In Proc. IAPR Workshop on Machine Vision Applications, pages 215-218, Tokyo, Japan, Nov. 2000.

Visual Screen: Transforming an Ordinary Screen into a Touch Screen

Zhengyou Zhang and Ying Shan
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

Abstract

Touch screens are very convenient because one
can directly point to where it is interesting. This
paper presents an inexpensive technique to trans-
form an ordinary screen into a touch screen using
an ordinary camera. The setup is easy: position a
camera so it can see the whole screen. The system
calibration involves the detection of the screen re-
gion in the image, which determines the projec-
tive mapping between the image plane and the
screen. In order to compensate the non-flatness
of the screen, an optional step can be applied by
displaying a set of dots on the screen. In run-
time, our system locates the indicator (finger tip
in our current implementation) in the image and
converts the image position to the cursor position
on the screen. Finger gesture or key input exe-
cutes appropriate actions. The system has been
demonstrated to be quite accurate, and its appli-
cations include kiosk and kids entertainment.

1 Overview

There are several works [1, 2, 3] reported to
use human finger as pointing device. Although
the configurations of these systems differ in that
[1] is using a wearable computer and [2, 3] are
using camera-projector pairs, they are all as-
suming a plane to plane image-screen mapping.
Since a large number of computer screens are not
flat, this assumption does not apply in our case.
We have proposed in this paper an image-screen
mapping algorithm to correct the non-flatness of
the computer screen. We have developed a seg-
mentation method specially tailored for computer
screen background. We have also developed a ro-
bust method to find the tip point location. The
overall performance of the system is fast, accu-
rate, and reliable.

The system setup essentially involves only po-
sitioning a camera so as to view the screen of
a computer monitor. Ideally, the camera views
the screen from a point along a line normal to
the center of the screen. However, as this will
likely interfere with the user who typically sits in
front of the computer monitor, the camera can
be shifted away from the normal line to get it
out of the way of the user. The camera should
not be moved too far away from the normal line,
however, or errors will be introduced in the pro-
cess. It has been observed that the camera can
be positioned up to about 30 degrees off of the
aforementioned normal line in any direction and
still provide error-free performance.

Figure 1 is the diagram of the Visual Screen
(VS in short) system. Four dash boxes repre-
sent four major parts of the system. From left
to right, these boxes will be referred as Calibra-
tion block, Model Extraction I block, Main block,
and Model Extraction IT block, respectively. The
Main block is the kernel of the system. Its func-
tionality is to locate the tip point of the indicator
and map its image coordinates to the screen co-
ordinates. The task of tip point location contains
two processes, i.e., to segment the indicator from
the background, and to find the tip point of the
indicator. The segmentation requires color mod-
els for both the background and the indicator.
The Model Extraction blocks I, and II in Fig-
ure 1 are used to extract the background model
and the foreground model, respectively. The Cal-
ibration block is used to establish the mapping
between the image coordinates and the screen
coordinates. This mapping is then used in the
Main block to find the corresponding screen co-
ordinates for the tip point once its image coordi-

nates are estimated.

Image of Image
theScreen Stream of Image of the
without Indicator on Indicator
Indicator Screen
£
Image-Screen Extract #{ Indicator Segmentation }t Extract Indicator
Calibration d Model Model

$ # Find the Tip Point of the Indicator
Image-Screen Background H
Mapping Model

‘ Map the Image Coordinator of the
» Indicator's Tip Point to the Screen
Coordinator

Indicator Model

Calibration Model Extraction | Main ModelExtranction Il

Figure 1: Diagram of the Visual Screen system.
From left to right, four major functional parts
of the system include calibration, extraction of
a background model, extraction of a foreground
model and a main processing block.

2 Accurate image-screen calibration

If the screen is flat, the plane perspectivity
from the screen plane and its 2D projection on
the image plane is described by a homography, a
3 x 3 matrix defined up to a scale factor. This
matrix can be easily determined from 4 pairs of
image-screen point correspondences. The corre-
spondences are not difficult to obtain because we
know the screen coordinates of four screen cor-
ners, and their corresponding image points can
either be detected automatically or specified by
the user.

In most cases, however, screens are not flat.
This problem has been addressed as follows.
First, we display on the screen a grid of circles
(referred as calibration points hereafter), whose
centers are known in the screen plane. A circle is
usually projected in the image plane as an ellipse.
We can easily compute the centroid of an ellipse.
As the extent of an ellipse is small in our case,
the centroid of an ellipse can be well considered
as the projection of the center of the correspond-
ing circle. Second, we compute a homography
from the image-screen correspondence of the cal-
ibration points. Since the screen is actually not
flat, the homography thus computed is just an
approximation. Third, we map the calibration
points on the image back to the screen (called
the estimated calibration points), and compare

the estimated calibration points with the original
ones. The difference between the original and the
estimated points then defines a residual vector
on each grid point. This grid of residual vectors
are then used to compensate the mapping errors
caused by the non-flatness of the screen. Bilin-
ear interpolation is used to compute the residual
vectors of screen points not on the grid. Figure
4 demonstrates the calibration result.

3 Reliable color segmentation

It sounds difficult to separate the indicator
from the background screen because its contents
change frequently. However, it has been observed
in our experiments that the images of screen pix-
els have some degrees of invariance in the color
space. That is, they are dominated by a kind of
blue color. This observation forms the base of
our segmentation algorithm described as follows.
We firstly compute a color model for the screen
without the indicator. A number of pictures with
rich color are displayed on the screen in order
to make the model as general as possible. To
compute this background model all of the pixels
in the image are histogrammed-namely, for each
pixel its color intensity is placed in the proper
bin of a preferred possible 256 intensity levels.
This is preferably done for each of the red, green
and blue (RGB) channels thus generating three
separate histograms. Alternately, one histogram
could be generated using some joint space rep-
resentation of the channels. Once the histogram
has been computed, a Gaussian distribution for
each histogram is calculated to provide the mean
pixel intensity of the background and the vari-
ance.

Once the modeling of the background of the
screen has been completed, the model for the in-
dicator or pointer is computed in order to sep-
arate the indicator from the background. This
is done by asking the user to select a polygo-
nal bounding area displayed on the screen for
the indicator of choice. Only the pixels inside
this polygonal area are used to compute the color
model for the indicator. The computation is done
in the same way the background model was pro-

duced. Usually the color model for the indicator
will be dominated by a different color in color
space than the background. Once a color model
for the indicator has been determined, this model
will not have to be recalculated unless a pointer
with a significantly different color is employed.

Once both the screen background and indi-
cator models are determined, a standard Bayes
classifier (or the like) is used to segment the in-
dicator from the screen background. If the ex-
tracted models of the foreground and background
are split into separate RGB channels, the Bayes
classifier determines the probability a given pixel
color is a background pixel for each channel and
these probabilities are multiplied together. The
classifier also determines the probability a given
pixel is a foreground pixel for each channel and
multiplies the probabilities together. Next, the
background pixel probability product is divided
by the foreground pixel probability product. If
this quotient is greater than one then the pixel is
determined to be a background pixel, otherwise
it is determined to be a foreground or indicator
pixel. Figure 5 demonstrates the segment result
of a hand, of which any finger could be an indi-
cator.

4 Robust finger tip locating

It is not trivial to define the tip point of an in-
dicator. What is really desired is the consistency,
or the invariance of the definition. In our current
implementation, the tip point is defined as the
intersection of the indicator’s center line and its
boundary along the direction that the indicator
is pointing towards. In our prototype system, we
have simplified the definition by allowing only the
upwards pointing direction. We have developed
an algorithm to robustly find the center line of
the indicator, as well as its intersection with the
upper boundary of the indicator. The boundary
of the indicator can be found easily from the seg-
mentation result mentioned above.

The algorithm can be elaborated as the fol-
lows. A cumulative total of the number of pixels
that belong to the foreground are calculated on
a scan line by scan line basis starting at the top

of the image containing the indicator. The re-
sultant histogram will be referred as horizontal
histogram. The horizontal histogram is next an-
alyzed to determine the scan line where the fore-
ground pixels first appear and increase in cumu-
lative total thereafter (i.e., representing a step).
The identified scan line roughly corresponds to
where the indicator tip location may be found.
Next, a number of lines above and below the iden-
tified line (e.g., 15 lines) are selected and each
is scanned to find the start and end of the fore-
ground pixels in the horizontal direction. In addi-
tion, the center point of each series of foreground
pixels along each of the scan lines is determined
and a line is robustly fit through these points.
The pixel corresponding to the indicator tip lo-
cation is then determined by scanning all pixels
within the previously identified indicator window
(e.g., 15 lines) to find the boundary pixels. The
pixel corresponding with the tip of the indicator
is the boundary pixel where the previously deter-
mined centerline intersects the boundary of the
indicator. Figure 2 demonstrates the result of tip
point location.

Figure 2: Tip point location. Line [is the center
line of the indicator, and point p is the tip point.
Both of them can been reliably found with rea-
sonable accuracy. Line h indicates the scan line
where the foreground pixels first appear in the
direction of the y-axis. The horizontal histogram
is shown on the right side of the image

The stability of the finger tip location is further
improved by filtering the location over time with
a Kalman filter.

5 Experiment results

Figure 3: Photo editing with VS system. In the
left image, the paint brush has been moved by
finger tip to the place where the user wants to put
the bubble. The right image shows the bubble.
The paint brush is highlighted by an arrow in
both images

The VS system is implemented on a Pentium
1T 450MHz machine with an average frame rate of
19fps. The system is designed to work in conjunc-
tion with the native mouse. The native mouse is
used to control the cursor as usual when no indi-
cator is detected within the screen area. When an
indicator is detected, it takes control of the cur-
sor over the mouse. Figure 3 shows our system
working on a photo editing environment (Paint
Shop Pro) where the finger tip is used to control
the paint brush. Despite the complicated back-
ground, which is frequently encountered in graph-
ical systems, the VS system is able to control
the brush robustly and consistently. Actions like
left-button click is now simulated by key strokes.
They will be triggered by a gesture recognition
subsystem in the next version of the VS system.

6 Conclusion

We have introduced a system and method
for turning a regular computer monitor screen
into a touch screen using an ordinary camera.
It includes an image-screen mapping procedure
to correct for the non-flatness of the computer
screen. It also includes a segmentation method to
distinguish the foreground from the background
of a computer screen. Additionally, this system
and method includes a robust technique of find-
ing the tip point location of the indicator (such
as the finger tip). The screen coordinates of the
tip points are then used to control the position
of the system indicator.

References

[1] T. Starner, S. Mann, B. Rhodes, J. Levine,
J. Healey, D. Kirsch, R. W. Picard, and A. Pent-
land. Augmented reality through wearable com-
puting. Presence, Special Issue on Augmented Re-
ality, 6(4), 1997. Also as MIT Media Lab Techni-
cal Report TR-397.

[2] C. Maggioni and B. Kammerer. Gesturecomputer
- history, design and applications. In Ed. R.
Cipolla and A. Pentland, editors, Computer Vi-
sion for Human-Machine Interaction. Cambridge
University Press, 1998.

[3] J. Coutaz, Crowley, J. L., and F. B rard. Things
that see: Machine perception for human com-
puter interaction. Communications of the ACM,
43(3):54-64, 2000.

Figure 4: Calibration result. The left image shows
the original calibration points (in red) and the esti-
mated points (in green) with homography only. The
right image shows the result with residual vector inter-
polation. The error of image-screen mapping is largely
reduced in the right image

Figure 5: Segmentation result. Left image shows
a picture of a hand on the screen. Indicator could
be any finger of the hand. Right image shows the
segmented hand. Note that the segmentation result
is not affected by the complicated screen background

