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Abstract

FIFO queueing is simple but does not protect traffic from
high-bandwidth flows, which include not only flows that
fail to use end-to-end congestion control, but also short
round-trip time TCP flows. At the other extreme, per-flow
scheduling mechanisms provide max-min fairness but are
more complex, keeping state for all flows going through
the router. This paper presents RED-PD, a mechanism that
combines simplicity and protection by keeping state for just
the high-bandwidth flows. RED-PD uses the packet drop
history at the router to detect high-bandwidth flows in times
of congestion and preferentially drops packets from these
flows. This paper discusses the design decisions underlying
RED-PD. We show that it is effective at controlling high-
bandwidth flows using a small amount of state and very
simple fast-path operations.

1. Introduction

The dominant congestion-control paradigm in the Inter-
net is FIFO (First In First Out) queueing at routers in combi-
nation with end-to-end congestion control. FIFO queueing
is simple to implement and well-suited to the heterogeneity
of the Internet. But it provides little protection from high-
bandwidth flows that consume excessive bandwidth at the
expense of other flows at the router. These high-bandwidth
flows can be TCP flows with small round-trip times (a TCP
flow’s throughput is inversely proportional to its RTT), or
worse, flows not using end-to-end congestion control. Dur-
ing congestion it is important to control the high-bandwidth
flows to improve the performance of the rest of the traffic.

At the other extreme, per-flow scheduling mechanisms
provide max-min fairness, but keep state for all the flows.
This is an unnecessarily complex solution because most of
the flows going through the router are “Web mice” (short
HTTP flows). Moreover, the level of fairness provided by
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such schemes is not required for best-effort traffic, which is
the focus of this paper.

In this paper, we present RED-PD, RED [9] with Pref-
erential Dropping. We show that by keeping state for only
the high-bandwidth flows and controlling their throughput
during congestion, a router can combine the simplicity of
FIFO with the protection of full max-min fair techniques.
We call this approach partial flow state, and show its ef-
fectiveness in an environment like the Internet, dominated
by end-to-end congestion control and a skewed bandwidth
distribution among flows, in which a small fraction of flows
account for a large fraction of bandwidth.

RED-PD identifies high-bandwidth flows using the RED
packet drop history. The packet drops from active queue
management are a reasonably unbiased sample of the in-
coming traffic [7], and at the same time represent flows that
have been sent congestion indications by the router. Flows
above a configured target bandwidth are identified and mon-
itored by RED-PD.

RED-PD controls the throughput of the monitored flows
by probabilistically dropping packets from them at a pre-
filter placed before the output queue. The dropping proba-
bility, computed using the identification mechanism itself,
is such that the rate of the flow into the output queue is
reduced to the target bandwidth. RED-PD suspends pref-
erential dropping when there is insufficient demand from
other traffic in the output queue, for example, when RED’s
average queue size is less than the minimum threshold.

Figure 1 illustrates RED-PD’s impact on incoming traf-
fic. Assume that flows are identified when their arrival rate
is more than the target bandwidth T, and, when monitored,
are restricted to T if there is enough demand from other
flows. RED-PD has no effect when T is set higher than
the maximum arrival rate of a flow. As T is pushed down,
the bandwidth obtained by the monitored flows (A) will
be curtailed. This reduces the ambient drop rate, defined
as the drop rate at the output queue, and enables the non-
monitored flows (B, C, D) to receive more bandwidth.

In the next section we discuss existing proposals that
use preferential dropping to improve fairness among flows.
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Figure 1. Restricting flows to a target band-
width � .

Section 3 discusses some trace-based results showing that
controlling the small number of high-bandwidth flows can
significantly improve the performance of other traffic. Sec-
tion 4 describes RED-PD in detail, and Section 5 evaluates
it using simulation. A discussion on complexity of RED-PD
is contained in Section 6, and on the problem of unrespon-
sive flows in Section 7.

2. Related Work

Mechanisms for per-flow treatment at the router can
be classified as based on either scheduling or preferential
dropping. Scheduling approaches place flows in different
scheduling partitions, and the scheduling mechanism deter-
mines the bandwidth received by each partition. In con-
trast, preferential dropping mechanisms vary the dropping
rate of a flow to control its throughput. The technical report
[11] discusses the advantages of preferential dropping over
scheduling.

Figure 2 classifies the existing approaches based on their
control approach, and roughly places them along the contin-
uum of per-flow treatment. The amount of flow state kept
increases from right to left. In the remainder of this section
we only discuss proposals that use preferential dropping,
the approach taken by RED-PD.

This paper is in some sense a successor to [6], in which
Floyd and Fall discuss mechanisms for identifying high-
bandwidth flows from the RED drop history. However, their
approach is limited by the choice of aggregate scheduling-
based mechanisms (CBQ) instead of the per-flow preferen-
tial dropping mechanisms used by RED-PD.

RED-PD draws heavily from Core-Stateless Fair Queu-
ing (CSFQ) [22] and Flow Random Early Detection
(FRED) [10], two approaches that use per-flow preferen-
tial dropping in concert with FIFO scheduling. The goal of
CSFQ is to achieve fair queuing without using per-flow state
in the core of an island of routers (an ISP network, for in-
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Figure 2. A continuum of per-flow treatment
at the queue. FQ [4], DRR [21], SFQ [13], and
Router Mechanisms [6] are scheduling-based
schemes, whereas CSFQ [22], FRED [10], SFB
[5], RED-PD, and CHOKe [18] use preferential
dropping.

stance). On entering the network, packets are marked with
an estimate of their current sending rate. A core router es-
timates a flow’s fair share and preferentially drops a packet
from a flow based on the fair share and the rate estimate car-
ried by the packet. Key differences from our approach are
that CSFQ requires an extra field in the packet headers, and
all the routers within the island need to be modified.

FRED maintains state at the router only for those flows
that have packets currently in the queue. The dropping
probability of a flow depends on the number of buffered
packets from that flow. FRED’s fair allocation of buffers
yields different fairness properties from a fair allocation of
bandwidth [22].

In CHOKe [18], an incoming packet is matched against a
random packet in the queue. If they belong to the same flow,
both packets are dropped, otherwise the incoming packet
is admitted with a certain probability. The scheme tries
to leverage the fact that high-bandwidth flows are likely to
have more packets in the queue. CHOKe is not likely to per-
form well when the number of flows is large and even the
high-bandwidth flows have only a few packets in the queue.
The simulations in the paper show that it achieves limited
performance; for example, the high-bandwidth UDP flows
get much more than their fair share.

[17] presents an approach that is an outgrowth of CSFQ
and CHOKe. The router keeps a sample of arriving traffic,
and an incoming packet is matched against this sample. The
dropping probability of the incoming packet is determined
by the number of packets in the sample from the same flow.

Stochastic Fair Blue (SFB) [5] relies on multiple levels
of hashing to identify high-bandwidth flows. As the authors
state in their paper, the scheme works well when there are
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Figure 3. Skewedness of bandwidth distribu-
tion.

only a few high-bandwidth flows. In the presence of multi-
ple high-bandwidth flows SFB ends up punishing even the
low bandwidth flows as more and more bins get polluted.

The scheme presented in [2] drops packets based on the
buffer occupancy of the flow, and ERUF [1] uses source
quench to have undeliverable packets dropped at the edge
routers. SRED [15] relies on a cache of recently seen flows
to determine the high bandwidth flows.

What makes RED-PD different from other schemes is
that it explicitly leverages the skewed bandwidth distribu-
tion in the Internet to improve the performance of low-
bandwidth flows using a small amount of state, and has a
predictable effect on the traffic going through the router.

3. Why does a Partial Flow State Approach
Work?

In this section we present trace results showing that
RED-PD’s approach of keeping state for only high-
bandwidth flows can be effective. The traces that we ex-
amined exhibit the same characteristics as found by others
[3], namely, that a small fraction of flows are responsible
for most of the bytes sent. We further show that identifying
and preferentially dropping from this small number of flows
is a powerful approach, since controlling the throughput of
these flows results in a significant decrease in the ambient
drop rate rate and leads to a higher throughput for other
flows.

Figure 3 shows results from a one-hour-long trace taken
from UCB DMZ in August 2000. It shows the fraction of
flows responsible for a given fraction of bytes and packets
in the trace. A flow here is defined by the tuple (source IP,
source port, destination IP, destination port, protocol). A
flow was timed out if it was silent for more than 64 seconds
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Figure 4. Skewedness over smaller time
scales.

(the results with different timeout values are similar). It is
clear from the graph that a mere 1% of the flows accounted
for about 80% of the bytes and 64% of the packets.

Figure 4 plots the same information for shorter (than
flow lifetimes) time windows. It shows the fraction of flows
responsible for a given fraction of bytes and packets in a
given time interval. We can see that the skewedness holds
not only for long time periods but also for smaller time
scales, at which one is likely to identify the high-bandwidth
flows.

Another property necessary for an identification based
approach to be effective is that the high-bandwidth flows in
a given interval be a good predictor of the high-bandwidth
flows in the next interval. Figure 5 plots the fraction of
bandwidth consumed in the subsequent interval by flows
that accounted for a particular amount of bandwidth in the
current interval. For example, from the graph in Figure 4
we can see that in a 5-second interval, 1% of the flows sent
close to 50% of the bytes. Figure 5 tells us that these flows
were responsible for 36% of the bandwidth in the next 5-
second interval.

4. RED-PD

There are two components in RED-PD: identifying high-
bandwidth flows and controlling the bandwidth obtained by
these flows. We describe each in turn.

4.1. Identifying High Bandwidth Flows

RED-PD uses the RED drop history (mark history in the
presence of ECN [19]) to identify high-bandwidth flows.
Since RED drops are probabilistic, and not the result of a
buffer overflow, they can be considered as reasonably ran-
dom samples of the incoming traffic [7]. Moreover, the drop
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Figure 5. Predictive nature of bandwidth us-
age.

history represents flows that have been sent congestion sig-
nals. Thus, the drop history can be used to identify a high-
bandwidth flow and to confirm that the identified flow has
in fact received loss events.

The target bandwidth, above which a flow is identified, is
defined as the bandwidth obtained by a reference TCP flow
with the target RTT � and the current drop rate � at the
output queue. Let �������	��
 denote the average sending rate
in pkts/s of a TCP flow with an RTT � and a steady-state
packet drop rate � . From the deterministic model of TCP in
[6] (reasons for choosing this equation instead of the more
precise one given in [16] are discussed in the Appendix of
[11]), we have:

�������	��

�
� ��� �
� � �

�
(1)

RED-PD’s goal is to identify flows that are sending more
than �������	��
 , the reference TCP flow’s rate.

In the deterministic model with periodic packet drops,
a TCP congestion epoch contains exactly one packet drop,
and therefore contains �� packets. Hence, the congestion
epoch length ������������
 , in seconds, of a TCP flow with RTT� with drop rate � is

���������	��

�
�

�������	��
�� � �� ��� � � (2)

Flows sending at a rate higher than ����������
 will have, on
average, more than one drop in �����	������
 seconds, given
a steady-state packet drop rate � . RED-PD maintains the
packet drop history over !#"$������������
 seconds, for some
small integer ! . The high-bandwidth flows will roughly
have ! or more drops in this history. RED-PD partitions the
history into multiple lists containing drops from consecutive
intervals of time. RED-PD keeps % lists, where the length
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Figure 6. Architecture of a RED-PD router.

of a list is !
% �����	������

� !

%
�� ��� � � (3)

Instead of identifying flows with ! or more losses in a his-
tory of !&"'�����	������
 seconds, RED-PD identifies flows
with losses in at least ! of % lists. Because of the use of
multiple lists, flows with losses concentrated in fewer lists
are not identified1. There are several reasons why a flow
might have multiple losses but not spread over ! or more
lists: because a single congestion event for that flow was
composed of multiple drops from a window of data; be-
cause the flow reduced its sending rate after several RTTs
with drops; or because a low-bandwidth flow got unlucky
and suffered more than its share of drops.

In our simulations we use !(�#) and % � �
(with�*�,+�-�.0/ and �1� �32

, this corresponds to drop history
of about 1 second). The technical report [11] discusses the
guidelines for choosing these parameters, and also shows
the advantages of using multiple lists over a single list.

4.2. Preferential Dropping

Figure 6 shows the architecture of a RED-PD router.
Preferential dropping is done using a pre-filter in front of
the output queue. Packets from the monitored flows are
dropped in the pre-filter with a probability dependent on the
excess sending rate of the flow. Unmonitored traffic is put
in the output queue directly.

The light-weight mechanism shown above: a) not only
protects unmonitored traffic from the monitored flows, but
also provides relative fairness among the monitored flows;
b) does not starve the monitored flows like “leftover band-
width” approaches; c) does not protect the monitored flows

1Potentially, this opens up the possibility of evading the identification
mechanism by sending big bursts such that drops are confined to fewer
lists. But is unlikely as it would require a precise knowledge of the drop
rate at the router. If this proved to be a problem, it could be addressed
by extending the identification mechanism to flows with a large number of
losses even if those losses are present in fewer lists.
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Figure 7. Pseudocode for reducing a flow’s
dropping probability.

from the general congestion at the link, because the out-
put queue does not differentiate between flows. Disguised
protection can occur with approaches that reserve a fixed
amount of bandwidth without regard to the level of unmon-
itored traffic.

There would be a danger of transient link under-
utilization if packets were dropped in the pre-filter despite
low demand at the output queue. To avoid this, the pre-filter
does not drop packets from monitored flows when there is
insufficient demand at the output queue, as measured by
RED’s average queue size.

Instead of directly measuring the arrival rate of the mon-
itored flows for computing the dropping probability, RED-
PD bases the pre-filter dropping probability on the identi-
fication mechanism itself. The identification process only
considers drops at the output queue, not in the pre-filter.
Thus, the identification process is concerned with the flow’s
arrival rate to the output queue, not the arrival rate at the
router itself; the two quantities would be different for a
monitored flow.

A monitored flow will be identified again if its dropping
probability is not high enough to reduce its rate to the out-
put queue to less than ����������
 . The dropping probability
is increased for such flows. If the flow cuts down its send-
ing rate and does not appear in any of the last % drop lists,
its dropping probability is decreased. With this iterative in-
crease and decrease, RED-PD settles around the right pre-
filter dropping probability for a monitored flow.

Changes to the dropping probability are not made until a
certain time period has elapsed after the last change to en-
sure that the flow has had time to react to the last change.
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Figure 8. Pseudocode for increasing a flow’s
dropping probability.

Since we are not using a token bucket, we have to make iter-
ative changes to compute the dropping probability required
to reduce the flow’s rate to ����������
 , the target bandwidth.
And because we are interacting with the flow’s end-to-end
congestion control, our iterations must be on the time scale
of round-trip times.

The dropping probability for a monitored flow is not
changed when the the flow appears in at least one but fewer
than ! of the % drop lists. This provides the necessary
hysteresis for stabilizing the dropping probability. If a flows
reduces its sending rate enough to make the dropping prob-
ability negligible, it is unmonitored altogether.

The pseudocode for reducing the dropping probability is
given in Figure 7. The reduction in the dropping probability
is bounded by a maximum allowable decrease in one step to
reduce oscillations. These oscillations could result from the
reactions of the flow’s end-to-end congestion control mech-
anisms to packet drops, or from the imprecision of using a
flow’s packet drop history as an estimate of its arrival rate.
That is, the absence of the flow in all the drop-lists could be
the result of it getting lucky, rather than a reduction in its
sending rate. In such cases max decrease ensures that con-
trol over a monitored flow is not loosened by a large amount
in one step.

Figure 8 shows the pseudocode for increasing a flow’s
dropping probability. The equation for a flow’s increase
quantum,

, t�5vu�wHy
, takes into account both the ambient packet

drop rate and the relative sending rate of the monitored flow,
as inferred from the ratio of drops. The increase quantum is
large when the ambient drop rate is high, or the flow has a
higher sending rate. To avoid abruptly increasing the drop
rate experienced by a flow, the increase quantum is lim-



ited to the flow’s existing drop rate (which doubles the drop
rate).

5. Evaluation

In this section, we evaluate RED-PD’s effectiveness in
controlling high-bandwidth flows and protecting other traf-
fic at the router. Since identification is the first step, in�
5.1 we study RED-PD’s effectiveness in identifying high-

bandwidth flows. RED-PD’s ability to enforce fairness us-
ing the iterative increase and decrease of a flow’s dropping
probability is investigated in

�
5.2. It is important that RED-

PD react reasonably promptly to changes in a flow’s send-
ing rate, a property we analyze in

�
5.3. Finally, in

�
5.4, we

demonstrate how the choice of the target RTT � effects the
degree of fairness and amount of state kept by the router.

Additional simulations, not included due to space con-
siderations, can be found in [11]. These include: (1) a sim-
ulation with Web traffic that shows RED-PD can reduce the
average completion time of a Web request by controlling the
throughput of long-lived high-bandwidth flows; (2) a sim-
ulation showing RED-PD does not negatively impact traf-
fic belonging to a different congestion control model like
TFRC [8]; (3) a simulation with multiple congested links;
and (4) a simulation showing byte mode operation.

We carried out the simulations using the ns network sim-
ulator [14]. (The simulation scripts are available off the
RED-PD Web page [20].) Unless otherwise specified, the
capacity of the congested link was 10 Mbps, RED-PD’s tar-
get RTT R was 40 ms, the packet size was 1000 bytes, and
RED was running in packet mode. The Selective Acknowl-
edgement (SACK) [12] version of TCP was used, flows
were started at a random time within the first 10 seconds,
and aggregated results, where presented, were not taken be-
fore 20 seconds into the simulation.

5.1. Probability of Identification

In this section, we explore RED-PD’s probability of
identifying a TCP flow with a given round-trip time. The
identification probability for a CBR flow, studied in [11], is
higher than that of a TCP flow with similar sending rate be-
cause TCP flows back-off after initial drops, thereby reduc-
ing their identification probability. We show a flow’s prob-
ability of being identified in a single identification round;
the eventual throughput of the flow depends on whether the
flow is persistently identified.

Figure 9 shows a TCP flow’s probability of identification
as a function of its sending rate and ambient drop rate at the
queue. The simulations were done in a controlled environ-
ment where the ambient drop rate at the queue was fixed.
The RTT of the TCP flow was varied to get different send-
ing rates. A flow sending at a ����������
 multiplier of � had
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Figure 9. The probability of identification of a
TCP flow sending roughly at a rate ���
����������
 .

an RTT of � � . The probability is calculated based on 500
seconds of simulation run.

Figure 9 shows that the identification probability in-
creases quickly as the sending rate of a flow increases. It
also shows that a flow sending at less than �������	��
 pkts/s
can be identified with some small probability. This occurs
when the flow gets unlucky and receives more than its share
of packet drops. Because RED is not biased in any way to-
wards a particular flow, a flow sending at less than �������	��

pkts/s is unlikely to be consistently unlucky in its packet
drops. The consequences of a flow getting identified once
are not severe; it is monitored with a small initial dropping
probability. Monitoring this flow further reduces its chances
of being identified again, and thus this flow would soon be
unmonitored. High sending rate flows that escape identi-
fication in a particular round are identified soon in a near-
future round because the identification probability associ-
ated with them is high.

5.2. Fairness

This section shows an important property of RED-PD:
it is possible to approximate fairness among flows by it-
eratively increasing and decreasing the pre-filter dropping
probability for the high-bandwidth flows. The simulations
also show RED-PD’s ability to protect the low-bandwidth
flows and control the high-bandwidth ones.

The simulation in Figure 10 consists of 11 CBR flows.
The sending rate of the first flow is 0.1 Mbps, that of the
second flow is 0.5 Mbps, and every subsequent flow sends at
a rate 0.5 Mbps higher than the previous flow (the last CBR
flow sends at 5 Mbps). Separate lines in Figure 10 show the
bandwidth received by each of the 11 CBR flows with RED
and with RED-PD, while a third line shows each flow’s
max-min fair share. The graph shows that with RED, each
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Figure 10. Multiple CBR flows. Flow 1 is send-
ing at 0.1Mbps, flow 2 at 0.5 Mbps and every
subsequent flow is sending at a rate 0.5 Mbps
more than the previous flow.

flow receives a bandwidth share proportional to its sending
rate, while with RED-PD all the flows receive roughly their
fair share. By concentrating the dropping in the pre-filter
for the high-bandwidth flows, RED-PD was able to reduce
the ambient drop rate from 63% to about 4%.

The next simulation has a mix of TCP and CBR flows.
The aim is to study the effect of high-bandwidth CBR flows
on conformant TCP flows and investigate RED-PD’s abil-
ity to protect the conformant flows. There are 9 TCP flows
and 3 CBR flows. The TCP flows have different round-trip
times; the first three TCP flows have round-trip times (prop-
agation delay) close to 30 ms (there is some variation in the
actual RTTs to preclude synchromization effects), the next
three have RTTs around 50 ms, and the last three have RTTs
around 70 ms. The CBR flows, with flow numbers 10, 11
and 12, have sending rates of 5 Mbps, 3 Mbps and 1 Mbps
respectively. Again, Figure 11 shows the bandwidth of each
of the 12 flows with RED and with RED-PD. With RED, the
high-bandwidth CBR flows get almost all the bandwidth,
leaving little for the TCP flows. In contrast, RED-PD is
able to restrict the bandwidth received by the CBR flows
to near the target bandwidth (throughput of a hypothetical
40ms TCP flow). Given R of 40 ms, RED-PD monitors not
only the CBR flows, but also the TCP flows with RTTs of
30 ms (and occasionally those with 50 ms as well). Each of
the CBR flows received a different pre-filter dropping rate,
as each flow was successfully restricted to roughly the same
throughput.

5.3. Response Time

We now study the response time of RED-PD to sudden
changes in a flow’s sending rate. Analysis for the time taken
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Figure 11. Mix of TCP and CBR flows. Flows
1-9 are TCP flows with RTTs of 30-70 ms. Flow
10, 11 and 12 are CBR flows with sending
rates of 5, 3and 1 Mbps respectively.

to reduce throughput of a high-bandwidth flow and the time
to release a flow that cuts its sending rate is done in [11];
we present the results of a simulation here.

Figure 12 shows the results from a simulation with 1
CBR flow and 9 TCP flows. The CBR flow starts with a
rate of 0.25 Mbps, increases it to 4 Mbps at � � � -�/ , and
decreases it back to 0.25 Mbps at � ��� � - / . The RTT of the
TCP flows ranged from 30 to 70 ms.

RED-PD took less than 0.5 seconds to identify and start
monitoring the CBR flow, as visible from an immediate de-
crease in the flow’s throughput. The dropping probability
of the flow keeps increasing until its throughput reduces to����������
 (at about � � ��� / ). Also visible in the figure is the
time RED-PD took to unmonitor this flow once it reduced
its sending rate at �
��� � -�/ .

In general, the speed of RED-PD’s reaction depends on
the ambient drop rate and the arrival rate of the monitored
flow, as the probability increase quantum is larger when ei-
ther of them is higher. This has the desirable effect that if a
flow increases its sending rate to a very high level, or leads
to a high increase in ambient drop rate, it will be brought
down fairly quickly.

5.4. Effect of � , the Target RTT

The simulations in this section illustrate how the choice
of RED-PD’s configured target RTT � affects both the iden-
tification of flows and the bandwidth received by monitored
flows. Each column in Figure 13 represents a different sim-
ulation, with a different value for � , ranging from 10 ms
to 170 ms. In each simulation 14 TCP connections were
started, two each with RTTs of 40 ms, 80 ms and 120 ms,
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Figure 12. Adapting the dropping probability.
The top graph shows the throughput of a CBR
flow which changes its sending rate to 4 Mbps
at ��� � - / and back to 0.25 Mbps at ��� �

� - / .
The line labeled �������	��
 is based on the ambi-
ent drop rate seen over the whole simulation.
The bottom graph plots the ambient drop rate
over time.

and the rest with RTTs of 160 ms. The top graph of Fig-
ure 13 shows the average bandwidth received by the TCP
flows with round-trip times from 40-120 ms, while the bot-
tom graph of Figure 13 shows the ambient drop rate. The
horizontal lines in Figure 13 show the bandwidth for each
traffic type with RED.

For the simulations with � less than 40 ms, RED-PD
rarely identifies any flows, and the bandwidth distribution
is essentially the same as it would be with RED. However,
with � of 40 ms or higher, the TCP flows with 40-ms RTT
start to be identified and preferentially dropped. As � is in-
creased, the bandwidth received by the 40-ms TCP flows is
decreased, because the target bandwidth, ����������
 , decreases
as � increases. In addition, as � is increased the ambient
drop rate decreases and the throughput of the unidentified
TCP flows increases (as long as their RTT is more than � ;
160-ms TCP flows not shown).

As these simulations illustrate, increasing the target RTT� results in more flows being monitored. As � is increased,
RED-PD gets closer to full max-min fairness (at the cost of
more state). Additionally, increasing � decreases the am-
bient drop rate and increases the bandwidth available to the
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Figure 13. The Effect of Target R. The top
graph shows the bandwidth received by 40
ms, 80 ms and 120 ms RTT TCP flows for dif-
ferent values of R. The bottom graph plots the
ambient drop rate.

unmonitored flows. On the other hand, with a very small
value for � , RED-PD has limited impact at the router, and
can be used with the goal of controlling only egregiously-
misbehaving flows or those conformant flows with very
short round-trip times.

Instead of a fixed configured value, � can be varied dy-
namically as a function of the ambient drop rate or the state
available at the router. We intend to explore techniques for
dynamically varying � in later work.

6. State Requirements and Complexity

In addition to the state needed by a regular RED queue,
RED-PD requires state for the identification engine, which
stores the drop history, and the monitored flows. The
amount of memory required for the drop history is given
by Equation 3, and depends on the target RTT � and the
ambient drop rate. An example would help to demonstrate
why this should not be a problem. Given � � + - ms and� � ��2

, the router needs to store information about packets
dropped over the past 1 second. With a total arrival rate of 1
Gbps and an average packet size of 250 bytes this amounts
to just 5000 losses (� � ��2

) or 200 KB (assuming 40 byte
headers). Furthermore, fast memory is not required for stor-
ing the drop history because the identification engine does



State for What What State Fast-path Processing When required
FQ All flows Queues Queue management, Packet arrival,

scheduling departure
FRED All buffered flows Count of buffered packets Drop probability computation, Packet arrival,

coin tossing departure
CSFQ All flows Arrival rate estimate, Update arrival rate estimate, Packet arrival
(edges) time of last packet update header, coin tossing
RED-PD High-bandwidth Dropping probability, Coin tossing Packet arrival

flows drop history

Table 1. A comparison of complexity of some schemes.

not run in the forwarding fast path. Storing drop history as
a hash-based data structure would greatly simplify the iden-
tification process.

State for the monitored flows includes a classifying data
structure used to lookup the dropping probability of a mon-
itored flow (unmonitored flows will be missing from this
structure). Lookups matching the forwarding speed can
be achieved using sparsely populated hash tables or perfect
hash functions. It helps that RED-PD keeps state for only
the high-bandwidth flows, which as discussed in Section 3
are a small fraction of the total. A more precise investiga-
tion of the state requirements and fairness tradeoffs under
various traffic scenarios is a subject of future work.

The complexity of a scheme is not given by the amount
of state alone, but is also dependent on the processing done
on that state. Table 1 compares RED-PD’s complexity with
that of several other proposed mechanisms. Missing from
the “Fast-path Processing” column is classification, which
is common to all the schemes. The “State for What” column
gives an idea of the size of the classifying data structure. We
see that not only does RED-PD maintain very little state, its
fast-path operations are also the simplest.

7. Unresponsive Flows

It is important for schemes that provide differential treat-
ment for flows to provide incentives for end-to-end conges-
tion control by actively punishing misbehaving flows [6].
However, in this work we have addressed the issue of active
punishment only briefly.

RED-PD keeps a history of the arrival and drop rates for
each monitored flow. A monitored flow is declared unre-
sponsive when its arrival rate has not reduced in response
to a substantial increase in its drop rate. For flows identi-
fied as unresponsive, RED-PD increases the drop probabil-
ity more quickly, and decreases the drop probability more
slowly, to keep the unresponsive flow under tighter control.
However, RED-PD does not necessarily reduce the band-
width obtained by an unresponsive flow, compared with the

bandwidth it would have received from RED-PD without
having been identified as unresponsive.

RED-PD’s test for unresponsiveness can have false pos-
itives, in that it could identify some flows that are in fact re-
sponsive. The arrival rate of a flow at the router depends not
only on the drops at that router, but also on the demand from
the application, and the drops elsewhere along the path. In
addition, the router does not know the round-trip time of
the flow or the other factors (e.g., multicast, equation-based
congestion control mechanisms) that affect the timeliness
of the flow’s response to congestion. The test for unrespon-
siveness can also have false negatives, in that it might not
detect many high-bandwidth flows that are unresponsive.

With its iterative increase and decrease of a flow’s drop
rate, RED-PD provides an ideal framework for determin-
ing the conformance of a flow. Future work will include
the investigation of a better unresponsiveness test, and of
possibilities for decreasing the throughput for unresponsive
monitored flows to significantly less than their fair share, as
a concrete incentive towards the use of end-to-end conges-
tion control.

8. Conclusions

We have presented RED-PD, a mechanism that uses drop
history to identify high-bandwidth flows, and control their
throughput in times of congestion. We have shown that
it significantly improves the performance experienced by
other flows. In environments like the current Internet, domi-
nated by end-to-end congestion control and in which a small
fraction of flows are responsible for a large chunk of band-
width, RED-PD requires only a small amount of state to do
so. Moreover, the fast-path processing in RED-PD is min-
imal, consisting only of classification over a small fraction
of flows, and coin-tossing for monitored flows.
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