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Abstract—In wireless networks mutual interference impairs dilemma. Specifically, we consider the following spatial reuse
the quality of received signals and might even prevent the correct nstance, captured by the following well-knowstheduling
reception of messages. It is therefore of paramount importance to problem Given a set of transmission requests, how do we

dispose of power control and scheduling algorithms, coordinating hedule th ] t h that concurrent transmissions
the transmission of communication requests. We propose a hew schedule these requests suc at co

measuredisturbancein order to comprise the intrinsic difficulty ~d0 not cause a level of interference preventing the correct
of finding a short schedule for a problem instance. Previously reception of messages and that the total time needed to
known approaches suffer from extremely bad performance in successfully schedule all requests is minimized.

cgrtaln network scenarios even if dlsturbance is Iovy. To overcome |1 \we consider omnidirectional antennae, every sender
this problem, we present a novel scheduling algorithm for which

we give analytical worst-case guarantees on its performance. caus.es interfere!'lce to every receiv_er, depending on the prop-
Compared to previously known solutions, the algorithm achieves agation attenuation of the sender signal. In order to decode a
a speed up, which can be exponential in the size of the network. signal thesignal-to-interference-plus-noise-rati& {N R) has

to be above a threshold that depends on the given hardware.
However, even an optimal power control algorithm cannot

In the past, the networking community has been remarkalgyiarantee acceptabl&/ N R levels for all links concurrently
successful in designing protocol standards, such as TCPpetause, in general, only a subset of all links can be sched-
IP, many of which have even survived the unexpected antkd in parallel. It is therefore unavoidable to postpone the
tremendous growth of the Internet. Most of these protocaignsmission of some communication requests to subsequent
have in common that they were developed using heuristic (ruige slots. As short schedules maximize network throughput,
of thumb) reasoning, and evaluated through complex simut@e ultimate aim of any scheduling protocol is hence to find a
tions. While so far, this approach has worked well, we fegthedule of minimum (or at least close to minimal) length.
thatwireless networkare challenging the heuristics/simulation  Scheduling in wireless networks being of utmost theoretical
paradigm. and practical importance, it is not surprising that numerous

Considering the specific characteristics of wireless nefeuristics are known for this problem. In this paper, we
works, designing efficient and reliable wireless protocols srove that for certain problem instances all these heuristics
challenging. In order to be credible, one has to considgerform poorly (Section V). In addition we present a new
various difficulties which arise in practice, such as complescheduling algorithm called LDS that exhibits explicit worst-
wireless channel models, genuine traffic patterns, or strenu@ase guarantees (Section 1IV). We prove that on a class of
environmental influences. These intricate modeling issues haé@narios our algorithm perfornesponentiallybetter than all
often prevented researchers from thoroughly analyzing thefe previous heuristics we are aware of. In particular, LDS
algorithms and protocols, resorting instead to simulation gghedules: transmission requests i@(log n) time whereas
the seemingly only feasible method. previous heuristics requir@(n) time.

On the other hand, it is clear that simulation is problematic,
as one can never cover all possible scenarios. What if a
heuristic works well in most (simulated) scenarios but is A wide range of models and various classes of proto-
inferior in some other classes of scenarios? What if thesels have been suggested in order to solve the problem of
devastating classes are important or even critical in practic&heduling and power control. One line of research uses a
In view of these potential problems, it is not surprising thajraph representation of a wireless network, modeling interfer-
several researchers in the wireless networking communéwce by some (often binary) graph property. Assuming equal
have recently started questioning the relevance of simulatiotransmission powers for all sending nodes, for instance, the
In contrast, analytic worst-case analysis has the advantage of “interference-edges” contains pairs of nodes within a
to include all possible cases, and offers strict performancertain distance to each other, thus modeling interference as
guarantees. a local measure. Graph-based scheduling algorithms usually

In this paper we study a fundamental problem in wirelegsmploy an implicit or explicit coloring strategy, which neglects
networking, which is prototypical for the heuristics/simulatiothe aggregated interference of nodes located further away.

I. INTRODUCTION

Il. RELATED WORK AND EXISTING PROTOCOLS



More importantly, as shown in [14], graph-based scheduliramalysis of randomly deployed networks. In Section V, we
algorithms are too conservative as they do not tap the fghow that these link removal heuristics have a bad worst-
potential of spatial reuse. Overlapping links, for instance, acase performance, creating schedules which are exponentially
not scheduled simultaneously in a graph-based schedullngger than necessary for certain networks.
algorithm although this is feasible in practice [14]. The perfor- The same limitation holds for the influential algorithm for
mance of graph-based algorithms is examined in [10] and [2¢xt neighbor transmissions and power control by ElBatt and
along with a demonstration that such simplistic graph-baseghremides [6]. They combine two heuristics to produce a
approaches are inferior to algorithms in more realistidV R short schedule and the corresponding power assignment. First
models. a set ofvalid links is selected by greedily choosing nodes such
As we argue in detail in Section V, algorithms explicitlythat no node is receiving and transmitting in the same slot
defined for theSIN R model can broadly be classified into(to avoid self-interference) and no sender is situated within
three categories. One approach is to assign the same powed eertain range of an already selected receiving node. In a
all transmitting nodes. In [13] it is shown that protocols witlsecond phase, Zander's LISRA algorithm is applied to these
such uniform power assignment can result in long scheduléiaks. As it is possible to construct scenarios, where all links
In the same paper it is proved that the second intuititegether form a valid set, the worst case behavior of LISRA
procedure, adjusting the power proportionally to the so-calledrries over to the algorithm of [6] as well (see Section V).
“energy-metric”, can lead to long schedules as well. Recently, polynomial-time algorithms with provable guar-
More sophisticated methods are based on results from [3htees in physical model environments for specific network
where Aein shows how to determine tieaximum achiev- topologies were proposed and analyzed in [13], [15]. In this
able SIN R* in polynomial time for satellite communicationspaper, we improve on these algorithms and give strict worst-
system. These results being directly applicable to wireleggse guarantees even in scenarios in which no efficient bounds
networks, it is possible to find an optimal power assignmeRkve been derived.
efficiently. However, the problem is that/ N R* may be t00  The problem of scheduling broadcast requests has been
low to guarantee correct reception at all receivers. That impligg,died by Ephremides and Truong [7]. They show that in a
that our problem of partitioning the set of communicatiogeneralizednon-geometrienodel, finding an optimal schedule
requests into time slots meeting the requittiV R criteria  js NP-complete, if no interference is tolerated. Other aspects

remains unresolved. A brute force approach for finding thsg scheduling and power control are studied for instance in [3],
optimal schedule attempts to find for each time slot the largest, [16], [17], [18].

set of remaining links which can be scheduled simultaneously
by checking for each subset of links whether it allows a
SUfﬁCiently hlghS[NR As there are” Subsets, however, the In this paper, we are interested in devising Schedu"ng
required time complexity grows exponentially with the numbgsrotocols that exhibit a provably good performance even in
of links. non-uniformly distributed networks. We therefore consider the
Consequently, many computationally efficient methods fefetwork to consist of a set of nodesX = {z1,...,z,}
postponing the transmission of links according to some (“linkat are arbitrarily (possibly even worst-case) located in the
removal’) heuristics have been devised. The first among themclidean plane. The Euclidean distance between two nodes
is presented by Zander [21]. He proposes an algorithm callgd z; € X, is denoted byd(z;, ;). For simplicity and
SRA, which removes nodes from the current time slot by githout loss of generality, we assume that the minimal distance
stepwise approximation criterion. In [20] Zander devises &ktween any two nodes is
improved algorithm called LISRA that requires less knowledge o communication request; from a senders; € X to a
of the network and theSIN R for each time slot convergesyecejverr; € X is represented as a directed lifk, ;) with
to SINR* in a distributed fashion. Subsequently, severfdngihd, = d(s;, ;).
improvements on this convergence procedure have been pro-
posed, e.g. [9], [8]. The idea of Lee et al. [12] is to postponlg
links which either have a high level of interference at the’
receiver or links of which the sender causes much interferencéA crucial aspect when studying scheduling in wireless
to other receivers. The distributed algorithm proposed by Wangtworks is to use an appropriate model. In the past, re-
et al. [19] eliminates links which cause most interference searchers have studied a wide range of communication models,
order to allow the remaining links to reach an acceptabtanging from complex channel models to simplistic graph-
SIN R level. Most recently, Brar et al. [4] present a schedulingased protocol models. A standard model that is realistic,
method that is based on a greedy assignment of weightad also concise enough to allow for stringent reasoning and
colors. proofs is the Physicabignal-to-Interference-plus-Noise-Ratio
All the above polynomial-time algorithms have one cruciglSIN R) model [11]. In this model, the successful reception
drawback: The authors provide no worst-case analysis oha transmission depends on the received signal strength, the
their performance and all assumptions on their algorithmisterference caused by nodes transmitting simultaneously, and
quality are based on simulations and—in the case of [4]the ambient noise level.

I1l. M ODEL

The Physical SINR Model



The received poweP, (s;) of a signal transmitted by senderachieve a good (close to optimal) scheduling complexity in
s; at an intended receivet; is all networks and for arbitrary communication requests. Un-
Pu(ss) = Plsi) - glsi,r) Qerstgnding the sche_duling complexity of different pr'otocols
e ! R in arbitrary networks is therefore of fundamental practical and
where P(s;) is the transmission power of and g(s;,r;) is theoretical interest in wireless networking.
the propagation attenuation (link gain) modeledyés, r;) = )
d(s;,m;)~% . Thepath-loss exponent is a constantél?etw)eﬁ C. The Disturbance
and6, whose exact value depends on external conditions of theSince we study arbitrary, possibly worst-case network and
medium (humidity, obstacles, ...), as well as the exact sendegquest settings, we introduce a formal measure that captures
receiver distance. As common, we assume that 2 [11]. the intrinsic difficulty of scheduling a given set of communi-
Given a requesh; = (s;,;), we use the notatiod,.(s;) = cation requests.
P,.(s;j) for any other sendes; concurrent tos;, in order to For a given set of communication requestsand some
emphasize that the signal power transmitteds pis perceived constantp > 1, we define thep-disturbanceas the maximal
atr; as interference. Thietal interferencel, experienced by a number of senders (receivers) that are in close physical prox-
receiverr; is the sum of the interference power values creatdaity (depending on the parametgy of any sender (receiver).
by all nodes in the network transmitting simultaneously (ex-onsider disksS; and R; of radiusd; /p around sendes; and
cept the intending sendey), that is,I,. := Zsjex\{si} I.(s5). receiverr;, respectlv_ely. Formally, the-disturbance of a link
Finally, let N denote the ambient noise power level. Then, i is the larger of either the number of sendersSinor the

receivess;’s transmission if and only if number of receivers ik;. The p-disturbance ofA is then the
Py(s:) maximum p-disturbance of any link\; € A.
SINR(i) ¥ 4 ZI : 1) Definition 3.2: Given a set of requestsA. The p-
2 i I (55) disturbance, denoted ag, of A is defined as
_ P(si)g(si, i)
T NS Pl Xo = e (M),
d(ff,ii))u where the disturbancg,();) for request); is the maximum

= >
Nty e = By of {rj | d(rj,ri) < di/p}| and|{s; | d(s;,si) < di/p}|.
J#E d(sjri)® As it turns out, thedisturbanceof a set of requests in-
where § is the minimum SINR required for a successful deed captures the fundamental difficulty of scheduling these

message reception. requests. Solving problem instances with low disturbance effi-
In our analysis we often use the gain matfix= [g(s;, ;)] ciently is very important in practice since in realistic networks
and its normalized correspondefit= [%]. one always tries to prevent situations with many receivers

clustered in the same area. Section IV presents LDS, a
) _ _ ~scheduling protocol that achieves a provably fast performance
The aim of a scheduling and power control algorithm is iRy gl networks and requests that have low disturbance. On
generate a sequence of power assignment_ vectors, SUCh.thafHBeother hand, we prove in Section V that currently known
SINR Igvel is above a threshold at every intended receiver gcheduling protocols may perform highly sub-optimally even
and all links are scheduled successfully at least once. in instances with low disturbance. In fact, the number of time

More formally, letA be a s_et ofcommunication requests gjgig required by any such protocol may be exponentially
;. P, denotes thepower assignment vectowhere P;(s;) higher than the optimum.

determines the transmission power of sengen time slott.

B. Problem Formulation

A scheduleis represented by = (P, ..., Pr). As in [11], IV. EFFICIENT SCHEDULING PROTOCOL
it is assumed without loss of generality that transmissions areln this section, we propose a novel scheduling protocol,
slotted into synchronized slots of equal length. called thel ow-Disturbance Scheduling Protocol (LD®)hich

~Let L; be the set of all successfully scheduled links iachieves provable performance guarantees even in worst-case
time slot ¢. The goal is that after as few time slots agetworks. In particular, given a network and a set of commu-
possible the union of all sets; equals the set of requests njcation requests, LDS computes a schedule whose length is

The scheduling complexitdefined in [13] is a measure thatwithin a polylogarithmic factor of the network’s disturbance.
captures the amount of time required by a scheduling protocol
to schedule requests in the Physi&dlN R model. A. LDS Protocol

Definition 3.1: The scheduling problem foA is to find The protocol consists of three parts: a pre-processing step,
a scheduleS of minimal lengthT" such that the union of the main scheduling-loop, and a test-subroutine that deter-
all successfully transmitted IinkytT:(‘f) L; equals A. An mines whether a link is to be scheduled in a given time slot.
algorithm’sscheduling complexitig the length of the schedule The purpose of the pre-processing phase is to assign two
generated. values 7(i) and ~(¢) to every request\;. The value~(i)

The scheduling complexity of a protocol reflects the pras an integer values betweeh and [log(3nf3) + ploga].
tocol's quality. Ideally, a wireless scheduling protocol shoul@ihe idea is that only requests with the sam@) values



are considered for scheduling in the same iteration of thdgorithm 1 The LDS Protocol for requests

main scheduling-loop (Lines 2 and 3 of the main scheduling,—re_processing phase:

loop). The second assigned valu€j), further partitions the 1 reuri=1; ~eur : 1 last = dy:

requests. In particular, it holds that the length of all request% Cons.ider’all requ.ests’4 cA iﬁ dec’reasing order of.:
that have the same(i) and (i) differ by at most a factor = (/" "\ o ! v
two. On the other hand, we show in Lemma 4.4 that if two !

requests\; and A; satisfy7(i) < 7(j), then the length of;, g: g }?Stéi; i 2(1oth((:a325) +ploga] then
d;, is at least by a factog (3n3p*)79) "7 longer thand;. 'ycur ,_ Cir et pros
Generally speaking, the assignmentdf) ensures that the 7: elge =7 ’
smaller the valuer(i) assigned to a requests, the longer ~yeur := 1; reur = reur + 1
the corresponding communication link, and vice versa. 9: end S ' ’
In summary, the pre-processing phase partitions the set 1%1‘: last:— d.-
requests in such a way that two requesfsand A; that are | ., v
assigned the same(i) have either almost equal length (if, .. ~(3) := yeur; 7(i) = Tour;

7(i) = 7(4)) or very different length. This partition will turn 13- end
out to be crucial in the actual scheduling process, which talﬁs_ heduling-loon:
part in the subsequent main scheduling-loop. an 59 eduling-loop-

Each for-loop iteration of the main scheduling-loop sched-L: Define constant such tha
ules the set of requests having the sanig values, denoted 2 t:=1
by Fi. As long as not all requests &, have been successfully 3 for & =110 [log(3nf) + ploga] do _
scheduled, the algorithm considers the remaining requests fh L&t 7i be the set of all requests with 5(i) = k.
F, in decreasing order of their lengt. Specifically, the o  While notall requests i, have been scheduleib
algorithm checks for each request whether it can safely b& Ly ::_(0; ) _
scheduled alongside the longer links that have already beeh Consider allA; € F;, in decreasing order of;:
selected. If a request is chosen to be scheduled in time slot & if - allowed(A;, L) then
it is added toL,, otherwise it remains if;. 9 Ly = L U{Ai}; Fii= Fi \ (A}

The decision whether a requestis selected for scheduling 10: end if o -
or not takes place in thellowed(\;,L;) subroutine. For % Schedule all; € E; in time SIOtt& ass'gmggi"’(i)_
each (longer) request; € L; that has already been chosen a transmission power of; = v - df' - (3n8p™)"™™*;

v :=4N;

to be scheduled in time slat the subroutine checks three'? td:kfle L
conditions. Only if none of them is violated, is added to ™ an while
L. Notice, however, that the selection-criteria are significantl§/4' end for

more complex than the simple “reuse-distance” argument thdlowed()\;, Ly)

has been used in previous work (e.g. [6]). In particular, the. pofine constant: such thaty :— 4</m.

second criterion states thay; is scheduled only ifvfolr all . for each \. c L. do a2

longer requests; € L., it holds thatdi«(3nﬂpa)% > ' - T(]Z-) _ ;( );

d(si,r;) if 7(i) > 7(j). That is, the distance that must be , if”T'(i) = 1) aiui,u-d- > d(ss, ;)

maintained between the senderof )\; and the receiver of; _ : : ) s

of some); € L, depends on the relative values ofi) and > 7(i) > 7(j) andd; - (3n3p*) "

7(j) assigned in the pre-processing phase. 6. or 7(i) > 7(j) andd;/p > d(s;, 7:)
The definition of the three selection-criteria guarantees tha%f then return false

all simultaneously transmitted requests in a single time slot arg

AW

> d(sl, ’I“j)

end for

received successfully by the intended receivers. Additionally?: return true

the subsequent analysis section shows that all requests can be
scheduled efficiently even in worst-case networks.

We begin with two simple lemmas that bound the amount
of interference created by simultaneously scheduled senders
In this section, we prove that the LDS protocol is botk; at an intended received.
correct (i.e., all requests scheduled during the protocol's ex-Lemma 4.1:Let A; and \; be two requests withr (i) #
ecution are received successfully at the intended receiverg)) the protocol selects for the same time slot. The inter-
and fast. Specifically, we prove that every set of requedtyence atr; created bys; is at mostZ,.(s;) < v - po7(0) .
can be scheduled efficiently even in worst-case networkdn3)"()—!, wherev = 4N.
provided that thep-disturbance of the requests is small. As  Proof: We distinguish two cases, depending on the
we show in Section V, this distinguishes the LDS protocaklative values ofr(:) and 7(j).
from all existing protocols, that may perform badly even if) 7(i) < 7(j): In this case, we know thai; > d; by the
the disturbance is small. definition of Line 6 in the main scheduling-loop. Hence, by

B. Analysis



the time); is added tal, by theallowed(¢;, L) subroutine, D, do not overlap, we can bound the interference;arom
A; is already inL;. Becauseallowed(¢;,L;) evaluated to nodes in ringR by

i i oy 2t 4
true, the distancel(s;, ;) Is at leasti; (3n3p%)" = _, where o < ARD (B8O - (2di)e
b;; = 7(i)—7(4). Hence the interference ef atr; is at most J(Rg) < AD)) . )

. 1 7 Z
Ir(sj) _ Pj < v - d?‘ . (3nﬁpa)"'(ﬂ _ 12(2k + 1)1/(36”,)04)7(2') . 22a
d(sj,ri)* = d§ - (3nfp>)0utl (e
v- (3nﬂpa)r(i)71, 30V(3ﬁnpa)7'(i) . 92a

<
— a—1,«a ’

which is smaller than the upper-bound claimed in the lemma. ke

b) 7(i) > 7(j): In this case, it holds thai; < d;. Because where the last inequality follows because only rings where
both links have been selected by the protocol, it follows that > 2 need to be considered. Summing up the interference
d(sj,r;) > d;/p. Furthermore, it holds that(i) > 7(j) + 1, generated by all rings results in a total interference of

thus the maximum amount of interference that can be caused

. - 30v(308np™)™@ . 220 L1
by s; atr; is o< Y (R < d ﬂn/;a) R
_ 4o @) 7() =1 , =t
Ir(Sj) Pj < v d] (Bnﬁp ) SOV(Sﬁnpa)T(z) L9201

d(sj, i)™ (d;/p)* <
v ptrO)+D (3p3)70)
v pom) . (3n5)f(z)71_

e a—2
v 1)— a\T (i
< ZEO @y,

IN

where the second-to-last inequality follows from a bound on

. Rjemann’s zeta-function and the last one from plugging in the
The next lemma bounds the total interference created by G‘Qﬁnition of 1. This concludes the proof 0

nodes transmitting simultaneously for whieki) = 7(5).

. ) 0 Using the previous two lemmas, it can now be shown that
Lemma 4.2:Given a requesk;, the total interferencé, at

= . every message scheduled for transmission by the algorithm
r; created by all senders; tr?nsTlttlr(ug_?|multan?;)>usly for can be decoded successfully by the intended receiver.
which 7(i) = 7() is at most/y < i (?’npa)T o , Theorem 4.3:The schedule computed by the protocol al-

. Proof: By the' pre'prf’cess'”gphase’ It hoI.ds thfit ,'f bo%ws all requests to be successfully received by the intended
7(i) = 7(j) and~(i) = v(j), then < d; < 2d; is satisfied. o aiver.
Thus, all requests have roughly the same lengths and we can p, . Using Lemmas 4.1 and 4.2, we bound the total

bound the total interference using a standard area argument, torencel.. created by concurrent senders as
Specifically, by Line 3 of theallowed(\;, L) subroutine, "

A and )\; being scheduled in the same time slot implies, < %67(“*1(3@‘*)7“) + Y v OEng)TO
that i - d; > d(s;,s;), wherep := 45/1208(a — 1) /a — 2. sy ()£ ()

qu, cons{der all concgrrently transmitting. no s‘or which (v/4 +v/3) (3npa)f(i)ﬁf(¢)_1_

7(i) = 7(j) and consider diskd); of radius “* centered . _

at each such sender. Because of the required spatial reli8é theorem follows from verifying that the resultisg N R
distance and the fact that the length of two requests difféfssufficiently high and by noting that every request is sched-
by at most a factor two, it holds thal(s;,s;) > “4 and uled for transmission exactly once by the algorithm.

IN

hence, diskd); do not overlap. The area of each such disk is v - (3n8p%)7)

A(D;) > (4f)?. SINR(ri) = N+ (% + %) (3np*) T pr)-1 > B
Consider ringsiy, of width ud; aroundr;, consisting of all 3 4 P

senderss; transmitting simultaneously for which(i) = 7(j) 0

and %“di < d(sj,r) < (k+21)udi' Notice that by the first So fa_r, vge have pLoven”that the produced s<|:|hedu|e_ isd
condition of the subroutineR; must be empty. Consider acorrect in the sense that all messages are actually receive

ring R, and the transmitters contained in it. All correspondingUccessfully. It now remains to show that the schedule is
disks D; must be entirely located in an “extended” iy Short and includes all requests. For this reason, we bound the

of area number of time slots required to schedule all requests that have
the samey(i) value. That is, we bound the amount of time

2 2
AR = ((k + Dpd; n ,udi) B (’fﬂdi B Ndz‘) . used for one iteration of the for-loop in the main scheduling-
b 2 2 2 2 loop. We begin with two simple lemmas.
3(2k+1) 5 Lemma 4.4:Consider two requests; and \; with (i) =
= ——  wdim v(j). If 7(i) > 7(j) it holds that
The distance of a sendsej in Ry, from r; has a lower bound dj > 1/2(3nBp*)" D70 . g,

of %”di. Furthermore, each such sender transmits at a power Proof: If two requests); and \; have the samey
at mostv - (2d;)* - (3n8p*)™®. Using the fact that the disks value but differentr values,(i) has been increased at least



(t(3) — 7(5)) [log(3nB) + plog ] times since processing;. must satisfy‘s”'T+1 > a¥, and henced;; > a*T!. By

The reason is thaf(i) must be increased exactfjog(3n3)+ Lemma 4.4, we know that each such blocking request

ploga] times (and reset to 0 once) in order to reagh) = \; € BZ(yp) with d(s;,r;) in the range specified above must
7v(j) for the next higher value of. Due to Line 4, each but be of length at least; > %(3715,)&)&“’“ -d;.
one such increase implies a halving of the lengthHence, It remains to show that there can be at ma3ty,)

d; > d; - 27 ()=7()(log(3nB) +ploga) > .. (3nﬁpa>7(i)77(j). such rquflstsxj € B2(yp). For simplicity, defineK :=
(3npp*)*" " -d;. By Lemma 4.5 and the above lower bound
) ) *Jond;, at mosty, receivers of requests iB?(¢) can be in any
Lemma 4.5:In any disk D of radius R, there can be at disk of radiusZ. By definition all these receivers must be
most,, receiversr; of requests\; with lengthd; > 2pR. within distanceK of s;, thus that there can be at mdsp?y,
Proof: If d; > 2pR for all A;, the disk of radiusii/p  pjocking requests iB2(y) by the classic area argument.
around each receiver fully covers. The claim now follows  \ya know that for any integep > —1, there are at most

from the definition ofy,,. | 2 i ing2
. . 16 blocking requests inB: . The valued;; between
In order to bound the number of time slots required tRNg fgquestsf ang ) cannlogc(p)exceedz and ]hence the
% J '

schedule all requests in the same iteration of the main 10gQast distancel(s;, ;) of any blocking requesh; can be
we define the notion dblocking requests (3nﬁpa)%di. It f0||’OV</S that |B2(0)| = 0 for all (pj> ntl

Definition 4.1: \; is a blocking requesfor \; if (i) = Finally, because(**+1) > 2L for somey > log.. (n + 1. it

1), dj 2 di, andallowed();, L) evaluates tofalse if follows that there are at mosi(log n) many “rings”, each of

A; € L. B; denotes the set of blocking requests)\of . ; 9 . ;
Consequently, blocking requests € B; are those requestsWhlch can contain at modi6p“x, blocking receivers. Hence,

that can “block” a request; from being scheduled in a given oo

time slot. Because each such blocking request can preyent |B?| = Z |BZ(¢)| < log,(n+1)-16p%x,.

from being scheduled only in a single time slot (when it is pi=—1

scheduled itself), it holds tha; is scheduled in time slot

|B;| +1 or earlier of the for-loop iteration when requests with i =
~(i) are scheduled. We distinguish three kinds of blocking Finally, we bound the number of blocking requests that
requests, depending on which of the three conditions in the" Plock a request; due to the third constraint in the
allowed ()\;, L) subroutine is responsible for the blocking2llowed(A;, L) subroutine.

and we bound the number of blocking requests in eachLeémma 4.8:Let B} be the set of requests; € B; with

category independently. 7(i) > 7(j) and % > d(sj,r;). It holds|B}| < 6x, Y.
Lemma 4.6:Let B} be the set of blocking requests € B; Proof: Assume for contradiction that there are more

with 7(i) = 7(j) and ud; > d(s;,s;). For all ); it holds that than6y, such blocking requests; € B}. For each of these

|BH < 4p% (1 + 2)2x,. d; > d;. Partition the area aroungd; into cones of angle

Proof: From7(i) = 7(j), it follows by Lemma 4.4 that w/3. At least one of these cones must contain the senders
d; < dj < 2d; for all \; € B}. By Lemma 4.5, we know s; of x, 4+ 1 or more blocking requests. The angle of this
that there can be at most, receivers of blocking requestscone beingr/3, the distance of the furthest such sensleto
with length at leastl; in any disk of radiusi;/(2p). Because each of the other blocking sendessin this cone is at most
pd; > d(s;,s;) holds for any blocking request i}, any d(s},s;) < d(s},r;), and henced(s’,s;) < di/p < d’;/p.
receiver corresponding to a blocking request must be locatEere are at least, + 1 senders within distancé;,/p of s/,

inside a disk of radiugu + 2)d; centered ak;. Thus, which contradictsy,’s definition. O
m(p + 2)2d? As every blopking request can block a requﬁlsftat most
|B}| < Xp - 17d21 = 4p*(u + 2)2xp. once, we combine the above and prove the following theorem.
@2 "% Theorem 4.9:The number of time slots required by Algo-

UJ  rithm 1 to successfully schedule all requestss A is at most
The next lemma is key to our worst-case result and boun(j)s(xpp2 logn - (logn + p))_

the number of blocking requests that prevent a shorter request proof: By Lemmas 4.6, 4.7, and 4.8, any requéstan
by the second condition of thellowed();, L) subroutine.  pe plocked by at most
Lemma 4.7:Let B? be the set of blocking requests € B;

with 7(i) > 7(j) andd; - (3nB8p™)°+1/* > d(s;, ;). For all - Bl 4+ B? + B3 < 4p (1 + 2)?x,+16p% log(n + 1)x,+6x,

A it holds that|B?| < 16log(n + 1)x,.
Proof: First we show that for any integer > —1, there blocking requests. Thus, after at méxty,p*-log n) iterations

can beO(y,) different blocking request3; € BZ(¢) where of the while-loop, all requests having the san(e) value are

ava® o scheduled successfully. The theorem follows as the number of

(3nfp®)* - di < d(si,ry) < (B3nfp™)* - di. for-loop iterations isflog(3n3) + plog o]. O

By the definition of the second condition in the The next section shows that our algorithm significantly out-

allowed()\;,L¢) subroutine, each such request € B(¢) performs other known scheduling protocols in many settings.

a¥tl



Algorithm 2 Generic Link Removal Algorithm is met. Then the optimal power vector is assigned and the

1: time slott := 1; procedure is repeated with the remaining links.

2: while there are links to schedulio We scrutinize the four algorithmSRA, SMIRA, WCRP

3.  computeSINR* andP* from Z; and LISRA, which follow the execution of the generic
4:  while SINR* < g do algorithm and differ only in the conditio@ON.

5: remove links); for which CON is satisfied; SRA (Stepwise Removal Algorithm), devised by Zander
6: computeSINR* andP* from new Z; in [21], iteratively removes the link with the largest row or
7 end while column sum ofZ, since these sums provide a bound on the
8: schedule the links of in time slott and assigiP*;  maximal eigenvalue, until the requireésf N R level is met.

9: time slott :=¢+1; CON : max Zy; Zik} is mazimimal for k.

10: compute newZ for unscheduled links; {Zj: kﬁzj: o} /

11: end while SMIRA (Stepwise Maximum Interference Removal Algo-

rithm), by Lee et al. [12], excludes links which cause or receive
the most interference when power is assigned optimally, taking
V. INEFFICIENCY OFEXISTING PROTOCOLS the normalized link gain matrix2 and the corresponding

. . , timal power vector into account.
Intuitively, the disturbance of a set of requests in a networ

characterizes the difficulty of scheduling these requests in &’ ° wax{( _ P;Zij, Py Zjx} is mazimimal for k.
wireless communication environment. Therefore, an efficient a7k 7k

scheduling protocol should be capable of generating shége et al. suggest versions of this algorithm considering only
schedules in settings with low disturbance. Unfortunately, aftaxy (3", P Zk;) Of maxy (P >,y Zjx) in the condition
previously known scheduling protocols may require a line@and demonstrate with simulations, that they perform worse
number of time slots in order to schedule a set of reque#fgn SMIRA. Our analysis can be adapted easily to these cases
even if theirp-disturbance is as low as 1. with the same complexity result.

Existing scheduling algorithms and protocols for ieVR ~ WCRP is a (diStfibUtE?d?_ algorithm presented in [19]. When
model can be classified into three cladses adapted to our model, it first computes for each & value

. , . MIMSR (maximum interference to minimum signal ratio),
« uniform power assignmenthe transmission power of all defined by

nodes is the same. . BG(i, §)
« linear power assignmenthe transmission power for a MIMSR(i) = max{m
link of length d; is set to a value proportional td;". ’

Protocols analyzed using the so-called ‘energy-metri@nd removes links with MIMSR above a threshald We
belong to this category. present here a simplified and centralized version, which pro-

« link removal heuristics duces schedules of at most the same length as the original

Recently, it has been proven in [13] that every protoc&lgomhm' CON : MIMSR(k) > C.

employing auniform or linear power assignmestheme has | |SRA (Limited Information Stepwise Removal Algorithm),

a poor worst-case efficiency. In particular, any such protocgéscribed in [20], postpones the transmission of the links with

may require a linear number of time slots even if every nodre lowestSIN R when all sender transmit with equal power,

merely wants to transmit to its closest neighbor in the networg increase the probability for the remaining links to reach
Theorem 5.1 ([13]):Every protocol employing a uniform the STN R threshold. To generate schedules with LISRA we

or linear power assignment scheme has a worst-case schegifitace Step 5 of the generic with

ing complexity of Q(n) even in settings withp-disturbance  g55- getp — 1 and computeSIN R;

|7 # i A j not scheduled}

1 o ) 5b: remove linksy;, for whichmin; STNR(i) = SIN R(k);
Theorem 5.1 indicates that a large number of scheduling algo-
rithms proposed in the literature has bad worst-case behavior, CON : SINR(k) is minimal for k.

including for instance the recent algorithm in [4] for which Thege algorithms have all been tested in situations with
the authors prove guarantees in randomly deployed networkgqes distributed uniformly at random. No worst case analysis
The heuristics known in the literature are all based on a genefjiere the schedules these algorithms produce are extremely
link removal algorithm. long.

The idea of these algorithms is to postpone the transmission
of a link \;, from the set of the links if some conditiaBlON 2In its original version step 3 contains the execution of an iterative

; i : 1+ distributed algorithm based on locally available information. The number of
holds, until the minimalS7.V R level for successful IFece[)tlonrounds is fixed beforehand, hence the quality of the results depend on the

convergence speed of the algorithm. As we are most interested in the maximal
INotice that protocols based on graph-models can typically be characteriteagth of the schedules LISRA produces, we replace the algorithm in step 3
as either employing a uniform or linear power assignment scheme. by a (centralized) eigenvalue decomposition.



Consider a scenari§ with £ = 5 communication requests Consequentlyy/ N R* = ﬁ < 1.19, implying that the links
where all the sender and receiver nodes are situated or\;eand \;,; cannot be transmitted simultaneously. O
straight line with the following distance t6: Sender node We can derive from the above, that SRA schedules all links
s; = —2%, receiver node; = 2°,V0 < i < k. We seta = 3, individually, i.e. the length of the schedule i¥n).
the noise levelV = 0 and the minimumSIN R necessary  SMIRA: The transmission of link; is postponed if either
for successful transmission 1@ = 2. For this situation all the interference received and the interference caused by link
the algorithms described above perform poorly, namely they is above a certain threshold. As the receiving node of link
schedule each link individually and requifg(n) time slots, 1 suffers from the highest level of interference we remove it.
even though we prové)(logn) time slots to be sufficient. This situation occurs again in the next time slot, hence each
Because th&-disturbance of the above scenafids x3 = 1, link is scheduled individually, leading to a complexity@fn).

our example demonstrates that these algorithms exhibit severgyCRP: We compute the MIMSR value for each lirik
worst-case problems even in networks with low disturbance.

Theorem 5.2:SRA, LISRA, SMIRA and WCRP produce . A
y ' Co . MIM = —r =0 4 3
a schedule of lengtif2(n) for the scenariaS in which the SE() T G(i,1) g m?X< :
3-disturbanceys is 1.

I_Droof:- S.taltrtmg from SRA, we prove the claim for eaChAs MIMSR(i) cannot exceed2®, we definel = 10. Hence
algorithm individually.

SRA: A t schedule all links in th | all links apart from the three shortest links are removed. Let us
- AS We cannot schedule all Tinks n the same SO‘talssume for simplicity that those can be scheduled in one slot.
we compute the column and row sumsfto decide which

links we postpone to subseguent time slots. The sum for rh‘ we repeat this step, again the three shortest links remain
) - N i1\ @ c ) M d we can conclude that this method produces a schedule of

iis Ry =)0, 2(i,5) = > 25, (%) » Which is maximal jength [n/3] € Q(n)

wheni = n. Analogously the sum for columais C; = | |SRA: The same holds for LISRA, although with a

i1 2(i) = X (%) . This sum is largest when slightly different reasoning. LISRA iteratively removes the

i = 1, sincei only appears in the denominator. Hence wknk which achieves the lowess/NR with equal power

have to determinenax{R,,,C1}. distribution until 3 is reached. In our example, the link to be
The summands af’; grow with j whereas the summands ofPostponed will always be the longest link. As we have seen

R, decrease. As a consequence we can simplify the analy@iove, two neighboring links cannot be scheduled in the same

by Comparinggn_ﬂiw to 22:12 time slot, hence LISRA also neef¥n) slots.
2nt1 2 271 i y
—— — = — = : Y0 < j < n. All four algorithms produce a schedule of lendtin) for
et 142 2+2 this example. However, it is possible to construct a much

Hence we know that the largest row sum is equal to tishorter schedule. We present a schedule that needs as few
largest column row, which causes either the shortest or &0 (logn) time slots for then /2 links.
longest link to be removed from the set of links to schedule Theorem 5.4:There exists a scheduling and power assign-
in the next time slot. Without loss of generality we assum@ent scheme which produces a schedule of let@@ftog n)
that we postpone the transmission of the shortest link. for scenarioS for all n > 16.

Without the first link we have to deal with almost the same  Proof: Consider the schedule where evéog n'" link
situation, the only difference is the start of the sums with 2  starting with 1 is selected for transmission in slot 1, every
instead of 1. Again we remove the shortest link. This gamegn'” link starting with 2 for slot 2, etc. More formally,
continues until only one link is left, since two links next tove schedule{A:, Aitiogn, At+210gn, - - -} IN time slott. We

each other cannot be scheduled in the same slot. construct a power assignmetit(s;) such that every link
Lemma 5.3:Two links \; and )\, ;; cannot be scheduled inexceeds a signal-to-interference-ratio2of
the same slot. Let us have a closer look at the sAt containing the

Proof: Let \; = (—2%,2%),\; = (—27,27). We compute links scheduled for time slot. There are at mosfﬁ}

1 g)“ links scheduled in this slot, of which we select litk =
Z = e NP and setj = i + 1. Now the (—2,2), the 7" longest link. Consider the assignment
Q%T) 1 P(s;) = (2n)7220+D) to s; and recall thatSINR(i) =
larger eigenvalue is Pr(si)/ 2o, enn iy Li(85)
We note that the largest interference is caused by the
A* = 1/2 (zm + 222+ \/421,222’1 + (21,1 — z272)2> neighboring links A¢;_15¢,) @nd Agiti0gn)- Moreover, the

N interference power is cut in half for each link further away
1/2 (1 F1 (\/4 Q2] (20 ¢ 2]’)2) ) from ;.

o o Claim 5.5: The following two inequalities hold:
. \/92i+3
=y ( 2 ) —1+ <\/§> > 1.83. and

— Li(si—jilogn) > 2Li(Si—(j+1)10gn) .
20 +2 Ii(siyj106m) > 2Li(8it(j+1)1ogn) V0 <j<mn,n>4



Proof: The first inequality holds because of

P(Si,j logn)g(sifj logn» Ti)

P(Sif(j+1) logn)g(sif(j+1) logn> 7"1‘)

Ii(sifj logn)

Ii(8i—(j+1)10gn)

(2n)7'71+j2a(i—j logn+1) (21 T 2i—j log n)—a
(2n)n+j+12a(i—(j+1) logn+1) (21 + 2i—(j+1) log n)—a
n® (1+nithe

2n-n® (14 nd)e

Vn > 3.

The other inequality can be proved analogously. O

combined power control and scheduling are crucial to a
theoretical understanding of media access control problems.
In general, it can be argued that the network topologies
and request sequences found in real-world applications may
not have an explicit worst-case structure. We hope, however,
that our novel power assignment strategy in combination with
the theoretical insights gained from our worst-case analysis
will ultimately lead to a significant increase in bandwidth and
capacity beyond heuristics in real networks. Further investiga-
tion in this direction are bound to prove useful in areas such
as wireless mesh networks, sensor networks, or even cellular

Applying Claim 5.5 we can boundIN R(:) as follows

. Pr(si) Pr(si)
SINR(i) = >
Sonenn it i(si) T 2(Li(sic1ogn H i (Sit10g )

(2n)Ti2e0+D
2a(it1)
2( (2n)7'7:‘+12‘a(iflog n+1) (Qn)n.*lz.a(iflog n+1) )
(21+21—10gn)a (21+21+logn)a

_ n(n+ 1) > 9
20(4n2 + no) — ]

Since the above holds for all communication requests in all
slots, we have proved that this schedule allows the successful
transmission of all links irD(logn) time slots. O 1[5
Let us now examine the schedule our LDS-protocol creates

for this scenario. The3-disturbanceys; of setting S is 1.

Consequently, we obtain a schedule of lengttiog” n) by
plugging in the valuep = 3 into the bound of Theorem 4.9.
Notice that this isexponentially shortethan the schedules (8]
generated by any uniform or linear power assignment protocol

as well as any of the known link removal heuristics.

Corollary 5.6: For p = 3, the LDS scheduling algorithm [
produces a schedule of length(log?n) for scenarioS. [10]
The LDS algorithm thus significantly outperforms existing
scheduling strategies in worst-case scenarios. Nonetheless,
the analysis of the power assignmeR{-) of Theorem 5.4 [11]
demonstrates that an even better solution with complexit%/2
O(logn) exists. Hence, the aim for future research remaing
to devise algorithms, with results even closer to the optimuma3]

(1]
(2]

[3]
Vn > 16.

[7]

VI. DISCUSSION ANDCONCLUSIONS [14]

In this paper, we have shown that all scheduling protocols
studied so far may have an extremely suboptimal performari¢d
in worst-case networks. In order to ameliorate this situation,
we propose the LDS scheduling algorithm. By employing a
novel power assignment scheme and reuse distance criter(dl,
our algorithm achieves a provably efficient performance in
any network and request setting that features low disturbanpe)
Thereby, we prove our solution to outperform all currently
existing scheduling protocols and algorithms by as much as)
an exponential factor.

In its current state, the LDS protocol is centralized and9]
hence suited to be employed in static networks with known
traffic patterns only. Finding a distributed algorithm in ao)
manner similar to the LDS protocol is an exciting open prob-
lem. Ideally, such a distributed worst-case efficient scheduli
algorithm could lead to improved MAC-layer solutions, as

] J. Zander.

networks.
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