Benefits of negotiated interdomain traffic engineering

Ratul Mahajan
David Wetherall
Thomas Anderson

University of Washington
Problem

- Interdomain routing decisions are based on very little information about other networks
 - poor performance
 - instability, oscillations
 - tedious, error-prone management
Example of poor performance

![Diagram showing interdomain traffic between ISP-A and ISP-B with negotiated TE paths.]

negotiated interdomain TE
Example of oscillation
Current methodology

Whenever interdomain routing changes need to be made
 • tweak-n-pray
 • call ahead
 • determine a mutually agreeable set of routing changes
An alternative

- Automated negotiation
 - under real-world constraints
 - as good or better than manual negotiation
 - minimize manual firefighting

- We’ve looked at two-ISP negotiation so far
 - high-level methodology
 - evaluation of the potential benefit
Constraints on inter-ISP negotiation

- Controlled information disclosure
 - ISPs are competing entities

- Support for different optimization criteria
 - different ISPs have different objectives

- Flexible outcomes
 - different ISP pairs have different relationships
Simplified negotiation methodology

1. Assign a numeric preference (like MEDs) to each routing option for each flow
 - each ISP uses its own criteria
2. Exchange preference lists
3. Take turns to propose routing options
 - find good compromises
 - reassign preferences if needed
4. Stop when one of the ISP wants to
Example of negotiation

A and B negotiate for 2 flows

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>(-6, 6)</td>
<td>(0, 0)</td>
<td>(0, 0)</td>
<td>(-6, 6)</td>
</tr>
<tr>
<td>m</td>
<td>(-1, 4)</td>
<td>(4, -1)</td>
<td>(4, -1)</td>
<td>(-1, 4)</td>
</tr>
<tr>
<td>b</td>
<td>(0, 0)</td>
<td>(6, -6)</td>
<td>(6, -6)</td>
<td>(0, 0)</td>
</tr>
</tbody>
</table>

Trade small sacrifices for bigger gains such that both ISPs win
Evaluation

- Compare three routing methodologies
 1. default: early-exit, selfish
 2. optimal: globally best across the two ISPs
 3. negotiated
- Dataset: 65 measured PoP-level ISP topologies; synthetic traffic models
- Evaluate latency reduction and hotspot avoidance
Experiment 1: Latency reduction

- Higher latency
 ⇒ poorer performance
 ⇒ more resource usage ⇒ costlier

- Measure latency of traffic when routed using the three routing mechanisms
 • default, optimal, negotiated
Results: Latency reduction

- Small latency reduction
 - Q: is this valuable?

- Individual ISPs can lose with the optimal

- Negotiation is win-win
Experiment 2: Hotspot avoidance

- Sudden changes (failures, DoS attacks) can cause short-term overload
 - fighting these is a major time sink

1. Assume that a peering link failed
2. Reroute flows traversing the failed link
3. Measure the potential for overload using max multiplicative increase in link load
Results: Hotspot avoidance

- Default routing tends to overload certain links
- Negotiation reduces the possibility of hotspots
 - fewer problems for the operators to resolve
Summary

- Interdomain routing decisions are based largely on local information
 - poor performance, instability
 - tedious, error-prone management
- Automated negotiation can help
- Feedback:
 - would you use it to talk to your neighbors?
 - www.cs.washington.edu/research/networking/negotiation