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Abstract
A novel framework for text-independent speaker verification is
proposed. The framework is based on a new interpretation of Uni-
versal Background Model. The UBM in our framework actually
defines a transform which maps the variable length observation
into a fixed dimensional supervector(supervector space). Each
speech utterance is then mapped into a point in this supervector
space. The similarity measure in this vector space is progressively
refined via an iterative cohort modeling scheme. The experiments
on NIST 2002 corpus show the effectiveness of this new frame-
work. Overall the EER drops from the baseline system(with T-
Norm) 9.21% to final improved system(without T-Norm) 8.07%.
The new framework can effectively reduce the data dependence in
the final output score which is clearly indicated in the second sets
of experiments. The EER after T-Norm of final system marginally
increases by relatively 1.73% compared to the EER of baseline
system drops 16.12% relatively after T-Norm. Also, the relative
improvement of DCF after T-Norm is marginal for the final im-
proved system (2.47%) compared to 33.68% in baseline system.
It clear shows that the iterative cohort modeling effectively reduce
the data dependence of the final scores, so that T-Norm will not
further improve the system performance. Also, the performance
of novel frame clearly increases as the iteration grows which sug-
gest that the framework progressively refine the similarity measure
on the supervector space with the iterative cohort modeling.
Index Terms: speaker verification, utterance transform, iterative
cohort modeling.

1. Introduction
Speaker verification is a procedure of verifying the claimed
identity of a speaker based on the speech signal from the
speaker(voiceprint). The major factors affecting the performance
of speaker verification system are discriminative capacity of mod-
eling method and robustness to different channel recording, ut-
terance recording and different target speaker. A ideal system of
speaker verification will give 1 if the trial is from the target speaker
while 0 if the trial is from imposter speaker. The score of speaker
verification system actually depends on target speaker and testing
utterance. The speaker model essentially is derived from train-
ing utterance, we denote the score using m(Ut, Ue) where m(·)
is a similarity measure, Ut is the training utterance and Ue is the
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testing utterance. From this formulation, it clearly that the score
m(Ut, Ue) depends on Ut and Ue. To reduce the dependence
of measure from Ut and Ue, [1] use background model (Univer-
sal Background Model) to form a ratio operation LLR(Ue) =
logP (Ue|λ1)−logP (Ue|λ0) where λ1 is obtained via Maximum
a Posterior (MAP) from the background model λ0. This frame-
work is the well known UBM-MAP in the literature. Although,
theoretically the ratio operation can reduce the dependence of the
final score measure to Ut and Ue. However, T-Norm proposed
in [2] further reduces the dependence of the LLR(X2) using ex-
tended cohort modeling techniques. It suggests that the LLR(Ue)
still depends on the data Ut and Ue. In T-Norm, only test utterance
are processed via cohort modelling method which imply that the
T-Normed log likelihood score ¯LLR(Ue) most likely depends on
the target speaker which means that the different target speaker has
different T-Normed score distribution.

In this paper, the background model is not considered as a
Gaussian Mixture Model in traditional viewpoint. The UBM is
viewed as a mapping function which transfer the variable length
observation, feature sequences, into a fixed dimensional observa-
tion. Although we derive this idea from approximation the UBM-
MAP framework system, it is very similar to the Fisher mapping
applying on feature sequence given the background model[3][4].
Instead of kernel methods applied in [4], the similarity measure of
the transformed supervector is carefully designed in our proposal
to take account for the noise and lack of observation in the su-
pervector. After transferring the variable length feature sequences
into this fixed dimensional feature space – supervector space. The
similarity measure of training and testing utterances become to a
similarity measure between two supervectors. In this supervector
space, it is intuitive to apply the cohort modelling techniques to
reduce to data dependence of m(Ut, Ue). However, in order to
choose good cohort points, we need a good similarity measure to
search in the cohort pool which make the problem be a chicken-egg
problem. To circumvent this difficulty, a iterative cohort modeling
framework is proposed to progressively fine tuning the similarity
measure in the supervector space. In a result, the EER and DCF of
the system is reduced gradually. The experiments shows the equal
error rate drops from 9.21% of baseline system to 8.07%.

2. UBM-MAP framework
The UBM-MAP framework is a dominant method in the literature
of Text-independent Speaker Verification. The UBM is a Gaussian
Mixture Model(GMM) which serves as a background distribution



of human acoustic feature space. It can be represented as follows:
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where x is the feature vector with D dimension and λ is the pa-
rameter of Gaussian Mixture Model. M is the number of Gaussian
components in the model. Parameter λ includes the prior probabil-
ity of each component wi, the mean vector of each component µi

and the covariance matrix of each component Σi. Pi(·|λ) denotes
the likelihood function of the ith component which is a multivari-
ate Gaussian in a GMM. For simplicity, the covariance matrix Σi

is usually set to be a diagonal matrix to lower the computation
load. The maximum likelihood(ML) estimation of the parameters
can be obtained via EM algorithm[5].

In the UBM-MAP framework, the target speaker model is gen-
erated by the Maximum A Posterior (MAP) adaptation [6] [1]. The
mean-only MAP adaptation was the best method compared with
other types of MAP adaption such as the fully MAP adaptation [1].
After the target speaker model is generated, a log-likelihood ratio
between the target speaker model and the UBM model is then used
to evaluate testing utterances. The log-likelihood ratio is computed
as follows

LLR(Ue) = LLR(oT
1 ) =
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T
X

t=1

log
P (ot|λ1)
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where (oT
1 ) are the feature vectors of the observed utterance – test

utterance Ue, λ0 is the parameter of UBM and λ1 is the parameter
of the target model. Essentially, the verification task is to construct
a generalized likelihood ratio test between hypothesis H1 (obser-
vation drawn from the target) and hypothesis H0 (observation not
drawn the target). The UBM model is usually considered as a
background model which provides a description of acoustic fea-
ture space. Therefore, the likelihood of testing utterances on this
UBM model P (oT

1 |λ0) can serve as an estimation of P (oT
1 |H0).

3. Utterance Transform
In conventional UBM-MAP framework, UBM is a background
model to describe acoustic feature space of human speech. Ac-
tually, the procedure of MAP adaptation suggest another view of
the purpose of UBM. For mean-only MAP adaptation[1], the MAP
procedure is listed as follow
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where γ(i|ot) is the posterior probability of ith component given
the observation ot. γ(i) is the soft count of observations which

belong to ith component. µ̄i is the sample mean of ith compo-
nent given the observations sequence U = (ot)

T
t=1 and µ̂i is the

adapted mean of ith component from the background mean µi.
The smooth factor γ(i)

γ(i)+α
is design to incorporate the number of

observations into the final adapted mean. The basic idea is that
the adapted mean should rely on background mean if observation
is few. If the observation is sufficient, the adapted mean should
prefer the sample mean for better data fidelity.

By examining this procedure, we shall notice that the
(γ(i), µ̄i)

M
i=1 is the sufficient statistic of utterance U = (oT

1 ). In
this sense, the UBM serves as a transform which maps the variable
length observation U = (oT

1 ) to a fixed dimensional supervector
(γ(i), µ̄i)

M
i=1. And this supervector is the sufficient statistics of

the speech utterance. To simply the following derivation, we de-
fine δ(i) = µ̄i −µi which is the adjustment between sample mean
µ̄i and background mean µi. Now the sufficient statistic of speech
utterance is (γ(i), δ(i))M

i=1. The vector space of this sufficient
statistics are called supervector space. This utterance transform is
listed as follows.

ψ(U) = X = (γ(i), δ(i))M
i=1 (8)

which map the utterance U to a supervector X .
Although the test utterance is not mapped into its sufficient

statistic explicitly in UBM-MAP framework, the log-likelihood
score of a test utterance can be bounded by a function only de-
pends on the sufficient statistics of the training and testing utter-
ances. The derivation is as follows.
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where µ̂i is the adapted target mean of ith component and µ̄i is the
sample mean of testing utterance, bi = µ̂i+µi

2
. So, this bound is

a function only depends on the supervectors of training utterance
and testing utterance.

Recall the Fisher mapping of a observation sequence is de-
fined as

Φ(oT
1 ) = ∇λ logP (oT

1 |λ) (12)
In our scenario, the free parameter of UBM are component weights
and component mean, so the fisher mapping of utterance defined
by
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which is very similar to the sufficient statistic of speech utterance.
Instead of treat ∇wi

logP (oT
1 |λ) and ∇µi

logP (oT
1 |λ) equally,

we carefully design a similarity measure for the sufficient statistic
to take account of noise and lack of observation. The measure is
defined on the supervector space as
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where Xt and Xe are the supervector of training and testing ut-
terances. The main two parts of this similarity measure are lo-
cal score mi

0(Xt, Xe) = δt(i)Σ
−1
i δe(i) and w(γt(i), γe(i)) =

γt(i)
γt(i)+α

γe(i)
γe(i)+α

. The first part is a scaled cross correlation which
is designed to account for the similarity of adjustments at each
Gaussian component. The second part is designed to incorporate
the number of observations, the more features are observed at one
Gaussian component, the more contribution of the corresponding
cross correlation term is added into the overall score. Although
γt(i)γe(i) are valid candidate as weighting factor, γt(i)

γt(i)+α

γe(i)
γe(i)+α

is found a better choice. In our experiments, α = 16.

4. Iterative Cohort Modeling
As shown in previous section, the likelihood of UBM
logP (Ue|λ0) is a estimation of the likelihood of H0

logP (Ue|H0). Ideally, after ratio operation, LLR(Ue) =
logP (Ue|λ1) − logP (Ue|λ0) will be data independent. How-
ever, in practice this ratio operation does not reduce all the
data dependence. T-Norm[2] extends cohort modeling method
to further normalize this score which suggest that the cohort
modeling is a effective scheme to reduce the data dependence of
the output score. The cohort modeling is to estimate the likelihood
of H0 by a small representative set of models. The main issues of
cohort modeling are similarity measure between speaker models,
size of the cohort set and fusion of individual scores of the cohort
set[7][8][9]. In [10], a robust local scoring function is proposed
which indeed is a special case of the iterative cohort modeling
method.

The basic problem of applying the cohort modeling technique
in our framework is to find a appropriate similarity measure in the
supervector space. First of all, to define a good similarity in this
space, we need to select a cohort set for each speaker model which
in supervector space is one sample point. To select a good cohort
set, we need a good similarity measure. To solve this chicken-and-
egg problem, we adopt a iterative cohort modeling scheme. Equa-
tion 15 is a similarity between two supervector in the transformed
supervector space. This measure is used as an initial similarity
measure. The initial cohort set C0 is selected base on this initial
measure. After obtaining the initial cohort set, how do we refine
the similarity measure? The scheme we adopted is thresholding
for normalizing the score of different components. Basically, the
threshold of each component is computed as follows.

t0(i) =
1

Ncohort

Ncohort
X

m=1

mi
0(Xm, Xt) (17)

where Ncohort is the number of cohort speakers, Xm is the su-
pervector of the training utterance of mth cohort speaker and Xt

is the supervector of the training utterance of target speaker and
t0(i) is the threshold of ith component. After getting the thresh-
old for each component, the local score mi

0(Xt, Xe) is refined to
mi

1(Xt, Xe) = mi
0(Xt, Xe)−(tt0(i)+t

e
0(i))/2 where tt0(i) is the

threshold of training utterance and te0(i) is the threshold of testing
utterance. By this formulation, we treat the training and testing
utterance equally, and the testing utterance is also processed with
the cohort modeling which unify the online cohort modeling and
offline cohort modeling method in a principle way.

Now, the refined similarity measure is
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With this refined similarity measure m1(Xt, Xe), we can rese-
lect a new cohort set C1 and compute a new threshold t1(i) =

1
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1(Xm, Xt). Now the refined local measure
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measure is
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This iteration can be repeated further, the empirical finding is that
the improvement become marginal after m4(Xt, Xe). In our ex-
periments, the Ncohort = 10 based on empirical searching. The
iteration can be repeated as many as possible, however, we found
after the fourth iteration, the performance can not be improved.

5. Experiments and Results
In order to show the effectiveness of the novel framework, the ex-
periments are conducted on the NIST 2002 Speaker Recognition
corpus [11]. The frontend processing is done with HTK toolkit[12]
to extract MFCC+DeltaMFCC feature, the total dimension is 24.
Feature warping[13] is applied after MFCC extraction. The UBM
is a 1028 component Gaussian Mixture Model trained on NIST01
training set which contains 174 speakers and roughly 2 minute
speech per speaker. These 174 speakers also serves as cohort
speaker pool. For T-Norm[2], these 174 speakers serves as the
T-Norm Speaker pool. The NIST 2002 corpus contains 330 speak-
ers and 39105 trials. The training utterance of each speaker is a
telephone conversation that lasts from 60 sec. to 120 sec. The
testing utterance lasts from 3 sec. to 120 sec.

The baseline system is a UBM-MAP system with the log-
likelihood ratio scoring and T-Norm version. In order to verify
that the iterative cohort modeling can effectively reduce the data
dependence, we also perform T-Norm for each similarity measure
mi(·). The argument is that if the measure is data independent,
then T-Norm will not improve the system performance.

Table 1 shows the experimental results. The performance was
measure with two criteria: equal error rate(EER) and minimum
Detection Cost Function(DCF)[11]. Table 5 shows the results of
different iterations compared to the baseline system. It turns out
that the T-Normalization do improve the system performance in
first few iterations. Comparing the T-Normed baseline system
and m4(·) without T-Norm system, the improvement over the T-
Normed baseline is 12.38% in EER and 0.81% in DCF. Figure
1 shows the DET curves of T-Normed baseline and m4(·) sys-
tem(without T-Norm). The improvement of the novel framework
is fairly consistent over most range of DET curve.

In order to further investigate the performance of the novel
framework, we draw the T-Norm improvement of above experi-
ments. Comparing the T-Norm improvement for mi(·) system,
we will able to find the detail structure of the new framework. If
the T-Norm bring more improvement, the mi(·) score has more
data dependence. Ideally, from m0(·) to m4(·) the T-Norm im-
provement will drop to marginal. Table 2 shows the experimen-
tal results. Clearly, the T-Norm improvement drop from 23.68%
to −1.73% in terms of EER and 33.24% to 2.47% in terms of
DCF. This results verify our claim that the iterative cohort model-
ing method unify the offline and online cohort modeling together
and reduce the data dependence in one principal way.



EER/DCF w/o T-Norm w T-Norm
Baseline 10.98%/52.23(10−3) 9.21%/34.64(10−3)
m0(·) 14.61%/65.47(10−3) 11.15%/43.71(10−3)
m1(·) 9.06%/41.22(10−3) 8.83%/35.38(10−3)
m2(·) 8.28%/36.35(10−3) 8.38%/33.58(10−3)
m3(·) 8.25%/34.87(10−3) 8.38%/33.31(10−3)
m4(·) 8.07%/34.36(10−3) 8.21%/33.51(10−3)

Table 1: Performance comparison between baseline and novel
framework with different iterations

Rel. Improvement(EER) Rel. Improvement(DCF)
m0(·) 23.68% 33.24%
m1(·) 2.54% 14.17%
m2(·) −1.21% 7.62%
m3(·) −1.58% 3.7%
m4(·) −1.73% 2.47%

Table 2: Relative performance improvement of novel framework
after T-Norm with different iterations
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Figure 1: DET curves of T-Normed Baseline and m4(·) without
T-Norm

6. Conclusion and Future direction
In this paper, we propose a novel framework for text-independent
speaker verification. The framework is based on the new interpre-
tation of Universal Background Model. The UBM in our frame-
work actually defined a transform which maps the variable length
observation into fixed dimensional supervector. With this trans-
form, each utterance is mapped into a point in the transformed su-
pervector space. To define a good similarity measure in this space,
an iterative cohort modeling scheme is adopted to progressively
refine the similarity measure. The experiments on NIST 2002 cor-
pus clearly show the effectiveness of this new framework. The
new framework achieve 12.58% improvement on EER(9.21% →
8.07%) and marginal improvement on DCF(34.64(10−3) →
34.36(10−3)). To further investigate the effectiveness of this novel
framework, we draw a table to show the improvement after T-
Norm. With iteration grows, after T-Norm, the improvement of
EER drops from 23.68% to −1.73%, and the improvement of

DCF drops from 33.24% to 2.47%. This results confirm that the
new framework can further reduce the data dependence in the final
output score as the iteration grows which suggests the iterative co-
hort modeling method is able to reduce the data dependence in one
principal way by unifying the offline and online cohort modeling.

Since the UBM is used to define a mapping function, the Gaus-
sian Mixture Model may not be the optimal choice. In the near
future, we will investigate different clustering techniques to find a
optimal choice to define the mapping. Also, the similarity measure
m4(·) can be used as a kernel function and apply the well known
support vector machine in the transformed supervector space for
speaker verification.
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