
Conflict Resolution and Membership Problem in
Beeping Channels

Bojun Huang and Thomas Moscibroda

Microsoft Research Asia, Beijing, China
{bojhuang,moscitho}@microsoft.com

Abstract. Consider a group of nodes connected through multiple-access
channels and the only observable feedback on the channel is a binary
value: either one or more nodes have transmitted (busy), or no node has
transmitted (idle). The channel model thus described is called Beeping
Model and captures computation in hardware using a group of sequential
circuit modules connected by a logic-OR gate. It has also been used to
study chemical signaling mechanisms between biological cells and carrier-
sensing based wireless communication.

In this paper, we study the distributed complexity of two fundamental
problems in the Beeping Model. In both problems, there is a set of nodes
each with a unique identifier i ∈ {1, 2, . . . , n}. A subset of the nodes
A ⊆ {1, 2, . . . , n} is called active nodes. In the Membership Problem,
every node needs to find out the identifiers of all active nodes. In the
Conflict Resolution Problem, the goal is to let every active node use the
channel alone (without collision) at least once.

We derive two results that characterize the distributed complexity of
these problems. First, we prove that in the Beeping Model the two above
problems are equally hard. This is in stark contrast to traditional chan-
nel models with ternary feedback in which the membership problem is
strictly harder than conflict resolution. The equivalence result also leads
to a randomized lower bound for conflict resolution, which shows a rela-
tive powerlessness of randomization in the beeping model. Secondly, we
give a new deterministic algorithm for the problems that achieves the
best known parallelization among all practical algorithms.

Keywords: circuit algorithms, multiple access channel, beeping model,
confict resolution, membership detection, lower bounds

1 Introduction

Consider a logical-OR gate in hardware circuit with n inputs N = {1, 2, . . . , n},
in which each of the input i ∈ N is controlled by a sequential logic module that
listens to the output of the OR gate, as illustrated in Figure 1(a). Now, assume
that there is a subset A ⊆ N of the inputs; let us call them the active inputs.
Only active inputs can transmit. Our goal is to determine which of the inputs
are active, by repeatedly using the logical-OR gate. The problem thus described

2 Bojun Huang, Thomas Moscibroda

occurs as a core component in many circuit-based algorithm implementations1.
It is also an archetypical problem that arises in a variety of settings and systems
where entities or nodes communicate using a shared communication channel, and
the only observable feedback on the channel is a binary value: either “someone
has transmitted” or “none has transmitted”.

This channel model has been called Beeping Model. In this model a group
of nodes communicate through beeping channels. Communication is in discrete
synchronous time slots and all nodes have access to a global clock (common in
hardware applications). In each time slot, a node first does some local compu-
tation, then decides to either keep sending a “beep” signal or be quiet in the
rest of that time slot. At the end of the time slot, the node receives a binary
feedback from the channel: “busy” if at least one node is beeping on the channel;
and “idle” otherwise. All nodes see the same channel feedback, and the channel
feedbacks in all time slots are collectively called the channel feedback history.

The Beeping Model has recently found a lot of attention in the distributed
computing community. It is one of the fundamental models for multiple access
channels. Such models can be distinguished by the feedback the participants
(nodes) can sense from the channel. In the traditional channel model (also called
the model with Collision Detection) [15] [9] [3] [14] [8] [16] [10] [11], nodes re-
ceive ternary feedback about the channel state: no one is sending (idle), exactly
one node is sending (success), or two or more nodes are sending (collision). In
contrast, the Beeping Model has only binary feedback: no one is sending (idle)
or, one or more nodes are sending (busy). This binary model captures the com-
putation with circuit modules connected by a logic-OR gate, and it has also
been used to study chemical signaling mechanisms between biological cells [2]
and carrier-sensing based wireless communication [5]; several distributed graph
problems (e.g., MIS [1], coloring [5]) have been studied in this model.

Membership Problem and Conflict Resolution: In this paper, we study
the distributed complexity of two fundamental problems in the Beeping Model.
Let N = {1, 2, . . . , n}. In both problems, there is a group of nodes each with a
unique identifier (ID) i ∈ N . A subset of the nodes A ⊆ N of size |A| ≤ k is
called active nodes. Only active nodes can send out beep signals. Initially, each
node knows whether itself is active, as well as its ID i, the size of the name space
n, and the upper bound k. 2

• The Conflict Resolution Problem (CR), also called k-Selection Problem, asks
to coordinate the nodes’ accesses to the channel such that for any A ⊆ N ,
each active node i ∈ A obtains exclusive access to the channel in at least one
time slot if |A| ≤ k. A node i ∈ N obtains exclusive access to the channel in

1 Our specific motivation has been our work on building customized hardware ma-
chines to play the game of GO, one of the few classic boardgames in which computers
are still unable to compete with the best human players [7].

2 In case either i or n is unknown, we can apply standard tricks of letting node choose
random IDs (when i is unknown) or exponentially estimating n based on the IDs in
the system (when n is unknown). If such a k is unknown, we just iteratively run an
algorithm with k = 2r in round r, until k is large enough to be an upper bound.

Conflict Resolution and Membership Problem in Beeping Channels 3

time slot t” if and only if i is the only node allowed to beep in time slot t. A
time slot t is exclusively-used if and only if any i ∈ N obtains exclusive access
to the channel in time slot t. In the Beeping Model, the CR problem further
asks every node i ∈ N to correctly recognize all such exclusively-used time
slots (since otherwise they cannot distinguish the real message from noise).

• The Membership Problem (MP), also called Node Identification or Station
Identification, asks to learn the set A if |A| ≤ k, i.e., to let every node i ∈ N
know the IDs of all the (at most k) active nodes.

We derive two results that characterize the distributed complexity of these
problems. First, we prove that in the Beeping Model the two problems are equally
hard, which is unlike in traditional access channel models in which the member-
ship problem is strictly harder than conflict resolution. And secondly, we design
a new deterministic parallel algorithm that takes significantly less time than
previous solutions. We now discuss these contributions in detail.

Equivalence of MP and CR: Intuitively, one may think that the Mem-
bership Problem requires more time than Conflict Resolution for at least two
reasons: First, in CR, an active node that has managed to successfully transmit
can stop sending out any additional beeps; while this is not the case in MP. In
other words, while the CR problem merely asks to arrange k “successful” time
slots, the MP further asks to identify who is beeping in each successful time slot.
Secondly, reducing CR to MP is trivial (by simply letting the active nodes beep
successfully one-by-one in the order of their IDs), but the reversed reduction
from MP to CR comes at an extra cost: A node can only transmit a single beep
during one iteration of a CR protocol, which is not sufficient to transmit an
entire identifier of length O(log n) bits, as required in MP.

Interestingly, the intuition that MP is strictly harder than CR is known to
be true in the traditional ternary-feedback (idle, success, collision) model of
access channels. Specifically, there is a known separation of the two problems for
randomized algorithms. With ternary feedback, the expected running time of
any Las Vegas membership algorithm is Ω(k log n

k) (by the entropy argument),
while there are Las Vegas collision resolution algorithms with expected running
time of ≤ 2.89k [15] [14].

In this paper, we show that the above intuition does not hold in the beeping
model, i.e., that the membership problem is not harder than conflict resolution.
This reveals two fundamental differences between the two basic models for multi-
ple access channels: the binary Beeping Model and the ternary traditional model.
(i) First, whereas MP is strictly harder than CR in the ternary model, the two
problems are equally hard in the binary Beeping Model, which means the only
way to achieve reliable (or collision-free) communication in the Beeping Model is
to identify all the nodes competing for the channel. (ii) And secondly, we prove
that there is a difference between the two models in the power of randomization
for reliable communication. Specifically, Greenberg and Winograd proved in [8]
a lower bound of Ω(k logk n) for any deterministic conflict resolution algorithm
in the ternary model, which established the separation between deterministic al-
gorithms and randomized algorithms in this problem (recall that there are Θ(k)

4 Bojun Huang, Thomas Moscibroda

Table 1. Known Bounds on the (Sequential) Time Complexity for CR and MP

Ternary Feedback – {0, 1, 2+} Beeping Model – {0, 1+}
Membership Problem (rand.) Θ(k log n

k
) Θ(k log n

k
)

Collision Resolution (rand.) Θ(k) Θ(k log n
k

) (*)

Membership Problem (det.) Θ(k log n
k

) Θ(k log n
k

)

Collision Resolution (det.) Ω(k logk n), O(k log n
k

) Θ(k log n
k

) (*)

randomized algorithms in the ternary model [15] [14]). In this paper we show
that this gap disappears in the Beeping Model. We prove that in the Beeping
Model any deterministic conflict resolution algorithm is also an algorithm that
solves MP. This result yields the lower bound Ω(k log n

k) for CR with respect to
both deterministic and randomized algorithms in the beeping model, which is
tight since there exist deterministic algorithms that run in O(k log n

k) time [6].
Table 1 summarizes the performance bounds in the two models. Results marked
with asterisks are new. Finally, our proof techniques are nontrivial. As a by-
product, we prove that in the Beeping Model, one cannot count the number of
active nodes without identifying them (i.e. solving MP).

Efficient Parallel Algorithm: So far, we have assumed that there is a
single channel connecting the nodes. In many applications, however, nodes can
access more than one beeping channel in parallel. For example, hardware circuits
are typically 32-bit or 64-bit wide (i.e., there are 32 or 64 beeping channels in
parallel, see Fig. 1(a)); chemical interactions between biological cells may be
activated by multiple types of proteins; and a wireless communication channel
may be partitioned into multiple sub-bands (e.g., OFDM used in Wi-Fi partitions
each channel into so-called sub-carriers that are all accessed simultaneously). In
each time-slot, a node can decide to beep or not independently in each of the
beeping channels, and listen to the feedbacks of all channels at the same time.

Clearly, the number of channels plays an important role in how much time is
required to solve the problems. For example, with n parallel channels, both prob-
lems can be solved in O(1) time with a simple round robin algorithm. However,
this is unrealistic as in many applications n is the size of the name space, which
may grow exponentially with the length of node identifiers (e.g., n = 264 for
64-bit identifiers). For this reason, we seek efficient parallel algorithms that use
polylog(n) number of channels and have polylog(n) computational complexity
(e.g. avoiding full scans of the whole name space). Seems the fastest such solu-
tions in the literature is by Chou Hsiung Li [12], in which an efficient algorithm
was proposed in the context of experimental variables screening. Li’s algorithm
turns out to be essentially a parallel algorithm which, when used in beeping
model, terminates in O(log n

k) time with O(k) channels, and has computational
complexity of O(k2 log n

k).

The second main contribution of this paper is a novel and practical deter-
ministic algorithm for both CR and MP. The basic idea of the algorithm is to
iteratively reduce the problem size n by renaming each node to a smaller name
space in each iteration. We show that when the algorithm terminates, each ac-

Conflict Resolution and Membership Problem in Beeping Channels 5

Table 2. Algorithms for CR and MP in Beeping Model with Multiple Channels

Time Slots # Channels Computation

Round-robin O(1) O(n) O(n)

Adaptive GT [9] [3] [16] [6] O(k log n
k

) O(1) O(k log n
k

)

Li’s Algorithm [12] O(log n
k

) O(k) O(k2 log n
k

)

Our Algorithm (*) O(log k log logk n) O(k logk n+ k2) O(k2 log n
k

+ k3)

tive node has an ID i′ ∈ {1, . . . , k}, and that each of them can locally recover
the original IDs of all active nodes from the channel feedback history. The al-
gorithm terminates in O(log k log logk n) time slots in the worst case, which is
exponentially better than Li’s algorithm [12] for k ∈ polylog(n). The algorithm
uses O(k logk n+k2) parallel channels, and the computational complexity of the
algorithm is O(k2 log n

k + k3) – both are logarithmic in n and polynomial in k.
Table 2 summarizes our results relative to previous work.

In addition to its efficiency, our algorithm is also tolerant to arbitrary crash-
failures in the parallel model, and always correctly returns the set of nodes that
remain active when the algorithm terminates. Finally, the core component of
the algorithm is a strong renaming/coloring process, which may be of interest
in its own right. The strong renaming problem asks to assign each active node a
unique ID i′ ∈ {1, ..., d}, where d is the number of active nodes. Our algorithm,
when used as a strong renaming algorithm, is invertible and order-preserving
(i.e. for any two original ID’s i < j, we have i′ < j′).

Notations: Let γ ∈ {0, 1}∗ be a bit vector, we denote |γ| as the length of γ,
‖γ‖ as the number of bit “1” in γ, and γ[i] for i ∈ {1, . . . , |γ|} as the i-th bit
of γ. For a set of bit vectors γ1, γ2, ..., γn, (γ1, · · · , γn) is the concatenation of
these n vectors; γi ∨ γj is the bitwise Boolean Sum (i.e. logical-OR) of γi and
γj ; ε denotes the empty vector. For a natural number n, [n]q denotes the q-nary
representation of n.

2 The Equivalence of Membership and Conflict
Resolution

In this section we show the equivalence between MP and CR in the Beeping
Model. The equivalence leads to a tight lower bound for both problems, and for
both deterministic and randomized algorithms (Las Vegas and Monte Carlo). As
discussed, both the equivalence of the problems and the relative powerlessness
of randomization are in contrast to the traditional ternary channel access model.
Without loss of generality, we assume the model has single channel in this section.
We denote a problem instance (of any problem considered here) by a bit vector
π ∈ {0, 1}n, where π[i] = 1 means node i is active, and π[i] = 0 otherwise. For
any deterministic algorithm A, we denote by the bit vector rA(π) the channel
feedback history of algorithm A under problem instance π, where rA(π)[t] = 1
means the node hear a beep signal (“busy”) from the channel in time-slot t.

6 Bojun Huang, Thomas Moscibroda

The reduction from conflict resolution to membership is straightforward –
once every node knows who is active, active nodes can send messages one by
one without any conflict in k time-slots. However, an efficient reduction in the
opposite way is non-trivial because through a single successful transmission a
node can only convey 1 bit of information. A conflict resolution algorithm en-
ables each node to transmit once, which seems insufficient to communicate a full
O(log n)-bit node ID, as required in the membership problem. We nevertheless
show that the two problems are equivalent by resorting to reduce the member-
ship problem to an intermediary problem, the counting problem, in which each
node has to learn the exact number of active nodes. We prove that a conflict
resolution algorithm can be used to solve the counting problem, and that–in
the beeping model–every counting algorithm effectively solves the membership
problem. This implies that instead of letting every active node explicitly report
its O(log n)-bit ID, in the beeping model we can infer every active node’s ID as
long as each of them can transmit one single bit successfully.

The following arguments are based on a general property of the beeping
model, presented by Lemma 1. It asserts that, if any deterministic algorithm A
generates the same channel feedback for two instances π and π′, it must also
generate exactly the same channel feedback for the instance π ∨ π′. In other
words, the equivalent class of π with respect to rA(π) must be a closure under
the logical-OR operation. The key insight behind Lemma 1 is that active nodes
act according to the channel feedback history. Given the same feedback history
before time-slot t, each active node in π ∨ π′ is also either active in π or in π′

(or in both), so none of them can lead to a different channel feedback at time t.

Lemma 1. In the beeping model, for any deterministic algorithm A, let π and
π′ be two instances of the problem to be solved, if rA(π) = rA(π′), then rA(π) =
rA(π ∨ π′).

Proof. The proof is by induction. Given algorithm A, let γt(π) =< rA(π)[1],
rA(π)[2], ..., rA(π)[t] > be the channel feedback history of A under π until time-
slot t. So γt(π) is a prefix of rA(π) if A is still running in time-slot t and γt(π) =
rA(π) if A has terminated before time-slot t. To prove rA(π) = rA(π ∨ π′), it is
sufficient to prove γt(π) = γt(π ∨ π′) for any t ≥ 1.

If node i is inactive, it keeps quiet all the time; if node i is active, its decision
to beep or not at time t+1 fully depends on γt. By the indicator function Gi(γt)
we denote the decision of node i at time t+1, where Gi(γt) = 1 if node i chooses
to beep and Gi(γt) = 0 if it keeps quiet. Note that Gi is determined once the
deterministic algorithm A is given. By the definition of the Beeping Model we
have

γt+1(π) =
(
γt(π),

∨
i π[i] ·Gi(γt(π))

)
, (1)

which also holds for π′ and π ∨ π′.
Clearly we have γ1(π) = γ1(π ∨ π′) = ε, since there is no feedback history at

the first time slot. By induction, suppose at time t we have γt(π) = γt(π∨π′), we
only need to prove γt+1(π) = γt+1(π ∨ π′), or equivalently, by Eq.(1), to prove∨

i π[i] ·Gi(γt(π)) =
∨

i(π ∨ π′)[i] ·Gi(γt(π ∨ π′)). (2)

Conflict Resolution and Membership Problem in Beeping Channels 7

Since rA(π) = rA(π′), we have γt+1(π) = γt+1(π′) for any t ≥ 1, which means,
again by Eq.(1), ∨

i π[i] ·Gi(γt(π)) =
∨

i π
′[i] ·Gi(γt(π

′)). (3)

Combining Eq.(3) and the condition that γt(π) = γt(π
′) = γt(π ∨ π′), we arrive

at Eq. (2) after the following transformations:∨
i π[i] ·Gi(γt(π)) =

(∨
i π[i] ·Gi(γt(π))

)
∨
(∨

i π
′[i] ·Gi(γt(π

′))
)

=
∨

i

(
π[i] ·Gi(γt(π))

)
∨
(
π′[i] ·Gi(γt(π

′))
)

=
∨

i

(
π[i] ·Gi(γt(π))

)
∨
(
π′[i] ·Gi(γt(π))

)
=
∨

i (π[i] ∨ π′[i]) ·Gi(γt(π))

=
∨

i(π ∨ π′)[i] ·Gi(γt(π ∨ π′)).

ut

Some problems can be defined by a function of π, denoted by λ(π) here, so
that the goal of the problem is to let every node learn the value of λ(π). For
example, λ(π) = π for the membership problem, and λ(π) = ‖π‖ for the counting
problem. For any algorithm solving these kind of problems, the information
available for a node to infer λ(π) includes the channel feedback history r(π) and
the local initial state π[i]. Lemma 2 asserts that the inference of λ(π) in any
deterministic algorithm A must solely rely on analyzing the channel feedback
rA(π), and the knowledge of π[i] cannot be effectively utilized by any node in
the inference. The proof of Lemma 2 is based on Lemma 1.

Lemma 2. In the beeping model, for any deterministic algorithm A that lets
every node learn λ(π), let π and π′ be two instances of the problem to be solved,
if rA(π) = rA(π′), then λ(π) = λ(π′).

Proof. For contradiction, suppose λ(π) 6= λ(π ∨ π′) and rA(π) = rA(π′). We
know rA(π) = rA(π ∨ π′) by Lemma 1. In addition, there exists i∗ for which
π[i∗] = (π∨π′)[i∗]. So, all information for node i∗ to distinguish the two different
values of λ(π) and λ(π∨π′) is the same, which means it cannot distinguish them.
Thus, the algorithm A fails to let every node learn λ(π). This contradiction
implies that any algorithm must have λ(π) = λ(π ∨ π′) when rA(π) = rA(π′).
In the same way we also get λ(π′) = λ(π ∨ π′), so λ(π) = λ(π′). ut

Lemma 2 implies that the number of different channel feedback histories gen-
erated by a deterministic algorithm computing λ(π) is no less than the number

of possible values of λ(π). For the membership problem, there are
∑k

i=0

(
n
i

)
dif-

ferent values of λ(π), so we have a lower bound of Ω(log
(
n
k

)
) = Ω(k log n

k) for
any algorithm that correctly solves it. For the counting problem, however, two
different instances may have the same number of “1” (i.e., λ(π) = λ(π′) for some
π 6= π′), so one might expect an efficient algorithm that beats the lower bound

8 Bojun Huang, Thomas Moscibroda

of Ω(k log n
k) by “sharing” the same channel feedback history between different

instances. Theorem 1 proves that this is impossible: In the beeping model, it is
not easier to count the number of active nodes than to identify them all.

Theorem 1. For any deterministic algorithm A and any problem instance π
with ‖π‖ > 1 (i.e. k > 1), if A lets every node learn ‖π‖ with channel feedback
history rA(π), then we can construct an algorithm A′ that lets every node learn
π with exactly the same channel feedback history rA(π).

Proof. We prove that the mapping from π to rA(π) for any deterministic count-
ing algorithm A must be injective, i.e., if rA(π) = rA(π′) then π = π′. Since
every instance π has a different channel feedback history rA(π) when A termi-
nates, A′ simply remembers the entire table of the one-to-one mapping from
rA(π) to π, thus solving the membership problem once rA(π) is given.

The proof of injectivity is by contradiction. Since rA(π) = rA(π′), by Lemma
2 we have ‖π‖ = ‖π′‖. Suppose π 6= π′, then there must be some i∗ with
π[i∗] = 0 and π′[i∗] = 1, so we have ‖π ∨ π′‖ > ‖π‖. On the other hand, since
rA(π) = rA(π′), by Lemma 1 we have rA(π ∨ π′) = rA(π), and then by Lemma
2 we have ‖π ∨ π′‖ = ‖π‖, a contradiction. ut

We remark that Theorem 1 can be naturally generalized to prove the equiv-
alence with the membership problem for more problems defined by λ(π) in the
beeping model. Actually, any deterministic algorithm solving a problem defined
by λ(π) can be used to solve the membership problem with the same channel
feedback history, as long as the function λ(·) has the property that, for any two
different instances π and π′, λ(π) = λ(π ∨ π′)⇒ λ(π) 6= λ(π′).

Moreover, for problems that cannot be directly represented by a function of
π, we may still prove their equivalence with MP by proving that an algorithm
for this problem can solve the counting problem. This allows us to prove the
main theorem of this section.

Theorem 2. For any problem instance π with ‖π‖ > 1 (i.e. k > 1) and any
positive integer T , if any deterministic algorithm A solves conflict resolution
under π in T time slots, then we can construct an algorithm A′ that lets every
node learn π in exactly T time slots.

Proof. The idea is to construct a counting algorithm Ã from the conflict resolu-
tion algorithm A. Recall that a time slot is “exclusively-used” if only one single
node is allowed to beep in that time slot. Given a deterministic conflict resolution
algorithm A, the algorithm Ã runs A, and lets each active node beep in the first
exclusively-used time slot it has and keep quiet since then. When A terminates,
Ã lets each node count the number of beep signals in all the exclusively-used
time slots, which is also the number of active nodes. So Ã is a valid counting
algorithm (and |rÃ(π)| = T). By Theorem 1 we know that the information of
rÃ(π) is already enough to solve the membership problem. ut

Theorem 2 shows that MP can be reduced to CR at no additional cost in time-
slots. Reversely, the reduction from CR to MP requires k additional time-slots.

Conflict Resolution and Membership Problem in Beeping Channels 9

Since any CR algorithm needs at least k time-slots to let every node transmit
successfully once, the reduction to the MP does not change the performance
bound for any deterministic CR algorithm. Thus, the two problems share the
same upper and lower bounds in beeping model. As mentioned before, a simple
counting argument gives the lower bound Ω(k log n

k) for the membership prob-
lem, which therefore also applies to conflict resolution. Furthermore, Theorem 3
shows that the same lower bound also applies to any randomized algorithm that
solves either problem of CR and MP with constant probability.

Theorem 3. In the Beeping Model with single channel, for any constant 0 ≤
λ < 1, every randomized algorithm requires at least Ω(k log n

k) time slots to solve
Conflict Resolution or the Membership Problem with success probability λ under
the worst-case distribution of problem instances.

Proof. By the so-called entropy argument, we prove that any randomized algo-
rithm that always correctly solves the Membership Problem when terminating
(i.e. Las Vegas algorithms) has the expected run time of Ω(k log n

k). Specifically,
due to Yao’s principle, a distributed Las Vegas algorithm A is a stochastic distri-
bution over a set of correct deterministic algorithms, where each deterministic
algorithm A′ in this set owns a different table RA′ : [n] → {0, 1}∗ and simu-
lates A by using the fixed sequence RA′(i) to replace the random numbers used
in node i. On the other hand, due to Shannon’s encoding theorem, no deter-
ministic membership algorithm can have an expected performance better than
log2

(
n
k

)
= Ω(k log n

k) under the uniform distribution over the
(
n
k

)
different prob-

lem instances, thus any stochastic distribution over any subset of deterministic
membership algorithms, i.e., any Las Vegas membership algorithm, must need
Ω(k log n

k) time slots under the uniform distribution over problem instances.
Due to Theorem 2, every deterministic conflict resolution algorithm must

have an average performance of Ω(k log n
k) (for otherwise we will find a deter-

ministic membership algorithm beating this bound), and thus every Las Vegas
conflict resolution algorithm also has a worst-case performance of Ω(k log n

k).
Finally, for any randomized algorithm A that solves either the membership

problem or conflict resolution with constant success probability 0 < λ < 1 in T
time slots (under the worst-case distribution of problem instances), we can verify
its correctness in one single time slot by letting active nodes to report whether
anyone is missing, and thus can construct a Las Vegas algorithm by repeatedly
running A until it is correct. The Las Vegas algorithm thus constructed has the
expected running time of

∑∞
i=1(1 − λ)i−1λ · i · T = T/λ. As proved above,any

Las Vegas algorithm for either problem has expected running time of Ω(k log n
k)

under the uniform distribution of problem instances, so T = Ω(k log n
k). ut

3 Efficient Algorithm in Beeping Model with Parallel
Channels

In last section we proved a lower bound of Ω(k log n
k) for both MP and CR

when only one single beeping channel is available. In this section we give an

10 Bojun Huang, Thomas Moscibroda

C2,3(2) = 0 0 1 1 0 0
C2,3(3) = 0 1 0 0 0 1

 rt = 0 1 1 1 0 1

C2,3(0) = 0 0 1 0 0 1
C2,3(2) = 0 0 1 1 0 0
C2,3(3) = 0 1 0 0 0 1
C2,3(5) = 0 1 0 1 0 0

0
1
2
3

C2,3(0) = 001 001

C2,3(1) = 001 010

C2,3(2) = 001 100

C2,3(3) = 010 001

C2,3(4) = 010 010

C2,3(5) = 010 100

C2,3(6) = 100 001

C2,3(7) = 100 010

C2,3(8) = 100 100

Encoding

Beeping

Renaming

Channel
1

Channel
2

Channel
6...

Codebook of C2,3

Module Module ...

1 0

1

11 1 1 1

Module

1

...

OROROROR

(a) (b)

Fig. 1. (a) The hardware circuit correspondence of the Beeping Model (b) Illustration
of the encoding-beeping-renaming procedure when nt = 9, dt = 2, qt = 3. The left
side is the codebook of the (2, 3)-identity code. The right side illustrates how the
encoding/beeping/renaming subroutines work in the case that nodes 2 and 3 are active.

efficient algorithm for the parallel case. We call our algorithm the Funnel Algo-
rithm. The algorithm has a time complexity of O(log k log logk n), yet only uses
O(max{k logk n, k

2}) parallel channels. As we have already shown that MP and
CR are equally hard problems, we describe our algorithms in the context of the
Membership Problem.

3.1 The Funnel Algorithm

The algorithm runs in a sequence of iterations, and the idea is to gradually
reduce the problem size n by renaming the active nodes to the name space
{0, ..., kdt − 1} in iteration t. The values d1, d2, . . . decrease gradually during the
iteration and the algorithm terminates when dt = 1, at that time each active
node has an ID i′ ∈ {0, ..., k−1}, and then each node locally recovers the original
ID’s of all active nodes based on the channel feedback history. The sequence
D = {d1, d2, ...} is called an iteration policy, which has significant impact on the
algorithm’s performance. We now present the general iteration framework first,
and then define the concrete iteration policy we use to achieve our results.

Iteration Framework: Given an iteration policy D = {d1, d2, ...}, in each
iteration t, the algorithm works by running the following encoding-beeping-
renaming procedure at each active node (see Fig. 1(b) for an illustration):

• Encoding. Suppose the name space is {0, ..., nt − 1} in iteration t. Let qt =

dn
1
dt
t e, each node locally encodes its current ID ut with the so-called (dt, qt)-

identity code. The (d, q)-identity code encodes an integer u ∈ {0, . . . , qd − 1}
into a bit vector Cd,q(u) by first transforming u into the q-nary format [u]q =
(µ1, ..., µd), then encoding each µj with a q-bit vector that is 1 in the µj ’th
position and “0” everywhere else. For example, C2,3(2) = C2,3

(
(0, 2)

)
=

001 100, and C2,3(3) = C2,3

(
(1, 0)

)
= 010 001. The code length of Cdt,qt(ut)

is denoted by L(nt, dt), where

L(nt, dt) = dt · qt = dtdn1/dt

t e < dtn
1/dt

t + dt. (4)

Conflict Resolution and Membership Problem in Beeping Channels 11

• Beeping. Each active node “beeps out” all bits of its codeword Cdt,qt(ut)
in parallel, using L(nt, dt) single-channel accesses. This takes one time slot.
Since all active nodes beep simultaneously, the resulting channel feedback
rt = (γ1, ..., γdt

) is the bitwise OR of all these codewords. Note that each
segment γj in rt is a qt−bit vector that may have multiple “1”s in it.

• Renaming. Given channel feedback rt, the “possible” codewords of any active
node ut can only be a combination of the “1”s in different segments of rt. For
example (see Fig. 1), for the (2, 3)-code, the channel feedback rt = 011 101
can only be generated by a subset of the nodes {0, 2, 3, 5}. The number of
these “possible” codewords is

∏
j‖γj‖ = kdt in the worst case. So each active

node can locally rename itself with a new unique ID ut+1 ∈ {0, ..., kdt − 1},
where ut+1 is the order of its original ID ut among all the (at most kdt)
possible ID’s. For example, for the node with ut = 3, there is two possible
ID’s smaller than ut (i.e., 0 and 2), so ut+1 = 2.

Note that a node can locally recover Cdt,qt(ut) for any given ut+1 (ut+1

doesn’t necessarily belong to the node itself) as long as dt, qt, and rt are known.
With Cdt,qt(ut), the node can further recover ut locally. Therefore, when the
algorithm terminates with dT = 1, every node can locally recover the original
identifier of each active node by sequentially recover uT , uT−1, . . . , down to until
u1.

Iteration Policy: Any iteration policy ending with dT = 1 and having
dt+1 ≤ dt for any t < T returns the correct answer to the problem. Among
them, we choose the iteration policy D∗ for performance consideration.

Definition 1. Let T be the maximal integer satisfying (1 + 1
ln k)T ≤ logk n.

Define d̃t = (1+ 1
ln k)T−t for t ≥ 0. The iteration policy D∗ = {d1, ..., dT }, where

dt =

{
dd̃te when d̃t ≥ ln k

dt−1 − 1 when d̃t < ln k
. (5)

3.2 Performance Analysis

In the Funnel Algorithm, each node makes L(nt, dt) single-channel accesses in
each iteration t, which takes one single time slot when L(nt, dt) number of chan-
nels are available. Therefore, the algorithm’s time complexity corresponds to the
number of iterations, and the number of channels it requires corresponds to the
maximal number of single-channel accesses in all iterations, i.e., maxt L(nt, dt).
In the following, we first prove bounds for the time slots the Funnel Algorithm
needs (Theorem 4), then characterizes its efficiency in channel usage and com-
putational complexity (Theorem 5).

Theorem 4. The Funnel Algorithm takes O(log k log logk n) time slots to ter-
minate in the worst case.

Proof. Clearly the algorithm terminates in one time slo twhen k = 1 (i.e. at
most one node is active). For k ≥ 2, by Definition 1, the Funnel Algorithm

12 Bojun Huang, Thomas Moscibroda

terminates in no more than T + ln k + 1 time slots in any case, and we have
((1 + 1

ln k)ln k)T/ ln k ≤ logk n, which means

T ≤ ln k · ln logk n/ ln
(

(1 +
1

ln k
)ln k

)
. (6)

Since 1.85 < (1 + 1
ln k)ln k < e for k ≥ 2, we have T ≤ 1.63 · ln k · ln logk n. ut

Lemma 3. The Funnel Algorithm makes O(k log n
k +k2) single-channel accesses

in the worst case, that is,
∑T

t=1 L(nt, dt) = O(k log n
k + k2).

Proof. To prove the bound on the total number of channel accesses, we show
that the iterations with d̃t ≥ ln k collectively have O(k log n

k) channel-accesses,

and the remaining iterations (i.e. with d̃t < ln k) collectively have Θ(k2) channel-
accesses, thus the sum of channel accesses over all iterations is O(k log n

k + k2).

When d̃t ≥ ln k: Since dt = dd̃te, we have d̃t ≤ dt ≤ d̃t+1 and 1 ≤ d̃t

ln k ≤
dt

ln k .

By Definition 1 we also have (1+ 1
ln k)d̃t = d̃t−1. Combining these results together

yields a chain of inequalities

d̃t ≤ dt ≤ (1 +
1

ln k
)d̃t = d̃t−1 ≤ dt−1 ≤ (1 +

2

ln k
)d̃t. (7)

We know by Eq.(4) that the number of single-channel accesses made in iteration

t is less than dt(k
dt−1
dt + 1). Then, by (7), we have

dt(k
dt−1
dt +1) ≤ (1+

1

ln k
)d̃t(k

(1+ 2
ln k

)d̃t

d̃t +1) ≤ (1+
1

ln 2
)d̃t(e

2k+1) ≤ 2.45(e2k+1)d̃t.

Let t∗ be the last iteration with d̃t ≥ ln k. We know that the total number of
single-channel accesses made from iteration 1 through iteration t∗ is less than

t∗∑
1

dt(k
dt−1
dt + 1) ≤

T∑
1

dt(k
dt−1
dt + 1) ≤

T∑
1

2.45(e2k + 1)d̃t

= 2.45(e2k + 1)

T−1∑
0

(1 +
1

ln k
)t = 2.45(e2k + 1) ln k((1 +

1

ln k
)T − 1)

≤ 2.45(e2k + 1) ln k(logk n− 1) = 2.45(e2k + 1) ln
n

k
= O(k log

n

k
).

When d̃t < ln k: Let t∗ be the first iteration with d̃t < ln k, we have dt∗ =
dt∗−1 − 1 and dt∗−1 = dd̃t∗−1e = dd̃t∗(1 + 1

ln k)e < dln k(1 + 1
ln k)e, and thus

dt∗ < dln k + 1e − 1 ≤ bln kc + 1. Then we know that the number of single-
channel accesses used in all iterations with d̃t < ln k is

∑
{t:d̃t<ln k}

L(nt, dt) =

bln kc+1∑
d=1

d(k
d+1
d + 1) =

bln kc∑
d=1

dk
d+1
d +O(k log k) +O(log2 k)

= k2 + 2k
3
2 + k

bln kc∑
d=3

dk
1
d +O(k log k) +O(log2 k)

Conflict Resolution and Membership Problem in Beeping Channels 13

Now it is sufficient to prove that
∑bln kc

d=3 dk
1
d = o(k). By using Euler’s Approxi-

mation,

bln kc∑
d=3

dk
1
d <

∫ ln k

2

xk
1
x dx =

1

2
xk

1
x (ln k + x)− 1

2
(ln k)2Ei(

ln k

x
)

∣∣∣∣ln k

2

=
1

2
(ln k)2Ei(

ln k

2
)−
√
k(ln k + 2) + (e− Ei(1)

2
)(ln k)2, (8)

where Ei(x) is the Exponential Integral function defined as Ei(x) =
∫ x

−∞
et

t dt,

which is known to have no closed form expression. However, by noticing that et

t
is monotonically increasing for t > 1, we can derive an upper bound of Ei(x):

Ei(x) =

∫ x

−∞

et

t
dt = Ei(1) +

∫ x

1

et

t
dt < Ei(1) +

ex

x
(x− 1). (9)

Substituting Eq.(9) back to Eq.(8), we get

bln kc∑
d=3

dk
1
d <

1

2
(ln k)2

2e
ln k
2

ln k
(
ln k

2
−1)−

√
k(ln k+2)+e(ln k)2 = Θ

(√
k(ln k)2

)
.

ut

Theorem 5. The Funnel Algorithm uses O(k logk n+k2) parallel channels and
has computational complexity of O(k2 log n

k + k3).

Proof. We first prove upper bound about channel usage, i.e., maxt∈[T] L(nt, dt) =
O(k logk n+k2). Recall that we already proved in Lemma 3 that

∑
t L(nt, dt) =

Θ(k2) for the iterations with d̃t < ln k, which means L(nt, dt) = O(k2) for any t
with d̃t < ln k. For iterations with d̃t ≥ ln k, we have

max
t
L(nt, dt) ≤ max

t
dt(n

1
dt
t + 1) = max

t
dt(k

dt−1
dt + 1) (10)

From Inequality (7) we know dt−1

dt
≤ 1+ 2

ln k . Substituting this to Eq. (10) yields

max
t
L(nt, dt) ≤ dt(k1+

2
ln k + 1) = dt(k · e2 + 1).

By Definition 1 we have dt ≤ logk n for any t, which concludes with L(nt, dt) =
O(k logk n) for any t with d̃t ≥ ln k.

Finally, since the local computation of every subroutine (encoding/ beep-
ing/ renaming/ decoding) in the Funnel Algorithm is linear to the code length
L(nt, dt), the computational complexity for the Funnel Algorithm to recover k
identifiers is O(k · S), where S =

∑
t L(nt, dt) is the total number of single-

channel accesses. Then by Lemma 3, the Funnel Algorithm has computational
complexity of O(k · S) = O(k2 log n

k + k3). ut

14 Bojun Huang, Thomas Moscibroda

3.3 Crash Tolerance

In addition to its efficiency, the Funnel Algorithm is also resilient to crash failures
(fail-stops), in the sense that the algorithm guarantees to identify all active nodes
that remain alive (not crashed) when the algorithm terminates, assuming an
adversary crashes an arbitrary subset of nodes in any time slot. This is because
the Funnel Algorithm maintains a candidate list until the last iteration, without
making any irreversible decisions regarding the activeness of any node in the
list (=no false positives). Also, the crash of an active node never leads to the
removal of any other active node from the candidate list (=no false negatives).

Theorem 6. Let N = {1, ..., n}, and let At ⊆ N be the active set at the end of
time slot t for any t > 0 and A0 be the active set when the Funnel Algorithm
starts. For any infinite sequence A0, A1, A2, ... satisfying At ⊆ At−1 for any t >
0, the Funnel Algorithm terminates no later than in the case of given sequence
{At = A0 for any t > 0}, and returns AT if it terminates at time slot T .

4 Discussion

We have proved two new results on the distributed complexity of computation
in Beeping Channels. We present a new algorithm that improves upon the best-
known existing solutions; and we show that two key problems in this model are
equally hard. The latter result, in particular, sheds new light not only on the
Beeping Model itself, but also on its relationship to the most well-studied model
for medium access channels: the collision-detection model with ternary feedback.
Our results prove that even for such basic problems such as conflict resolution
and the membership problem, the two models behave fundamentally differently.

Moreover, there is another well-known binary-feedback model, called the ra-
dio network model without collision detection, where nodes are unable to dis-
tinguish collisions (the conflict state) from the random background noise (the
idle state). Although also assuming binary feedbacks, the radio-network model
returns whether a time slot is a success (in contrast, the beeping model returns
whether a time slot is idle). Interestingly, we can also observe in the radio-
network model the separation in hardness between the problems of CR and MP,
as well as the separation in efficiency between deterministic and randomized CR
algorithms 3 – both disappear in the beeping model.

It seems that the inability to detect successful communications (partially
due to the lack of sophisticated modulation and coding schemes) has made the
beeping model quite different from traditional models. As future works, it may
be interesting to further investigate the relationship between these (and other)
channel access models.

3 In the radio-network model, there exist O(k+logn) randomized CR algorithms [13],
while there is the entropy lower bound of Ω(k log n

k
) for randomized MP algorithms

and a lower bound of Ω(k log n
k

) for deterministic CR algorithms [4].

Conflict Resolution and Membership Problem in Beeping Channels 15

Acknowledgements. The authors thank Dongxiao Yu and Wei Chen for the
inspiring discussions about this work. We also thank all the anonymous reviewers
who gave valuable comments on the previous drafts of this paper.

References

1. Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro Cornejo, Bernhard Haeupler,
and Fabian Kuhn. Beeping a maximal independent set. In Proceedings of the 25th
international conference on Distributed computing, DISC’11, 2011.

2. Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama Barkai, and Ziv
Bar-Joseph. A biological solution to a fundamental distributed computing problem.
Science, 331(6014):183–185, 2011.

3. J. Capetanakis. Tree algorithms for packet broadcast channels. Information The-
ory, IEEE Transactions on, 25(5):505 – 515, sep 1979.

4. Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Selective families,
superimposed codes, and broadcasting on unknown radio networks. In Proceedings
of the twelfth annual ACM-SIAM symposium on Discrete algorithms, SODA ’01,
2001.

5. Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps.
In Proceedings of the 24th international conference on Distributed computing,
DISC’10, 2010.

6. Dingzhu Du and Frank Hwang. Combinatorial group testing and its applications.
World Scientific, 2000.

7. Sylvain Gelly, Levente Kocsis, Marc Schoenauer, Michèle Sebag, David Silver,
Csaba Szepesvári, and Olivier Teytaud. The grand challenge of computer go:
Monte carlo tree search and extensions. Commun. ACM, 55(3):106–113, March
2012.

8. Albert G. Greenberg and Schmuel Winograd. A lower bound on the time needed
in the worst case to resolve conflicts deterministically in multiple access channels.
J. ACM, 32(3), July 1985.

9. J. Hayes. An adaptive technique for local distribution. Communications, IEEE
Transactions on, 26(8):1178 – 1186, aug 1978.

10. J. Komlos and A. Greenberg. An asymptotically fast nonadaptive algorithm for
conflict resolution in multiple-access channels. Information Theory, IEEE Trans-
actions on, 31(2):302 – 306, mar 1985.

11. Dariusz R. Kowalski. On selection problem in radio networks. In Proceedings of
the twenty-fourth annual ACM symposium on Principles of distributed computing,
PODC ’05, 2005.

12. Chou Hsiung Li. A sequential method for screening experimental variables. Journal
of the American Statistical Association, 57(298):455–477, 1962.

13. C. U. Martel. Maximum finding on a multiple access broadcast network. Informa-
tion Processing Letters, 52 (1994) 7 - 13.

14. J. L. Massey. Collision-resolution algorithms and random-access communications.
Technical Report UCLA-ENG-8016, April 1980.

15. B.S. Tsybakov and V.A. Mikhailov. Free synchronous packet access in a broadcast
channel with feedback. Prob. Inf. Transmission, 14(4), April 1978.

16. Jack K. Wolf. Born again group testing: Multiaccess communications. IEEE Trans-
action on Information Theory, 2, March 1985.

