Coloring Unstructured Radio Networks

Thomas Moscibroda and Roger Wattenhofer
{moscitho,wattenhofer Hik.ee.ethz.ch
Computer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich, Switzerland

Abstract

During and immediately after their deployment, ad hoc and sensor networks lack an ef-
ficient communication scheme rendering even the most basic network coordination problems
difficult. Before any reasonable communication can take place, nodes must come up with an
initial structure that can serve as a foundation for more sophisticated algorithms. In this paper,
we consider the problem of obtaining a vertex coloring as such an initial structure. We pro-
pose an algorithm that works in the unstructured radio network model. This model captures
the characteristics of newly deployed ad hoc and sensor networks, i.e. asynchronous wake-up,
no collision-detection, and scarce knowledge about the network topology. When modeling the
network as a graph withounded independengagur algorithm produces a correct coloring with
O(A) colors in timeO (A log n) with high probability, where: andA are the number of nodes
in the network and the maximum degree, respectively. Also, the number of locally used colors
depends only on the local node density. Graphs with bounded independence generalize unit
disk graphs as well as many other well-known models for wireless multi-hop networks. They
allow to capture aspects such as obstacles, fading, or irregular signal-propagation.

1 Introduction

Wireless multi-hop radio networks such as ad hoc or sensor networks [1] are formed of au-
tonomous nodes communicating via radio. Typically, if two nodes are not within their mutual
transmission range, they may communicate through intermediate nodes. In other words, the com-
munication infrastructure must be organized by the nodes themselves, rather than being provided
as part of a fixed built-in infrastructure as in traditional wired networks.

The lack of available a-priori infrastructure is particularly pronounced during and after the
deployment, when the network is unstructured and chaotic [15, 16, 19]. Before any reasonable
communication can be carried out and before the network can start performing its intended task,
the nodes must establish some kind of structure that allows an efficient communication scheme.
Once thisinitial structureis achieved, sophisticated and well-studied algorithms and network or-
ganization protocols may be used on top of it. Naturally, the inherent problem faced when setting
up such an initial structure is that there is no existing infrastructure that could facilitate the task. In
fact, coping with the absence of anitial structureis one of the quintessential tasks in ad hoc and
sensor networks and finding efficient solutions for that purpose is of great practical importance. In
existing systems such as Bluetooth, for instance, the initialization tends to be slow even for a small
number of devices.

*A preliminary version of this work has been published in [20] as Coloring Unstructured Radio Netwolrkecked-
ings of the 17th Symposium on Parallel Algorithms and Architectures (SRA&)egas, Nevada, 2005.

In this paper, we study the construction of an initial structure useful for subsequent network
organization tasks. Technically, we study how the network nodes can quickly compute a good
vertex coloringwithout relying on any existing infrastructure. A correct vertex coloring for a
graphG = (V, E) is an assignment of a coleblor(v) to each node € V, such that any two
adjacent nodes have a different color. Colorings can be well-motivated as initial structures in
wireless ad hoc and sensor networks: When associating different colors with different time slots
in a time-division multiple access (TDMA) scheme, a correct coloring corresponds to a medium
access control (MAC) layer withoulirect interferencethat is, no two neighboring nodes send at
the same time.

It is well known that in order to guarantee an entirely collision-free schedule in wireless net-
works, a correct vertex coloring is not sufficient, for what is needed is a coloring sfjtereof
the graph, i.e., a valid distan@ecoloring [14, 26]. However, besides being a non-trivial first step
towards obtaining a distan@coloring, a simple vertex-coloring ensures a schedule in which a
receiver can be disturbed by at most (a small) constant number of interfering senders in a given
time slot. This allows for simple randomized algorithms guaranteeing every sender a constant
sending probability in each scheduled time slot. As the available bandwidth (and hence the possi-
ble throughput) of a node in such a schedule depends on the highest color assigned in its local
2-neighborhood, only low colors should be assigned in sparse areas of the network, whereas the
higher colors should only be used in dense areas. Particularly, a good coloring should have the
property that the highest color assigned to a node in each neighborhood should depend only on the
local node densitgf that neighborhood.

In view of our goal of setting up an initial MAC scheme in a newly deployed network, our
coloring algorithm must not rely on any previously established MAC layer. Instead, we are in-
terested in a simple algorithm that quickly computes a coloring entirely fonatch Note that
this precludes algorithms working under any sortr@fssage passing modelwhich nodes know
their neighbors a-priori, and in which messages can be sent to neighbors without fearing collision,
e.g. [3, 8, 24]. Studying classic network coordination problems such as coloring in absence of an
established MAC layer highlights thehicken-and-eggroblem of the initialization phase [15]. A
MAC layer (“chicken”) helps achieving a coloring (“egg”), and vice versa. The problem is that
in a newly deployed ad-hoc/sensor network, there is typically no built-in structure, i.e. there are
neither “chickens” nor “eggs.”

Clearly, one important aspect when studying the initialization phase of ad hoc/sensor networks
is to use an appropriate model. On the one hand, the model should be realistic enough to actually
capture the particularly harsh characteristics of the deployment phase. But on the other hand, it
ought to be concise enough to allow for stringent reasoning and proofs. Recently)stnec-
tured radio network moddias been proposed as a model that attempts to combine both of these
contradictory aims [15]. It makes the following assumptions.

e We considemulti-hopnetworks, that is, there exist nodes that are not within their mutual
transmission range. Therefore, it may occur that some neighbors of a sending node receive
a message, while others experience interference from other senders and do not receive the
message.

e Nodes can wake upsynchronously In a wireless, multi-hop environment, it is realistic
to assume that some nodes wake up (e.g. become deployed, or switched on) later than
others. Thus, nodes do not have access to a global clock. Contrary to work on the so-called
wake-up problenfi6, 13], nodes ar@ot woken up by incoming messages, that is, sleeping
nodes do neither send nor receive any messages. Finally, the node’s wake-up pattern can be

completely arbitrary.

e Nodes do not feature a reliabb®llision detectiormechanism. This assumption is often
realistic, considering that nodes may be tiny sensors [1] with equipment restricted to the
minimum due to limitations in energy consumption, weight, or cost. Moreover, the sending
node itself does not have a collision detection mechanism either. Hence, a sender does not
know how many (if any at all!) neighbors have received its transmission correctly.

e At the time of their waking-up, nodes have only limited knowledge about the total num-
ber of nodes in the network and no knowledge about the nodes’ distribution or wake-up
pattern. Particularly, they have no a-priori information about the number of neighbors and
when waking up, they do not know how many neighbors have already started executing the
algorithm.

Naturally, algorithms for such uninitialized, chaotic networks have a different flavor compared to
“traditional” algorithms that operate on a given network graph that is static and well-known to all
nodes.

In this paper, we show that even in this restricted model, a good vertex coloring can be com-
puted efficiently. Specifically, we propose a randomized algorithm that computes a correct vertex
coloring usingD(A) colors in timeO(A log n) with high probability in any network graph as long
as the maximal number of mutually independent nodes ir2thep neighborhood of any node is
bounded by some arbitrary constant. Tinginded independence modeheralizes the frequently
studied models for wireless networks, such as the unit disk graph. Unlike the unit disk graph or
other explicit geometric graph models, however, baunded independenceodel can capture
obstacles as well as physical signal-propagation aspects such as fading, reflection, or shielding.
Finally, our algorithm features the property that the highest color assigned to any node in a certain
area of the network depends only on tbeal densityof that area.

The remainder of the paper is organized as follows. An overview of related work is given in
Section 2. Section 3 describes our model of computation and particularly the bounded indepen-
dence model studied in this paper. The coloring algorithm is subsequently presented and analyzed
in Sections 4 and 5. Finally, Section 6 concludes the paper.

2 Related Work

Coloring graphs belongs to the most fundamenf@t-hard problems in theoretical computer sci-
ence and has been thoroughly studied. In distributed computing, the study of vertex coloring has
lead to several seminal contributions. Cole and Vishkin gave a deterministic distributed algorithm
for computing a correct coloring on a ring using three colors in tidieg*n) [3]. A generaliza-
tion of the same technique can be used to color trees and arbitrary bounded-degree graphs with
3 andA + 1 colors in timeO(log*n), respectively [8]. Recently, it has been shown in [17] that
a running time ofO(log™n) also suffices to obtain A + 1 coloring in unit disk graphs and its
generalization, the unit ball graph with constant doubling dimension.

All these upper bounds are tight due to the seminal lower bound by Linial [18], even for
the case of randomized algorithms. For arbitrary graph&,-a 1-coloring can be computed in
time O(log*n + A?) [24] or O(Alogn) [7]. The authors of [9] present distributed approaches
for finding colorings in graphs that admit a coloring with less tlian+ 1 colors. Finally, an
experimental study of various vertex coloring algorithms is given in [5].

All the above algorithms are based omassage passing mod2b] that abstracts away prob-
lems such as interference, collisions, asynchronity, or the hidden-terminal problem, which are
crucial in the context of wireless ad hoc and sensor networks. Specifically, it is assumed that
nodes know their neighbors at the beginning of the algorithm and that the transmission of mes-
sages is handled flawlessly by an existing, underlying MAC layer. Furthermore, all nodes wake
up synchronously and start the algorithm at the same time. As motivated in the introduction, these
assumptions are invalid when studying multi-hop radio networks during or immediately after their
deployment.

In view of its practical importance, it is not surprising that there has recently been a lot of
effort in designing efficient algorithms for setting up initial structures, i.e., [10, 28, 19, 16, 4].
Theunstructured radio networknodel was first proposed in [15] and subsequently improved and
generalized in [16]. It is an adaptation of the clagsidio network mode{e.qg., [2]), combining
various of its flavors in order to model the harsh conditions during and immediately after the
deployment. In [16], an algorithm is proposed that efficiently computedngmum dominating
setapproximation from scratch. The paper [21] goes one step further by giving an algorithm for
computing anaximal independent skt the unstructured radio network model in tif&log?n).

Finally, notice that the recently proposegak sensor modelff [4] is essentially equivalent to the
unstructured radio network model'he authors of [4] present an algorithm that, based on [21],
computes a constant degree subgraph with low stretch.

In the preliminary version of this paper [20], we presented a randonti#elllogn) time
coloring algorithm for unit disk graphs using at megtA) colors. In comparison to [20], we have
generalized our result from unit disk graphs to bounded independence graphs and the algorithm
and its analysis have been significantly revised.

Coloring networks for the purpose of obtaining a channel assignments or TDMA scheme has
been studied in [14, 26], among others. Moreover, coloring a network in which all nodes are
within mutual transmission range of all other nodeiagle-hopmetworks) reduces to the so-called
initialization problem This problem has been feverously studied and analyzed during the past
years [22, 23]. For several reasons, the approach taken in these papers cannot be translated into
efficient algorithms for the unstructured radio network model. First and foremost, the multi-hop
character of our network model complicates matters. In the single-hop case, if there is a collision,
no node in the network receives a message, whereas in our multi-hop scenario, it is likely that
some neighbors of the sender may receive the message, while others experience a collision and
do not receive the message. This difference renders it impossible for nodes to keep a coherent
picture of the local situation. Secondly, most initialization papers asstimeg communication
[12], that is, a sending node can distinguish whether its message was successfully received by all
nodes or whether it has caused a collision. In a multi-hop scenario, this assumption makes little
sense. Finally, unlike [22, 23], we consider asynchronous wake-up where nodes can wake up at
any time.

There has also been work on models containing asynchronous wake-up. In the sevak#ied
up problem6, 13], the goal is to wake up all nodes in the graph as quickly as possible by sending
them messages. The assumption made in these papers is that a wollerisugby an incoming
message. While the algorithmic problems resulting from this assumption are very interesting,
current sensor nodes do not have such an external wake-up capability.

3 Model and Notation

In theunstructured radio network modgl5] (subsequently also calledeak sensor modei [4]),

we considemulti-hop radio networkswithout collision detection That is, nodes are unable to
distinguish between the situation in which two or more neighbors are sending and the situation in
which no neighbor is sending. A node receives a message if and only if exactly one of its neighbors
sends a message. Nodes may wakasynchronouslpt any time.

Upon waking up, a node has no information as to whether it is the first to wake up, or whether
other nodes have been running the algorithm for a long time already. We call aleegdengoefore
its wake-up, an@wakethereafter. Only awake nodes can send or receive messages, and sleeping
nodes ar@motwoken up by incoming messages. The two extreme cases of our asynchronous wake-
up model are the following. First, all nodes start synchronously at the same time, or only one of
the sleeping nodes wakes up while all others remain sleeping for a long time. Recall again that
nodes are unaware which (if any) of the two extreme cases holdstimibecomplexityl’, of a
nodewv is defined as the number of time slots between the nogalsng upand the time it has
made its irrevocablénal decisionon its color. The algorithm’éme complexitys the maximum
numberT, over all nodes in the network.

We model the network as a graph= (V, E'), where two nodes andv can communicate with
each other if there is an edg@e, v) € E. In order to capture the typical wireless characteristics, ad
hoc and sensor networks have often been modeled as unit disk graphs (UDG) in which nodes are
located in the Euclidean plane and there is an edge between two nodes if their Euclidean distance
is at most one. In this paper, we study a more gerimahded independence moudilich not only
generalizes the unit disk graph, but also many other known models for wireless networks such as
the quasi unit disk graph, or general disk graphs.

Two nodesv; andwvy are calledindependentf there exists no communication link between
them. A set of node$ is called anindependent setf all nodes inS are mutually independent.

In the bounded independence maodidere can be at most; mutually independent nodes in the
1-hop neighborhood of any node. Similarly, there are at mgstodes in th&-hop neighborhood

of any node. This more general model for wireless networks captures the intuitive notion that if
many nodes of a wireless network are located close from each other, many of them must be within
mutual transmission range. Unlike in the unit disk graph, however, obstacles or irregular signal
propagation are easily captured in the bounded independence model. Specifically, an obstacle
(such as a wall) in close physical proximity to a sending node destroys the disk shape of the node’s
transmission range. On the other hand, the maximal number of mutually independent nodes is
still bounded by a (possibly somewhat larger) constant. Finally, notice that the unit disk graph is a
special case of a bounded independence graphawith 5 andx, < 18.

Note that due to asynchronous wake-up, some nodes may still be asleep, while others are
already transmitting. Hence, at any time, there may be sleeping nodes whiuit deceivea
message in spite of there being a communication link between the two nodes. When waking up,
nodes have only scarce knowledge about the network graph’s topology. In particular, a node has
no information on the number of nodes in its neighborhood. However, every node has estimates
andA for the number of nodes in the network and the maximum degree, respectively. In reality,
it may not be possible to foresee these global parameters precisely by the time of the deployment,
but it is usually possible to pre-estimate rough bounds.

For the sake of simplicity, we assume time to be divided into discrete time slots that are syn-
chronized between all nodes. This assumption is used merely for the purpose of facilitating the
analysis, i.e., our algorithm does not rely on this assumption in any way (see the standard argument
given in [27]), as long as the nodes’ internal clock runs at the same speed.

In each time slot, a node can either transmit or not transmit. If a node transmits in a time slot
it cannot receive any messages in time $loA nodev receives a message in a time glainly if
exactly one nodm its neighborhood transmits a message in this time slot (and if it is not sending
itself). The message size in our model is limitedt@og n) bits per message. Further, notice that
in contrast to previous work on the unstructured radio network model [15, 16], we do not make
the simplifying assumption of having several independent communication channels. In our model,
there is only one communication channel.

Every node has a unique identifier, which does not need to be in the tangen. Par-
ticularly, the algorithm does not perform explicit operations on the node’s IDs. Instead, the ID
is merely required to let a receiver recognize whether or not two different messages were sent
by the same sender. In some papers on wireless sensor networks, it is argued that sensor nodes
do not feature any kind of unique identification (such as a MAC number, for instance). In such
a case, each node can randomly choose an ID uniformly from the fangen3] upon wak-
ing up. The probability that two nodes in the system end up having the same ID is bounded by
Pambrps < (g)nila € O(%)

We denote byV, the set of neighbors of node includingw itself. Further, V.2 is the two-hop
neighborhood of node, i.e., the set of all nodes within distance at most 2 frenirhe degree
d, = |N,| of a node is the number of its neighbors. The color assigned to naslelenoted
by color,, andp, is v's sending probability in a given time slot. Finally, we use the following
well-known mathematical fact.

Fact 3.1. For all values ofn andt withn > 1 and|¢| < n, it holds that

el (1’;) < <1+;>n < e
4 Algorithm

During the algorithm, each node can be in varistates At any point in time, a node is in exactly
one state, i.e., the sets of nodes induced by the different states form a partition of

Z:. Nodes before their waking up. Sleeping nodes do not take part in the algorithm.
A;: Nodes that are verifying (i.e., trying to decide on) calor

R: Nodes that are requestingrara-cluster colorfrom their leader.

C;: Nodes that have already irrevocably decided on color

The stateC, plays a special role and nodes in stdjeare calledeaders The algorithm itself
is divided into three subroutines: Algorithm 1 for nodes in stadgsAlgorithm 2 for nodes in
stateR, and Algorithm 3 for nodes in staty. The sequence of states that a node can be part of
during the course of the algorithm is shown in Figure 1. A solid arrow represents a state transition
a node makes when the event denoted by the arrow’s label occurs. A dashed arrow between two
states indicates the message type which is significant for the communication between nodes in
these two states. In our model, howewareryneighbor of a sending node—regardless of their
current state—may actually receive the message or experience a collision. Upon waking up, each
node starts in statdg, without having any knowledge whether some of its neighbors have already
started the algorithm beforehand.

From a global point of view, the algorithm’s main idea can be described easily: In a first stage,
the nodes elect a set of mutually independeatiers(nodes in stat€,;) among themselves and

MY
\

MQ received ¢y > threshold

te, received M—gi(icv)

g ¢y > threshold @
; ,
A N \\\ .

M} received M}

Figure 1. Sequence of states in the algorithm. Each dalerepresented by a stafg, which a
node enters at the moment it (irrevocably) selects colddefore deciding on, a node first has
to verify (or compete for) in state4;. If the node does not prevail in this verification, it moves
from A; to a new stated,,., which corresponds to either the intermediate requesting Raie
the verification state of the next higher coldy; (cf Lines 3 and 15 of Algorithm 1).

each non-leader associates itself with a leader within its neighborhood. Since leaders are inde-
pendent, they can safely assign themselves dbldrhe set of leaders naturally inducessters
consisting of all nodes associated with the same leader. The task of each leader is to assign a
uniqueintra-cluster colortc, to every nodev within its cluster. Unfortunately, the coloring in-
duced by these intra-cluster colors may not form a valid coloring since two neighboring nodes in
different clusters may be assigned the same intra-cluster color.

On the other hand, if the set of leaders is really independent, there can only be a small number
of neighboring nodes with the same intra-cluster color. The coloring induced by these intra-cluster
colors thus represents a first coarse structuring of the network that facilitates the subsequent task
of actually assigning colors to nodes. Technically, upon receiving an intra-clustertecploom
its leader, a node goes on to verify a specific colgfx2 + 1) against neighboring nodes from
different clusters that may have received the same intra-cluster colorv@tification procedure
must ensure that no two neighboring nodes end up selecting this specific color.

The algorithmic difficulty of the above process stems from the fact that nodes wake up asyn-
chronously and do not have access to a global clock. Therefore, the different phases (verification,
requesting intra-cluster color, etc...) of different nodes may be arbitrarily intertwined or shifted
in time. While some nodes may still compete for becoming leader in stateheir neighbors
may already be much more advanced in their coloring process. Moreover, messages may be lost
due to collisions at any time. In view of this harsh environment, the primary challenge is that the
algorithm must achieve two contradictory aims: symmetries between nodes must be broken both

correctly and rapidly That is, no two neighboring nodes ever select the same color and yet, every
node can take its decision shortly after its wake-up (i.e., there is no starvation).

A crucial part of reconciling these contradictory aims takes place in the verification proce-
dure. In order to ensure both correctness and fast progress in all parts of the network with high
probability, our algorithm uses a technique of counters, critical ranges, and local competitor lists.
Roughly, the idea is that every nodeuses a local countet, which it increments in every time
slot. Intuitively, this counter represents progress towards deciding on coloandv selects as
soon ag, reaches a certain threshold.

In order to prevent two neighboring nodes from selecting the same color, the algorithm must
make sure that as soon as a nadselects its color, all neighbors of can be notified before
their counter also reaches the threshold. In view of collisions and message losses being always
possible, there must be a large enough time interval between two neighboring counters reaching
the threshold. A simple idea to achieve this correctness condition is to have every node transmit
its current counter with a certain sending probability. Whenever a node receives a message with
higher counter, it resets its own counter. Unfortunately, this technique may lecithiios of
cascading resefs.e., a node’s counter is reset by a more advanced node, which in turn is reset by
another node and so forth. While, eventually, one node will end up selecting the color, this method
does not prevent nodes from starving in certain (local) parts of the network graph.

Our algorithm therefore employs a more subtle handling of the counters. The general idea
is that upon receiving a message from a neighbor, a node only resets its counter if it is within
a critical range of the received counter. On the one hand, this critical range is large enough
to ensure correctness with high probability. On the other hand, this technique allows for much
more parallelism in the network because many nodes can simultaneously make progress towards
deciding on the color. In order to truly avoid cascading resets and achieve the claimed running
time, however, using only counters and critical ranges is insufficient. Specifically, nodes should
also be prevented from resetting their counter to a value within the critical range of neighboring
nodes and furthermore, all counters must remain relatively close to the verification threshold even
after a reset. For this purpose, each node stores a ¢mrapetitor listcontaining the current
counter values of neighboring nodes.

Unfortunately, in the unstructured radio network model, it is impossible to constantly keep
this competitor list and the corresponding locally stored counters complete and correctly updated.
Interestingly, we can prove in Section 5 that in spite of this inevitable inconsistency, our technique
of using counters and critical ranges in combination with storing local competitor lists avoids
cascading resets and at the same time ensures the correctness condition. That is, whenever a node
v selects a color, the counters of all neighboring competing nodes are far enough from the threshold
so thatv has enough time to inform its neighbors with high probability.

In more detail, the algorithm works as follows. Upon waking up, a node enters4jaded
tries to become a leader. Generally, whenever a noeleters a statel;, for i > 0, it first waits
for [aAlogn] time slots. As soon as it receives a messaggg€rom a neighboring node that has
already joined’; (Line 7 of Algorithm 1),v joins the succeeding staié,,, ., which corresponds
toR inthe case = 0, andA; 1, otherwise. If no such message is receivellecomesctiveand
starts competing for colar(Line 10).

In order to ensure with high probability that no two neighbors enter the sameCstatee
following process is employed: In each time slot, an active nodeA; increments its countet,
and transmits a messa@é’, with probability1/(k2A) (Lines 11 and 14, respectively). Whenever
v receives a messagé: from a neighbow € C;, v knows that it cannot verify colaranymore
and consequently moves on to statg, ..

Algorithm 1 Coloring Algorithm—Nodev in stateA;
upon entering state A;: (when waking up, a node is initially in staié,)

1. P, = 0; {* vis passive }
2 (e [10i=0
YT ALE>0
R ,i=0
3' AS'II,(J L Az+1 , Z > 0

for [aAlogn] time slots do
foreachw € P, dod,(w) :=d,(w) + 1;
if MY (w,c,)receivecthen P, := P, U {w}; d,(w) := c,; end if
if M (w) receivedthen state := Agye; L(v) := w; end if
end for
¢y = x(P,), wherex(P,) is the maximum value such that,
X(P,) <0andx(P,) ¢ [c, — [v¢ilogn],...,cw + [v¢ logn]] for eachw € P,;
10: while state = A; do {* v is active %}
11: ¢, =c¢y + 1,
12 foreachw € P, dod,(w) := d,(w) + 1;
13: if ¢, > [oAlogn] thenstate := C;; end if
14: transmit MY (v, ¢,) with probability 1 /(k2A);
15: if M} (w) receivedthen state := Agye; L(v) := w; end if
16: if MY (w,c,) receivecthen

e N2 AR

17: P, := P, U{w}; dy(w) := cy;

18: if ¢, — cw| < [7¢ logn] thene, := x(P,); end if
19: endif

20: end while

Algorithm 2 Coloring Algorithm—Nodev in stateR
upon entering stateR:

1: while state = R do {* v is active %}

2: transmit Mg (v, L(v)) with probability1/(k2A);

3 if M(L(v),v,tc,) receivecthen
4: state := Ay, (ky+1):

5. endif

6: end while

When receiving a messagé’, (w, ¢,,) from a neighboring competing node € A;, v adds
neighborw to its competitor listP, and stores #cal copyof w’s countere,, denoted byd,, (w)
(Line 17). In each subsequent time slot, these local cafjiés) are incremented in order to keep
track with the real current counter of as much as possible. Moreover, in Line 18;ompares
¢w t0 its own counter,. If the two counters are within theritical range [v(; logn| of each
other,v resets its own counter tg(P,). The valuex(P,) < 0 (defined in Line 9) is defined
such that the new counter is not within the critical rarige; logn| of any locally stored copy
of neighboring counters. Notice, however, that because counters may be reset in any time slot, a
locally stored copyl, (w) of ¢,, may be outdated without knowing it. For instance, ifv has to
reset its counter due to receipt of a messb@g(x, ¢,) from a neighbor, and ifv does not receive
this message (possibly due to a collision or becausedv are not neighbors), it subsequently

Algorithm 3 Coloring Algorithm—Nodev in stateC;
upon entering stateC;:

1: color, :=1; {* v is active %}

2: if 4 > O then

3: repeat forever transmit M/} with probability 1/ (k2 A);

4: elseifi = 0 then

5 tc:=0;

6: Q:=0; {FIFO requestqueug

7 repeat forever

8 if Mz (w,v) receivedand w ¢ Q then addw to Q; end if
9 if Qis emptythen

10: transmit M2 (v) with probability 1/x2;

11 else

12: tc:=tc+ 1,

13: Letw be first element irQ;

14: for [Blogn] time slotsdo

15: transmit M2 (v, w, tc) with probability 1/x-;
16: end for

17: Removew from Q;

18: end if

19: end repeat
20: end if

holdsd, (w) # ¢,. Hence, in spite of the definition of(P,), a node’s counter may be within the
critical range of a neighboring counter after a reset.

If in the above process, a node succeeds in incrementing its counter up to the threshold of
[cAlogn] (Line 13), it decides on colarand joins stat€;. As mentioned before, the technique
of using counters and critical ranges guarantees that quick progress is made simultaneously in all
parts of the network. Specifically, this method ensures that after a limited (constant) number of
trials, at least one competing node i) can select’; in every regionof the graph. At the same
time, the method also guarantees with high probability that no two neighboring nod€s, joi,
the set of nodes induces By is independent.

A special role in the algorithm plays the stdig the set of leaders. A leader’s duty is to
assign unique intra-cluster colors to each node in its cluster. Specifically, each nondl@ader
assigned to leader sends requesf&/ (v, w) for an intra-cluster color ta. Upon receiving such
a request message fromw transmits for[3 log n] time slots with probabilityl /x> a message
MQ(w,v,tc), wheretc denotes the intra-cluster color assigned tand is incremented for each
subsequent requesting node. If necessary, requests are buffered in an internaDguéieh
helps in keeping all messages within the siz&¢fog n) bits.

In stateR, a non-leader node requests an intra-cluster color from its leader. As soon as
receives a messagdé? (w, v, tc,)) from leaderw containing its intra-cluster coldr.,,, v moves on
to stateA,., (x,+1), i-€., it attempts to verify colot = tc,(k2 + 1) next. If verifying colorc is
unsuccessful (i.e., if a neighbor selects cel@arlier), a node joins the next higher statg,. =
Aie, (ks+1)+1, @nd so forth, until it manages to verify and decide on a color. In Corollary 5.7 of
Section 5, we show that every node is capable of deciding on a colotfdan+1), te, (ke +1)+
1,...,tey (k2 + 1) + K2 with high probability. Hence, the reason for a node to vedfy. (.,+1)

10

upon receivingtc, is that by doing so, two nodes with different intra-cluster colors do never
compete for the same color. This turns out to be an important ingredient when upper bounding the
amount of time each node must maximally wait before deciding on its color.

The algorithm’s four parameters, 3, v, ando can be chosen as to trade-off the running time
and the probability of correctness. The higher the parameters, the less likely the algorithm fails
in producing a correct coloring. In order to obtain the high probability result in Section 5, the
parameters are defined@s> 2vko + 0 + 1,8 > v, and

5Ko 102 ko

O N T G)

for A > 2. Specifically, the constant are chosen as to guarantee a correct coloring and running time
with probability at least —O(n~!). Simulation results show that in randomly distributed networks
significantly smaller values suffice. In fact, the constants are small enough to yield a practically
efficient coloring algorithm for wireless ad hoc and sensor networks that can be employed for the
purpose of initializing the network.

5 Analysis

In this section, we prove that the algorithm of Section 4 is both correct and complete with high
probability. Correctnessneans that no two adjacent nodes end up having the same cotox,
pletenesseaves no node without a color. Furthermore, we show that every node decides on a color
after at mosO(A log n) time slots for constants. For clarity of exposition, we will omit ceiling
signs in our analysis, i.e, we consider all non-integer values to be implicitly rounded to the next
higher integer value. Further, lef(¢) be the value of the counter of nodeat timet. We call a
node inA; coveredf either itself or one of its neighbors is @;.

For future reference, we begin with simple lemma that bounds the maximum number of nodes
in the 2-hop neighborhood of any node.

Lemma5.1. LetG = (V, E) be a graph with at most, independent nodes in tfehop neigh-
borhood of any node. It follows that every node has at meat 2-hop neighbors.

Proof. Every node has at most, mutually independent nodes in igsshop neighborhood, and
each such node has at mdsheighbors. O

We now state two lemmas that give us probabilistic bounds on the amount of time required
until a message is correctly transmitted from a semderan intended receiverin the algorithm.
Notice that both lemmas holds only under the assumption that tlig séteaders forms a correct
independent set.

Lemma 5.2. Assum&’, forms an independent set. Consider two neighboring nadesd v and
let I be a time interval of length A log n. If v is active throughout the intervdl, u receives at
least one message fromduring I with probability1 — n=5.

Proof. Let p, denote the transmission probability @f Recall that nodes id’y transmit with a
probability of1/ k-, whereas the sending probability of all other nodds/ (%2 A). The probability

11

P, thatv succeeds in sending a message to a time slott € [is

Po =p J[A-p)=p [A-») [[-p)
i€ENL\{v} 1€NLNCo JENL\Co

LY a L(, 1 =1 L1 5 .
Pv - ;2 - a > Do - - ;2 - - a , (1)
where the last inequality follows from Fact 3.1 atigl > «;. Becausey is assumed to be active

throughout the interval and for every active node, > 1/(k2A), the probabilityP,,, thatu does
not receive a message framduring ! is

1 1 1\ [1 A
P = (1—pPHH 1—— = (1==)[" |2 (1-—)|"
e (SO)]

Fact3.1

Y

where the last inequality follows from the definition-of O

Lemma 5.3. Assumé&, forms an independent set. Consider two neighboring nadeslv € Cy
and letI’ be a time interval of length logn. If v € Cy throughout the interval’, u receives at
least one message fromduring I’ with probabilityl — n=°.

Proof. The proof is virtually identical to the previous one. In the case C,, it holds that
p» = 1/k2 and plugging this value into Inequality (1) and applying Fact 3.1 yields

aor < (12D Re-)T)

Pno -
-5

< n
Fact 3.1

O

For the next lemma, we first define the notion aileccessful transmissioA nodewv transmits
successfullyn a time slott if all nodesu € N, \ {v} within the transmission range of(i.e., in
v's 1-hop neighborhood) receive the message without collision. In the following lemma, we show
that with high probability, at least one nodexils neighborhood can transnsticcessfullyguring
any interval of lengttO (koA log n).

Lemma 5.4. Assume&’, forms an independent set. Consider a nede A; for an arbitrary s.

Further, let] be a time interval of lengthl| = ZAlogn during whichv € A; is active. With
probability 1 — »n 5, there is at least one time slotc I such that a node. € A, N A; transmits
successfully

Proof. By Lemma 5.1, there are at mastA nodes in the-neighborhood of any node. If in a
time slot, a nodev is the only transmitting node 2, it is guaranteed that transmitssuccess-
fully because no node outsidé? can cause a collision at a neighborwof Define P; to be the

12

probability that a nodev € N, N A; transmits successfully in a given time stoe I. By the
above argument?; is lower bounded by

P, > Z Pw - H (1 - pu)
weN,NA; ue./\/i
uFEw
> Z Pu - H 1— L), H 1— 1
- KQA R2
wEN,NA; ueN2\Co ueN2NCo
Ko A K
1 2 1 2 1 1 1
> po- (1-— 1-—) > 1 1—)
wE/\%Ai (52A> (liz) Fact3.1 €2Ko/A < K2A> (K2

because - 4, Pw IS atleast/(k2A) for as long ag is active inA;. Finally, the probability
P,, that no node inV,, N A; manages to transmit successfully within the intedvdlring which
v is active inA; is

SAlogn
1 1 1 2
P, = 1-pPHI < (1- 1— 1— —
()7 s (e2ka A (HQA) (I€2>>

o ko—1roA—1

< 67 2e2rgy K2 ro A logn < 77,75.
Fact3.1
The last step follows from the definition ef O

Lemmas 5.2, 5.3, and 5.4 are based on the assumption that the set of &afmras an
independent set. Therefore, in order to make full use of these lemmas, we need to prove that this
assumption holds for the entire duration of the algorithm. Intuitively, the reason for our claim is
the following. By the definition of the algorithm, only nodes in stafgcan enter staté&,. If such
a candidate node € A, transmitssuccessfullyall neighboring nodes) € N, N Ag having a
counter value within theritical range vy log n = v log n of v’s counter will reset their counter
to x(P,), which is by definition outside the critical range @f Hence, once node was able to
transmit successfully, no neighboring candidate node N, N Ay can blocke from incessantly
incrementing its counter until it reaches the threshalillog » which enables to joirf,. The
only way v can still be prevented from becoming a leader is ieceives a message? from a
neighbor that has enterg beforev’s counter reaches the threshold. Moreover, the counters of
neighboring nodes being outside the critical range, it can be shown that upon becomingdeader,
has enough time to inform all neighbors of its having joidgd

We formalize this intuition in Theorem 5.5 and its subsequent proof. More precisely, the
following theorem proves the more general statement that every color&ldss., not merely
Cy) forms an independent set at all times during the algorithm’s execution with high probability.
Notice that the theorem establishes the algorithtoisectnessbecause if all color classes form
independent sets, the resulting coloring is necessarily correct.

Theorem 5.5. For all ¢, the color clasg’; forms an independent set throughout the execution of
the algorithm with probability at least — 2n 3.

Proof. At the beginning, when the first node wakes up, the claim certainly holds, be€ausé
for all i. We will now show that with high probability the claim continues to hold throughout
the algorithm’s execution. For this purpose, consider an arbitrary node4; and assume for

13

contradiction that is thefirst nodeto violate the independence &f for an arbitraryi > 0. That
is, we assume thatis the first node to entet; even though a neighboring nodehas entered;
in the same or a previous time slot. Note that if two or more nodes violate the independence of
C,; simultaneously, we consider each of them to befitts¢ node We prove in the sequel that the
probability ofv being such dirst nodefor a specificC; is at mos2n—°. Applying the union bound,
we conclude that the probability that there exists a node V' that violates the independence of
someC; is bounded by:? - 2n=° = 2n73.

Let ¢} be the time slot in whichy enters stat€;, i > 0. Sincewv is among thdirst nodes to
violate the independence of ady, and hence alsg,, we know that for all time slots < ¢, Cy is
a correct independent set. That isyifs among the first nodes to create a violation, Lemmas 5.2,
5.3, and 5.4 can be applied until time stHt— 1.

Letw be a neighbor ob that has joined’; beforev (or in the same time slot ag, say at time
tr < tr. We consider two cases;, < t; — v(; logn andt} > t* — v(; logn, and start with the
former.

If t7, < ti —~(logn, thenw entered staté; at leasty(; log n time slots before. By Lemma
5.2 (> 0) or Lemma 5.34 = 0), the probability thatv manages to successfully send a message
M. to v during thesey(¢; log n time slots (during whichy must be in4; if it joins C; at timet)
is at leastl — n~>. By Line 15 of Algorithm 1, however, leaves stated; and moves on to state
Asue UPON receiving’wé, i.e., it does not entet;.

For the second case, we compute the probability:th@ins C; within v(; log n time slots after
t¥ . Recall that by the definition of the algorithm, it holds that= oA log n at timet};,. Consider
the time intervall,, of lengthyA log n beforet?,. Because in each time slot, counters of nodes
in A; are either incremented by one or sett@,) < 0 and becauseAlogn > 2vAlogn, it
follows thatc,, was not reset during,,. If it was, ¢,, would not have reachedA log n by time
t* . Similarly, if ¢, was reset durind,,, ¢} could not be withiny(; log n of ¢¥. Hence, neithee,,
nor ¢, were reset during the intervd), and it holds that at timé&*, ¢, > ocAlogn — v(; logn.
More generally, it holds that

|Cw(ty —h) = co(ty, —h)| < AGilogn

for eachh = 0,...,7vAlogn — 1. By Lemma 5.2, the probability that receives at least one
messageMj4 from w during theseyA log n time slots inl,, is at leastl — n~°. If it does receive
such aA’, v resets its counter (Line 18) and does not edtewithin v¢; log n time slots oft}.
Combining both cases, we know that with probability- »—2, v does not ente€; until
v¢; logn time slots after its first neighbor has join€d And with probabilityl — »=>, v does
not enterC; thereafter. Consequently, the probability:obeing a first node to violate the inde-
pendence of a specifi@; is at mos2n 5. Each stat€; thus remains independent throughout the
algorithm’s execution with probability at least— 2n—%. Finally, we can crudely upper bound
the number of non-empty statésused in the algorithm by, because in Lines 7 and 15, a node
changes its state only if it has received a messdgdrom a node that has already decided®n
The probability that all color classes form independent sets at all times is at least—3. [

Theorem 5.5 proves that with high probability, all color classes are independent and hence,
the algorithm eventually produces a correct coloring. Particularly, notice that the theorem implies
that the set of leadei forms an independent set with high probability and hence, we can use
Lemmas 5.2, 5.3, and 5.4 without restriction. What remains to be shown are the bounds on the
running time as well as on the number of colors required. For this purpose, we first prove a helper
lemma that bounds the number of nodetat can simultaneously be in the same active state

14

Lemma 5.6. If the set of nodes ifi, is independent, then for ary> 0, the number of nodes in
any 1-hop neighborhood that ever enter stade is at most«,.

Proof. A nodev enters a statel;, ¢ > 0, for the first time when being in stafé and receiving a
messagé/{(w, v, tc,) fromits leaderw = L(v). Consider a leader € C, and letS,, denote the
set of nodes having as their leader, i.eS,, = {v | L(v) = w}. Since the valuéc is incremented
for every new node in the queued, w assigns to each € S, a uniqueintra-cluster colortc,.
While being unique within each cluster, these intra-cluster colors do not constitute a legal coloring,
because neighboring nodes belonging to different clusters may be assigned the same intra-cluster
color tc, by their respective leaders. If the set of leaders C, forms an independent set, the
maximum number of leadets € Cy in any2-hop neighborhood is,. Therefore, every node can
have at mosk, 1-hop neighbors (including itself!) with the same intra-cluster celgr

In Line 4 of Algorithm 2, a node with tc, enters stated,., (.,+1)- Thatis, two nodes with
subsequent intra-cluster colars, andtc, + 1 enter statesd; and.A;, where|i — j| = ko + 1.
By the definition of Algorithm 1, the only way a node can move from stdieto stateA;
is by receiving a message/’ from a neighboring node that has already entefed Without
receiving M. a node will eventually join staté; itself. Hence, whenever a nodein .4; moves
on to state4, ., at least one of its neighbors must have joigedFrom this, it follows that each
of the at mostk, neighbors of a node that are assigned the same intra-cluster cetgrwill
decide on a color in the range, (k2 + 1), ..., tc, (k2 + 1) + k2. Notice that this range does not
overlap with the corresponding range of the next higher intra-cluster color which starts with color
(tey + 1)(ke + 1) > tey(k2 + 1) + k2. Consequently, nodes assigned to different intra-cluster
colors are never in the same statefor anyi > 0. And because at most nodes are assigned
the samec, in the 1-hop neighborhood of any node the lemma follows. O

The proof of Lemma 5.6 implicitly gives raise to the following corollary.

Corollary 5.7. While executing the algorithm, every nodés at most ink, + 1 different states
A, namelyAg, Ase, (ko41)5 - - - s Ate, (ma+1)+x2- THIS holds under the condition that the nodes in
Cy are independent.

The next lemma gives a lower bound on the countgraf any nodev € A;.

Lemma 5.8. Let ¢, be the counter of node € A;. It holds throughout the execution of the
algorithm thatc, > —2vyAlogn—1,ifi = 0, andc, > —2xk2vAlogn — 1, otherwise. This holds
under the condition that the nodesd@p are independent.

Proof. Consider a node € A;. The only timev’s countere, is set to a negative value is when
(re)settinge, to x(P,) in Lines 9 or 18 of Algorithm 1x(P,) is defined as the largest value such
thatx(P,) < 0 andx(P,) ¢ [cu — G logn, ..., cy + ¢ logn] for eachu € P,. Because the
setP, contains only nodes that are also in stdtg it follows from Lemma 5.6 thatP, | < «, for
anyi: > 0, if the nodes inCy, form an independent set. In the case- 0, it trivially holds that
|P,| < A.

The number of values that are prohibited P,) is therefore at most, - 2v¢; logn in the
casei > 0 andA - 2v(yplogn if ¢ = 0. Plugging in the values faf;, we can write

—2vAlogn — 1 =0
X(Py) > { —2kovAlogn—1 ,i>0 "’

which concludes the proof. O

15

Having the last two helper lemmas, we are now ready to analyze the algorithm’s running time,
that is, to bound the maximum amount of time between a node’s waking up and its entering a color
classC;. We first obtain a bound on the amount of progress achieved by nodes in adgtiate
every part of the graph.

Lemma 5.9. Let T} denote the number of time slots a nadgpends in statel;. With probability
1 — 3n=3, it holds for allv andi that 7} € O(k®*Alogn).

Proof. By Lemma 5.5, we know that with probability— 2n~2, the set of nodes in stafk form
an independent set. In the sequel of the proof, we focus on this case and assume that all nodes in
Cy are mutually independent.

Let ¢, denote the time slot in which node € A; executes Line 9 of Algorithm 1. Until
t,, v spends exactlyA log n time slots inA4;. By Lemma 5.4, we know that at least one node
w € N, N A; is able to transmit successfully during the interyak= [t,,t, + $Alogn] with
probabilityl — n =5 (unlessv leaves stated; during that interval in which case Lemma 5.9 clearly
holds). Say this happens at timg. According to Lines 6 and 17 of Algorithm 1, all nodes
u € N, N A; store alocal copyi, (w) of w's current countee,, upon receivingv's message\/’
in time slot¢?,. In Lines 5 and 12, this local copy is incremented by one in each subsequent time
slot. That is, as long ag’s real counter is not reset to(P,,), every nodeu € N, N A; has a
correct local copyl,, (w) of w’s current countee,,.

We now show thatv's counterc,, cannot be reset by any nodes \V,, N A; afterts, anymore.
First, in Line 18, every node € N\,, N A; whose countet, (¢)) at timet$ is in the range

[cw(ts) — G logn, ..., cw(ts,) + 7¢ logn]

resets its own counter tg(P,) in time slott$. Recall thaty (P,) is defined as the maximum value
suchtha(P,) < 0andx(P,) ¢ [c.—¢ilogn, ..., c,+7(; logn] for eache € P,. Specifically,
becausev transmited successfully, this means tRaP,) ¢ [c., — v¢ilogn, ..., ¢y, + ¢ lognl,
and henceéc, (5, + 1) — ¢, (5, + 1)| > ~¢; logn. Clearly, the same inequality also holds for all
nodesu € N, N.A; whose counter was not in the critical rangg (¢5,) —v¢; logn, . .., ¢ (t5) +
~¢; log n] in the first place.

In summary, we have that in time slgt + 1, every node: € N,, N A; has a correct local copy
dy (w) of ¢y, and

leu(ty, +1) = cw(ty, + 1] > 7Gilogn.

Because the counter of every neighbosdnthus differs by at leasi(; log n from ¢,,, none of
these nodes can causdo reset its counter in Line 18 of the algorithm. Nadean thus increment
its counter in each time slot and hence, all nodes A, N A; continue to have a correct local
copy of¢,, afterts,. Consequently, even if a neighboring nadhas to reset its counter g P,),
this cannot cause, to come withiny(; log n of ¢,, by the definition ofy (P,). Thus, it follows by
induction over the subsequent time slots that no nodeA; is able to resetv’s counter after its
successful transmission at tirtfe. By Lemma 5.8, we know that for all ¢,, > —2vk3Alogn—1
attimet?,. Hence, ifw stays inA;, it requires at mos{2yxs + o)Alogn + 1 time slots in order
to reach the thresholdA log n, which enables to enter stafge. Also, nodes that joind; after
t? do not transmit for at leagtA logn time slots, and becauge > 2vyks + o + 1, it follows
that such nodes cannot interfere witts incrementing its counter either. Hence, after a successful
transmission, there remains only one way to prevefitom incessantly incrementing its counter
and entering’;: if w receives a messagdé. beforeits counter reachesA log n.

In summary, we have that after a successful transmission, eithemtersC; itself within
(2vk2 + o)Alogn + 1 time slots or there must exist a neighboring nadef w that joinsC;

16

earlier (see Figure 2). In the first casereceives a messagd; from w within y¢; logn after
w’s enteringC; with probability at leastt — n=> (by Lemma 5.2 ifi > 0 and by Lemma 5.3 if

1 = 0). In the other case, the nodg(which, in this case, is not a direct neighbor«dfmust be a
2-hop neighbor of. If v is not covered by: and remains i4;, at least one node, € N, N A;
can transmit successfully withiiA log n time slots thereafter with high probability (Lemma 5.4),
and the argument repeats itself. That is, as longiasactive inA4;, at least one node inis 2-hop
neighborhood entet per 3 A log n+ (2yk2 +0)Alog n+1 time slots with probabilityl —n .

Figure 2: Wherw is active, a neighbow can transmit successfully withi§§Alogn time slots.
This nodew can only be blocked from enterirdy if one of its neighbors: joinsC; earlier.

As shown in Figure 2, the number of times a nade N? can joinC; without coveringy
(and thus forcing to leave stated;) is by definition at mosk,. Finally, oncev becomes covered,
an additionah¢; log » time slots in4; may be required before, with probability— n =5, its first
neighbor inC; sends a message. to v. As stated at the beginning of the proof, our argument
holds under the condition that the set of lead&rdorms an independent set which is true with
probability1l — 2n=3 by Theorem 5.5. Therefore, with probabiliy;, nodev spends at most

T! < aAlogn + ko (%A]ogn + (2yk2 + 0)Alogn + 1) +7¢logn € O(k3Alogn)
time slots in stated;, whereP, is at least
P, >1—(ko-n+n"+2n73) > 1-3n73,

for large enough because:» < n andy € O(kz). This concludes the proof. O

Next, we bound the time until a nodein the request stat® receives its intra-cluster color
(via a messageé/(w,v,tc,)) from its leaderw upon which it leaves stat® (cf Line 4 of
Algorithm 2). Specifically, the following lemma shows that each nodgpends at most time
O(k2Alogn) in stateR.

Lemma 5.10. LetT® denote the number of time slots a nadgends in stat&. With probability
1 — 3n=3 it holds for eactv € V thatT'® < (v + 3)Alogn.

Proof. The timeT'® denotes the time betweenstarting to request an intra-cluster color from
its leaderL(v) € C, to the time this leader succeeds in assigning the intra-cluster €gldo v
without collision. Letw be the leader of, i.e.,w = L(v). We divideT/? into two parts. First, by

17

Lemma 5.2p is able to send its requediy (v, L(v)) to w within time yA log n with probability

1 — n~>. Upon receiptw queuesy’s request until it has served all its other, previously received
requests. In Line 15 of Algorithm 3y transmits a message/? with probability 1/x5 to the
currently considered requesting node fabg n time slots, before moving on to the next request,
if available. Becaus® > v, Lemma 5.3 holds fow’s response ta with probability 1 — n=5.
Becausev can have at mosh requesting nodes in its queuEZ is at most

TR < yAlogn + A - Blogn = (v + f)Alogn

for each nodey € V with probability at least — 2n=°. As the set, forms an independent set
with probability1 —2n =3, for large enough the claim holds with probability —2n =5 —2n=3 >
1—3n73. L]

Lemmas 5.9 and 5.10 are the ingredients required to prove the following theorem that bounds
the algorithm'’s running time, i.e., the amount of time every node requires after its wake-up before
deciding on a color.

Theorem 5.11. Every node decides on its color within tiriEx3A log n) after its wake-up with
probability 1 — 3n~1.

Proof. Let T be the number of time slots a nodepends in stat®’. For each node, we have

T, = Y T+ TR
i>0

Lemma 5.10 bound&’® by (v + 3)A log n with probability 1 — 3n =2 for eachv, and thus with
probability1 — 3n—2 for all nodes inl”. Moreover, when applying the union bound to the result of
Lemma 5.9, it follows thal’* € O(k3A logn) for all v andi with probability 1 — 3n~*. Finally,
because every node is in at mast+ 1 different states (due to Corollary 5.2);, it follows that

for some constant,

T, = (kg +1)-A&3Alogn + (v + B)Alogn € O(k3Alogn)
with probability at least — 4n—*, for large enough. O

The only thing remaining is a bound on the number of different colors assigned by the algo-
rithm. For practical purposes, tihacality of the assignment of colors to nodes plays a crucial role.
Generally, the colors assigned to each node should be as “low” as possible. If the vertex coloring
in the graph is used for setting ugtieme-division schedulingh a wireless network, for instance,
the bandwidth assigned to a nodes often inversely proportional to the value of thighest color
in its neighborhood. The highest color assigned to a neighbor of a mdxgethe algorithm in
Section 4 is dependent only docal graph properties This allows nodes located in low density
areas of the network to send more frequently than nodes in dense and congested parts.

Theorem 5.12. Let), := max,ecnr2 0, b€ the maximum node degreeAff and let¢, be the
highest color assigned to a nodeAd,. With probability at leasi — 2n—3 the algorithm produces
a coloring such that, foralb € V', ¢, < ko - 6,,.

Proof. Letw € Cy be aleader and lat, be the number of nodese N, havingw as their leader.
Leaderw assigns unigue intra-cluster colars2, ..., s,, to these nodes. As shown in Corollary
5.7, if the set of leaders forms a correct independent set, a non-leader assigned intra-cluster
color tc,, ends up selecting a color from the rangg (k2 + 1),...,tc,(k2 + 1) + k2. Since
sw < &, and every node € N, is assigned to a leader € A2, the theorem follows. O

18

The following theorem combines the results obtained in Theorems 5.5, 5.11, and 5.12.

Theorem 5.13. The algorithm produces a correct coloring with at mastA colors with proba-
bility 1 — 2n=3. Furthermore, with probabilityl — 4n~! every node irrevocably decides on its
color O(x*Alog n) time slots after its wake up.

Theorem 5.13 gives raise to a number of specific results for graphs that have been frequently
studied in the literature on ad hoc and sensor networks. The most frequently adopted model has
been the unit disk graph in which nodes are assumed to be located in the Euclidean plane and there
is a communication link between two nodes iff their mutual distance is at mobt unit disk
graphs as well as any other family of graphs in whighe O(1), we have the following result.

Corollary 5.14 (Unit Disk Graph). LetG = (V, E) be a unit disk graph. With high probability,
the algorithm produces a correct coloring with(A) colors and every node decides on its color
within O(A log n) time slots after its wake up.

In [17], the unit disk graph model has been extended to general metric spaces resulting in so-
calledunit ball graphs(UBG). The nodes of a UBG are the points of a (possibly non-Euclidean)
metric space; two nodes are connected if and only if their distance is atimidstng this defini-
tion, we can formulate a result on coloring in general network graphs that dependsdmubiiag
dimensionof the underlying metric. A metric’s doubling dimension is the smalfestich that
every ball of radiugl can be covered by at mo3t balls of radiusi/2.

Lemma 5.15. Let G be a unit ball graph and lep be the doubling dimension of the underlying
metric space. Everg-hop neighborhood iz contains at most” mutually independent nodes,
i.e.,lig < 47,

Proof. By the definition of a UBG, th@-hop neighborhood of nodein G is completely covered
by the ball B;(v) with radius2 aroundv. By the definition of the doubling dimensign B (v)
can be covered by at mo2t* balls of radiusl /2. By the triangle inequality, two nodes inside
a ball of radiusl /2 have distance at most that is, the nodes inside a ball of radiu& form a
clique inG. The number of independent nodes in PAeop neighborhood af is therefore at most
47, O

Plugging in the result of Lemma 5.15, we obtain the following result for coloring in the un-
structured radio network model of general graphs.

Corollary 5.16 (Unit Ball Graphs). LetG = (V, E) be a unit ball graph and let be the doubling
dimension of the underlying metric space. With high probability, the algorithm produces a correct
coloring withO (47 A) colors and every node decides on its color withitd** A log n) time slots

after its wake-up. For metrics with constant doubling dimension, the same asymptotic bounds as
in the unit disk graph are achieved.

6 Conclusions

Setting up an initial structure in newly deployed ad hoc and sensor networks is a challenging task
that is of great practical importance. In this paper, we have given a randomized algorithm that
computes an initial coloring from scratch. This is a step towards the ultimate goal of establishing
an efficient medium access control (MAC) scheme.

19

A direction for future research is to address the issue that our algorithm is based on the as-
sumption that nodes know an estimatex@dndA. In single-hop radio networks with synchronous
wake-up, there are efficient methods enabling nodes to approximately count the number of their
neighbors, e.g. [11]. If such techniques could be adapted to an asynchronous multi-hop scenario,
nodes might be able to estimate the local maximum degree, which could then be used instead of
A throughout the algorithm.

7 Acknowledgements

We are indebted to Maurice Herlihy, Lucia Draque Penso, and Dieter Rautenbach for valuable
comments on the initial version of this paper.

References

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless Sensor Networks: A
Survey.Computer Networks Journad8(4):393-422, 2002.

[2] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the Time-Complexity of Broadcast in Radio
Networks: an Exponential Gap between Determinism and Randomizatidhtoteedings
6" ACM Symposium on Principles of Distributed Computing (POp@yes 98-108, 1987.

[3] R. Cole and U. Vishkin. Deterministic Coin Tossing with Applications to Optimal Parallel
List Ranking.Inf. Control, 70(1):32-53, 1986.

[4] M. Farach-Colton, R. Fernandes, and M. Mosteiro. Bootstrapping a Hop-Optimal Network in
the Weak Sensor Model. Proceedings of 3" Annual European Symposium on Algorithms
(ESA) pages 827-838, 2005.

[5] I. Finocchi, A. Panconesi, and R. Silvestri. Experimental Analysis of Simple, Distributed
Vertex Coloring Algorithms. IrProceedings of thé 3" ACM-SIAM Symposium on Discrete
Algorithms (SODA)pages 606615, 2002.

[6] L. Gasieniec, A. Pelc, and D. Peleg. The Wakeup Problem in Synchronous Broadcast Sys-
tems (Extended Abstract). IRroceedings of tha 9" ACM Symposium on Principles of
Distributed Computing (PODCpages 113-121, 2000.

[7] A. Goldberg, S. Plotkin, and G. Shannon. Parallel symmetry-breaking in sparse graphs. In
Proceedings of the 9" Annual ACM Conference on Theory of Computing (ST@ayes
315-324, 1987.

[8] A. V. Goldberg and S. A. Plotkin. Parallé\ + 1)-Coloring of Constant-degree Graphs.
Information Processing Letter@5:241-245, 1987.

[9] D. A. Grable and A. Panconesi. Fast Distributed Algorithms for Brooks-Vizing Colourings.
In Proceedings of th@** Annual ACM-SIAM Symposium on Discrete Algorithms (SQDA)
pages 473-480. Society for Industrial and Applied Mathematics, 1998.

[10] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-Efficient Communication
Protocol for Wireless Microsensor Networks. Pmoceedings of th&3™@ Hawaii Interna-
tional Conference on System Sciences (HICE&)e 8020. IEEE Computer Society, 2000.

20

[11] T. Jurdzinski, M. Kutylowski, and J. Zatopianski. Energy-Efficient Size Approximation of
Radio Networks with No Collision Detection. Proceedings of the* Annual International
Conference on Computing and Combinatorics (COCO@syes 279-289, 2002.

[12] T. Jurdzinski, M. Kutylowski, and J. Zatopianski. Weak Communication in Radio Networks.
In Proceedings of Euro-Papages 397—408, 2002.

[13] T.Jurdzinski and G. Stachowiak. Probabilistic Algorithms for the Wakeup Problem in Single-
Hop Radio Networks. IrProceedings off 3! Annual International Symposium on Algo-
rithms and Computation (ISAAG)olume 2518 of ecture Notes in Computer Scienpages
535-549, 2002.

[14] S. O. Krumke, M. V. Marathe, and S. S. Ravi. Models and Approximation Algorithms for
Channel Assignment in Radio NetworRalireless Networks/(6):575-584, 2001.

[15] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Radio Network Clustering from Scratch. In
Proceedings of 2t Annual European Symposium on Algorithms (EPapes 460-472.

[16] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Initializing Newly Deployed Ad Hoc and
Sensor Networks. IRroceedings of 0*"* Annual International Conference on Mobile Com-
puting and Networking (MOBICOMpages 260-274, 2004.

[17] F. Kuhn, T. Moscibroda, and R. Wattenhofer. On the Locality of Bounded GrowtRrdo.
of the23™@ ACM Symposium on Principles of Distributed Computing (PO20p5.

[18] N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing
21(1):193-201, 1992.

[19] M. J. McGlynn and S. A. Borbash. Birthday Protocols for Low Energy Deployment and
Flexible Neighbor Discovery in Ad Hoc Wireless Networks Aroceedings of the™? ACM
International Symposium on Mobile Ad Hoc Networking & Computing (MOBIH@&yes
137-145. ACM Press, 2001.

[20] T. Moscibroda and R. Wattenhofer. Coloring Unstructured Radio NetworkBrdeeedings
of the 17" ACM Symposium on Parallel Algorithms and Architectures (SP2205.

[21] T. Moscibroda and R. Wattenhofer. Maximal Independent Sets in Radio NetworkRsodn
of the23™@ ACM Symp. on Principles of Distributed Computing (PODZE)05.

[22] K. Nakano and S. Olariu. Energy-Efficient Initialization Protocols for Single-Hop Radio Net-
works with No Collision Detection|EEE Trans. Parallel Distributed Systemkl(8):851—
863, 2000.

[23] K. Nakano and S. Olariu. Randomized Initialization Protocols for Radio Networks. pages
195-218, 2002.

[24] A. Panconesi and R. Rizzi. Some Simple Distributed Algorithms for Sparse Netwidigks.
tributed Computing14(2):97—-100, 2001.

[25] D. Peleg. Distributed Computing: A Locality-Sensitive ApproacBIAM Monographs on
Discrete Mathematics and Applications, 2000.

21

[26] S. Ramanathan and E. L. Lloyd. Scheduling Algorithms for Multi-Hhop Radio Networks. In
Conference Proceedings on Communications Architectures & Protocols (SIGCQidlyBs
211-222. ACM Press, 1992.

[27] F. A. Tobagi and L. Kleinrock. Packet Switching in Radio Channels: Part Il - The Hidden
Terminal Problem in Carrier Sense Multiple Access and the Busy Tone Solution. COM-
23(12):1417-1433, 1975.

[28] A. Woo and D. E. Culler. A Transmission Control Scheme for Media Access in Sensor
Networks. InProceedings of thg'” International Conference on Mobile Computing and
Networking (MOBICOM)pages 221-235. ACM Press, 2001.

22

