
LANGUAGE MODEL SIZE REDUCTION
BY PRUNING AND CLUSTERING

Joshua Goodman

Speech Technology Group
Microsoft Research

Redmond, Washington 98052, USA
joshuago@microsoft.com

http://research.microsoft.com/~joshuago

Jianfeng Gao

Natural Language Group
Microsoft Research China

Beijing 100080, P.R.C
jfgao@microsoft.com

http://www.microsoft.com/china/research

ABSTRACT
Several techniques are known for reducing the size of language
models, including count cutoffs [1], Weighted Difference
pruning [2], Stolcke pruning [3], and clustering [4]. We
compare all of these techniques and show some surprising
results. For instance, at low pruning thresholds, Weighted
Difference and Stolcke pruning underperform count cutoffs.
We then show novel clustering techniques that can be combined
with Stolcke pruning to produce the smallest models at a given
perplexity. The resulting models can be a factor of three or
more smaller than models pruned with Stolcke pruning, at the
same perplexity. The technique creates clustered models that
are often larger than the unclustered models, but which can be
pruned to models that are smaller than unclustered models with
the same perplexity.

1. INTRODUCTION
Language models for large vocabulary speech recognizers and
other applications are typically trained on hundreds of millions
or billions of words. An uncompressed language model is
typically comparable in size to the data on which it is trained.
Some form of size reduction is therefore critical for any
practical application. Many different approaches have been
suggested for reducing the size of language models, including
count-cutoffs [1], Weighted Difference pruning [2], Stolcke
pruning [3], and clustering [4]. In this paper, we first present a
comparison of these various techniques, and then we
demonstrate a new technique that combines a novel form of
clustering with Stolcke pruning, performing up to a factor of 3,
or more, better than Stolcke pruning alone.

None of the techniques we consider are loss-less. Therefore,
whenever we compare techniques, we do so by comparing the
size reduction of the techniques at the same perplexity. We
begin by comparing count-cutoffs, Weighted Difference
pruning, Stolcke pruning, and variations on IBM pruning. All
of our experiments are performed on both an English corpus –
Wall Street Journal – and a Chinese newswire database. To our
knowledge, no direct comparison of clustering versus count
cutoffs or any of the other techniques has previously been done
– we show that count cutoffs in isolation are much more
effective than clustering in isolation. We also show that
Weighted Difference and Stolcke pruning actually, in a few
cases, underperform count cutoffs when only a small amount of
pruning is being done.

Next, we consider combining techniques, specifically Stolcke
pruning and a novel clustering technique. The clustering

technique is surprising in that it often first makes the model
larger than the original word model. It then uses Stolcke
pruning to prune the model to one that is smaller than a
standard Stolcke-pruned word model of the same perplexity.

2. PREVIOUS WORK
There are four well-known previous techniques for reducing the
size of language models. These are count-cutoffs, Weighted
Difference pruning, Stolcke pruning, and IBM clustering.

The best known and most commonly used technique is count-
cutoffs. When creating a language model estimate for a
probability of a word z given the two preceding words x and y,
typically a formula of the following form is used:

 >>>>−−−−

====
otherwiseyzPxy

xyzCif
xyC

xyzCDxyzC
xyzP

)|()(

0)(
)(

))(()(
)|(

α

The notation C(xyz) indicates the count of xyz – the number of
occurrences of the word sequence xyz in the training data. The
function α is a normalization constant. The function D(C(xyz))
is a discount function. It can, for instance, have constant value,
in which case the technique is called “Absolute Discounting” or
it can be a function estimated using the Good-Turing method, in
which case the technique is called Good-Turing or Katz
smoothing.

In the count cutoff technique, a cutoff, say 3, is picked, and all
counts C(xyz) ≤ 3 are discarded. This can result in significantly
smaller models, with a relatively small increase in perplexity.

In the Weighted Difference method, the difference between
trigram and bigram, or bigram and unigram probabilities is
considered. For instance, consider the probability P(City|New
York) versus the probability P(City|York) – the two probabilities
will be almost the same. Thus, there is very little to be lost by
pruning P(City|New York). On the other hand, in a corpus like
the Wall Street Journal, C(New York City) will be very large, so
the count would not typically be pruned. The Weighted
Difference method can therefore provide a significant
advantage. In particular, the weighted difference method uses
the value

)]|(log)|([log))](()([yzPxyzPxyzCDxyzC −−−−××××−−−−
For simplicity, we give the trigram equation here; an analogous
equation can be used for bigrams, or other n-grams. Some
pruning threshold is picked, and all trigrams and bigrams with a
value less than this threshold are pruned. Seymore and
Rosenfeld [2] did an extensive comparison of this technique to

count cutoffs, and showed that it could result in significantly
smaller models than count cutoffs, at the same perplexity.

Stolcke pruning can be seen as a more mathematically rigorous
variation on this technique. In particular, our goal in pruning is
to make as small a model as possible, while keeping the model
as unchanged as possible. The Weighted Difference method is a
good approximation to this goal, but we can actually solve this
problem exactly, using a relative entropy-based pruning
technique, Stolcke pruning. The increase in relative entropy
from pruning is

∑∑∑∑ −−−−−−−−
zyx

xyzPxyzPxyzp
,,

)]|()|(')[log(

Here, P’ denotes the model after pruning, P denotes the model
before pruning, and the summation is over all triples of words
x,y,z. Stolcke shows how to efficiently compute the
contribution of any particular trigram P(z|xy) to the expected
increase in entropy. A pruning threshold can be set, and all
trigrams or bigrams that would increase the relative entropy less
than this threshold are pruned away. Stolcke shows that this
approach works slightly better than the weighted difference
method, although in most cases, the two models end up
selecting the same n-grams for pruning.

The last technique for compressing language models is
clustering. In particular, IBM [4] showed that a clustered
language model could significantly reduce the size of a language
model with only a slight increase in perplexity. Let zl represent
the cluster of word z. The model used was of the form P(zl|xlyl)×
P(z|zl). To our knowledge, no comparison of clustering to any
of the other three techniques has been done.

3. PRUNING AND CLUSTERING
COMBINED

Our technique is essentially a generalization of IBM’s clustering
technique, combined with Stolcke pruning. However, the
actual clustering we use is somewhat different than might be
expected. In particular, in many cases, the clustering we use
first increases the size of the model. It is only after pruning that
the model is smaller than a pruned word-based model of the
same perplexity.

The clustering technique we use creates a binary branching tree
with words at the leaves. By cutting the tree at a certain level, it
is possible to achieve a wide variety of different numbers of
clusters. For instance, if the tree is cut after the 8th level, there
will be roughly 28=256 clusters. Since the tree is not balanced,
the actual number of clusters may be somewhat smaller. We
write zl to represent the cluster of a word z using a tree cut at
level l. Each word occurs in a single leaf, so this is a hard
clustering system, meaning that each word belongs to only one
cluster. We actually use two different clustering trees, one for
the “z” position, and one optimized for the “y” position (which
is also used for the “x” position.) [5]

We notice that there is no need for the sizes of the clusters used
in different positions to be the same. In particular, we use a
model of the form P(zl|xjyj) × P(z|xkykzl). We call this model the
“Both Clusters” technique. We also create a model of the form
P(zl|xy) × P(z|xyzl). We call this the “Predict Clusters”
technique.

Optimizing such a large number of parameters is potentially
overwhelming. In particular, consider a model of the type
P(zl|xjyj) × P(z|xkykzl). There are 5 different parameters that need
to be simultaneously optimized for a model of this type: j, k, l,
the pruning threshold for P(zl|xjyj), and the pruning threshold for
P(z|xkykzl). Rather than try a large number of combinations of
all 5 parameters, we give an alternative technique that is
significantly more efficient. Simple math shows that the
perplexity of the overall model P(zl|xjyj) × P(z|xkykzl) is equal to
the perplexity of the cluster model P(zl|xjyj) times the perplexity
of the word model P(z|xkykzl). The size of the overall model is
clearly the sum of the sizes of the two models. Thus, we try a
large number of values of j, l, and a pruning threshold for
P(zl|xjyj), computing sizes and perplexities of each, and a
similarly large number of values of l, k, and a separate threshold
for P(z|xkykzl). We can then look at all compatible pairs of these
models (those with the same value of l) and quickly compute the
perplexity and size of the overall models. This allows us to
relatively quickly search through what would otherwise be an
overwhelmingly large search space.

4. EXPERIMENTAL RESULTS AND
DISCUSSION

We performed our experiments on two different corpora. The
first was a subset of the Wall Street Journal corpus. In
particular, we used the first ten million words of the Wall Street
Journal corpus for training data. For heldout data, we used
every 50th sentence, taken from a set of 250,000 words from the
end of the corpus. For test data, we used every 50th sentence
taken from a disjoint set of 1,000,000 words at the end of the
corpus.

For most of our experiments, we built a large number of models.
Rather than graph all points of all models together, we show
only the outer envelope of the points. That is, if for a given
model type and a given point there is some other point of the
same type with both lower perplexity and smaller size than the
first point, then we do not graph the first, worse point.

We built a very large number of models for English as follows.
First, for experiment with clusters only, we tried most models of
the form P(zl|xjyj) × P(z|xkykzl) for values 2 ≤ j,k,l ≤ 12. For
cutoffs, we tried 167 different combinations of cutoffs, where
the trigram cutoff varied between 0 and 1024, in increments of
about 50% and the bigram cutoff was various fractions of the
trigram cutoff, between 0.1 and 1.2 times the trigram cutoff.
For weighted difference pruning and Stolcke pruning, we tried a
large range of parameters sufficient to cover the same
perplexities as covered by the count cutoffs. The size was
measured as the total number of parameters of the system: one
parameter for each bigram and trigram that was not thresholded,
as well as one parameter for each normalization parameter α
that was needed, and one parameter for each unigram. In the
pruning experiments, bigrams and trigrams were both pruned,
unigrams never were. This resulted in the smallest possible
number of parameters being equal to the vocabulary size,
approximately 60,000 words.

1.E+04

1.E+05

1.E+06

1.E+07

125 225 325 425 525
perplexity

si
ze

Cluster Only
Cutoffs
Weighted Difference
Stolcke
Predict Cluster
Both Cluster

Figure 1: Perplexity versus size on WSJ data

Figure 1 shows the results of these experiments.
Unfortunately, because of the very large range of sizes, it is
difficult to resolve detail. The main result that can be
observed is that the cluster-only technique is by far the worst.
The cluster-only technique is roughly an order of magnitude
worse than the others. In order to show more detail, we also
plotted relative sizes. Each technique was plotted compared to
the Both Cluster technique.

1

1.5

2

2.5

3

3.5

4

4.5

5

125 225 325 425 525
perplexity

re
la

ti
ve

si
ze

Cutoffs

Weighted Difference

Stolcke

Predict Cluster

Both Cluster

Figure 2: Perplexity versus relative size on WSJ data

The main result to notice here is that over a wide range of
values, the Both Cluster technique produces models that are at
most 2/3 the size of Stolcke-pruned models with the same
perplexity. In many cases, the models are half the size or less.
This is a much larger improvement, than, say, the relatively
small improvement of Stolcke pruning over count cutoffs alone.

The other interesting result is the surprisingly good performance
of count cutoffs, better than previously reported, and, at low
thresholding values, marginally better than Weighted Difference
pruning, and overlapping with Stolcke pruning. We have a few

explanations for this. First, Stolcke did not compare his
technique directly to count cutoffs, but only to Weighted
Difference pruning. A close look at the paper comparing
Weighted Difference pruning [2] to count cutoffs shows that
very few points were compared at the low-pruning end of the
chart. Also, in the previous work, rather trying a large number
of reasonable values for bigram and trigram cutoffs, and then
looking at the best ones, bigrams and trigrams were pruned in
such a way as to have the same number of non-zero parameters.

The most interesting analysis is to look at some sample settings
of the parameters of the Both Clusters system, as shown in table
1. The value “all” for k means that the tree was cut at infinite
depth, i.e. each cluster contained a single word. The “prune”
column indicates the Stolcke pruning parameter used.

l j prune
P(zl|xjyj)

k prune
(z|xkykzl)

perplex size

7 7 2560 13 3072 292.7 62077

7 9 896 12 768 249.0 66938

7 9 128 12 160 204.7 90382

8 10 112 all 128 194.3 102436

8 12 56 16 64 173.9 153799

8 12 28 all 42 164.1 203372

7 12 14 16 20 153.3 300193

7 13 10 all 10 146.0 452421

7 15 3 all 4 136.3 1007055

7 16 1.5 all 1 134.2 2533680

Table 1: Sample parameter settings for P(zl|xjyj) × P(z|xkykzl)

First, notice that the two pruning parameters (in columns 3 and
5) tend to be very similar. This is good, since applying the
theory of relative entropy pruning predicts that the two pruning
parameters should actually have the same value.

Next, compare our model, of the form P(zl|xjyj) × P(z|xkykzl) to
traditional IBM clustering, of the form P(zl|xlyl) × P(z|zl),
which is equal to P(zl|xlyl) × P(z|x0y0zl). Traditional IBM
clustering makes two assumptions that we see are suboptimal.
First, it assumes that j=l. We see that the best results come
from unequal settings of j and l. Second, more importantly,
IBM clustering assumes that k=0. We see that not only is the
optimal setting for k not 0, it is typically the exact opposite: all
(in which case P(z|xkykzl) = P(z|xyzl)), or 16, which is very
similar. That is, we see that words depend on the previous
words, and that an independence assumption is a poor one. Of
course, many of these word dependencies are pruned away –
but when a word does depend on something, the previous
words are better predictors than the previous clusters. The
other important finding here is that for most of these settings,
the unpruned model is actually larger than a normal trigram
model – whenever k=all or 16, the unpruned model P(zl|xjyj) ×
P(z|xkykzl) is actually larger than an unpruned model P(z|xy).

This analysis of the data is very interesting – it implies that the
gains from clustering are not from compression, but rather from
capturing structure. Factoring the model into one in which the

cluster is predicted first, and then the word is predicted given
the cluster allows the structure and regularities of the model to
be found. This larger, better structured model can be pruned
more effectively.

We also performed experiments on a Chinese Newswire corpus
of about 12 million characters, with a 65,502 word vocabulary.

1

1.5

2

2.5

3

3.5

4

4.5

5

450 950 1450

perplexity

re
la

ti
ve

si
ze

Cutoffs
Weighted Difference
Stolcke
Predict Cluster
Both Cluster

It is interesting to compare the two sets of results. The main
conclusion is that for the two corpora, in two different
languages, the results are qualitatively very similar. In
particular, again for Chinese, Stolcke pruning is better than
Weighted Difference pruning; at very low threshold values,
count cutoffs outperform both. The Both Cluster technique
works significantly better than Stolcke pruning alone, producing
models that are at least a third smaller than Stolcke pruning
alone at the same perplexity over a range of perplexity values.
The most noticeable difference is that the Predict Cluster
technique and the Both Cluster technique converge here, rather
than diverging sharply, as in English. This should not be
interpreted too strongly. Recall that Predict Cluster is a special
case of Both Cluster. In the Chinese data, for the largest
models, it turned out to be optimal to use j=k=all, i.e. no
clustering. For the English data, marginally better performance
at a given size could be achieved with j=16, k=all. This
marginal difference in the asymptotic best perplexity leads to
large relative differences in sizes. Indeed, for the same reason,
the other steep divergences at the left sides of the graphs should
not be over-emphasized either.

Why does our system work as well as it does? Consider an
example: P(Tuesday | party on). We might prune this model
to one such as P(WEEKDAY|EVENT PREPOSITION)
×P(Tuesday|WEEKDAY). Clearly, in general, it is not
necessary to keep separate probabilities for P(Wednesday |
party on WEEKDAY) and P(Thursday | party on WEEKDAY).
On the other hand, consider P(Friday | God it’s) as in the
phrase “Thank God it’s Friday”. Clearly, P(Friday | God it’s
WEEKDAY) differs markedly from P(Monday | God it’s
WEEKDAY). This ability to capture both idiomatic usage in
the word model, and standard patterns in the cluster model,
appears important. An examination of unpruned WSJ n-grams
is consistent with this hypothesis, though the unpruned n-

grams tend to be more like P(commission | and exchange), as
in the phrase “Securities and exchange commission.”

5. CONCLUSIONS
We have performed a fairly thorough comparison of different
types of language model size reduction. One area we have not
explored in this paper is the actual representation of the
language model, which is generally more of an engineering
issue. However, there are interesting interactions between the
language model compression technique and the language model
representation. For instance, with count cutoff techniques, one
can easily use the bigram data structure both to store P(z|y) and
α(yz) in a single structure. Similarly, there are interactions
between language model representation, and some
implementions of tree decoders for speech recognition. These
interactions cannot be ignored in practical systems.

We have shown several interesting results. They include the
fact that when count cutoffs are well optimized, they are better
in some cases than previously reported. We have done the first
systematic comparison of clustering techniques to pruning
techniques, and shown that the pruning techniques outperform
the clustering techniques, when used separately. Finally, we
showed that by combining clustering and Stolcke pruning
techniques in a novel way, we can achieve significantly better
results than using Stolcke pruning alone. Our clustering
technique is particularly interesting because it typically
increases the size of the unpruned model, while resulting in an
overall decrease in pruned model size. Similarly, it is
interesting because it shows that using many different cluster
sizes for different purposes is helpful, and that the cluster sizes
are different than the conventional wisdom might suggest.

6. REFERENCES
1. F. Jelinek, “Self Organized Language modeling for

Speech Recognition”, in Readings in Speech
Recognition, A. Waibel and K. F. Lee(Eds.), Morgan
Kaufmann, 1990

2. K. Seymore, R. Rosenfeld. “Scalable backoff language
models”, Proc. ICSLP, Vol. 1., pp.232-235, Philadelphia,
1996

3. A. Stolcke, “Entropy-based Pruning of Backoff Language
Models” Proc. DARPA News Transcription and
Understanding Workshop, 1998, pp. 270-274,
Lansdowne, VA.

4. P. F. Brown,V. J. DellaPietra, P. V. deSouza, J. C., Lai,
R. L. Mercer. “Class-based n-gram models of natural
language”. Computational Linguistics 1990 (18), 467-
479.

5. H. Yamamoto, Y. Sagisaka, “Multi-class Composite N-
gram based on Connection Direction”, Proc. ICASSP,
May, 1999, Phoenix, Arizona.

