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Abstract

Due to physiology and linguistic difference between speak-
ers, the spectrum pattern for the same phoneme of two speak-
ers can be quite dissimilar. Without appropriate alignment
on the frequency axis, the misalignment will reduce the mod-
eling efficiency resutling in performance degradation. In
this paper, a novel data-driven framework is proposed to
build the alignment of the frequency axes of two speakers.
This alignment between two frequency axes is essentially
a frequency domain correspondence of the two speakers.
To establish the correspondence, we formulate the task as
a global optimal matching problem. The local matching of
frequency bins is achieved by comparing the local feature of
the spectrogram along the frequency bins. The local feature
is actually capturing the local pattern in the spectrogram.
Given the local matching score, a dynamic programming is
then applied to find the optimal correspondence. Experi-
ments on TIMIT corpus and TIDIGITS corpus clearly show
the effectiveness of this method.

1. Introduction

The inter-speaker variation is one of the major challenges to
the current automatic speech recognizer. Figure?? shows
some examples of this inter-speaker variation. Due to this
variation, the performance of speaker-independent system
is generally worse than speaker dependent system. The un-
derline reason of inter-speaker variation is mainly the phys-
iology difference(vocal tract shape and length, etc) and lin-
guistic difference(accent and dialect, etc). Because of these
factors, the spectrum pattern for the same phoneme of two
speakers can be very different. Without appropriate align-
ment on the frequency axis, the data variation will dramat-
ically reduce the modeling efficiency and result in perfor-
mance degradation.

There are many algorithms proposed in the literature to
reduce the inter-speaker variation. These methods can be
categorized into two classes: model based normalization
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and feature based normalization. Maximum likelihood lin-
ear regression (MLLR)[1] and Maximum A Posterior (MAP)[2],
etc are well known model based speaker normalization meth-
ods. Vocal tract length normalization (VTLN)[3][4][5][6][7]
is a well known algorithm to warp the frequency axis by in-
troducing a warping function. After warping the spectrum,
VTLN is able to reduce the inter-speaker variation of differ-
ent genders and age groups. There are mainly three differ-
ent warping functions are used in the literature: linear warp-
ing, nonlinear warping and piecewise linear warping. In lin-
ear warping, one parameter will determine the global warp-
ing which may not be able to compensate the total varia-
tion of different speakers. Nonlinear warping and piecewise
linear warping are proposed to further improve the warp-
ing power. In addition to explicitly warping the frequency
axis, there is a large amount of research on learning lin-
ear transformation for speaker normalization based on max-
imum likelihood criterion[8]. Surprisingly, it is shown in
[7] that the VTLN can be represented as a linear transform
in the cepstral domain. All of these normalization meth-
ods are essentially maximizing the likelihood of utterance
given a model. Instead of maximizing the utterance like-
lihood, we are trying to find the frequency axis alignment
for any two speakers. This alignment is actually a mapping
between two frequency axes, in another word a frequency
domain correspondence between two speakers. With the
right frequency domain correspondence between speakers,
the inter-speaker variation can be reduced prior to acous-
tic modeling procedure which will significantly increase the
modeling efficience.

In this paper, we propose a framework of dynamic pro-
gramming to eatablish the frequency domain correspondence.
To construct the metric matrix for dynamic programming,
we represent the freqeuncy bin using a descriptor based on
the local features which decribes the local pattern in spec-
trogram. A distance metric is then defined on the pair of de-
scriptors to quantify the similarity between frequency bins.
The underline assumption of this method is that the two fre-
quency bin is similar if and only if the local patterns are
alike. In this paper, the local feature adopted is the his-



togram of oriented gradient(HOG). Experimental results on
TIDIGITS and TIMIT corpus clearly show the effectiveness
of this method.

The paper is organized as follows: Section 2 illustrates
the proposed framework. Section?? shows the experimen-
tal results, and conclusions are in Section??.

2. Proposed Framework

The correspondence between two frequency axes can be
represented by a warping function from one axis to the other.

f̂ = w(f) (1)

where,f is the frequency bin in one axis and thêf is the
corresponded frequency bin in the other. Here, we only con-
sider the discrete frequency axes due to the nature of FFT
spectrum. In another point of view, the sequence of pairs
(f, w(f)) is actually one path in a 2D grid. Figure?? illus-
trates one path in the 2D grid is a correspondence between
two axes. Here we assume each frequency axis has N dis-
crete frequency bins. Therefore, every possible correspon-
dence is essentially a path in the 2D grid. The problem now
becomes which path is the optimal one? If we can define
the metric structure between frequency bins, the answer to
the problem become clear: the path associated with small-
est accumulated distance. Appreantly, the solution to this
path finding problem perfectly fit into dynamic program-
ming framework. Now the question is how to define the
metric structure between frquency bins.

To construct the metric structure, we represent each fre-
qeuncy bin using a descriptor based on the local pattern in
spectrogram. The underline intuition is that the two fre-
quency bin is similar if and only if the local patterns are
alike. In our framwork, the local pattern is represented us-
ing Hoistogram of Oriented Gradient(HOG) which is a well
know local feature from computer vision literature. Be-
fore extraction of HOG feature, the speech spectrogram is
smoothed to remove the harmonic structure in the spectro-
gram.

2.1. Smoothed Spectrogram

A spectrogramS(t, f) is a 2D representation of the speech
signal based on the short time fourier transform(STFT) anal-
ysis. The two axes of spectrogram are time and frequency
respectively. For visualizing a given spectrogramS(t, f),
the magnitude of a given frequency componentf at a given
time t in the speech signal is indicated by the darkness or
color at the corresponding point. Figure?? shows a exam-
ple of colorful spectrograms. There are basically two major
cues in spectrogram. One is harmonic cue which is due to
the fundamental frequency. The other is formant cue which
is due to the vocal tract characteristic. The harmonic cue is
more related to speaker characteristic while the formant cue
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Figure 1: Spectrogram with smoothing vs without smooth-
ing

convey most of the speech content information. In our sce-
nario, the formant cue is the most important information to
establish the frequency domain correspondence. To obtain
more accurate information from formant cues, we need to
smooth out the harmonic structure in spectrogram. In this
paper, we adopts a simple algorithm which firstly peak up
the spectrum peaks followed with an interpolation to gener-
ate the spectral envelope for each frame. To make the spec-
trogram also smooth along the time line, we use pitch syn-
chronous analysis to generate variable frame length analysis
and the pitch is estimated by a open source speech analysis
tool – praat[9]. Notice, the estimated pitch period is actually
used to define the frame length of STFT. Column (a) and
(b) in Figure 1 show the spectrograms with smoothing and
without smoothing. As shown in the figure, the smoothed
spectrogram preserves the formant location/transition infor-
mation while smooths out the harmonic structure.

2.2. Histogram of Oriented Gradient

After spectrogram smoothing, the local textual patterns in
the spectrogram are captured by a specific local feature –
the histogram of oriented gradient(HOG)[10][11] which is a
well known feature in computer vision literature. The HOG
features are extracted at each a local region centering around
every frequency binf and timet. The HOG basically de-
scribes the coarse information about the gradient orientation
in a local region of the spectrogram. Figure 2 shows sev-
eral local patches of a typical spectrogram and their HOGs.
Based on some primary experiments, we set the appropriate
size of local region to be 10x10 which means 10 frequency
bins by 10 frames region centering around position(t, f)
in the spectrogram. And the orientation is divided into 8
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Figure 2: Histogram of Oriented Gradient(HOG) extracted
from local patches in spectrogram

equally spaced intervals to cover[0 − 2π). The magnitude
of gradient at each grid point is added into adjacent inter-
vals according to the distances to the interval boundaries.
This will smooth the final histogram which make the HOG
feature more robust.

2.3. Simialrity Measure

The extracted HOG features are then normalized into unit
length vectors. The set of HOG features along one fre-
quency binf is denoted as{H(:, f)}. It is used to describe
the local patterns along frequency binf of all time. Then
the simialrity measure between frequency bins is basically
the simialrity between two set of HOG features as follows.

S(H(:, i),H(:, j)) =
1

N

N∑

t=1

s(H(t, i),H(:, j)) (2)

s(H(t, i),H(:, j)) =
1

C

C∑

k=1

s(H(t, i),H(tk, j)) (3)

where,H(:, i) andH(:, j) are the HOG feature sets along
frequency bini andj respectively,S(H(:, i),H(:, j)) is the
similarity measure between these two sets.s(H(t, i),H(:
, j) is the similarity between one HOG feature to a set. The
similarity between two HOG featuresH(t, i) andH(t′, j)
is normalized cross correlation between these two vectors.
In our experiments,C is set equal to3. Notice, theS(H(:
, i),H(:, j)) is asymmetric betweeni andj. We can average
S(H(:, i),H(:, j)) andS(H(:, j),H(:, i)) to obtain a sym-
metric measure. In experiments, we found the performance
between asymmetric and symmetric measure is about the
same.

2.4. Dynamic Programming Matching

The transition paths is set to be(i − 1, j − 1), (i − 1, j −
2) or (i − 2, j − 1) as illustrated in Figure??. The cost
for each path is set equal in our implementation. For more
details about dynamic matching, Chapter 4.7 in [?] provides
substantial material on this topic. The boundary conditions
of the optimal alignment are listed as follows.

w(fmin) = fmin (4)

w(fmax) = fmax (5)

wherefmin andfmax are starting and ending frequency for
our alignment. In this paper,fmin = 0 andfmax = fs/2,
andfs is the sample rate of speech signal.

After obtaining the optimal alignment obtained by dy-
namic matching, we use following warping to warp one
speaker’s spectrogram

S̄(t, f) = S(t, w(f)) (6)

whereS(t, f) is the source spectrogram andw(·) is the opti-
mal alignment function,̄S(t, f) is the warped spectrogram.

3. Experiments and Results

A set of experiments are conducted to evaluate the proposed
method. First of all, we demonstrate the algorithm can es-
tablish the correct correspondence between two speakers.
Male speaker FF and girl speaker JM from TIDIGITS cor-
pus are chosen for this demonstration. Based on the sen-
tence 1A.wav( .3sec) of these two speakers, a correspon-
dence is learned by proposed method. Figure 3 show the re-
sults. It clearly show the correspondence is able to warp the
spectrogram of speaker JM to better match with the spectro-
gram of speaker FF. The first and second formant have been
warped to the correct target position.

Clearly, the proposed method is very effective to reduce
the inter speaker variation. To further confirm this conclu-
sion, we also warp the training data of each category to
make the training data more compact and result in better
modeling efficiency. Table 2 shows the result of warping
both training and testing utterances. Compared to the test
warping experiment, the WER is further reduced at all con-
ditions. The WER of girl’s training and man’s testing drops
from 21.81% to 1.92% which indicate the great efficience
of the proposed method.

4. Conclusion and Future Work

This paper propose a new framework to learn the frequency
domain correspondence between speakers which basically
find the optimal spectral alignment for the two speakers.
Experimental results indicate the effectiveness of this new
framework. The success of the HOG feature actually pro-
vide a alternative way to perform speech recognition: lo-
cal feature based method. In the near future, we plant to
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Figure 3: Correspondence between two speakers. Column
(a) is the spectrogram of digit one(1A.wav) from the speaker
FF in TIDIGITS corpus. Column (c) is the spectrogram
of digit one(1A.wav) from the speaker JM in TIDIGTIS
corpus. Column (b) is the warped spectrogram of column
(c). The two ellipses are used to illustrate the corresponded
structures are correctly wrapped by the frequency domain
correspondence.

run recognition experiments on large database to verify this
method. Also, speech recognition directly after HOG fea-
ture extraction will be another promising direction.
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