Efficient Computation of Maximal Independent Sets in Unstructured Multi-Hop Radio Networks

Thomas Moscibroda Roger Wattenhofer

MASS 2004

Algorithms for Ad Hoc and Sensor Networks...

Excerpts from a typical paper

```
Algorithm 2 LP<sub>MDS</sub> approximation (\Delta known)
 1: x_i := 0;
 2: for \ell := k - 1 to 0 by -1 do
         (* \ 	ilde{\delta}(v_i) \le (\Delta + 1)^{(\ell+1)/k}, \, z_i := 0 \ *)
        for m := k - 1 to 0 by -1 do
            (* a(v_i) < (\Delta + 1)^{(m+1)/k} *)
            send color, to all neighbors:
 6:
            \delta(v_i) := |\{j \in N_i \mid \operatorname{color}_j = \text{`white'}\}|;
           if \tilde{\delta}(v_i) \geq (\Delta+1)^{\ell/k} then
               x_i := \max\left\{x_i, \frac{1}{(\Delta+1)^{m/k}}\right\}
            send x_i to all neighbors;
11:
            if \sum_{j \in N_i} x_j \ge 1 then \operatorname{color}_i := \operatorname{`gray'} fi;
12:
13:
         (* z_i \le 1/(\Delta+1)^{(\ell-1)/\kappa} *)
14:
15: od
```


Assumptions

6: **send** color $_i$ to all neighbors;

How do you know your neighbors ???

How can you exchange data with them ???

→ Collisions (Hidden-Terminal Problem)

Most papers assume that ...

- 1) ... there is a MAC-Layer in place!
- 2) ... nodes know their neighbors!

This assumption may make sense in well-established, structured networks,...

...but it is certainly invalid during and shortly after the deployment of ad hoc and sensor networks.

Assumptions...

Excerpts from a typical paper

```
Algorithm 2 LP<sub>MDS</sub> approximation (\Delta known)
 1: x_i := 0:
 2: for \ell := k - 1 to 0 by -1 do
        for m := k - 1 to 0 by -1 do
          (*a(v_i) \leq (\Delta+1)^{(m+1)/k} *)
           send color_i to all neighbors;
 6:
          \tilde{\delta}(v_i) := |\{j \in N_i \mid \text{color}_j = \text{`white'}\}|;
          if \tilde{\delta}(v_i) \geq (\Delta + 1)^{\ell/k} then
           x_i := \max\left\{x_i, \frac{1}{(\Delta+1)^{m/k}}\right\}
10:
11:
           send x_i to all neighbors;
           if \sum_{j \in N_i} x_j \ge 1 then color_i := 'gray' fi;
12:
13:
        (* z_i \le 1/(\Delta+1)^{(\ell-1)/\kappa} *)
14:
15: od
```


More technicalities...

2: **for** $\ell := k - 1$ to 0 by -1 **do**

How do nodes know when to start the loop ???

What if nodes join in afterwards ???

→ Asynchronous wake-up!

Paper assumes that there is a global clock and synchronous wake-up!

This assumption may make sense in well-established, structured networks,...

...but it is certainly invalid during and shortly after the deployment of ad hoc and sensor networks.

Deployment

- Absence of a-priori knowledge
 - → Neighbors are unknown
 - → Even number of neighbors is unknown
- No built-in infrastructure
 - → No existing MAC-Layer
 - → No reliable point-to-point connections
 - → Collisions, Interference...
- Asynchronous wake-up

→ Nodes have to structure their network!

Initialization-Gap

Reality starts like this:

Algorithms assume this:

Deployment and Initialization

- Initialization in current systems often very slow (Bluetooth)
- Ultimate Goal: Come up with an efficient MAC-Layer quickly.
- Theory Goal: Design a *provably* fast and reliable initialization algorithm.

We must make realistic assumptions!

Overview

- Introduction → Initialization-Gap
- Model

- Clustering
- Algorithm & Analysis
- Conclusions & Open Problems

Unstructured Multi-Hop Radio Networks – Model (1)

Introduced by [Kuhn, Moscibroda, Wattenhofer, MOBICOM 2004]

Adaptation of classic Radio Network Model

- Multi-Hop
 - Hidden-Terminal Problem
- Node distribution...?
 - How do real networks look like?

Like this?

Or rather like this?

Unstructured Multi-Hop Radio Networks – Model (1)

Introduced by [Kuhn, Moscibroda, Wattenhofer, MOBICOM 2004]

Adaptation of classic Radio Network Model

- Multi-Hop
 - Hidden-Terminal Problem
- Arbitrary (worst-case) node distribution
 - No assumption of uniformity!
- No collision detection
 - Not even at the sender!
- No knowledge about (the number of) neighbors
- Asynchronous Wake-Up
 - No global clock!

Unstructured Multi-Hop Radio Networks – Model (2)

- Unit Disk Graph (UDG) to model wireless multi-hop network
 - Two nodes can communicate iff
 Euclidean distance is at most 1

- Upper bound N for number of nodes in network is known
 - This is necessary due to $\Omega(n / \log n)$ lower bound [Jurdzinski, Stachowiak, 2002]

Q: Can we efficiently (and provably!) compute an *Mittallstyucture*hiis thisshanshalodel?

A: Yesnwe.can!

Overview

- Introduction → Initialization-Gap
- Model
- Clustering

- Algorithm & Analysis
- Conclusions & Open Problems

The Importance of Being Clustered...

Clustering

- Virtual Backbone for efficient routing
 - → Connected Dominating Set
- Improves usage of sparse resources
 - → Bandwidth, Energy, ...
- Spatial multiplexing in non-overlapping clusters
 - → Important step towards a MAC Layer

Clustering

Clustering brings structure into Chaos!

Clustering: Dominating Set

Choose clusterhead such that:

Each node is either a clusterhead or has a clusterhead in its communication range.

• When modeling the network as a graph G=(V,E), this leads to the well-known Dominating Set problem.

Dominating Set:

- A Dominating Set DS is a subset of nodes such that each node is either in DS or has a neighbor in DS.
- Minimum Dominating Set MDS is a DS of minimal cardinality.

Interference between clusterheads

Clustering – Dominating Set

Dominating Set: provides a good initial structure!
Can be solved efficiently!

→ See our MOBICOM paper...

There may be interference between clusterheads!

→ We don't want neighboring clusterheads!

Clustering – Maximal Independent Set

- Choose clusterhead such that:
 - 1) Each node is either a clusterhead or has a clusterhead in its communication range.
 - 2) No two clusterheads are within each other's communication range.
 - → This avoids interference at clusterheads!

Maximal Independent Set:

 A Maximal Independent Set MIS is a dominating set where no two dominators are neighbors.

Yet Another Clustering Algorithm...???

Recently, we gave a O(1) approximation algorithm for dominating set in time O(log²n) in the same model.

[Kuhn, Moscibroda, Wattenhofer, MOBICOM 2004]

- There are many other existing clustering algorithms for ad hoc and sensor networks
 - [Kutten, Peleg, Journal of Algorithms 1998], [Jia, Rajaraman, Suel, PODC 2001]
 - [Gao, et al., SCG 2001], [Wan, Alzoubi, Frieder, INFOCOM 2002 & MOBIHOC 2002]
 - [Chen, Liestman, MOBIHOC 2002], [Kuhn, Wattenhofer, PODC 2003]
 - **–**
- Q: Why yet another clustering algorithm?
- A: Other algorithms with theoretical worst-case bounds make too strong assumptions! (see previous slides...)
 - → Not valid during initialization phase!

Overview

- Introduction → Initialization-Gap
- Model
- Clustering
- Algorithm & Analysis

Conclusions & Open Problems

MIS Algorithm - Results

With three communication channels

Algorithm computes a correct MIS in time O(log³n / loglog n), w.h.p.

Idea: Simulate three channels with a single channel.

Algorithm compute a correct MIS in polylogarithmic time even with a single communication channel, w.h.p.

MIS Algorithm – Basic Idea

- Use 3 independent communication channels Γ_1 , Γ_2 , and Γ_3 .
 - → Then, simulate these channels with a single channel.
- Nodes compete for becoming candidates on Γ_{1.}
 - → Dominating Set Algorithm → Candidate Election
 - → Idea: Reduce number of potential MIS nodes from n to O(log²n / loglog n) nodes w.h.p.
- Candidates compete for joining the MIS on Γ_2 .
 - → MIS Algorithm
- MIS nodes send on $\Gamma_{3.}$
 - → Inform nodes which have woken up late

Candidate Election – Basic Structure

• Each node's sending probability increases exponentially after an initial waiting period.

- When sending a message → become candidate
- When receiving a message (without collision!) → restart algorithm!
- Sequences are arbitrarily shifted in time (asynchronous wake-up)

Candidate Election - Analysis

- Cover the plane with (imaginary) circles C_i of radius r=1/2
- Let D_i be the circle with radius R=3/2
- A node in C_i can hear all nodes in C_i
- Nodes outside of D_i cannot interfere with nodes in C_i

Result:

Algorithm produces at most $O(\log^2 n / \log \log n)$ candidates in each C_i w.h.p.

- Given the O(log²n / loglog n) candidates per C_i.
- We want to select MIS nodes from candidates.

1.Simple Idea:

- Each candidate sends with certain probability
- Sender becomes MIS node
- Node that receives message stop competing

2. Better Idea:

- Each active candidate has counter c(v).
- Active candidates send with prob. Θ(loglog n / log²n).
- When sending first time
 - → start incrementing counter in each time-slot
- Node that receives message, restart algorithm
- When counter reaches Θ(log³n / loglog n)
 - → join MIS
 - \rightarrow start sending on channel Γ_3 with prob. 1/6

Intuition: Each node hears every other node (without collision) at least once!

→ No neighboring candidates join MIS

Negative:

- → New candidates can "kill" so far successful candidates
- → Progres is too slow !!!

3. Improvement:

 Only nodes with higher counter value can "kill" other active candidates!

Problem: Long cascading chains of restarts...

→ progress still slow in some regions!

- Goal: Every node restarts at most a constant number of times.
 - → Must avoid long cascading chains of restarts!
- Intuition: Avoid that two candidates join MIS at the same time!
 - \rightarrow Then MIS nodes send on Γ_3 to inform candidates!

4. New Idea:

- Candidates that receive a message from a candidate with equal counter resets counter to 0.
 - → Only candidates with equal counter can stop each other.

Let t* be the first time-slot when a candidate appears in C_{i.} It can be shown that...

- → Within time t*+O(log n), a candidate sends without collision!
- → After that, this candidate cannot be stopped anymore!

→ Only constant number of restarts!

t₀: u wakes up

 $t_1 := t_0 + O(log^2 n)$: at least one candidate emerges

 $t_2 := t_1 + O(\log n)$: one candidate can send without collision...

... and joins MIS at t_2 +O(log³n / loglog n)

Candidates can have counter very close to each other! When a node joins MIS

- → not enough time to inform neighboring candidates!
- → Feasibility not guaranteed anymore!

4. Final Idea:

- Candidates that receive a message from a candidate with similar counter resets counter to - ⊕(log n).
 - → Only candidates with similar counter (within Θ(log n)) can stop each other

Enough time to inform neighbors!

This works!

Results

- Some nasty details have been left out...
- Running time of algorithm is $O\left(\frac{\log^3 n}{\log\log n}\right)$
- Solution with a single channel is possible within O(polylog(n)).
- Idea:
 - Each node simulates each of its multi-channel time-slots with O(polylog(n)) single-channel time-slots.
 - It can be shown that result remains the same.

Algorithm compute a correct MIS in polylogarithmic time even with a single communication channel, w.h.p.

Conclusion and Outlook

- Initialization of ad hoc and sensor network of great importance!
- Relevant model must be considered!

MOBICOM 2004:

- A model capturing the characteristics of the initialization phase
- A fast algorithm for computing a good dominating set from scratch

In this paper:

A fast algorithm for computing more sophisticated structures (MIS)

A fast algorithm for establishing a MAC Layer from scratch!