
Contextual-Code: Simplifying Information Pulling
from Targeted Sources in Physical World

Yang Tian, Kaigui Bian, Guobin Shen∗, Xiaochen Liu, Xiaoguang Li, and Thomas Moscibroda∗
School of EECS, Peking University, Beijing, China

∗Microsoft Research
{tianyangty, bkg, hyperchris, xiaoguangli2010}@pku.edu.cn, ∗{jackysh, moscitho}@microsoft.com

Abstract—The popularity of QR code clearly indicates the
strong demand of users to acquire (or pull) further information
from interested sources (e.g., a poster) in the physical world.
However, existing information pulling practices such as a mobile
search or QR code scanning incur heavy user involvement to
identify the targeted posters. Meanwhile, businesses (e.g., adver-
tisers) are also interested to learn about the behaviors of potential
customers such as where, when, and how users show interests in
their offerings. Unfortunately, little such context information are
provided by existing information pulling systems. In this paper,
we present Contextual-Code (C-Code) – an information pulling
system that greatly relieves users’ efforts in pulling information
from targeted posters, and in the meantime provides rich context
information of user behavior to businesses. C-Code leverages
the rich contextual information captured by the smartphone
sensors to automatically disambiguate information sources in
different contexts. It assigns simple codes (e.g., a character)
to sources whose contexts are not discriminating enough. To
pull the information from an interested source, users only need
to input the simple code shown on the targeted source. Our
experiments demonstrate the effectiveness of C-Code design.
Users can effectively and uniquely identify targeted information
sources with an average accuracy over 90%.

I. INTRODUCTION

In real life, people often want to obtain additional infor-
mation about a physical object or displayed content, such
as learning more about the promotion advertisement on a
roadside bulletin board, or a merchandise in a retailer store in
comparative shopping scenarios. Conventionally, people may
resort to mobile search. Unfortunately, it is hard to find proper
search keywords and the search results are typically very
noisy [10]. Poised as an easy and precise entrance to the digital
world, quick-response (QR) code has become prevalent in the
past few years. It is a common practice that a QR code is
embedded or attached to a physical object to facilitate the
need of additional information [1], [8]. However, despite its
prevalence, QR code still demands significant user effort such
as moving close enough to the code, holding stable the camera,
in addition to requiring good lighting conditions [17].

On the other hand, physical world businesses (e.g., adver-
tisers and merchants) have strong desires to learn more about
their potential customers, and in particular, the contexts and
access patterns – where, when and how – their ads and goods
are accessed. Such contextual information can help them to
conduct physical analytics, e.g., to evaluate and improve the
effectiveness of existing ads/goods placement [7], [13] and/or
even store planning [11]. However, to our knowledge, there is
no effective technical solution yet other than user surveys.

In this paper, we present the design of Contextual Code
(C-Code) – an effective information pulling system (IPS) that
brings values to both consumers (with significantly simplified
information acquisition) and businesses (by providing cus-
tomers’ access patterns) simultaneously. Central to C-Code
system is the recognition of the following two facts. First,

physical information sources (e.g., a poster) reside in certain
real world contexts, and different contexts can be leveraged to
differentiate different sources. Second, modern smartphones
are equipped with multiple sensors, and they can be exploited
to automatically sense the physical world context. With the
rich contextual information, we can relieve, and even dismiss,
user’s efforts in identifying the target information source,
and hence significantly simplify user’s information pulling
experiences.

The challenge arises, however, from the fundamental facts
that the contexts of nearby information sources can be very
similar, especially when the information sources are densely
placed. Given the availability of sensible context features, the
sensitivity of sensors and the stability of contextual signals
limit the extent to which these features can discriminate
different contexts. Therefore, it may end up with multiple
candidate sources residing in indistinguishable sensed contexts.
However, it may be difficult for a user to screen out the
target source from a list of candidate sources that have similar
sensed contexts, just as finding the wanted information in
mobile search results that contain noise. Hence, the successful
identification of the target source depends on how much the
list of candidate sources can be shortened.

To solve this problem, C-Code involves the user in the
loop and leverages user’s recognition capability to help dis-
ambiguate the target source from those in the similar context.
As the usage of QR code, C-Code system also assigns different
codes to the sources whose contexts confuses with each other.
When a user wants to pull information from a particular
source, she indicates her intention by inputting the code seen
on the source. The context information automatically sensed
by the phone and the code input by the user will jointly
and precisely identify the target information source, hence
the name Contextual Code. C-Code system can easily fulfill
its value proposition to the businesses by deriving the users’
access patterns from the acquired context information.

Involving the user in the loop, C-Code seeks to maximally
reduce the user’s manual effort. Ideally, the code should be
easy to discover, to remember and easy to input or reproduce
by the user. Our design goal is to let user simply type in a
single digit/character or input a phone gesture (e.g., shaking the
phone). It is obvious that the more we can distinguish among
contexts, the simpler code we can use. To further improve user
experiences, we want to retain a small, fixed code dictionary
so that we can present the codes as buttons on phone screen
and users only need to tap on big buttons.1 To this end, we
need to reuse the code as much as possible.

Based on these considerations, in this paper, we focus on
the following three technical problems: 1) Context sensing
that aims to maximally discriminate contexts using signals
of complementary sensor modalities; 2) Code assignment that

1The user interface is shown in Figure 7.

minimizes the code space and the conflict between codes
assigned to information sources in the same context; 3) C-
Code matching that maps a context signal to a known context,
given possible signal drifts of certain sensor modalities.

To maximally discriminate contexts, we leverage multiple
sensor modalities to increase the dimensionality of a context,
and represent the signals of each context feature as a cer-
tain probability distribution. Second, we establish a unified
probabilistic framework for analyzing the interference between
two contexts, formulate a code assignment problem using the
interference graph, and solve the problem with an effective
heuristic algorithm. Thirdly, we devise a probabilistic match-
ing algorithm that combines multiple complementary sensor
modalities to achieve a high matching accuracy, together with
an implicit user feedback mechanism that exploits the natural
user inputs to organically grow the set of context signals to be
drift-resistant.

We have implemented C-Code client and server, and eval-
uated it in the office buildings. Our experimental results show
that the C-Code system can achieve the mapping accuracy of
over 90% precision and recall rates, by combining all of the
context features, the user-input code, and the user feedbacks.

As a remark, we point it out upfront that context in C-Code
is more than a location and the location, if available, can be
a component of a context. For example, two posters face-to-
face posted on two opposite walls at the same location are
considered to reside in two different contexts. Not interested
in figuring out the actual location of the information source
or the user, C-Code explores contexts without going through a
localization process. Hence, it does not rely on the availability
of a localization system. However, the exploration of contexts
may raise concerns on privacy. In C-Code, the context infor-
mation are sanitized not to contain any personally identifiable
information. How to further protect user’s privacy is out of
scope of this paper.

II. BACKGROUND

Users’ Desire of Information Pulling: There is often a
need for users to pull further information from an information
display, be it a roadside ads/poster or a merchandise. For
example, a user wants to learn more about the promotion seen
at the entrance of a mall; a user may want to see the reviews
and compare prices of a particular object when shopping. To
fulfill such information pulling demand, people may resort
to mobile search. However, it requires a user to find proper
keywords, which is proven hard [10]. The search results are
also generally noisy, and is painful to screen out the actual
wanted information. Worse even, current search engines have
not reached the granularity of indexing physical objects. As a
result, mobile search can only answer queries of coarse level
physical entities and the general knowledge.

To facilitate users’ desire of additional information, user-
input codes (a phone number, a URL, or a scannable QR code)
are often embedded on an ads/poster, through which a user
can retrieve precise information about the ads/poster. These
user-input codes are typically lengthy to uniquely identify
the information source, which unfortunately sacrifice user
friendliness. It is hard to remember and to input a long string,
be it a URL or a phone number. Poised as a solution to simplify
user input, QR code has become prevalent.

Businesses’ Desire of User Contexts: User’s desire of effec-
tive information pulling is only half of the story in the overall
information dissemination and acquisition system. Physical
world advertisers and merchants also have a strong desire to
learn more about their potential customers, and in particular,
the contexts and access patterns – where, when and how –

their advertisement and goods are accessed. Such contextual
information can help them to conduct physical analytics, e.g.,
to evaluate and improve the effectiveness of existing ads/goods
placement [7], [13] and/or even store planning [11]. However,
to our knowledge, there is no effective solution yet. The
effectiveness of ads placement is typically evaluated via user
surveys. Physical analytics is emerging and would require a
localization system in place [9], [12], which is unfortunately
still far from a reality [15], [21], [23], [24].

Experiences with QR Code: Despite the popularity of
QR code, it is still effort-taking and faces environmental
constraints [17]. For example, the successful scan of a QR
code requires the user to be in a close proximity to the code,
hold steady the camera, as well as good angles of scanning.

0.3 0.5 0.7 1.0 1.3 1.5
0

2

4

6

8

10

Distance (m)

S
ca

n
n

in
g

 T
im

e
(s

)

Nexus 4
Galaxy S2

(a) Scanning distance;

30 60 90 120 150
0

2

4

6

8

10

12

Angle (o)

S
ca

n
n

in
g

 T
im

e
(s

)

Nexus 4
Galaxy S2

(b) Scanning angle.

Fig. 1. The scanning time of QR codes under various conditions on different
devices.

We perform experiments to gain a sense of the QR code
scanning experience. We use the time it takes to successfully
scan a QR code as a metric. We printed two 0.1 m×0.1 m QR
codes on a paper, containing messages of 108 bytes. We used
two QR code scanning app ZXing on two Android devices
(Glaxy S2 and Nexus 4) for the experiments.

Figure 1(a) shows the impacts of scanning distance: the
effective range is indeed very small, from 0.3m to 1.5m. For
other experiments, we fix the phone’s camera at a distance
of 0.3m which is the best working distance. Figure 1(b)
shows the impact of scanning angle. Clearly, the success of
scanning a QR code depends on the proximity to the code
and the scanning angle. The working distance of a C-Code is
usually much larger than that of a QR code, which varies in
different environments and depends on the distance between
neighboring C-Codes that have the same user input code but
distinguishable sensed contexts.

The close proximity requirement and effort-taking expe-
rience may also readily expose user’s intention and may
discourage the users from scanning the QR code in public.
For example, a user may choose not to scan in public a QR
code on a poster promoting adult contents even if he actually
wants to learn more.

III. C-CODE SYSTEM OVERVIEW

We want to improve the user experiences by minimizing
user’s efforts while being able to precisely identify an infor-
mation source. To this end, we propose the Contextual-Code
system. In this section, we give an overview of the system.

A. Contextual-Code Concept

Every physical information source resides in a certain con-
text, which contains a number of context features endowed by
the environment, including location, radio environment (WiFi,
cellular, BlueTooth), magnetic field, lighting, etc. Modern
smartphones are equipped with multiple sensors (e.g., GPS,

cellular, WiFi [3], sound [19], magnetometer [6], light sensor
[2], etc.) that can be exploited to sense these context features.

The core idea of the proposed C-Code system is to
leverage the context information automatically captured by
the smartphone to help distinguishing different information
sources in different contexts. Given the availability of sensible
context features, the sensitivity of sensors and the stability
of contextual signals limit the extent to which these features
can discriminate different contexts. To work around, C-Code
resorts to the user’s help to further differentiate sources under
indistinguishable sensed context.

Context: Formally, we define a context as a physical proximity
to an information source in which a user can freely access the
source. Clearly, a context here is not a rigid space, but subject
to user natural sense of access. For example, a user may feel a
poster is accessible when facing it within a few meters instead
of backing to it or at tens of meters away.

Note that context is more than a location. For example, two
posters face-to-face posted on two opposite walls at the same
location are considered to reside in two different contexts.
In our target scenarios, we are not interested in figuring out
the actual location of the user, even though many context
features are locality-preserving and can be used for localization
purpose. Our use of context does not go through a localization
process. Hence, C-Code does not rely on any localization
system.

Contextual-Code: A Contextual-Code (C-Code) is defined
as a two-tuple (s, c), where s denotes the signal space of all
features observed (by mobile phone sensors) in the context
where an information source reside, c denotes the user-input
code attached to the source to help discriminate different
sources. Note s or c may not be unique, but their combination,
i.e., the C-Code, should be unique to precisely identify a
particular target.

In practice, different information sources may in the similar
contexts have the same code, due to inappropriate code assign-
ment or practical issues in deployment. We refer to such a case
as a C-Code conflict between the two sources. In such cases,
a C-Code cannot uniquely identify any of the two sources
because their contexts cannot be well disambiguated.

Note that it is possible to acquire context information but
stick to existing QR code. Such a design would be, however,
an overkill to uniquely identify the information source, and
still incur substantial user efforts of QR code scanning.

Scope of the Paper: The targeted information sources may
appear in stationary or dynamic contexts, such as ads on
billboards or on buses). Meanwhile, the sources may contain
static or dynamic content, such as posters on paper media or
multimedia ads in public display. In this paper, we focus on
the “stationary” contexts and information sources with “static”
content.

B. Architecture and Operation

System Architecture: The architecture of the C-Code system
is shown in Figure 2. It involves three logical parties, namely
content provider, service provider and end user (i.e., informa-
tion puller). The content provider is an entity that maintains a
knowledge base containing the detailed information/content of
the information sources. The service provider is an entity that
provides publicity services to content provider and provides
access methods to users to access their intended knowledge
base. The service provider collects the context information
of all information sources (in an offline phase), assesses the

Step 0
Step 1

Step 3

Step 4

Steps 5

Board X

Step 2

Service provider
Context sensing

Content
provider

User
C-Code matching

X

Code assignment

Fig. 2. The C-Code system architecture.

discernibility among collected contexts, and assigns different
codes to information sources whose contexts confuse with each
other. The contexts and their associated codes are stored in a
database with additional links to related knowledge base. Upon
receiving a C-Code, it matches against the database and return
the corresponding links to the user. The information puller
makes inquiries for specific interested information source.
To do so, the user’s phone automatically senses contextual
information, couples them with user input code, and sends the
resulting C-Code to the server. It also displays returned links
to the user and may implement some feedback mechanism.

Operation Flow: Figure 2 also shows the operation flow
of the C-Code system. First, the service provider collects
offline the context signals for information sources using a
smartphone (Step 0). Then, the content provider registers
with the service provider and selects sources to publish their
ads/poster (Step 1), the C-Code server assigns user-input code
for the selected contexts and establishes the association among
the contexts, and the code and the ads/poster (Step 2). Next, the
content provider embeds the code or attaches the printed code
to the ads/poster, and publishes in the selected sources (Step 3).
An end user that wishes to pull information of the sources will
recognize the user-input code on the targeted source, input the
code on the phone interface (Step 4), and retrieve additional
information about the targeted source (Step 5).

C. Key Challenges

Our goal is to minimize user’s effort in pulling information
from a specific information source. We design to use contextual
information to distinguish different sources and thus to reduce
user effort. There are a few technical challenges towards this
goal. First, it is obvious that the more we can distinguish
two contexts, the simpler code we can use. Thus, the primary
challenge is how to choose the contexts features for maximally
differentiating two contexts. In addition, we need to effectively
match the context signals from the end user against those
collected by the service provider. Second, for better user
experiences, we hope to retain a small, fixed code dictionary
so that we can present the codes as buttons on phone screen
and users only need to tap on big buttons instead of typing in.
To this end, we need to reuse the code as much as possible.
Thus, the second challenge is how to minimize the code space
(the number of codes), or for a fixed code space, to minimize
the probability of C-Code conflicts – same code are assigned
to multiple sources in indiscernible contexts.2 Thirdly, it is

2C-Code conflicts may happen in two cases: 1) improper assignment of the
user input code c due to code space limit; 2) different sensing capability of
user’s smartphones may lead to different discernibility of s as those assumed
in code assignment.

undesirable for the service provider to repeat collecting the
signals of time-variant contexts for all information sources.
Thus, the system needs to dynamically adapt to contexts
by organically updating the context signals in the context
matching procedure.

IV. MULTIMODAL CONTEXT SENSING

In the context sensing mechanism, the service provider
has to complete two tasks: (1) choose complementary sensor
modalities that can maximally distinguish two contexts, and
(2) transform the collected signals of each context feature to
a probability distribution or a range-based representation.

A. Context Feature Selection

Intuitively, the more context features we use in C-Code,
the better two contexts will be distinguished. However, our
research findings show that only a few complementary context
features will suffice instead of using all of the features.

We first define a set of common context features that can be
easily captured by sensors of ordinary smartphones, including
GPS, cellular, WiFi, magnetic field, sound, and light. Note that
barometer is not available on ordinary smartphones, and the
atmospheric pressure is not a candidate in our consideration.

Then, we choose a few candidate context features from the
set of common features as follows. We found GPS and cellular
are overlapped with WiFi in terms of representing the location
information, and thus we use WiFi as the representative of
GPS and cellular. Moreover, the readings (in lumens) of light
sensors in an environment heavily depend on the sunlight
that may vary according to the local time and weather. As
the weather is not a context feature that can be sensed and
quantified, we remove “light” from being used as a candidate
in the C-Code. As a result, we have three candidate context
features, namely WiFi, sound and magnetic field.

Next, we experimented to observe why the selected candi-
date context features are complementary and how much we can
discriminate two contexts using these candidates. We revisited
the definition of similarity between two locations using context
features such as WiFi [2], sound [19], and magnetic field [26].
We call two contexts are similar regarding a context feature, if
they have a high similarity for the given feature. We carried out
experiments in an office building where face-to-face posters are
placed on two sides of walls along the corridor. We choose 16
locations separated by 2 m along the corridor as contexts. We
are able to make the following two observations.

A) Context features have different capabilities of dis-
ambiguating contexts: We show the similarity between two
contexts for WiFi in Figure 3 by using four types of devices,
and we observe that WiFi signals for two distant contexts have
a low similarity, and thus can be well disambiguated. Figure 4
shows the sound signals of three chosen contexts. Context w is
close to an air conditioner and it leads to different observations
from the other two contexts. Due to the dependency on the
ambient background, the sound signals for two contexts distant
to the sound source may have a high similarity; and it is
possible to distinguish contexts that are at different distances
to the sound source.

B) Context features are complementary: We choose 10
locations separated by 2 m and point the phone to face-to-face
posters on two sides of walls at each location. Each location is
then transformed to two different contexts because of different
facing directions detected by the phone magnetometer. In
Figure 5, we plot the similarity heatmaps for each single
feature of WiFi, sound, magnetic field, as well as for the simple
weighted average of the three. Clearly, using three features is

better than a single feature for discriminating two contexts as
they have a low similarity value in the fourth heatmap.

Based on these observations, the sensor modalities we cho-
sen are independent and complementary. Specifically, sound or
magnetic signal (the ambient background-dependent feature)
is locally more discriminative but not globally, where as WiFi
(the IT infrastructure-based feature) is globally discriminative
but not locally.

B. Context Representation

In this paper, we focus on context features that are observ-
able to a smartphone, and let F = {f1, ..., fi, ..., fk} denotes
the set of these observable context features, where k represents
the number of context features in consideration. A context
feature can be scalar or vector. For example, sound at a given
frequency is a scalar feature whose signal is in a value in
units of db; WiFi fingerprint is a vector feature consisting of
components—i.e., received signal strengths (RSSes) from a
set of WiFi APs. Suppose feature i is a vector that contains κi
components, and we simply call feature i and its component j
(j ∈ [1, κi]) as feature i, j.

As aforementioned, a context refers to a range of space
proximity to a source. Therefore, the observed signal for each
context feature (a scalar feature or a component of a vector
feature) can span a range of values as signals may be collected
from multiple spots in the same context. In fact, due to time
variation of signals, multiple collections of context signal at
the same location also spans a range of values.

To facilitate more effective representation, we choose to
model the signal distribution for each scalar feature and
component of a vector feature. We can observe that the signals
of each feature can span a range of values, and approximately
follow a certain distribution. We are able to draw the best-
fit Gaussian distribution from the histogram of the collected
signal samples. In Figure 6, we choose two example contexts u
and v, and show their histograms of percentage vs. signal RSS
for WiFi and sound features. In this example, the ranges of
WiFi signals have an overlap, while the ranges of sound signals
overlap little. This implies that both contexts u and v are pretty
close to certain WiFi APs (with RSS over -60 dBm), but one
of them is much closer to a sound source than the other. It
also implies that using two complementary features will better
distinguish two contexts than using a single feature, say WiFi.

More specifically, given a context u, we represent the
signals for feature fi using a Gaussian distribution for the
features we selected, i.e., sound, magnetic field, and WiFi. The
signal for a given feature fi, component j under context u, is
denoted as sui,j (j = 0 if feature i is a scalar feature), which
can be represented as N(m(sui,j), σ(s

u
i,j)) where m(sui,j) is the

mean value of collected signal samples, σ(sui,j) is the standard
deviation.

To mitigate possible outliers in sensed signals, we further
constrain the data range to be

[m(sui,j)− δ(sui,j), m(sui,j) + δ(sui,j)]

where δi(s
u
i,j) = 3σ(sui,j) means about 99.7% of values

drawn from a Gaussian distribution are within three standard
deviations away from the mean. We call δi(sui,j) as half of the
data range of the signals for feature i, j.

V. CODE ASSIGNMENT

The code assignment is based on the use of an interference
graph where each vertex represents an information source, and
an edge has a weight that quantifies the interference between

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Distance (m)

S
im

ila
ri

ty

i9100G
G11
Note2
i9300

Fig. 3. The similarity between con-
texts for WiFi vs. context separation
distance.

0 5000 10000
0

100

200

300

400

500
Context u

Frequency (Hz)

A
m

p
lit

u
d

e

(a) Context u distant to the sound
source;

0 5000 10000
0

100

200

300

400

500
Context v

Frequency (Hz)

A
m

p
lit

u
d

e

(b) Context v distant to the sound
source;

0 5000 10000
0

100

200

300

400

500
Context w

Frequency (Hz)

A
m

p
lit

u
d

e

(c) Context w close to the sound
source.

Fig. 4. Observed sound signals in three chosen contexts.

5 10 15 20

5

10

15

20

Context

C
o

n
te

xt

0

0.2

0.4

0.6

0.8

1

(a) WiFi;

5 10 15 20

5

10

15

20

Context

C
o

n
te

xt

0

0.2

0.4

0.6

0.8

1

(b) Sound;

5 10 15 20

5

10

15

20

Context

C
o

n
te

xt

0

0.2

0.4

0.6

0.8

1

(c) Magnetic field;

5 10 15 20

5

10

15

20

Context

C
o

n
te

xt

0

0.2

0.4

0.6

0.8

1

(d) All three combined.

Fig. 5. Heatmaps of similarity for three context features at contexts of ten
chosen locations, where two locations are separated by 2 m.

Context u Context v

WiFi AP w

Sound

-60 -50 -40
0

10

20

30

RSS (dBm)

P
e
rc

e
n

ta
g

e
 (

%
)

-70 -60 -50 -40
0

10

20

30

RSS (dBm)

P
e
rc

e
n

ta
g

e
 (

%
)

-70 -60 -50
0

10

20

30

RSS (dBm)

P
e
rc

e
n

ta
g

e
 (

%
)

40 50 60 70 80
0

10

20

RSS (dB)

P
e
rc

e
n

ta
g

e
 (

%
)

40 50 60 70
0

10

20

30

RSS (dB)

P
e
rc

e
n

ta
g

e
 (

%
)

60 70 80
0

10

20

30

RSS (dB)

P
e
rc

e
n

ta
g

e
 (

%
)

Fig. 6. Illustration of the observed context feature signals as a range:
comparing two contexts u and v using signal histograms for WiFi and sound
features.

the two neighboring contexts. Before constructing the graph,
we first estimate the interference relationship between two
contexts.

A. Interference Likelihood Estimation

Let I(sui,j , s
v
i,j) denote the interference likelihood between

two signals sui,j and svi,j for feature i, j, under two contexts
u, v. As Figure 6 shows, the distributions of a given feature

for two contexts may overlap. Let [αi,j , βi,j] denote the
overlapping part of their data ranges. We use s∗ ∈ [αi,j , βi,j]
to denote a pivot signal value such that

P (sui,j = s∗) = P (svi,j = s∗).

Without loss of generality, we assume

m(sui,j)− δ(sui,j) < m(svi,j)− δ(svi,j),

That is, the distribution of one context cannot be a subset of the
other. Thus, the overlapped data ranges can be further divided
into [αi,j , s

∗] and [s∗, βi,j].

We next define the interference likelihood between two
contexts u, v, for feature i, j as the overlapped area between
their distribution histograms divided by two:

I(sui,j , s
v
i,j) =

∫ s∗
αi,j

p(sui,j)ds+
∫ βi,j

s∗
p(svi,j)ds

2
,

where p(sui,j) denotes the probability density function for
signal sui,j .

We calculate the interference between two contexts u and
v for all features i, j in F as

I(u, v) = min
∀i,j
{I(sui,j , svi,j)}. (1)

Note that in Equation (1), we use the minimum interfer-
ence likelihood among all context features to represent the
interference between two contexts. Based on the data ranges
for all features of two contexts, we see that the single feature
that leads to the smallest interference likelihood is the most
discriminative one to maximally distinguish the two contexts.
In addition, we have based our design on a set of sensor
modalities that modern smartphones are commonly equipped
with. A legacy, less sensing-capable device will suffer from
more conflicts, and hence noisier results. If new context
features can be commonly sensed by future generations of
mobile phones, they can be easily incorporated into C-Code
using Equation (1).

We call two contexts u and v interfere with each other if
I(u, v) ≥ τ , where τ is the interference severity threshold.
In other words, the two interfering contexts have significant
similarity in context features, and sources in them may not be
well distinguished.

B. Code Assignment Problem

The code assignment problem we are facing has two-fold
goals. Firstly, we want to minimize the overall, system-wide
code space. Secondly, when a constraint on the code space size
is imposed, we want to minimize the resulting C-Code con-
flicts. The problem is very similar to the channel assignment

problem in cellular or WiFi networks, where transmissions of
two neighboring/adjacent network base stations will collide
with each other when they are assigned the same channel.

Context Interference Graph: Channel assignment in WiFi
networks is usually solved via a network interference graph,
where the edge between two vertices indicates the interference
relationship between two network base stations. A transmission
conflict will occur when two connected vertices in the graph
are assigned with the same channel [16].

We borrow the idea of network interference graph and
solve the code assignment problem by constructing a context
interference graph G = (V,E), where the vertex x ∈ V
represents the context of a registered source x. The C-Code
system collects context signals from all its information sources,
and assess the interference likelihood among them. Suppose
two contexts u, v, and an edge (u, v) ∈ E has a weight
w(u, v) = I(u, v) ∈ [0, 1]. Obviously, if w(u, v) ≥ τ , then
information sources at different context u and v will conflict
with each other if they are assigned with the same user-input
code.

Problem Formulation: When code cx is assigned to an
information source x registered in context u, we use (cx, u) to
represent an assignment decision. Let A be a code assignment
to G, which is a set of assignment decisions. Upon a new
assignment decision (cx, u) is made, the assignment A is
updated to be A ∪ {(cx, u)}.

Let U denote the universal set of codes, and CA be the set
of codes used in the assignment A. We call A is a complete
assignment if every poster x ∈ V has received an assignment
decision. Otherwise, it is an incomplete assignment. We define
interference degree in a context interference graph G as
the number of interfering pairs of contexts, given a code
assignment A, and denote it as D(G,A).

The code assignment problem is equivalent to the graph
(vertex) coloring problem. In a graph coloring problem, any
pair of two interfering vertices in the graph should be assigned
different colors to avoid the interference. Let V (A) denote
the set of vertices (contexts) that have received an assignment
decision from the assignment A. Suppose the network has an
initial assignment A0 with code set C0 (it is possible that
A0 = ∅).

In the ideal case, U could be an infinite set, every content
provider follows the C-Code deployment etiquette, and we
can always assign different codes to any pair of interfering
vertices in the context interference graph. The code assignment
problem is formulated as the following one that minimizes the
code space in use:

min |CA| − |CA0
|,

s.t., V (A) = V ; D(G,A) = 0;

cx 6= cy, if w(x, y) ≥ τ,

where x and y are two information sources registered with
contexts u and v. The constraint implies that A is a complete
assignment; the second constraint means that the interference
degree in the assignment A should always be free of interfer-
ence when U could be an infinite set; the third one requires
two sources in interfering contexts should be assigned different
codes.

In practice, U could be a finite set. If the codes in U are
exhausted, i.e., U \ CA = ∅, there is no way to avoid reusing
the code in CA. Thus, the objective of C-Code system is to
minimize the interference degree. Given G = (V,E), the code

assignment problem is then formulated as follows:

min D(G,A)−D(G,A0),

s.t., V (A) = V ;

C. Code Assignment Algorithm

We propose a C-Code assignment algorithm that is similar
to the graph coloring algorithms presented in [16], and is
executed in a greedy fashion. Given a context interference
graph G with an initial assignment A0—the un-assigned
poster registered in the context with the maximum number of
interfering neighboring vertices in G is the next to be assigned
a code. When there is no unused code (i.e., U \CA = ∅), the
code

c∗ = arg min
c∈CA

{D(G,A ∪ {(c, u)})−D(G,A0)}

that leads to the minimum increase for interference degree
will be assigned. When all posters registered with all contexts
are assigned, the algorithm terminates. Whenever a new poster
is registered with a context, the C-Code server incrementally
assign codes to the newly-added one. Note that, the content
published in C-Code system may expire, e.g., end date of
an event. Hence, we can set the expiration time for a code
assignment, typically the same as the expiration time of the
content. Once it expires, the code can be reclaimed and reused.

VI. C-CODE MATCHING

In the C-Code matching algorithm, the context signal
captured by the user’s phone is called the test signal; and the
contexts on C-Code server whose signals are represented as
the data ranges are called the training contexts.

Recall that the code assignment mechanism employs an
interference estimation process, which is a range-to-range
comparison between the data ranges of feature signals for
two posters’ contexts to determine whether they interfere with
each other. Moreover, the C-Code system knows the most
influential feature for distinguishing two contexts (according
to Equation 1).

Unlike interference estimation, the C-Code matching is a
signal-to-range comparison to map the test signal to a training
context that has a range of signal values for each feature. The
C-Code system has no knowledge about which training context
the user’s targeted poster resides, and which feature is the most
effective to identify the context.

Thus, the system cannot exclude any feature from being
used in C-Code matching; instead, it probabilistically involves
every feature in the matching process. The C-Code system
computes the likelihood that a test signal matches a training
context signal for each feature, and then normalize these
likelihoods given that all training context signals are equally
likely to be matched. C-Code then returns the top-matched
training context that has the highest matching probability.

Sequential matching as benchmark: We compare the pro-
posed probabilistic matching algorithm with a benchmark al-
gorithm, called the sequential matching algorithm. The bench-
mark algorithm is executed in multiple iterations sequentially.
In each iteration, one context feature i, j is chosen to screen
out a set of training contexts whose signals are best matched
against the test signal. The algorithm terminates until all
context features have been tried.

Probabilistic Matching: Using Bayes’ rule, C-Code system
computes the probability that a test signal s matches the signal

of training context u

P (u|s) = P (s|u)× P (u)
P (s)

. (2)

Without prior information about the exact test signal’s context,
C-Code assumes that the targeted poster is equally likely to be
at any context on the server, i.e., P (u) = P (v),∀u, v ∈ V .
Thus, Equation (2) is rewritten as P (u|s) = c×P (s|u), where
c is a constant.

Let P (s|u) denote the matching probability that a given
test signal s belongs to context u, and we want to find the
context u∗ ∈ V that maximizes the probability of P (s|u), i.e.,

u∗ = argmax
u∈V

(P (s|u)).

The probability P (s|u) can be calculated on basis of the
matching probabilities for every feature i, j between the test
signal s and context u, such as P (s|u) =

∏
i,j pi,j(s|u), where

pi,j(s|u) ∈ [0, 1] is the matching probability for feature i, j
between the test signal s and context u. The matching prob-
abilities (pi,j(s|u)) can be derived using the non-parametric
distribution histogram obtained during the context sensing
phase.

Context adaptation: C-Code can return multiple top-matched
results according the decreasing order of their matching proba-
bilities. Every user has an option to confirm whether the server
has made a correct matching decision: (1) the user confirms it
is a correct matching by tapping one of the returned results;
or (2) the user confirms there is no correct matched results by
tapping “not listed above”.

Benefits of user feedbacks: When the user confirms it is
a correct matching, the context signals for this match will be
added into the server database for updating training context
signals. In other words, the context signals get an organic
growth/update over time. When the user confirms there is no
correct matched result, the current context fails to match any
context on the server, and this will not update the training
contexts. With the user confirmations, the server knows about
the matching correctness; and the organic growth/update of
context signals can reduce the matching error introduced by
time variance in context signals. We will show the performance
gains with organic growth/update of context signals in evalu-
ations.

(a) Code input on a key-
pad;

(b) The user’s confirma-
tion interface;

Fig. 7. Screenshots of user interfaces.

VII. IMPLEMENTATION AND EVALUATION

We developed the C-Code client as an Android application,
which can (1) automatically upload the collected context

(a) Display panels; (b) Poster board;

Fig. 8. Experimental environments.

signals to the server for C-Code matching by pressing a button
on a keypad (Figure 7(a)); (2) display a list of matched results
to the user (Figure 7(b)). The server allows a content provider
to choose the contexts to publish its posts. It assigns codes to
information sources that are registered in a managed context,
according to the algorithm described in Section V. It accepts
the user-uploaded C-Code and maps it to one matched or
multiple candidate information sources via a probabilistic C-
Code matching algorithm. For real-time interactions, it sends
the matched results back to client and collects user feedbacks
to improve the system performance.

A. Experimental methodology

Experimental environments: We deployed the C-Code
system in two environments on campus. Display panels are
placed face-to-face on both walls of the building corridor.
Three panels form a group (Figure 8(a)), and two groups are
separated with an interval of 2 m. We chose four groups on
each wall as the managed contexts in experiments. Panels have
the same size of 1.5m ∗ 0.9m, and two panels in the same
group are separated with an interval of 0.2m. Each panel
contains only one poster. Two poster boards are placed at the
door of the office building (Figure 8(b)) with multiple posters,
advertisements, announcements coexisting on the same board.
The number of posters on each board is typically 4 or 5.

Popularizing C-Code on campus: We manually collected
the signals of contexts at display panels, poster boards by
conducting two site surveys with an interval of one month, and
each site survey consists of three days. Right after the second
site survey, we released the C-Code system to 100 volunteer
users to use for one month. As a result, we collected three sets
of context signals: the set in the first site survey, the set in the
second site survey, and the set of data accumulated by users
feedbacks in the release period. During the release period,
we received 2240 information pulling requests, and every
day we received about 70 requests from different users: 31
requests from display panels, 39 requests from poster boards,
on average. We assigned four types of devices to the users:
Galaxy i9100g, Note2, i9300, and HTC G11. In order to attract
users’ attentions, we make the simple code (one-digit letter)
differentiable from other poster contents by posting it at easy-
to-notice places on posters.

Performance metrics: We use precision and recall rates
to evaluate the system performance. In C-Code system, high
recall means that server returns most of the relevant results,
while high precision means that it returns substantially more
relevant results than irrelevant. In the experiment, the ground
truth for C-Code matching is known because we require
volunteers to send user confirmations to the server.

B. Main Results

First, we evaluate the overall performance of C-Code in
all environments. By default, we use the data collected in the

second site survey as the set of training contexts, and the user
feedback mechanism is enabled.

Matching accuracy when varying the number of features:
We evaluate the performance of the probabilistic matching al-
gorithm by varying the numbers of used features (labeled with
“Prob” in figure legend). Meanwhile, we use the sequential
matching algorithm as the benchmark (labeled with “Seq” in
figure legend).

In Figure 9, the first group bars with label “GSM” show
the results when only one feature GSM is used; each of other
groups has a feature added, e.g., “+WiFi” groups means the
WiFi feature is added for matching. The results show that the
WiFi feature is the most significant contributor in improving
the matching accuracy, while each of other features has less
significant contribution in differentiating contexts.

The impact of number of returned results: Figure 10 shows
the matching accuracy that the list of returned results contains
the user’s target. The recall/precision rates is no less than 0.9
when the number of returned results is no smaller than three.

GSM +Wifi +Sound +Mag
0

20

40

60

80

100

Feature

R
at

io
 (

%
)

Precision, Seq
Recall, Seq
Precision, Prob
Recall, Prob

Fig. 9. Varying # of features used.

1 2 3 4 5
0

20

40

60

80

100

Num of returned results

R
at

io
 (

%
)

Precision
Recall

Fig. 10. Varying # of returned re-
sults.

Matching accuracy with different sets of training contexts:
We show the impact of different sets of training contexts on
the matching accuracy in Figure 11. The label “1+2” on the x-
axis represents that the set of training contexts includes the data
collected in both site surveys; “2” includes the data collected in
only the second site survey; “2+” means that the training data
set in the second site survey keeps receiving organic updates
from the user feedbacks collected in the release period; the
fourth group labeled with “release” represents that the set of
training context signals only include the data collected by user
feedbacks in the release period.

The discrepancy between the first, second, and third groups
of bars shows the accuracy improvement when we retire the
old data collected in July and receives new organic updates
of data collected from the user feedbacks in September. Using
the data in the most recent month cannot significantly improve
the accuracy (see the “release” group of bars).

Figure 12 shows the change of matching accuracy in each
day during the release period. Without the user feedbacks, only
the “2” set is used, the recall rate keeps changing at a low
level; the precision rate drops a little as the data is getting old
as time evolves. When user feedbacks are available, the “2+”
set is used, and the recall rate keeps increasing owing to the
updated signals provided by user feedbacks.

The impact of organic growth of context signals: Without
the signal update from the user feedback mechanism, the prob-
abilistic matching has a better performance than the benchmark
in recall and precision rates (Figure 13(a)). The reason is that
the error in the sequential algorithm could accumulate from
a single feature’s matching results to the next one’s results.
When the set of training contexts collected in the second
site survey has no updates from the user feedbacks, it is

1+2 2 2+ Release
0

20

40

60

80

100

Datasets

R
at

io
 (

%
)

Precision, Seq
Recall, Seq
Precision, Prob
Recall, Prob

Fig. 11. Retiring old data improves
the matching accuracy.

2 4 6 8 1012141618202224262830
0

0.2

0.4

0.6

0.8

1

Day

R
at

io
 (

%
)

Precision without Feedback
Recall without Feedback
Precision with Feedback
Recall with Feedback

Fig. 12. Probabilistic matching using
organic updates.

insufficient to completely encompass all signals’ variances.
As a result, the sequential algorithm may mistakenly filter
out many unmatched contexts regarding a single feature.
In contrast, the probabilistic algorithm does not completely
exclude unmatched contexts for a single feature, which leads
to a better matching accuracy.

When the user feedback mechanism is enabled, we observe
that both matching algorithms achieve a high accuracy with the
organic update of signals, especially that the recall rate of the
sequential algorithm gets a significant boost.

i9100G G11 Note2 i9300
0

20

40

60

80

100

Without user feedbacks

R
at

io
 (

%
)

Precision, Seq
Recall, Seq
Precision, Prob
Recall, Prob

(a) Without user feedbacks;

i9100G G11 Note2 i9300
0

20

40

60

80

100

With user feedbacks

R
at

io
 (

%
)

Precision, Seq
Recall, Seq
Precision, Prob
Recall, Prob

(b) With user feedbacks.

Fig. 13. Improved matching accuracy via user feedbacks.

Wifi 3G Wifi 3G
0

2

4

6

8

QRCode C−Code

T
im

e
(s

)

Scanning/Inputting Time
Connection Time

Fig. 14. Time cost of informa-
tion pulling.

IPS QR code C-Code
Display 2.06 1.648

Wifi 0 0.31
Camera 0.42 0

TABLE I. Energy consumption (J)
for one-time information pulling.

The device heterogeneity: Different iOS mobile devices
have little heterogeneity in the sensor hardware, while Android
devices have diversities in sensor hardware. Four tested devices
in our experiments have a small variance in matching accuracy
as shown in Figure 13. To reduce the impact of device
heterogeneity, the service provider may need to maintain a
set of signal samples for each type of devices, and each set
will be used serving the specific type of devices.

Time and energy cost of using C-Code: Suppose the QR-
Code contains a URL to a poster, and the C-Code directs to
the C-Code server that has the same poster. Figure 14 shows
that, a user only needs about 2 seconds to recognize and input
a code on phone, less than the time for pointing the phone to
a QR code and then scanning.

Energy consumption is not a concern for either QR code
or C-Code system, because people only use these applications
sporadically. The major energy consumption for QR code scan
is from camera-viewing (about 4 seconds for each QR code

scan). For each C-Code input, the major energy consumption
is from context sensing by phone sensors completed within
two seconds. Table I summarizes the energy consumption for
major parts.

VIII. RELATED WORK

Although we focus on effective information pulling tech-
niques, C-Code is essentially a system finishing functions of
context sensing, code assignment and code matching, which
could be treated as a new method of gathering and analyzing
information in the physical world [11].

C-Code typically relies on contexts detected by smartphone
sensors. GPS [20] has been a satellite-based navigation system,
applied in military, civilian, and commercial purposes, how-
ever, it shows bad performance for indoor environments. Many
other works are designed for improving accuracy of indoor
localization. Taking advantage of wide signal-strength finger-
prints, GSM [14] indoor localization system could achieve
median accuracy of 5 meters in large multi-floor buildings.
Meanwhile, a vast majority of existing research efforts depend-
ing on RF signatures from certain IT infrastructure come up
with new solutions for indoor localization [3], [4], [22], [25].
Jaewoo [6] presents an indoor positioning system that measures
location using disturbances of the Earth’s magnetic field caused
by structural steel elements in a building. Stephen [19] uses
Batphone to show the benefits of using acoustic background
spectrum together with a commercial WiFi-based localization
method. Though these papers make fundamental contributions
to localization, contexts mean more than that. Contexts supply
more high-dimension information than location, which has
proved many novel systems [18], [26]. Moreover, accurate
location does not have significant meanings all the time.
Contexts may have more advantages than simple coordinates
in characterizing ambient environments and providing ser-
vices [5].

IX. CONCLUSIONS

This paper presents an information pulling system, called
Contextual-Code (C-Code), that can greatly simplify the user
efforts and automatically capture the user’s context information
for the purpose of physical analytics. The C-Code service
provider pre-collects the signals of known contexts and tries to
maximally discriminate two contexts. A simple user-input code
(e.g., a one-digit letter) is assigned to each source in a context
by the C-Code server, and is used to distinguish two sources in
the same context. An information source is uniquely identified
when both the context signal and the code match the record on
the C-Code server. Our experiments demonstrate that C-Code
provides an efficient way of accurately identifying information
sources in various contexts, at the expense of simply inputting
an easy-to-reproduce code.

ACKNOWLEDGEMENTS

This work was partially sponsored by National Natural
Science Foundation of China under grant number 61201245
and 61272340, Specialized Research Fund for the Doc-
toral Program of Higher Education (SRFDP) under grant
20120001120128, and the Beijing Natural Science Foundation
under grant 4143062.

REFERENCES

[1] K. Antoni, B. Jakarta, R. Kosala, and K. Baru. Color Quick
Response Code for Mobile Content Distribution. ACM MoMM
’09, pp. 267–271, 2009.

[2] M. Azizyan, I. Constandache, and R. R. Choudhury. Surround-
Sense: Mobile Phone Localization via Ambience Fingerprinting.
Proc. MobiCom ’09, pp. 261–272, 2009.

[3] P. Bahl and V. N. Padmanabhan. RADAR: An In-Building RF-
based User Location and Tracking System. Proc. INFOCOM
’00, pp. 775–784, 2000.

[4] Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha. FM-based
Indoor Localization. Proc. MobiSys ’12, pp. 169–182, 2012.

[5] Y. Chon, N. D. Lane, F. Li, H. Cha, and F. Zhao. Automatically
Characterizing Places with Opportunistic CrowdSensing using
Smartphones. Proc. UbiComp ’12, pp. 481–490, 2012.

[6] J. Chung, M. Donahoe, C. Schmandt, I. Kim, P. Razavai, M.
Wiseman. Indoor Location Sensing Using Geo-magnetism.
Proc. MobiSys ’11, pp. 141–154, 2011.

[7] S. Dhar, and U. Varshney. Challenges and Business Models
for Mobile Location-based Services and Advertising. ACM
Communications, 54(5):121–128, May 2011.

[8] T. Hao, R. Zhou, G. Xing. COBRA: Color Barcode Streaming
for Smartphone Systems. Proc. MobiSys ’12, pp. 85–98, 2012.

[9] P. Hu, L. Li, C. Peng, G. Shen, F. Zhao. Pharos: Enable Physical
Analytics through Visible Light based Indoor Localization Proc.
HotNets-XII, Nov. 2013.

[10] M. Kamvar, and S. Baluja A Large Scale Study of Wireless
Search Behavior: Google Mobile Search. Proc. SIGCHI ’06,
pp. 701–709, 2006.

[11] Microsoft Research. Phytics: Physical Analytics. http://
research.microsoft.com/en-us/projects/phytics/

[12] R. Nandakumar, S. Rallapalli, K. Chintalapudi, V. N. Pad-
manabhan, L. Qiu, A. Ganesan, S. Guha, D. Aggarwal, and
A. Goenka. Physical Analytics: A New Frontier for (Indoor)
Location Research. No. MSR-TR-2013-107, October 2013.

[13] S. Nath, F. X. Lin, L. Ravindranath, J. Padhye. SmartAds:
Bringing Contextual Ads to Mobile Apps. Proc. MobiSys ’13,
pp. 111–124, 2013.

[14] V. Otsason, A. Varshavsky, A. LaMarca, and E. de Lara.
Accurate GSM indoor localization, Proc. UbiComp ’05, pp.
141–158, 2005.

[15] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen.
Zee: Zero-effort Crowdsourcing for Indoor Localization. Proc.
Mobicom ’12, pp. 293–304, 2012.

[16] S. Ramanathan. Wireless Networks, 5(2):81–94, March 1999.
[17] E. Rukzio, K. Leichtenstern, V. Callaghan, P. Holleis, A.

Schmidt, J. Chin. An Experimental Comparison of Physical
Mobile Interaction Techniques: Touching, Pointing and Scan-
ning. Proc. Ubicomp ’06, pp. 87–104, 2006.

[18] G. Shen, Z. Chen, P. Zhang, T. Moscibroda, Y. Zhang. Walkie-
Markie: Indoor Pathway Mapping Made Easy. Proc. NSDI ’13,
pp. 85–98, 2013.

[19] S. P. Tarzia, P. A. Dinda, R. P. Dick and G. Memik. Indoor Lo-
calization without Infrastructure using the Acoustic Background
Spectrum. Proc. MobiSys ’11, pp. 155–168, 2011.

[20] The global positioning system: a shared national asset: rec-
ommendations for technical improvements and enhancements.
National Academies Press, pp. 16, chapter 1, 1995.

[21] Y. Tian, R. Gao, K. Bian, F. Ye, T. Wang, Y. Wang, X. LI.
Towards Ubiquitous Indoor Localization Service Leveraging
Environmental Physical Features. Proc. IEEE INFOCOM 2014.

[22] J. Xiong and K. Jamieson ArrayTrack: A Fine-Grained Indoor
Location System. Proc. NSDI ’13, pp. 71–84, 2013.

[23] C. Xu, B. Firner, R. S. Moore, Y. Zhang, W. Trappe, R.
Howard, F. Zhang, N. An SCPL: indoor device-free multi-
subject counting and localization using radio signal strength.
In Proc. IPSN ’13, pp. 79–90, 2013.

[24] S. Yoon, K. Lee, I. Rhee. FM-based indoor localization via
automatic fingerprint DB construction and matching. In Proc.
MobiSys ’13, pp. 207–220, 2013.

[25] M. Youssef and A. Agrawala. The Horus Wlan Location
Determination System. Proc. MobiSys ’05, pp. 205–218, 2005.

[26] P. Zhou, Y. Zheng, Z. Li, M. Li and G. Shen. IODetector: A
Generic Service for Indoor Outdoor Detection. Proc. SenSys
’12, pp. 113–126, 2012.

