluate the DemoWiz design, we conducted a controlled

experiment in which participants recorded and edited a demo

video, and gave a presentation with the edited video.

Specifically, we wanted to see if presenters would evaluate

their own performances higher with the support of our

augmented visualizations and control of timing.

Baseline Condition: DemoWiz without Visualization

Since DemoWiz allows for rapid editing of the video, it

would have been unfair to compare it with a conventional

video player without supporting any editing during the

rehearsal phase. We therefore modified our system to serve

as the baseline condition, providing participants with the

same lightweight editing of the video in each condition.

However, during presentation, the baseline condition was

similar to a conventional video player that shows only the

video without event timeline and augmented visualizations.

It also did not support the stop markers and text notes, i.e.,

participants could only adjust playback speed of each

segment and add variable length pauses. During

presentation, participants only saw the video with a

traditional timeline. They could, however, pause (or stop)

and resume the video manually at any time during playback.

Study Design

We conducted the study as a within-subjects design in a

usability room. After recording and editing a video using the

same system, each presenter gave a presentation with both

systems to an experimenter. To control the effect of order

and learning, we prepared two tasks that included similar

interaction flows and counterbalanced the order of the two

systems—DemoWiz and Baseline—but we fixed the order

of tasks. Even though presenting to a single audience

member in a usability room is not the same as using the

system with a large conference audience, it is important to

control the tasks and presentation as closely as possible to

understand the relative benefits of the system in comparison

with a baseline condition.

For each condition, we observed and coded the timing of

narration that matched the video content and noted the time

in seconds when an event was described before, at, or after

the action happened in the demo video. We also marked

obvious breaks between narrations, errors when the

narration was not about the current or following events (e.g.,

discussing actions in a different order than they actually

occurred), and misses when an important action was not

mentioned. To avoid unconscious bias that might influence

the coding of the videos, we neutrally named the recordings

and coded them all in a batch. We focused on objective

timing measurements as much as possible, measuring

deviation from specific video events and their corresponding

Session: Presentation Technologies CHI 2014, One of a CHInd, Toronto, ON, Canada

1586

narrations down to a second. Finally, we gathered qualitative

feedback through satisfaction and preference questionnaires.

Participants

We recruited 12 participants (10 males and 2 females) from

a software company. However, we excluded the data from

two participants (1 male and 1 female); one was due to a

software bug during one condition and another was because

the participant requested to restart a presentation in one

condition. The average age of the effective 10 participants

was 37.3 ranging from 24 to 64 years of age. We recruited

participants who had experience at showing a software

demonstration to an audience such as giving a presentation

at a conference. Four participants were native English

speakers and the rest were fluent in English. The expertise of

participants included audio processing, computer graphics,

human-computer interactions, machine learning,

networking, and software engineering. Each participant was

compensated with lunch coupons worth $20.

Procedure and Tasks

Each session consisted of one training task and two

experimental tasks. For the training task, to introduce the

common features for recording and editing the video, we

designed a simple workflow of five steps to demonstrate

editing of a slide using PowerPoint. The experimenter briefly

demonstrated an example and then introduced the recording

program that captured the screen. Participants were then

asked to practice and record using the recording program.

The two tasks consisted of a similar sequence and

interactions: 1) searching with Bing Maps to show the 2D

map view and the Bird’s Eye view, looking for a restaurant,

and navigating to the interior view of a specific restaurant;

and 2) searching with Google Shopping to show the search

results with the Grid view, filtering and voting for reviews,

and navigating the 3D product view of an espresso machine.

For each task, we provided a specific scenario along with a

list of subtasks. The experimenter walked through this list

with participants to ensure that they could easily find the

features that needed to be demonstrated. Participants were

then asked to practice (3-5 minutes), record (about 2

minutes), and rehearse and edit (5-10 minutes).

To help simulate a conference setting where participants

would not be able to present immediately after having

recorded a demonstration, we inserted an intentional 1-

minute gap between rehearsal and presentation. During this

gap before giving the presentation, we asked participants to

watch a conference showcase video. Participants were then

asked to stand up and gave a 2-3 minute presentation to the

experimenter in a usability room.

After each task, participants filled out a questionnaire of 8-

10 questions asking about their experience (8 for the

Baseline condition, and 10 for the DemoWiz condition). At

the end of the session, an online questionnaire was provided

for them to present overall preferences and leave comments.

Each session lasted about 1.5 hours.

Experiment Setup

Each participant used a desktop computer running Windows

7, Expression Encoder 4 for screen recording, and a web

browser for the DemoWiz user interface. A regular mouse

and keyboard were provided, along with two 27-inch

displays, one for editing (during rehearsal) and showing the

audience view (during presentation), and the other for the

presenter view on a stand-up table. The resolution of both

displays was 1920×1200 pixels. The average captured screen

area was 1311×857 pixels. In the presenter view, the video

resolution was within 1000×600 pixels; in the audience view,

the screencast videos were resized to fill the entire display

with at least 100-pixel wide border in black. During the

study, the experimenter stayed in the room, providing

instructions and sitting behind the participants during the

recording and editing phases.

Results

Ten participants successfully recorded, rehearsed, and gave

a demo with both systems.

Subjective Preference

Figure 7 shows the average subject responses (on the 7-point

Likert scale) from presenters for both systems. We analyzed

these subjective responses using a Wilcoxon signed-rank

test. We found significant differences in responses for ease

of narration (DemoWiz µ = 6.2 over Baseline µ = 4.5, p =

.018) and ease of presentation (6.4 over 5.2, p = .048). We

also found marginally significant differences in participants’

overall satisfaction with their presentations (5.5 over 4.7, p =

.062). Participants also tend to agree that DemoWiz helped

them interpret timing (6.1 over 4.4, p = .067).

In addition, 9 out of the 10 participants preferred DemoWiz

to the system without visualization and would choose to

present with DemoWiz if they were asked to give a public

software demo; the remaining participant indicated no

preference for both questions. The general feedback was also

encouraging. For example, P1 commented “Awesome

system. I'd use it today.” and P5 “felt more confident in being

able to present what I wanted to.”

Figure 7. User feedback from questionnaire on the 7-point

Likert scale.

Session: Presentation Technologies CHI 2014, One of a CHInd, Toronto, ON, Canada

1587

Visualization as a Supportive Cue

Participants answered that they were able to understand

DemoWiz visualization of input events (µ = 6.0) and found

it supportive for their presentations (µ = 6.3). They also

commented that the DemoWiz visualization supported the

presentation in various aspects: “the visualization reminds of

the order of the content” (P1), “Really liked the ability to

know what was coming up” (P2), “It provides better insight

of the progress of the video” (P6), and “viz gave me an idea

about timing or something I was going to forget to say” (P9).

Narration Timing

We coded the 20 recordings of participants’ final

presentations to observe the timing of narration of each

action in correspondence with the video content (11 key

events for both tasks). With DemoWiz, participants tended

to anticipate the upcoming events rather than talk afterwards,

where the average timing was -0.1 seconds with DemoWiz

(i.e., narrated the action before it happened) and 0.4 seconds

with the Baseline condition (i.e., explained the action after it

was shown). We found a significant difference in the number

of times that events were anticipated by the narration, co-

occurred, or occurred after the fact (χ2(2,220) = 8.6, p = .01,

see Figure 8).

In general, this supports our suspicion that DemoWiz would

help in anticipating an event as opposed to talking about it

after it occurred. More important though, was how often a

narrator spoke about an event within several seconds of when

the event actually occurred. By defining better timing as

when a presenter’s explanation came within 2 seconds of a

shown event (either prior, exact, or after), there was marginal

significance by condition (p = .089 with DemoWiz

performing better). In addition, with the Baseline condition,

the timing of narration was less consistent and off more,

varying from 6 seconds early or 10 seconds late with a

variance of 3.9 seconds, in comparison to the DemoWiz

condition with at most 3 seconds early to 3 seconds late and

a variance of 1.9 seconds.

Five participants had an obvious error (forgot the next action

or incorrectly narrated another action), had a long break

(waiting for more than 2 seconds until the action was made),

or missed an action (did not explain an important feature)

when presenting with the Baseline condition. On the other

hand, in the DemoWiz condition no errors were made, and

there were only one long break and one miss from two

different participants, respectively.

Participants’ comments also support the fact that DemoWiz

helped presenters anticipate the upcoming events. P7

explained, “(I) felt better able to time my speech to coincide

with visual events, rather than trailing after them. Without

the event visualizations, I felt like I was talking about what

the audience had just seen, rather than having my words and

visuals combine to a single message.”

Editing Experience

We collected comments on the workflow. Participants found

it easy to record (µ = 6.4) their demonstrations with

DemoWiz. For editing features, they found it easy to edit in

general (6.6), including controlling the playback speed (6.5)

and adding pauses and stops (6.5), but it was less easy to add

text notes (4.8); only two participants used this as reminders.

Although using different strategies, all of the participants

adjusted the playback speed for matching their narration.

Some sped up whenever possible and added stop markers for

transitions; some slowed down the repetitive actions (such as

drags) to demonstrate effects. P6 said, “I really liked being

able to add ‘stop’ events so I could ‘fake’ my demo better.”

DemoWiz made it easy for participants to separate the

capturing and presentation preparation as P5 explained,

“Overall, recording was very easy. In fact, as I got to the

second task, I realized that I really don't need to think about

the words as I record because later on I will be able to slow

down and speed up time …”

On average, the length of demo videos was 2’09” before

editing and 2’05” after editing, and the presentation was

2’38” long. Each participant spent 7.5 minutes on average to

edit. For each demo of 44 segments on average, participants

adjusted 3.15 segments for speedup and 4.25 segments for

slowdown, and added 0.55 pause markers. In the DemoWiz

condition, 1.2 stop markers and 0.2 text notes were added.

DISCUSSION AND FUTURE WORK

New Tool to Present Video in Real-Time

DemoWiz is an attempt to make demo videos more engaging

by helping presenters anticipate the upcoming events rather

than reacting to them, leveraging a refined workflow with

augmented visualizations. Overall, participants liked the

DemoWiz visualization, finding it supportive rather than

distracting. For examples, P4 said, “Event visualization was

very powerful – definitely the way to go.” and P2 (who first

experienced Baseline) was originally skeptical when he first

saw the visualization but immediately found it helpful and

not distracting. This corresponds with our goal of designing

the visualization with a minimal cognitive load.

Editing Capabilities

Lightweight editing during rehearsal not only makes it easy

to edit the recorded video but also lowers the burden of the

Figure 8. The number of times events were anticipated by the

narration, co-occurred, or occurred after the fact.

39

29

42

20

33

57

Anticipate Same After

Fr
e

q
u

en
cy

Narration Timing

DemoWiz

Baseline

Session: Presentation Technologies CHI 2014, One of a CHInd, Toronto, ON, Canada

1588

initial recording. Presenters do not have to prepare a

complete script for exact timing. They also do not have to

repeat recording many times to grab the best recording.

Some participants appreciated our design choice of

providing only minimum but essential editing capabilities to

make the process as light as possible. P2 mentioned that

“Ironically, I think it's better to have limited editing feature

set -- this system was very easy to learn/use.” A few

participants expressed the need for more editing features: P1

explained, “(I wish the system could be) cutting events in

parts so that I can slow down/speed up/remove portions of,

e.g., a mouse trajectory”; P3 wanted to “flip segments

around” and P8 thought “break up or merge blocks” would

be helpful. We found these interesting as the system enabled

more possibilities, but there is a tradeoff between providing

a powerful tool and lowering the burden in editing. We

believe that this is a design choice that needs to be balanced.

Our system does not support combining two or more video

clips for a presentation. Sometimes, presenters may also

want to update part of the existing material to show new

features of their developing systems. For example, P4

explained that he would like to see “the ability to record

multiple clips and insert them in a timeline.” This would be

straightforward future work because the current DemoWiz

framework is designed to be able to implement this.

Editing can still be limited to support fine timing control of

narration. P10 explained, “The length of narration changes

each time I present, and it is difficult to perfectly align the

timing.” Automatically navigating a video based on

presenters’ performances could be an interesting avenue of

exploration, similar to scenarios of following a tutorial [31]

or performing music [24]. However, we decided not to

pursue this approach because it would present its own form

of risk relying on unreliable speech recognition during a live

presentation. Also, considering the time constraints

presenters usually have, we chose to provide full control for

presenters rather than trying to intelligently update a video.

Study Audience Engagement

In our user study, we gathered presenters’ opinions as to how

engaging their presentation was, and we explored the relative

timing of the narration to events in the video. Ultimately,

however, our goal is to help increase audience engagement.

Measuring audience engagement is an ongoing topic of

research, and we would like to explore ways of quantifying

the relative impact of the DemoWiz system, but that work

was out of scope for this project.

Enhance the Audience View

Some participants commented that it would be helpful to

highlight certain input events for the viewers to observe

subtle changes. For example, P10 wanted to enable,

“visualize mouse events such as clicks and scrolls for the

audience so they know what is going on.” The current

DemoWiz framework makes it easy to achieve this goal by

highlighting the audience view only when the event happens.

In other words, presenters and audience will see different

visual effects, where the former observe events in advance

and the latter see a visualization synchronized with the demo

video content.

Beyond Software Demonstrations

Although our current implementation is focused on software

demonstrations, we argue that it is possible to expand our

system design to more advanced inputs. By defining event

types that a system recognizes (e.g., a pinch gesture on a

multitouch device or a specific pose detected by a 3D

sensor), it is possible to log the events and align them with

the captured video for later use. In addition, the enhanced

presentation mode can be potentially applied to other

domains where knowing the timing and the sequence of

events is crucial, such as narrating over animated

presentation slides with dynamic graphical objects.

DemoWiz is an important first step towards validating this

general approach and we believe our work could inspire

future research in these directions.

CONCLUSION

This paper introduces DemoWiz, a system with a refined

workflow that helps presenters capture software

demonstrations, edit and rehearse them, and re-perform them

for an engaging live presentation. DemoWiz visualizes input

events and guides presenters to see what’s coming up by

overlaying visual annotations of events on the screencast

recording where the events happen in a screencast video. It

also provides lightweight editing for presenters to adjust

video playback speed, pause frames, and add text notes. A

user study showed that DemoWiz was effective in helping

presenters capture timing and narrate over a demo video.

REFERENCES

1. Banovic, N., Grossman, T., Matejka, J., and

Fitzmaurice, G. Waken: reverse engineering usage

information and interface structure from software

videos. UIST ’12, ACM Press (2012), 83–92.

2. Baudisch, P., Good, N., and Bellotti, V. Keeping things

in context: a comparative evaluation of focus plus

context screens, overviews, and zooming. CHI ’02,

ACM Press (2002), 259–266.

3. Bederson, B.B. and Hollan, J.D. Pad++: a zooming

graphical interface for exploring alternate interface

physics. UIST ’94, ACM Press (1994), 17–26.

4. Bergman, L., Lu, J., Konuru, R., MacNaught, J., and

Yeh, D. Outline wizard: presentation composition and

search. IUI ’10, ACM Press (2010), 209–218.

5. Chi, P.-Y., Ahn, S., Ren, A., Dontcheva, M., Li, W., and

Hartmann, B. MixT: automatic generation of step-by-

step mixed media tutorials. UIST ’12, ACM Press

(2012), 93–102.

6. Cohen, P. Great Demo! How to Create and Execute

Stunning Software Demonstrations. iUniverse,

Bloomington, IN, USA, 2005.

Session: Presentation Technologies CHI 2014, One of a CHInd, Toronto, ON, Canada

1589

7. Denoue, L., Carter, S., Cooper, M., and Adcock, J. Real-

time direct manipulation of screen-based videos. IUI ’13

Companion (2013).

8. Dixon, M. and Fogarty, J. Prefab: implementing

advanced behaviors using pixel-based reverse

engineering of interface structure. CHI ’10, ACM Press

(2010), 1525–1534.

9. Dragicevic, P., Ramos, G., Bibliowitcz, J.,

Nowrouzezahrai, D., Balakrishnan, R., and Singh, K.

Video browsing by direct manipulation. CHI ’08, ACM

Press (2008), 237–246.

10. Drucker, S.M., Petschnigg, G., and Agrawala, M.

Comparing and managing multiple versions of slide

presentations. UIST ’06, ACM Press (2006), 47–56.

11. Edge, D., Savage, J., and Yatani, K. HyperSlides:

dynamic presentation prototyping. CHI ’13, ACM Press

(2013), 671–680.

12. Goldman, D.B., Curless, B., Salesin, D., and Seitz, S.M.

Schematic storyboarding for video visualization and

editing. ACM Trans. Graphics (SIGGRAPH ’06) 25, 13

(2006), 862–871.

13. Goldman, D., Gonterman, C., and Curless, B. Video

object annotation, navigation, and composition. UIST

’08, ACM Press (2008), 3–12.

14. Good, L. and Bederson, B.B. Zoomable User Interfaces

as a Medium for Slide Show Presentations. Information

Visualization 1, 1 (2002), 35–49.

15. Grabler, F., Agrawala, M., Li, W., Dontcheva, M., and

Igarashi, T. Generating photo manipulation tutorials by

demonstration. ACM Trans. Graphics (SIGGRAPH ’09)

28, 3 (2009).

16. Grossman, T. and Fitzmaurice, G. ToolClips: an

investigation of contextual video assistance for

functionality understanding. CHI ’10, ACM Press

(2010), 1515–1524.

17. Grossman, T., Matejka, J., and Fitzmaurice, G.

Chronicle: capture, exploration, and playback of

document workflow histories. UIST ’10, ACM Press

(2010), 143–152.

18. Gupta, A., Fox, D., Curless, B., and Cohen, M.

DuploTrack: a real-time system for authoring and

guiding duplo block assembly. UIST ’12, ACM Press

(2012), 389–402.

19. Johnson, J.A. and Nardi, B.A. Creating presentation

slides: a study of user preferences for task-specific

versus generic application software. ACM Trans.

Computer-Human Interaction 3, 1 (1996), 38–65.

20. Karrer, T., Weiss, M., Lee, E., and Borchers, J.

DRAGON: a direct manipulation interface for frame-

accurate in-scene video navigation. CHI ’08, ACM

Press (2008), 247–250.

21. Kong, N., Grossman, T., Hartmann, B., Agrawala, M.,

and Fitzmaurice, G. Delta: a tool for representing and

comparing workflows. CHI ’12, ACM Press (2012),

1027–1036.

22. Lafreniere, B., Grossman, T., and Fitzmaurice, G.

Community enhanced tutorials: improving tutorials with

multiple demonstrations. CHI ’13, ACM Press (2013),

1779–1788.

23. Lee, B., Kazi R. H., and Smith, G. SketchStory: Telling

more engaging stories with data through freeform

sketching. IEEE TVCG (InfoVis ’13) 19, 12 (2013),

2416–2425.

24. Lee, E., Wolf, M., and Borchers, J. Improving orchestral

conducting systems in public spaces: examining the

temporal characteristics and conceptual models of

conducting gestures. CHI ’05, ACM Press (2005), 731–

740.

25. Li, Y., Landay, J.A., Guan, Z., Ren, X., and Dai, G.

Sketching informal presentations. ICMI ’03, ACM Press

(2003), 234–241.

26. Lichtschlag, L., Karrer, T., and Borchers, J. Fly: a tool

to author planar presentations. CHI ’09, ACM Press

(2009), 547–556.

27. Mamykina, L, Mynatt, E., and Terry, M.A. TimeAura:

Interfaces for Pacing, CHI ’01, ACM Press (2001), 144–

151.

28. Matthews, T.L. Designing and Evaluating Glanceable

Peripheral Displays. PhD thesis, EECS Department,

University of California, Berkeley (2007).

29. Nakamura, T. and Igarashi, T. An application-

independent system for visualizing user operation

history. UIST ’08, ACM Press (2008), 23.

30. Nguyen, C., Niu, Y., and Liu, F. Direct manipulation

video navigation in 3D. CHI ’13, ACM Press (2013),

1169–1172.

31. Pongnumkul, S., Dontcheva, M., Li, W., Wang, J, and

Bourdev, L. Pause-and-play: automatically linking

screencast video tutorials with applications. UIST ’11,

ACM Press (2011), 135–144.

32. Sharmin, M., Bergman, L., Lu, J., and Konuru, R. On

slide-based contextual cues for presentation reuse. IUI

’12, ACM Press (2012), 129–138.

33. Spicer, R., Lin, Y.-R., Kelliher, A., and Sundaram, H.

NextSlidePlease: Authoring and delivering agile

multimedia presentations. TOMCCAP 8, 4 (2012), 1–20.

34. Yeh, T., Chang, T.-H., and Miller, R.C. Sikuli: using

GUI screenshots for search and automation. UIST ’09,

ACM Press (2009), 183–192.

35. Zongker, D.E. and Salesin, D.H. On creating animated

presentations. SCA ’03: 2003 ACM

SIGGRAPH/Eurographics symposium on Computer

animation, 2003.

Session: Presentation Technologies CHI 2014, One of a CHInd, Toronto, ON, Canada

1590

