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Abstract 
The n-gram model is a stochastic model, 
which predicts the next word (predicted 
word) given the previous words 
(conditional words) in a word sequence.  
The cluster n-gram model is a variant of 
the n-gram model in which similar words 
are classified in the same cluster. It has 
been demonstrated that using different 
clusters for predicted and conditional 
words leads to cluster models that are 
superior to classical cluster models which 
use the same clusters for both words.  This 
is the basis of the asymmetric cluster 
model (ACM) discussed in our study.  In 
this paper, we first present a formal 
definition of the ACM. We then describe 
in detail the methodology of constructing 
the ACM. The effectiveness of the ACM 
is evaluated on a realistic application, 
namely Japanese Kana-Kanji conversion.  
Experimental results show substantial 
improvements of the ACM in comparison 
with classical cluster models and word 
n-gram models at the same model size.  
Our analysis shows that the 
high-performance of the ACM lies in the 
asymmetry of the model. 

1 Introduction 

The n-gram model has been widely applied in many 
applications such as speech recognition, machine 
translation, and Asian language text input [Jelinek, 
1990; Brown et al., 1990; Gao et al., 2002].  It is a 
stochastic model, which predicts the next word 
(predicted word) given the previous n-1 words 
(conditional words) in a word sequence. 

The cluster n-gram model is a variant of the word 
n-gram model in which similar words are classified 
in the same cluster.  This has been demonstrated as 
an effective way to deal with the data sparseness 
problem and to reduce the memory sizes for realistic 
applications. Recent research [Yamamoto et al., 
2001] shows that using different clusters for 
predicted and conditional words can lead to cluster 
models that are superior to classical cluster models, 
which use the same clusters for both words [Brown 
et al., 1992].  This is the basis of the asymmetric 
cluster model (ACM), which will be formally 
defined and empirically studied in this paper.  
Although similar models have been used in previous 
studies [Goodman and Gao, 2000; Yamamoto et al., 
2001], several issues have not been completely 
investigated. These include: (1) an effective 
methodology for constructing the ACM, (2) a 
thorough comparative study of the ACM with 
classical cluster models and word models when they 
are applied to a realistic application, and (3) an 
analysis of the reason why the ACM is superior. 

The goal of this study is to address the above 
three issues. We first present a formal definition of 
the ACM; then we describe in detail the 
methodology of constructing the ACM including (1) 
an asymmetric clustering algorithm in which 
different metrics are used for clustering the 
predicted and conditional words respectively; and 
(2) a method for model parameter optimization in 
which the optimal cluster numbers are found for 
different clusters.  We evaluate the ACM on a real 
application, Japanese Kana-Kanji conversion, which 
converts phonetic Kana strings into proper Japanese 
orthography. The performance is measured in terms 
of character error rate (CER).  Our results show 
substantial improvements of the ACM in 
comparison with classical cluster models and word 
n-gram models at the same model size.  Our analysis 
shows that the high-performance of the ACM comes 



from better structure and better smoothing, both of 
which lie in the asymmetry of the model. 

This paper is organized as follows: Section 1 
introduces our research topic, and then Section 2 
reviews related work. Section 3 defines the ACM 
and describes in detail the method of model 
construction. Section 4 first introduces the Japanese 
Kana-Kanji conversion task; it then presents our 
main experiments and a discussion of our findings.  
Finally, conclusions are presented in Section 5. 

2 Related Work 

A large amount of previous research on clustering 
has been focused on how to find the best clusters 
[Brown et al., 1992; Kneser and Ney, 1993; 
Yamamoto and Sagisaka, 1999; Ueberla, 1996; 
Pereira et al., 1993; Bellegarda et al., 1996; Bai et 
al., 1998]. Only small differences have been 
observed, however, in the performance of the 
different techniques for constructing clusters. In this 
study, we focused our research on novel techniques 
for using clusters – the ACM, in which different 
clusters are used for predicted and conditional words 
respectively. 

The discussion of the ACM in this paper is an 
extension of several studies below. The first similar 
cluster model was presented by Goodman and Gao 
[2000] in which the clustering techniques were 
combined with Stolcke’s [1998] pruning to reduce 
the language model (LM) size effectively. Goodman 
[2001] and Gao et al, [2001] give detailed 
descriptions of the asymmetric clustering algorithm.  
However, the impact of the asymmetric clustering 
on the performance of the resulting cluster model 
was not empirically studied there.  Gao et al., [2001] 
presented a fairly thorough empirical study of 
clustering techniques for Asian language modeling. 
Unfortunately, all of the above work studied the 
ACM without applying it to an application; thus 
only perplexity results were presented.  The first real 
application of the ACM was a simplified bigram 
ACM used in a Chinese text input system [Gao et al.  
2002]. However, quite a few techniques (including 
clustering) were integrated to construct a Chinese 
language modeling system, and the contribution of 
using the ACM alone was by no means completely 
investigated. 

Finally, there is one more point worth 
mentioning. Most language modeling improvements 
reported previously required significantly more 
space than word trigram models [Rosenfeld, 2000]. 
Their practical value is questionable since all 
realistic applications have memory constraints. In 
this paper, our goal is to achieve a better tradeoff 

between LM performance (perplexity and CER) and 
model size. Thus, whenever we compare the 
performance of different models (i.e. ACM vs. word 
trigram model), Stolcke’s pruning is employed to 
bring the models compared to similar sizes. 

3 Asymmetric Cluster Model 

3.1 Model  
The LM predicts the next word wi given its history h 
by estimating the conditional probability P(wi|h). 
Using the trigram approximation, we have 
P(wi|h)≈P(wi|wi-2wi-1), assuming that the next word 
depends only on the two preceding words.  

In the ACM, we will use different clusters for 
words in different positions.  For the predicted word, 
wi, we will denote the cluster of the word by PWi, 
and we will refer to this as the predictive cluster. .For 
the words wi-2 and wi-1 that we are conditioning on, 
we will denote their clusters by CWi-2 and CWi-1 
which we call conditional clusters.  When we which 
to refer to a cluster of a word w in general we will 
use the notation W.  The ACM estimates the 
probability of wi given the two preceeding words wi-2 
and wi-1 as the product of the following two 
probabilities: 
(1) The probability of the predicted cluster PWi 

given the preceding conditional clusters CWi-2 
and CWi-1, P(PWi|CWi-2CWi-1), and 

(2) The probability of the word given its cluster PWi 
and the preceding conditional clusters CWi-2 and 
CWi-1, P(wi|CWi-2CWi-1PWi). 

Thus, the ACM can be parameterized by 

)|()|()|( 1212 iiiiiiii PWCWCWwPCWCWPWPhwP −−−− ×≈ (1) 

The ACM consists of two sub-models: (1) the 
cluster sub-model P(PWi|CWi-2CWi-1), and (2) the 
word sub-model P(wi|CWi-2CWi-1PWi). To deal with 
the data sparseness problem, we used a backoff 
scheme (Katz, 1987) for the parameter estimation of 
each sub-model. The backoff scheme recursively 
estimates the probability of an unseen n-gram by 
utilizing (n-1)-gram estimates. 

The basic idea underlying the ACM is the use of 
different clusters for predicted and conditional 
words respectively.  Classical cluster models are 
symmetric in that the same clusters are employed for 
both predicted and conditional words.  However, the 
symmetric cluster model is suboptimal in practice. 
For example, consider a pair of words like “a” and 
“an”.  In general, “a” and “an” can follow the same 
words, and thus, as predicted words, belong in the 
same cluster. But, there are very few words that can 



follow both “a” and “an”. So as conditional words, 
they belong in different clusters. 

In generating clusters, two factors need to be 
considered: (1) clustering metrics, and (2) cluster 
numbers.  In what follows, we will investigate the 
impact of each of the factors. 

3.2 Asymmetric clustering  

The basic criterion for statistical clustering is to 
maximize the resulting probability (or minimize the 
resulting perplexity) of the training data. Many 
traditional clustering techniques [Brown et al., 
1992] attempt to maximize the average mutual 
information of adjacent clusters 
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where the same clusters are used for both predicted 
and conditional words. We will call these clustering 
techniques symmetric clustering, and the resulting 
clusters both clusters.  In constructing the ACM, we 
used asymmetric clustering, in which different 
clusters are used for predicted and conditional 
words. In particular, for clustering conditional 
words, we try to minimize the perplexity of training 
data for a bigram of the form P(wi|Wi-1), which is 
equivalent to maximizing 
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where N is the total number of words in the training 
data.  We will call the resulting clusters conditional 
clusters denoted by CW. For clustering predicted 
words, we try to minimize the perplexity of training 
data of P(Wi|wi-1)×P(wi|Wi). We will call the 
resulting clusters predicted clusters denoted by PW. 
We have2 
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wP is independent of the clustering used. 

Therefore, for the selection of the best clusters, it is 
sufficient to try to maximize 
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This is very convenient since it is exactly the op-
posite of what was done for conditional clustering. It 
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means that we can use the same clustering tool for 
both, and simply switch the order used by the 
program used to get the raw counts for clustering.  

The clustering technique we used creates a binary 
branching tree with words at the leaves.  The ACM 
in this study is a hard cluster model, meaning that 
each word belongs to only one cluster.  So in the 
clustering tree, each word occurs in a single leaf.   In 
the ACM, we actually use two different clustering 
trees. One is optimized for predicted words, and the 
other for conditional words. 

The basic approach to clustering we used is a 
top-down, splitting clustering algorithm. In each 
iteration, a cluster is split into two clusters in the 
way that the splitting achieves the maximal entropy 
decrease (estimated by Equations (3) or (4)). Finally, 
we can also perform iterations of swapping all words 
between all clusters until convergence i.e. no more 
entropy decrease can be found3. We find that our 
algorithm is much more efficient than agglomerative 
clustering algorithms – those which merge words 
bottom up.  

3.3 Parameter optimization 
Asymmetric clustering results in two binary 
clustering trees. By cutting the trees at a certain 
level, it is possible to achieve a wide variety of 
different numbers of clusters.  For instance, if the 
tree is cut after the 8th level, there will be roughly 
28=256 clusters.  Since the tree is not balanced, the 
actual number of clusters may be somewhat smaller. 
We use Wl to represent the cluster of a word w using 
a tree cut at level l.  In particular, if we set l to the 
value “all”, it means that the tree is cut at infinite 
depth, i.e. each cluster contains a single word. The 
ACM model of Equation (1) can be rewritten as 

 P(PWi
l|CWi-2

jCWi-1
j)×P(wi|PWi-2

kCWi-1
kCWi

l). (5) 

To optimally apply the ACM to realistic applications 
with memory constraints, we are always seeking the 
correct balance between model size and 
performance. We used Stolcke’s pruning method to 
produce many ACMs with different model sizes. In 
our experiments, whenever we compare techniques, 
we do so by comparing the performance (perplexity 
and CER) of the LM techniques at the same model 
sizes. Stolcke’s pruning is an entropy-based cutoff 
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Although the resulting clusters without swapping are not 
even locally optimal, our experiments show that the 
quality of clusters (in terms of the perplexity of the 
resulting ACM) is not inferior to that of clusters with 
swapping. 



method, which can be described as follows: all 
n-grams that change perplexity by less than a 
threshold are removed from the model. For pruning 
the ACM, we have two thresholds: one for the 
cluster sub-model P(PWi

l|CWi-2
jCWi-1

j) and one for 
the word sub-model P(wi|CWi-2

kCWi-1
kPWi

l) 
respectively, denoted by tc and  tw below. 

In this way, we have 5 different parameters that 
need to be simultaneously optimized: l, j, k, tc, and 
tw, where j, k, and l are the numbers of clusters, and tc 
and tw are the pruning thresholds.  

A brute-force approach to optimizing such a large 
number of parameters is prohibitively expensive. 
Rather than trying a large number of combinations 
of all 5 parameters, we give an alternative technique 
that is significantly more efficient. Simple math 
shows that the perplexity of the overall model 
P(PWi

l|CWi-2
jCWi-1

j)× P(wi|CWi-2
kCWi-1

kPWi
l) is 

equal to the perplexity of the cluster sub-model 
P(PWi

l|CWi-2
jCWi-1

j) times the perplexity of the 
word sub-model P(wi|CWi-2

kCWi-1
kPWi

l).  The size of 
the overall model is clearly the sum of the sizes of 
the two sub-models.  Thus, we try a large number of 
values of j, l, and a pruning threshold tc for 
P(PWi

l|CWi-2
jCWi-1

j), computing sizes and 
perplexities of each, and a similarly large number of 
values of l,  k, and a separate threshold tw for 
P(wi|CWi-2

kCWi-1
kPWi

l).  We can then look at all 
compatible pairs of these models (those with the 
same value of l) and quickly compute the perplexity 
and size of the overall models.  This allows us to 
relatively quickly search through what would 
otherwise be an overwhelmingly large search space. 

4 Experimental Results and Discussion 

4.1 Japanese Kana-Kanji Conversion Task 
Japanese Kana-Kanji conversion is the standard 
method of inputting Japanese text by converting a 
syllabary-based Kana string into the appropriate 
combination of ideographic Kanji and Kana. This is 
a similar problem to speech recognition, except that 
it does not include acoustic ambiguity. The 
performance is generally measured in terms of 
character error rate (CER), which is the number of 
characters wrongly converted from the phonetic 
string divided by the number of characters in the 
correct transcript. The role of the language model is, 
for all possible word strings that match the typed 
phonetic symbol string, to select the word string 
with the highest language model probability. 
Current products make about 5-10% errors in con-
version of real data in a wide variety of domains. 

4.2 Settings 
In the experiments, we used two Japanese 
newspaper corpora: the Nikkei Newspaper corpus, 
and the Yomiuri Newspaper corpus. Both text 
corpora have been word-segmented using a lexicon 
containing 167,107 entries.  

We performed two sets of experiments: (1) pilot 
experiments, in which model performance is 
measured in terms of perplexity and (2) Japanese 
Kana-Kanji conversion experiments, in which the 
performance of which is measured in terms of CER. 

In the pilot experiments, we used a subset of the 
Nikkei newspaper corpus: ten million words of the 
Nikkei corpus for language model training, 10,000 
words for held-out data, and 20,000 words for 
testing data. None of the three data sets overlapped.  
In the Japanese Kana-Kanji conversion experiments, 
we built language models on a subset of the Nikkei 
Newspaper corpus, which contains 36 million 
words. We performed parameter optimization on a 
subset of held-out data from the Yomiuri Newspaper 
corpus, which contains 100,000 words. We 
performed testing on another subset of the Yomiuri 
Newspaper corpus, which contains 100,000 words. 
In both sets of experiments, word clusters were 
derived from bigram counts generated from the 
training corpora. Out-of-vocabulary words were not 
included in perplexity and error rate computations. 

4.3 Impact of asymmetric clustering 
As described in Section 3.2, depending on the 
clustering metrics we chose for generating clusters, 
we obtained three types of clusters: both clusters 
(the metric of Equation (2)), conditional clusters 
(the metric of Equation (3)), and predicted clusters 
(the metric of Equation (4)). We then performed a 
series of experiments to investigate the impact of 
different types of clusters on the ACM. We used 
three variants of the trigram ACM: (1) the predictive 
cluster model P(wi|wi-2wi-1Wi)× P(Wi|wi-2wi-1) where 
only predicted words are clustered, (2) the 
conditional cluster model P(wi|Wi-2Wi-1) where only 
conditional words are clustered, and (3) the IBM 
model P(wi|Wi)× P(Wi|Wi-2Wi-1) which can be treated 
as a special case of the ACM of Equation (5) by 
using the same type of cluster for both predicted and 
conditional words, and setting k = 0, and l = j. For 
each cluster trigram model, we compared their 
perplexities and CER results on Japanese Kana- 
Kanji conversion using different types of clusters. 
For each cluster type, the number of clusters were 
fixed to the same value 2^6 just for comparison.  The 
results are shown in Table 1. It turns out that the 
benefit of using different clusters in different 



positions is obvious.  For each cluster trigram 
model, the best results were achieved by using the 
“matched” clusters, e.g. the predictive cluster model 
P(wi|wi-2wi-1Wi)× P(Wi|wi-2wi-1) has the best 
performance when the cluster Wi is the predictive 
cluster PWi generated by using the metric of 
Equation (4). In particular, the IBM model achieved 
the best results when predicted and conditional 
clusters were used for predicted and conditional 
words respectively. That is, the IBM model is of the 
form P(wi|PWi)× P(PWi|CWi-2CWi-1). 

 Con Pre Both Con + Pre 
Perplexity 287.7 414.5 377.6 --- Con 

model CER (%) 4.58 11.78 12.56 --- 
Perplexity 103.4 102.4 103.3 --- Pre 

model CER (%) 3.92 3.63 3.82 --- 
Perplexity 548.2 514.4 385.2 382.2 IBM 

model CER (%) 6.61 6.49 5.82 5.36 
Table 1: Comparison of different cluster types 
with cluster-based models 

4.4 Impact of parameter optimization 
In this section, we first present our pilot experiments 
of finding the optimal parameter set of the ACM (l, j, 
k, tc, tw) described in Section 2.3. Then, we compare 
the ACM to the IBM model, showing that the 
superiority of the ACM results from its better 
structure. 

In this section, the performance of LMs was 
measured in terms of perplexity, and the size was 
measured as the total number of parameters of the 
LM: one parameter for each bigram and trigram, one 
parameter for each normalization parameter α that 
was needed, and one parameter for each unigram.  

We first used the conditional cluster model of the 
form P(wi|CWi-2

jCWi-1
j). Some sample settings of 

parameters (j, tw) are shown in Figure 1. The 
performance was consistently improved by 
increasing the number of clusters j, except at the 
smallest sizes.  The word trigram model was 
consistently the best model, except at the smallest 
sizes, and even then was only marginally worse than 
the conditional cluster models.  This is not surprising 
because the conditional cluster model always 
discards information for predicting words. 

We then used the predictive cluster model of the 
form P(PWi

l|wi-2wi-1)×P(wi|wi-2wi-1PWi
l), where only 

predicted words are clustered. Some sample settings 
of the parameters (l, tc, tw) are shown in Figure 2. For 
simplicity, we assumed tc=tw, meaning that the same 
pruning threshold values were used for both 
sub-models. It turns out that predictive cluster 
models achieve the best perplexity results at about 

2^6 or 2^8 clusters. The models consistently 
outperform the baseline word trigram models.  

We finally returned to the ACM of Equation (5), 
where both conditional words and the predicted 
word are clustered (with different numbers of 
clusters), and which is referred to as the combined 
cluster model below.  In addition, we allow different 
values of the threshold for different sub-models. 
Therefore, we need to optimize the model parameter 
set l, j, k, tc, tw.  

Based on the pilot experiment results using 
conditional and predictive cluster models, we tried 
combined cluster models for values l∈ [4, 10], j, 
k∈ [8, 16]. We also allow j, k=all. Rather than plot 
all points of all models together, we show only the 
outer envelope of the points.  That is, if for a given 
model type and a given point there is some other 
point of the same type with both lower perplexity 
and smaller size than the first point, then we do not 
plot the first, worse point.  

The results are shown in Figure 3, where the 
cluster number of IBM models is 2^14 which 
achieves the best performance for IBM models in 
our experiments.  It turns out that when l∈ [6, 8] and 
j, k>12, combined cluster models yield the best 
results. We also found that the predictive cluster 
models give as good performance as the best 
combined ones while combined models 
outperformed very slightly only when model sizes 
are small. This is not difficult to explain. Recall that 
the predictive cluster model is a special case of the 
combined model where words are used in 
conditional positions, i.e. j=k=all. Our experiments 
show that combined models achieved good 
performance when large numbers of clusters are 
used for conditional words, i.e. large j, k>12, which 
are similar to words. 

The most interesting analysis is to look at some 
sample settings of the parameters of the combined 
cluster models in Figure 3. In Table 2, we show the 
best parameter settings at several levels of model 
size. Notice that in larger model sizes, predictive 
cluster models (i.e. j=k=all) perform the best in 
some cases. The ‘prune’ columns (i.e. columns 6 and 
7) indicate the Stolcke pruning parameter we used.  

First, notice that the two pruning parameters (in 
columns 6 and 7) tend to be very similar.  This is 
desirable since applying the theory of relative 
entropy pruning predicts that the two pruning 
parameters should actually have the same value.   

Next, let us compare the ACM 
P(PWi

l|CWi-2
jCWi-1

j)×P(wi|CWi-2
kCWi-1

kPWi
l) to 

traditional IBM clustering of the form 
P(Wi

l|Wi-2
lWi-1

l)×P(wi|Wi
l), which is equal to 

P(Wi
l|Wi-2

lWi-1
l)×P(wi|Wi-2

0Wi-1
0Wi

l) (assuming the   
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Figure 1. Comparison of conditional models 
applied with different numbers of clusters 
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Figure 2. Comparison of predictive models 
applied with different numbers of clusters 
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Figure 3. Comparison of ACMs, predictive 
cluster model, IBM model, and word trigram 
model 
same type of cluster is used for both predictive and 
conditional words). Our results in Figure 3 show that 
the performance of IBM models is roughly an order 
of magnitude worse than that of ACMs. This is 
because in addition to the use of the symmetric 
cluster model, the traditional IBM model makes two 
more assumptions that we consider suboptimal.  
First, it assumes that j=l.  We see that the best results 
come from unequal settings of j and l.  Second, more 
importantly, IBM clustering assumes that k=0.  We 
see that not only is the optimal setting for k not 0, but 
also typically the exact opposite is the optimal: k=all 
in which case P(wi|CWi-2

kCWi-1
kPWi

l)= 
P(wi|wi-2wi-1PWi

l), or k=14, 16, which is very 
similar. That is, we see that words depend on the 
previous words and that an independence 
assumption is a poor one.  Of course, many of these 
word dependencies are pruned away – but when a 

word does depend on something, the previous words 
are better predictors than the previous clusters. 

Another important finding here is that for most of 
these settings, the unpruned model is actually larger 
than a normal trigram model – whenever k=all or 14, 
16, the unpruned model P(PWi

l|CWi-2
jCWi-1

j) × 
P(wi|CWi-2

kCWi-1
kPWi

l) is actually larger than an 
unpruned model P(wi|wi-2wi-1). 

This analysis of the data is very interesting – it 
implies that the gains from clustering are not from 
compression, but rather from capturing structure.  
Factoring the model into two models, in which the 
cluster is predicted first, and then the word is 
predicted given the cluster, allows the structure and 
regularities of the model to be found. This larger, 
better structured model can be pruned more 
effectively, and it achieved better performance than 
a word trigram model at the same model size. 
Model size Perplexity l j k tc tw 

2.0E+05 141.1 8 12 14 24 24 

2.5E+05 135.7 8 12 14 12 24 

5.0E+05 118.8 6 14 16 6 12 

7.5E+05 112.8 6 16 16 3 6 

1.0E+06 109.0 6 16 16 3 3 

1.3E+06 107.4 6 16 16 2 3 

1.5E+06 106.0 6 All all 2 2 

1.9E+06 104.9 6 All all 1 2 
Table 2: Sample parameter settings for the ACM 

4.5 CER results 
Before we present CER results of the Japanese 
Kana-Kanji conversion system, we briefly describe 
our method for storing the ACM in practice.  

One of the most common methods for storing 
backoff n-gram models is to store n-gram 
probabilities (and backoff weights) in a tree 
structure, which begins with a hypothetical root 
node that branches out into unigram nodes at the first 
level of the tree, and each of those unigram nodes in 
turn branches out into bigram nodes at the second 
level and so on. To save storage, n-gram 
probabilities such as P(wi|wi-1) and backoff weights 
such as α(wi-2wi-1) are stored in a single (bigram) 
node array (Clarkson and Rosenfeld, 1997). 

Applying the above tree structure to storing the 
ACM is a bit complicated – there are some 
representation issues. For example, consider the 
cluster sub-model P(PWi

l|CWi-2
jCWi-1

j). N-gram 
probabilities such as P(PWi

l|CWi-1
j) and backoff 

weights such as α(CWi-2
jCWi-1

j) cannot be stored in a 
single (bigram) node array, because l ≠ j and 



PW≠CW. Therefore, we used two separate trees to 
store probabilities and backoff weights, 
respectively. As a result, we used four tree structures 
to store ACMs in practice: two for the cluster 
sub-model P(PWi

l|CWi-2
jCWi-1

j), and two for the 
word sub-model P(wi|CWi-2

kCWi-1
kPWi

l).  We found 
that the effect of the storage structure cannot be 
ignored in a real application. 

In addition, we used several techniques to 
compress model parameters (i.e. word id, n-gram 
probability, and backoff weight, etc.) and reduce the 
storage space of models significantly. For example, 
rather than store 4-byte floating point values for all 
n-gram probabilities and backoff weights, the values 
are quantized to a small number of quantization 
levels. Quantization is performed separately on each 
of the n-gram probability and backoff weight lists, 
and separate quantization level look-up tables are 
generated for each of these sets of parameters.  We 
used 8-bit quantization, which shows no 
performance decline in our experiments. 

Our goal is to achieve the best tradeoff between 
performance and model size. Therefore, we would 
like to compare the ACM with the word trigram 
model at the same model size. Unfortunately, the 
ACM contains four sub-models and this makes it 
difficult to be pruned to a specific size. Thus for 
comparison, we always choose the ACM with 
smaller size than its competing word trigram model 
to guarantee that our evaluation is under-estimated. 
Experiments show that the ACMs achieve 
statistically significant improvements over word 
trigram models at even smaller model sizes (p-value 
=8.0E-9). Some results are shown in Table 3.  

Word trigram model ACM 

Size 
(MB) 

CER Size 
(MB) 

CER  CER 
Reduction 

1.8 4.56% 1.7 4.25% 6.8% 

5.8 4.08% 4.5 3.83% 6.1% 

11.7 4.04% 10.7 3.73% 7.7% 

23.5 4.00% 21.7 3.63% 9.3% 

42.4 3.98% 40.4 3.63% 8.8% 
Table 3:  CER results of ACMs and word 
trigram models at different model sizes 

Now we discuss why the ACM is superior to 
simple word trigrams.  In addition to the better 
structure as shown in Section 3.3, we assume here 
that the benefit of our model also comes from its 
better smoothing. Consider a probability such as 
P(Tuesday| party on). If we put the word “Tuesday” 
into the cluster WEEKDAY, we decompose the 
probability 

When each word belongs to one class, simple math 
shows that this decomposition is a strict equality. 
However, when smoothing is taken into 
consideration, using the clustered probability will be 
more accurate than using the non-clustered 
probability. For instance, even if we have never seen 
an example of “party on Tuesday”, perhaps we have 
seen examples of other phrases, such as “party on 
Wednesday”; thus, the probability P(WEEKDAY | 
party on) will be relatively high. Furthermore, 
although we may never have seen an example of 
“party on WEEKDAY Tuesday”, after we backoff or 
interpolate with a lower order model, we may able to 
accurately estimate P(Tuesday | on WEEKDAY). 
Thus, our smoothed clustered estimate may be a 
good one. 

Our assumption can be tested empirically by 
following experiments.  We first constructed several 
test sets with different backoff rates4. The backoff 
rate of a test set, when presented to a trigram model, 
is defined as the number of words whose trigram 
probabilities are estimated by backoff bigram 
probabilities divided by the number of words in the 
test set.  Then for each test set, we obtained a pair of 
CER results using the ACM and the word trigram 
model respectively.  As shown in Figure 4, in both 
cases, CER increases as the backoff rate increases 
from 28% to 40%. But the curve of the word trigram 
model has a steeper upward trend.  The difference of 
the upward trends of the two curves can be shown 
more clearly by plotting the CER difference between 
them, as shown in Figure 5.  The results indicate that 
because of its better smoothing, when the backoff 
rate increases, the CER using the ACM does not 
increase as fast as that using the word trigram model.  
Therefore, we are reasonably confident that some 
portion of the benefit of the ACM comes from its 
better smoothing. 
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Figure 4: CER vs. backoff rate. 

                                                      
4  The backoff rates are estimated using the baseline 
trigram model, so the choice could be biased against the 
word trigram model. 

P(Tuesday | party on) = P(WEEKDAY | party on)× 
P(Tuesday | party on WEEKDAY). 
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Figure 5: CER difference vs. backoff rate. 

5 Conclusion 

There are three main contributions of this paper. 
First, after presenting a formal definition of the 
ACM, we described in detail the methodology of 
constructing the ACM effectively. We showed 
empirically that both the asymmetric clustering and 
the parameter optimization (i.e. optimal cluster 
numbers) have positive impacts on the performance 
of the resulting ACM.  The finding demonstrates 
partially the effectiveness of our research focus: 
techniques for using clusters (i.e. the ACM) rather 
than techniques for finding clusters (i.e. clustering 
algorithms).  Second, we explored the actual 
representation of the ACM and evaluate it on a 
realistic application – Japanese Kana-Kanji 
conversion.  Results show approximately 6-10% 
CER reduction of the ACMs in comparison with the 
word trigram models, even when the ACMs are 
slightly smaller.  Third, the reasons underlying the 
superiority of the ACM are analyzed. For instance, 
our analysis suggests the benefit of the ACM comes 
partially from its better structure and its better 
smoothing. 

All cluster models discussed in this paper are 
based on hard clustering, meaning that each word 
belongs to only one cluster. One area we have not 
explored is the use of soft clustering, where a word w 
can be assigned to multiple clusters W with a 
probability P(W|w) [Pereira et al., 1993]. Saul and 
Pereira [1997] demonstrated the utility of soft 
clustering and concluded that any method that 
assigns each word to a single cluster would lose 
information. It is an interesting question whether our 
techniques for hard clustering can be extended to 
soft clustering.  On the other hand, soft clustering 
models tend to be larger than hard clustering models 
because a given word can belong to multiple 
clusters, and thus a training instance P(wi|wi-2wi-1) 
can lead to multiple counts instead of just 1.  
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