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Abstract

During and immediately after their deployment, ad hoc and sensor networks lack an ef-
ficient communication scheme rendering even the most basic network coordination problems
difficult. Before any reasonable communication can take place, nodes must come up with an
initial structure that can serve as a foundation for more sophisticated algorithms. In this paper,
we consider the problem of obtaining a vertex coloring as such an initial structure. We pro-
pose an algorithm that works in the unstructured radio network model. This model captures
the characteristics of newly deployed ad hoc and sensor networks, i.e. asynchronous wake-up,
no collision-detection, and scarce knowledge about the network topology. When modeling the
network as a graph withbounded independence, our algorithm produces a correct coloring with
O(∆) colors in timeO(∆ log n) with high probability, wheren and∆ are the number of nodes
in the network and the maximum degree, respectively. Also, the number of locally used colors
depends only on the local node density. Graphs with bounded independence generalize unit
disk graphs as well as many other well-known models for wireless multi-hop networks. They
allow to capture aspects such as obstacles, fading, or irregular signal-propagation.

1 Introduction

Wireless multi-hop radio networks such as ad hoc or sensor networks [1] are formed of au-
tonomous nodes communicating via radio. Typically, if two nodes are not within their mutual
transmission range, they may communicate through intermediate nodes. In other words, the com-
munication infrastructure must be organized by the nodes themselves, rather than being provided
as part of a fixed built-in infrastructure as in traditional wired networks.

The lack of available a-priori infrastructure is particularly pronounced during and after the
deployment, when the network is unstructured and chaotic [15, 16, 19]. Before any reasonable
communication can be carried out and before the network can start performing its intended task,
the nodes must establish some kind of structure that allows an efficient communication scheme.
Once thisinitial structure is achieved, sophisticated and well-studied algorithms and network or-
ganization protocols may be used on top of it. Naturally, the inherent problem faced when setting
up such an initial structure is that there is no existing infrastructure that could facilitate the task. In
fact, coping with the absence of aninitial structure is one of the quintessential tasks in ad hoc and
sensor networks and finding efficient solutions for that purpose is of great practical importance. In
existing systems such as Bluetooth, for instance, the initialization tends to be slow even for a small
number of devices.
∗A preliminary version of this work has been published in [20] as Coloring Unstructured Radio Networks, InProceed-

ings of the 17th Symposium on Parallel Algorithms and Architectures (SPAA), Las Vegas, Nevada, 2005.
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In this paper, we study the construction of an initial structure useful for subsequent network
organization tasks. Technically, we study how the network nodes can quickly compute a good
vertex coloringwithout relying on any existing infrastructure. A correct vertex coloring for a
graphG = (V, E) is an assignment of a colorcolor(v) to each nodev ∈ V , such that any two
adjacent nodes have a different color. Colorings can be well-motivated as initial structures in
wireless ad hoc and sensor networks: When associating different colors with different time slots
in a time-division multiple access (TDMA) scheme, a correct coloring corresponds to a medium
access control (MAC) layer withoutdirect interference, that is, no two neighboring nodes send at
the same time.

It is well known that in order to guarantee an entirely collision-free schedule in wireless net-
works, a correct vertex coloring is not sufficient, for what is needed is a coloring of thesquareof
the graph, i.e., a valid distance2-coloring [14, 26]. However, besides being a non-trivial first step
towards obtaining a distance2-coloring, a simple vertex-coloring ensures a schedule in which a
receiver can be disturbed by at most (a small) constant number of interfering senders in a given
time slot. This allows for simple randomized algorithms guaranteeing every sender a constant
sending probability in each scheduled time slot. As the available bandwidth (and hence the possi-
ble throughput) of a nodev in such a schedule depends on the highest color assigned in its local
2-neighborhood, only low colors should be assigned in sparse areas of the network, whereas the
higher colors should only be used in dense areas. Particularly, a good coloring should have the
property that the highest color assigned to a node in each neighborhood should depend only on the
local node densityof that neighborhood.

In view of our goal of setting up an initial MAC scheme in a newly deployed network, our
coloring algorithm must not rely on any previously established MAC layer. Instead, we are in-
terested in a simple algorithm that quickly computes a coloring entirely fromscratch. Note that
this precludes algorithms working under any sort ofmessage passing modelin which nodes know
their neighbors a-priori, and in which messages can be sent to neighbors without fearing collision,
e.g. [3, 8, 24]. Studying classic network coordination problems such as coloring in absence of an
established MAC layer highlights thechicken-and-eggproblem of the initialization phase [15]. A
MAC layer (“chicken”) helps achieving a coloring (“egg”), and vice versa. The problem is that
in a newly deployed ad-hoc/sensor network, there is typically no built-in structure, i.e. there are
neither “chickens” nor “eggs.”

Clearly, one important aspect when studying the initialization phase of ad hoc/sensor networks
is to use an appropriate model. On the one hand, the model should be realistic enough to actually
capture the particularly harsh characteristics of the deployment phase. But on the other hand, it
ought to be concise enough to allow for stringent reasoning and proofs. Recently, theunstruc-
tured radio network modelhas been proposed as a model that attempts to combine both of these
contradictory aims [15]. It makes the following assumptions.

• We considermulti-hopnetworks, that is, there exist nodes that are not within their mutual
transmission range. Therefore, it may occur that some neighbors of a sending node receive
a message, while others experience interference from other senders and do not receive the
message.

• Nodes can wake upasynchronously. In a wireless, multi-hop environment, it is realistic
to assume that some nodes wake up (e.g. become deployed, or switched on) later than
others. Thus, nodes do not have access to a global clock. Contrary to work on the so-called
wake-up problem[6, 13], nodes arenot woken up by incoming messages, that is, sleeping
nodes do neither send nor receive any messages. Finally, the node’s wake-up pattern can be
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completely arbitrary.

• Nodes do not feature a reliablecollision detectionmechanism. This assumption is often
realistic, considering that nodes may be tiny sensors [1] with equipment restricted to the
minimum due to limitations in energy consumption, weight, or cost. Moreover, the sending
node itself does not have a collision detection mechanism either. Hence, a sender does not
know how many (if any at all!) neighbors have received its transmission correctly.

• At the time of their waking-up, nodes have only limited knowledge about the total num-
ber of nodes in the network and no knowledge about the nodes’ distribution or wake-up
pattern. Particularly, they have no a-priori information about the number of neighbors and
when waking up, they do not know how many neighbors have already started executing the
algorithm.

Naturally, algorithms for such uninitialized, chaotic networks have a different flavor compared to
“traditional” algorithms that operate on a given network graph that is static and well-known to all
nodes.

In this paper, we show that even in this restricted model, a good vertex coloring can be com-
puted efficiently. Specifically, we propose a randomized algorithm that computes a correct vertex
coloring usingO(∆) colors in timeO(∆ log n) with high probability in any network graph as long
as the maximal number of mutually independent nodes in the2-hop neighborhood of any node is
bounded by some arbitrary constant. Thisbounded independence modelgeneralizes the frequently
studied models for wireless networks, such as the unit disk graph. Unlike the unit disk graph or
other explicit geometric graph models, however, ourbounded independencemodel can capture
obstacles as well as physical signal-propagation aspects such as fading, reflection, or shielding.
Finally, our algorithm features the property that the highest color assigned to any node in a certain
area of the network depends only on thelocal densityof that area.

The remainder of the paper is organized as follows. An overview of related work is given in
Section 2. Section 3 describes our model of computation and particularly the bounded indepen-
dence model studied in this paper. The coloring algorithm is subsequently presented and analyzed
in Sections 4 and 5. Finally, Section 6 concludes the paper.

2 Related Work

Coloring graphs belongs to the most fundamentalNP -hard problems in theoretical computer sci-
ence and has been thoroughly studied. In distributed computing, the study of vertex coloring has
lead to several seminal contributions. Cole and Vishkin gave a deterministic distributed algorithm
for computing a correct coloring on a ring using three colors in timeO(log∗n) [3]. A generaliza-
tion of the same technique can be used to color trees and arbitrary bounded-degree graphs with
3 and∆ + 1 colors in timeO(log∗n), respectively [8]. Recently, it has been shown in [17] that
a running time ofO(log∗n) also suffices to obtain a∆ + 1 coloring in unit disk graphs and its
generalization, the unit ball graph with constant doubling dimension.

All these upper bounds are tight due to the seminal lower bound by Linial [18], even for
the case of randomized algorithms. For arbitrary graphs, a∆ + 1-coloring can be computed in
time O(log∗n + ∆2) [24] or O(∆ log n) [7]. The authors of [9] present distributed approaches
for finding colorings in graphs that admit a coloring with less than∆ + 1 colors. Finally, an
experimental study of various vertex coloring algorithms is given in [5].
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All the above algorithms are based on amessage passing model[25] that abstracts away prob-
lems such as interference, collisions, asynchronity, or the hidden-terminal problem, which are
crucial in the context of wireless ad hoc and sensor networks. Specifically, it is assumed that
nodes know their neighbors at the beginning of the algorithm and that the transmission of mes-
sages is handled flawlessly by an existing, underlying MAC layer. Furthermore, all nodes wake
up synchronously and start the algorithm at the same time. As motivated in the introduction, these
assumptions are invalid when studying multi-hop radio networks during or immediately after their
deployment.

In view of its practical importance, it is not surprising that there has recently been a lot of
effort in designing efficient algorithms for setting up initial structures, i.e., [10, 28, 19, 16, 4].
Theunstructured radio networkmodel was first proposed in [15] and subsequently improved and
generalized in [16]. It is an adaptation of the classicradio network model(e.g., [2]), combining
various of its flavors in order to model the harsh conditions during and immediately after the
deployment. In [16], an algorithm is proposed that efficiently computes aminimum dominating
setapproximation from scratch. The paper [21] goes one step further by giving an algorithm for
computing amaximal independent setin the unstructured radio network model in timeO(log2n).
Finally, notice that the recently proposedweak sensor modelof [4] is essentially equivalent to the
unstructured radio network model. The authors of [4] present an algorithm that, based on [21],
computes a constant degree subgraph with low stretch.

In the preliminary version of this paper [20], we presented a randomizedO(∆ log n) time
coloring algorithm for unit disk graphs using at mostO(∆) colors. In comparison to [20], we have
generalized our result from unit disk graphs to bounded independence graphs and the algorithm
and its analysis have been significantly revised.

Coloring networks for the purpose of obtaining a channel assignments or TDMA scheme has
been studied in [14, 26], among others. Moreover, coloring a network in which all nodes are
within mutual transmission range of all other nodes (single-hopnetworks) reduces to the so-called
initialization problem. This problem has been feverously studied and analyzed during the past
years [22, 23]. For several reasons, the approach taken in these papers cannot be translated into
efficient algorithms for the unstructured radio network model. First and foremost, the multi-hop
character of our network model complicates matters. In the single-hop case, if there is a collision,
no node in the network receives a message, whereas in our multi-hop scenario, it is likely that
some neighbors of the sender may receive the message, while others experience a collision and
do not receive the message. This difference renders it impossible for nodes to keep a coherent
picture of the local situation. Secondly, most initialization papers assumestrong communication
[12], that is, a sending node can distinguish whether its message was successfully received by all
nodes or whether it has caused a collision. In a multi-hop scenario, this assumption makes little
sense. Finally, unlike [22, 23], we consider asynchronous wake-up where nodes can wake up at
any time.

There has also been work on models containing asynchronous wake-up. In the so-calledwake-
up problem[6, 13], the goal is to wake up all nodes in the graph as quickly as possible by sending
them messages. The assumption made in these papers is that a node iswoken upby an incoming
message. While the algorithmic problems resulting from this assumption are very interesting,
current sensor nodes do not have such an external wake-up capability.
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3 Model and Notation

In theunstructured radio network model[15] (subsequently also calledweak sensor modelin [4]),
we considermulti-hop radio networkswithout collision detection. That is, nodes are unable to
distinguish between the situation in which two or more neighbors are sending and the situation in
which no neighbor is sending. A node receives a message if and only if exactly one of its neighbors
sends a message. Nodes may wake upasynchronouslyat any time.

Upon waking up, a node has no information as to whether it is the first to wake up, or whether
other nodes have been running the algorithm for a long time already. We call a nodesleepingbefore
its wake-up, andawakethereafter. Only awake nodes can send or receive messages, and sleeping
nodes arenotwoken up by incoming messages. The two extreme cases of our asynchronous wake-
up model are the following. First, all nodes start synchronously at the same time, or only one of
the sleeping nodes wakes up while all others remain sleeping for a long time. Recall again that
nodes are unaware which (if any) of the two extreme cases holds. Thetime complexityTv of a
nodev is defined as the number of time slots between the node’swaking upand the time it has
made its irrevocablefinal decisionon its color. The algorithm’stime complexityis the maximum
numberTv over all nodes in the network.

We model the network as a graphG = (V, E), where two nodesu andv can communicate with
each other if there is an edge(u, v) ∈ E. In order to capture the typical wireless characteristics, ad
hoc and sensor networks have often been modeled as unit disk graphs (UDG) in which nodes are
located in the Euclidean plane and there is an edge between two nodes if their Euclidean distance
is at most one. In this paper, we study a more generalbounded independence modelwhich not only
generalizes the unit disk graph, but also many other known models for wireless networks such as
the quasi unit disk graph, or general disk graphs.

Two nodesv1 andv2 are calledindependentif there exists no communication link between
them. A set of nodesS is called anindependent set, if all nodes inS are mutually independent.
In thebounded independence model, there can be at mostκ1 mutually independent nodes in the
1-hop neighborhood of any node. Similarly, there are at mostκ2 nodes in the2-hop neighborhood
of any node. This more general model for wireless networks captures the intuitive notion that if
many nodes of a wireless network are located close from each other, many of them must be within
mutual transmission range. Unlike in the unit disk graph, however, obstacles or irregular signal
propagation are easily captured in the bounded independence model. Specifically, an obstacle
(such as a wall) in close physical proximity to a sending node destroys the disk shape of the node’s
transmission range. On the other hand, the maximal number of mutually independent nodes is
still bounded by a (possibly somewhat larger) constant. Finally, notice that the unit disk graph is a
special case of a bounded independence graph withκ1 = 5 andκ2 ≤ 18.

Note that due to asynchronous wake-up, some nodes may still be asleep, while others are
already transmitting. Hence, at any time, there may be sleeping nodes which donot receivea
message in spite of there being a communication link between the two nodes. When waking up,
nodes have only scarce knowledge about the network graph’s topology. In particular, a node has
no information on the number of nodes in its neighborhood. However, every node has estimatesn
and∆ for the number of nodes in the network and the maximum degree, respectively. In reality,
it may not be possible to foresee these global parameters precisely by the time of the deployment,
but it is usually possible to pre-estimate rough bounds.

For the sake of simplicity, we assume time to be divided into discrete time slots that are syn-
chronized between all nodes. This assumption is used merely for the purpose of facilitating the
analysis, i.e., our algorithm does not rely on this assumption in any way (see the standard argument
given in [27]), as long as the nodes’ internal clock runs at the same speed.
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In each time slot, a node can either transmit or not transmit. If a node transmits in a time slott,
it cannot receive any messages in time slott. A nodev receives a message in a time slott only if
exactly one nodein its neighborhood transmits a message in this time slot (and if it is not sending
itself). The message size in our model is limited toO(log n) bits per message. Further, notice that
in contrast to previous work on the unstructured radio network model [15, 16], we do not make
the simplifying assumption of having several independent communication channels. In our model,
there is only one communication channel.

Every node has a unique identifier, which does not need to be in the range1, . . . , n. Par-
ticularly, the algorithm does not perform explicit operations on the node’s IDs. Instead, the ID
is merely required to let a receiver recognize whether or not two different messages were sent
by the same sender. In some papers on wireless sensor networks, it is argued that sensor nodes
do not feature any kind of unique identification (such as a MAC number, for instance). In such
a case, each node can randomly choose an ID uniformly from the range[1 . . . n3] upon wak-
ing up. The probability that two nodes in the system end up having the same ID is bounded by
PambIDs ≤

(
n
2

)
1

n3 ∈ O( 1
n ).

We denote byNv the set of neighbors of nodev, includingv itself. Further,N 2
v is the two-hop

neighborhood of nodev, i.e., the set of all nodes within distance at most 2 fromv. Thedegree
δv = |Nv| of a node is the number of its neighbors. The color assigned to nodev is denoted
by colorv andpv is v’s sending probability in a given time slot. Finally, we use the following
well-known mathematical fact.

Fact 3.1. For all values ofn andt with n ≥ 1 and|t| ≤ n, it holds that

et

(
1− t2

n

)
≤

(
1 +

t

n

)n

≤ et.

4 Algorithm

During the algorithm, each node can be in variousstates. At any point in time, a node is in exactly
one state, i.e., the sets of nodes induced by the different states form a partition ofV .

Z: Nodes before their waking up. Sleeping nodes do not take part in the algorithm.
Ai: Nodes that are verifying (i.e., trying to decide on) colori.
R: Nodes that are requesting aintra-cluster colorfrom their leader.
Ci: Nodes that have already irrevocably decided on colori.

The stateC0 plays a special role and nodes in stateC0 are calledleaders. The algorithm itself
is divided into three subroutines: Algorithm 1 for nodes in statesAi, Algorithm 2 for nodes in
stateR, and Algorithm 3 for nodes in stateCi. The sequence of states that a node can be part of
during the course of the algorithm is shown in Figure 1. A solid arrow represents a state transition
a node makes when the event denoted by the arrow’s label occurs. A dashed arrow between two
states indicates the message type which is significant for the communication between nodes in
these two states. In our model, however,everyneighbor of a sending node—regardless of their
current state—may actually receive the message or experience a collision. Upon waking up, each
node starts in stateA0, without having any knowledge whether some of its neighbors have already
started the algorithm beforehand.

From a global point of view, the algorithm’s main idea can be described easily: In a first stage,
the nodes elect a set of mutually independentleaders(nodes in stateC0) among themselves and
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M i
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tcv received

M i
C received

M0
C received

M i+1
C received

Figure 1: Sequence of states in the algorithm. Each colori is represented by a stateCi, which a
node enters at the moment it (irrevocably) selects colori. Before deciding oni, a node first has
to verify (or compete for)i in stateAi. If the node does not prevail in this verification, it moves
from Ai to a new stateAsuc, which corresponds to either the intermediate requesting stateR or
the verification state of the next higher colorAi+1 (cf Lines 3 and 15 of Algorithm 1).

each non-leader associates itself with a leader within its neighborhood. Since leaders are inde-
pendent, they can safely assign themselves color0. The set of leaders naturally inducesclusters
consisting of all nodes associated with the same leader. The task of each leader is to assign a
uniqueintra-cluster colortcv to every nodev within its cluster. Unfortunately, the coloring in-
duced by these intra-cluster colors may not form a valid coloring since two neighboring nodes in
different clusters may be assigned the same intra-cluster color.

On the other hand, if the set of leaders is really independent, there can only be a small number
of neighboring nodes with the same intra-cluster color. The coloring induced by these intra-cluster
colors thus represents a first coarse structuring of the network that facilitates the subsequent task
of actually assigning colors to nodes. Technically, upon receiving an intra-cluster colortcv from
its leader, a node goes on to verify a specific colortcv(κ2 + 1) against neighboring nodes from
different clusters that may have received the same intra-cluster color. Thisverification procedure
must ensure that no two neighboring nodes end up selecting this specific color.

The algorithmic difficulty of the above process stems from the fact that nodes wake up asyn-
chronously and do not have access to a global clock. Therefore, the different phases (verification,
requesting intra-cluster color, etc...) of different nodes may be arbitrarily intertwined or shifted
in time. While some nodes may still compete for becoming leader in stateA0, their neighbors
may already be much more advanced in their coloring process. Moreover, messages may be lost
due to collisions at any time. In view of this harsh environment, the primary challenge is that the
algorithm must achieve two contradictory aims: symmetries between nodes must be broken both
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correctly and rapidly. That is, no two neighboring nodes ever select the same color and yet, every
node can take its decision shortly after its wake-up (i.e., there is no starvation).

A crucial part of reconciling these contradictory aims takes place in the verification proce-
dure. In order to ensure both correctness and fast progress in all parts of the network with high
probability, our algorithm uses a technique of counters, critical ranges, and local competitor lists.
Roughly, the idea is that every nodev uses a local countercv which it increments in every time
slot. Intuitively, this counter representsv’s progress towards deciding on colori andv selectsi as
soon ascv reaches a certain threshold.

In order to prevent two neighboring nodes from selecting the same color, the algorithm must
make sure that as soon as a nodev selects its color, all neighbors ofv can be notified before
their counter also reaches the threshold. In view of collisions and message losses being always
possible, there must be a large enough time interval between two neighboring counters reaching
the threshold. A simple idea to achieve this correctness condition is to have every node transmit
its current counter with a certain sending probability. Whenever a node receives a message with
higher counter, it resets its own counter. Unfortunately, this technique may lead tochains of
cascading resets, i.e., a node’s counter is reset by a more advanced node, which in turn is reset by
another node and so forth. While, eventually, one node will end up selecting the color, this method
does not prevent nodes from starving in certain (local) parts of the network graph.

Our algorithm therefore employs a more subtle handling of the counters. The general idea
is that upon receiving a message from a neighbor, a node only resets its counter if it is within
a critical range of the received counter. On the one hand, this critical range is large enough
to ensure correctness with high probability. On the other hand, this technique allows for much
more parallelism in the network because many nodes can simultaneously make progress towards
deciding on the color. In order to truly avoid cascading resets and achieve the claimed running
time, however, using only counters and critical ranges is insufficient. Specifically, nodes should
also be prevented from resetting their counter to a value within the critical range of neighboring
nodes and furthermore, all counters must remain relatively close to the verification threshold even
after a reset. For this purpose, each node stores a localcompetitor listcontaining the current
counter values of neighboring nodes.

Unfortunately, in the unstructured radio network model, it is impossible to constantly keep
this competitor list and the corresponding locally stored counters complete and correctly updated.
Interestingly, we can prove in Section 5 that in spite of this inevitable inconsistency, our technique
of using counters and critical ranges in combination with storing local competitor lists avoids
cascading resets and at the same time ensures the correctness condition. That is, whenever a node
v selects a color, the counters of all neighboring competing nodes are far enough from the threshold
so thatv has enough time to inform its neighbors with high probability.

In more detail, the algorithm works as follows. Upon waking up, a node enters stateA0 and
tries to become a leader. Generally, whenever a nodev enters a stateAi, for i ≥ 0, it first waits
for dα∆log ne time slots. As soon as it receives a messagesM i

C from a neighboring node that has
already joinedCi (Line 7 of Algorithm 1),v joins the succeeding stateAsuc, which corresponds
toR in the casei = 0, andAi+1, otherwise. If no such message is received,v becomesactiveand
starts competing for colori (Line 10).

In order to ensure with high probability that no two neighbors enter the same stateCi, the
following process is employed: In each time slot, an active nodev ∈ Ai increments its countercv

and transmits a messageM i
A with probability1/(κ2∆) (Lines 11 and 14, respectively). Whenever

v receives a messageM i
C from a neighborw ∈ Ci, v knows that it cannot verify colori anymore

and consequently moves on to stateAsuc.
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Algorithm 1 Coloring Algorithm—Nodev in stateAi

upon entering stateAi: (when waking up, a node is initially in stateA0)
1: Pv := ∅; {* v is passive *}
2: ζi :=

{
1 , i = 0
∆ , i > 0

3: Asuc :=
{ R , i = 0
Ai+1 , i > 0

4: for dα∆log ne time slots do
5: for eachw ∈ Pv do dv(w) := dv(w) + 1;
6: if M i

A(w, cw) receivedthen Pv := Pv ∪ {w}; dv(w) := cw; end if
7: if M i

C(w) receivedthen state := Asuc; L(v) := w; end if
8: end for
9: cv := χ(Pv), whereχ(Pv) is the maximum value such that,

χ(Pv) ≤ 0 andχ(Pv) /∈ [cw − dγζi log ne, . . . , cw + dγζi log ne] for eachw ∈ Pv;
10: while state = Ai do {* v is active *}
11: cv = cv + 1;
12: for eachw ∈ Pv do dv(w) := dv(w) + 1;
13: if cv ≥ dσ∆ log ne then state := Ci; end if
14: transmit M i

A(v, cv) with probability1/(κ2∆);
15: if M i

C(w) receivedthen state := Asuc; L(v) := w; end if
16: if M i

A(w, cw) receivedthen
17: Pv := Pv ∪ {w}; dv(w) := cw;
18: if |cv − cw| ≤ dγζi log ne then cv := χ(Pv); end if
19: end if
20: end while

Algorithm 2 Coloring Algorithm—Nodev in stateR
upon entering stateR:

1: while state = R do {* v is active *}
2: transmit MR(v, L(v)) with probability1/(κ2∆);
3: if M0

C (L(v), v, tcv) receivedthen
4: state := Atcv·(κ2+1);
5: end if
6: end while

When receiving a messageM i
A(w, cw) from a neighboring competing nodew ∈ Ai, v adds

neighborw to its competitor listPv and stores alocal copyof w’s countercw denoted bydv(w)
(Line 17). In each subsequent time slot, these local copiesdv(w) are incremented in order to keep
track with the real current counter ofw as much as possible. Moreover, in Line 18,v compares
cw to its own countercv. If the two counters are within thecritical range dγζi log ne of each
other,v resets its own counter toχ(Pv). The valueχ(Pv) < 0 (defined in Line 9) is defined
such that the new counter is not within the critical rangedγζi log ne of any locally stored copy
of neighboring counters. Notice, however, that because counters may be reset in any time slot, a
locally stored copydv(w) of cw may be outdated withoutv knowing it. For instance, ifw has to
reset its counter due to receipt of a messageM i

A(x, cx) from a neighborx, and ifv does not receive
this message (possibly due to a collision or becausex andv are not neighbors), it subsequently
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Algorithm 3 Coloring Algorithm—Nodev in stateCi

upon entering stateCi:
1: colorv := i; {* v is active *}
2: if i > 0 then
3: repeat forever transmit M i

C with probability1/(κ2∆);
4: else ifi = 0 then
5: tc := 0;
6: Q := ∅; {FIFO request queue}
7: repeat forever
8: if MR(w, v) receivedand w /∈ Q then addw toQ; end if
9: if Q is emptythen

10: transmit M0
C (v) with probability1/κ2;

11: else
12: tc := tc + 1;
13: Let w be first element inQ;
14: for dβ log ne time slotsdo
15: transmit M0

C (v, w, tc) with probability1/κ2;
16: end for
17: Removew fromQ;
18: end if
19: end repeat
20: end if

holdsdv(w) 6= cw. Hence, in spite of the definition ofχ(Pv), a node’s counter may be within the
critical range of a neighboring counter after a reset.

If in the above process, a node succeeds in incrementing its counter up to the threshold of
dσ∆log ne (Line 13), it decides on colori and joins stateCi. As mentioned before, the technique
of using counters and critical ranges guarantees that quick progress is made simultaneously in all
parts of the network. Specifically, this method ensures that after a limited (constant) number of
trials, at least one competing node inAi can selectCi in every regionof the graph. At the same
time, the method also guarantees with high probability that no two neighboring nodes joinCi, i.e.,
the set of nodes induces byCi is independent.

A special role in the algorithm plays the stateC0, the set of leaders. A leader’s duty is to
assign unique intra-cluster colors to each node in its cluster. Specifically, each non-leaderv in R
assigned to leaderw sends requestsMR(v, w) for an intra-cluster color tow. Upon receiving such
a request message fromv, w transmits fordβ log ne time slots with probability1/κ2 a message
M0
C (w, v, tc), wheretc denotes the intra-cluster color assigned tov and is incremented for each

subsequent requesting node. If necessary, requests are buffered in an internal queueQ, which
helps in keeping all messages within the size ofO(log n) bits.

In stateR, a non-leader nodev requests an intra-cluster color from its leader. As soon asv
receives a messageM0

C (w, v, tcv) from leaderw containing its intra-cluster colortcv, v moves on
to stateAtcv(κ2+1), i.e., it attempts to verify colorc = tcv(κ2 + 1) next. If verifying colorc is
unsuccessful (i.e., if a neighbor selects colorc earlier), a node joins the next higher stateAsuc =
Atcv(κ2+1)+1, and so forth, until it manages to verify and decide on a color. In Corollary 5.7 of
Section 5, we show that every node is capable of deciding on a color fromtcv(κ2+1), tcv(κ2+1)+
1, . . . , tcv(κ2 + 1) + κ2 with high probability. Hence, the reason for a node to verifyAtcv(κ2+1)
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upon receivingtcv is that by doing so, two nodes with different intra-cluster colors do never
compete for the same color. This turns out to be an important ingredient when upper bounding the
amount of time each node must maximally wait before deciding on its color.

The algorithm’s four parameters,α, β, γ, andσ can be chosen as to trade-off the running time
and the probability of correctness. The higher the parameters, the less likely the algorithm fails
in producing a correct coloring. In order to obtain the high probability result in Section 5, the
parameters are defined asα ≥ 2γκ2 + σ + 1, β ≥ γ, and

γ =
5κ2[

1
e

(
1− 1

κ2

)]κ1
κ2

[
1
e

(
1− 1

κ2∆

)] 1
κ2

, σ =
10e2κ2(

1− 1
κ2

)(
1− 1

κ2∆

) ,

for ∆ ≥ 2. Specifically, the constant are chosen as to guarantee a correct coloring and running time
with probability at least1−O(n−1). Simulation results show that in randomly distributed networks
significantly smaller values suffice. In fact, the constants are small enough to yield a practically
efficient coloring algorithm for wireless ad hoc and sensor networks that can be employed for the
purpose of initializing the network.

5 Analysis

In this section, we prove that the algorithm of Section 4 is both correct and complete with high
probability. Correctnessmeans that no two adjacent nodes end up having the same color,com-
pletenessleaves no node without a color. Furthermore, we show that every node decides on a color
after at mostO(∆ log n) time slots for constantκ2. For clarity of exposition, we will omit ceiling
signs in our analysis, i.e, we consider all non-integer values to be implicitly rounded to the next
higher integer value. Further, letcv(t) be the value of the counter of nodev at timet. We call a
node inAi coveredif either itself or one of its neighbors is inCi.

For future reference, we begin with simple lemma that bounds the maximum number of nodes
in the2-hop neighborhood of any node.

Lemma 5.1. Let G = (V, E) be a graph with at mostκ2 independent nodes in the2-hop neigh-
borhood of any node. It follows that every node has at mostκ2∆ 2-hop neighbors.

Proof. Every node has at mostκ2 mutually independent nodes in its2-hop neighborhood, and
each such node has at most∆ neighbors.

We now state two lemmas that give us probabilistic bounds on the amount of time required
until a message is correctly transmitted from a senderv to an intended receiveru in the algorithm.
Notice that both lemmas holds only under the assumption that the setC0 of leaders forms a correct
independent set.

Lemma 5.2. AssumeC0 forms an independent set. Consider two neighboring nodesu andv and
let I be a time interval of lengthγ∆log n. If v is active throughout the intervalI, u receives at
least one message fromv during I with probability1− n−5.

Proof. Let pv denote the transmission probability ofv. Recall that nodes inC0 transmit with a
probability of1/κ2, whereas the sending probability of all other nodes is1/(κ2∆). The probability
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Ps thatv succeeds in sending a message tou in a time slott ∈ I is

Ps = pv

∏

i∈Nu\{v}
(1− pi) = pv

∏

i∈Nu∩C0
(1− pi)

∏

j∈Nu\C0
(1− pj)

≥ pv

(
1− 1

κ2

)κ1
(

1− 1
κ2∆

)∆

> pv

[
1
e

(
1− 1

κ2

)]κ1
κ2

[
1
e

(
1− 1

κ2∆

)] 1
κ2

, (1)

where the last inequality follows from Fact 3.1 andκ2 ≥ κ1. Becausev is assumed to be active
throughout the intervalI and for every active nodepv ≥ 1/(κ2∆), the probabilityPno thatu does
not receive a message fromv duringI is

Pno = (1− Ps)|I| <

(
1− 1

κ2∆

[
1
e

(
1− 1

κ2

)]κ1
κ2

[
1
e

(
1− 1

κ2∆

)] 1
κ2

)γ∆ log n

≤
Fact 3.1

n
− γ

κ2

[
1
e

(
1− 1

κ2

)]κ1/κ2
[

1
e

(
1− 1

κ2∆

)]1/κ2

< n−5,

where the last inequality follows from the definition ofγ.

Lemma 5.3. AssumeC0 forms an independent set. Consider two neighboring nodesu andv ∈ C0

and letI ′ be a time interval of lengthγ log n. If v ∈ C0 throughout the intervalI ′, u receives at
least one message fromv during I ′ with probability1− n−5.

Proof. The proof is virtually identical to the previous one. In the casev ∈ C0, it holds that
pv = 1/κ2 and plugging this value into Inequality (1) and applying Fact 3.1 yields

Pno = (1− Ps)|I
′| <

(
1− 1

κ2

[
1
e

(
1− 1

κ2

)]κ1
κ2

[
1
e

(
1− 1

κ2∆

)] 1
κ2

)γ log n

<
Fact 3.1

n−5.

For the next lemma, we first define the notion of asuccessful transmission. A nodev transmits
successfullyin a time slott if all nodesu ∈ Nv \ {v} within the transmission range ofv (i.e., in
v’s 1-hop neighborhood) receive the message without collision. In the following lemma, we show
that with high probability, at least one node inv’s neighborhood can transmitsuccessfullyduring
any interval of lengthO(κ2∆log n).

Lemma 5.4. AssumeC0 forms an independent set. Consider a nodev ∈ Ai for an arbitrary i.
Further, letI be a time interval of length|I| = σ

2 ∆log n during whichv ∈ Ai is active. With
probability1− n−5, there is at least one time slott ∈ I such that a nodeu ∈ Nv ∩ Ai transmits
successfully.

Proof. By Lemma 5.1, there are at mostκ2∆ nodes in the2-neighborhood of any node. If in a
time slot, a nodew is the only transmitting node inN 2

w, it is guaranteed thatw transmitssuccess-
fully because no node outsideN 2

w can cause a collision at a neighbor ofw. DefinePs to be the
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probability that a nodew ∈ Nv ∩ Ai transmits successfully in a given time slott ∈ I. By the
above argument,Ps is lower bounded by

Ps ≥
∑

w∈Nv∩Ai


pw ·

∏

u∈N 2
w

u 6=w

(1− pu)




≥
∑

w∈Nv∩Ai

pw ·
∏

u∈N 2
w\C0

(
1− 1

κ2∆

)
·

∏

u∈N 2
w∩C0

(
1− 1

κ2

)

≥
∑

w∈Nv∩Ai

pw ·
(

1− 1
κ2∆

)κ2∆ (
1− 1

κ2

)κ2

≥
Fact 3.1

1
e2κ2∆

(
1− 1

κ2∆

)(
1− 1

κ2

)

because
∑

w∈Nv∩Ai
pw is at least1/(κ2∆) for as long asv is active inAi. Finally, the probability

Pno that no node inNv ∩ Ai manages to transmit successfully within the intervalI during which
v is active inAi is

Pno = (1− Ps)|I| ≤
(

1− 1
e2κ2∆

(
1− 1

κ2∆

)(
1− 1

κ2

))σ
2 ∆ log n

≤
Fact 3.1

e
− σ

2e2κ2

κ2−1
κ2

κ2∆−1
κ2∆ log n

< n−5.

The last step follows from the definition ofσ.

Lemmas 5.2, 5.3, and 5.4 are based on the assumption that the set of leadersC0 forms an
independent set. Therefore, in order to make full use of these lemmas, we need to prove that this
assumption holds for the entire duration of the algorithm. Intuitively, the reason for our claim is
the following. By the definition of the algorithm, only nodes in stateA0 can enter stateC0. If such
a candidate nodev ∈ A0 transmitssuccessfully, all neighboring nodesw ∈ Nv ∩ A0 having a
counter value within thecritical rangeγζ0 log n = γ log n of v’s counter will reset their counter
to χ(Pw), which is by definition outside the critical range ofv. Hence, once nodev was able to
transmit successfully, no neighboring candidate nodew ∈ Nv ∩ A0 can blockv from incessantly
incrementing its counter until it reaches the thresholdσ∆log n which enables to joinC0. The
only wayv can still be prevented from becoming a leader is ifv receives a messageM0

C from a
neighbor that has enteredC0 beforev’s counter reaches the threshold. Moreover, the counters of
neighboring nodes being outside the critical range, it can be shown that upon becoming leader,v
has enough time to inform all neighbors of its having joinedC0.

We formalize this intuition in Theorem 5.5 and its subsequent proof. More precisely, the
following theorem proves the more general statement that every color classCi (i.e., not merely
C0) forms an independent set at all times during the algorithm’s execution with high probability.
Notice that the theorem establishes the algorithm’scorrectness, because if all color classes form
independent sets, the resulting coloring is necessarily correct.

Theorem 5.5. For all i, the color classCi forms an independent set throughout the execution of
the algorithm with probability at least1− 2n−3.

Proof. At the beginning, when the first node wakes up, the claim certainly holds, becauseCi = ∅
for all i. We will now show that with high probability the claim continues to hold throughout
the algorithm’s execution. For this purpose, consider an arbitrary nodev ∈ Ai and assume for
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contradiction thatv is thefirst nodeto violate the independence ofCi for an arbitraryi ≥ 0. That
is, we assume thatv is the first node to enterCi even though a neighboring nodew has enteredCi

in the same or a previous time slot. Note that if two or more nodes violate the independence of
Ci simultaneously, we consider each of them to be thefirst node. We prove in the sequel that the
probability ofv being such afirst nodefor a specificCi is at most2n−5. Applying the union bound,
we conclude that the probability that there exists a nodev ∈ V that violates the independence of
someCi is bounded byn2 · 2n−5 = 2n−3.

Let t∗v be the time slot in whichv enters stateCi, i ≥ 0. Sincev is among thefirst nodes to
violate the independence of anyCi, and hence alsoC0, we know that for all time slotst < t∗v, C0 is
a correct independent set. That is, ifv is among the first nodes to create a violation, Lemmas 5.2,
5.3, and 5.4 can be applied until time slott∗v − 1.

Let w be a neighbor ofv that has joinedCi beforev (or in the same time slot asv), say at time
t∗w ≤ t∗v. We consider two cases,t∗w < t∗v − γζi log n andt∗w ≥ t∗v − γζi log n, and start with the
former.

If t∗w < t∗v−γζi log n, thenw entered stateCi at leastγζi log n time slots beforev. By Lemma
5.2 (i > 0) or Lemma 5.3 (i = 0), the probability thatw manages to successfully send a message
M i
C to v during theseγζi log n time slots (during whichv must be inAi if it joins Ci at timet∗v)

is at least1 − n−5. By Line 15 of Algorithm 1, however,v leaves stateAi and moves on to state
Asuc upon receivingM i

C , i.e., it does not enterCi.
For the second case, we compute the probability thatv joinsCi within γζi log n time slots after

t∗w. Recall that by the definition of the algorithm, it holds thatcw = σ∆ log n at timet∗w. Consider
the time intervalIw of lengthγ∆log n beforet∗w. Because in each time slot, counters of nodes
in Ai are either incremented by one or set toχ(Pv) ≤ 0 and becauseσ∆log n > 2γ∆ log n, it
follows thatcw was not reset duringIw. If it was, cw would not have reachedσ∆log n by time
t∗w. Similarly, if cv was reset duringIw, t∗v could not be withinγζi log n of t∗w. Hence, neithercw

nor cv were reset during the intervalIw and it holds that at timet∗w, cv ≥ σ∆log n − γζi log n.
More generally, it holds that

|cw(t∗w − h)− cv(t∗w − h)| ≤ γζi log n

for eachh = 0, . . . , γ∆log n − 1. By Lemma 5.2, the probability thatv receives at least one
messageM i

A from w during theseγ∆log n time slots inIw is at least1− n−5. If it does receive
such aM i

A, v resets its counter (Line 18) and does not enterCi within γζi log n time slots oft∗w.
Combining both cases, we know that with probability1 − n−5, v does not enterCi until

γζi log n time slots after its first neighbor has joinedCi. And with probability1 − n−5, v does
not enterCi thereafter. Consequently, the probability ofv being a first node to violate the inde-
pendence of a specificCi is at most2n−5. Each stateCi thus remains independent throughout the
algorithm’s execution with probability at least1 − 2n−4. Finally, we can crudely upper bound
the number of non-empty statesCi used in the algorithm byn, because in Lines 7 and 15, a node
changes its state only if it has received a messageM i

C from a node that has already decided onCi.
The probability that all color classes form independent sets at all times is at least1− 2n−3.

Theorem 5.5 proves that with high probability, all color classes are independent and hence,
the algorithm eventually produces a correct coloring. Particularly, notice that the theorem implies
that the set of leadersC0 forms an independent set with high probability and hence, we can use
Lemmas 5.2, 5.3, and 5.4 without restriction. What remains to be shown are the bounds on the
running time as well as on the number of colors required. For this purpose, we first prove a helper
lemma that bounds the number of nodesv that can simultaneously be in the same active stateAi.
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Lemma 5.6. If the set of nodes inC0 is independent, then for anyi > 0, the number of nodes in
any1-hop neighborhood that ever enter stateAi is at mostκ2.

Proof. A nodev enters a stateAi, i > 0, for the first time when being in stateR and receiving a
messageM0

C (w, v, tcv) from its leaderw = L(v). Consider a leaderw ∈ C0 and letSw denote the
set of nodes havingw as their leader, i.e.,Sw = {v | L(v) = w}. Since the valuetc is incremented
for every new nodev in the queueQ, w assigns to eachv ∈ Sw a uniqueintra-cluster colortcv.
While being unique within each cluster, these intra-cluster colors do not constitute a legal coloring,
because neighboring nodes belonging to different clusters may be assigned the same intra-cluster
color tcv by their respective leaders. If the set of leadersw ∈ C0 forms an independent set, the
maximum number of leadersw ∈ C0 in any2-hop neighborhood isκ2. Therefore, every node can
have at mostκ2 1-hop neighbors (including itself!) with the same intra-cluster colortcv.

In Line 4 of Algorithm 2, a nodev with tcv enters stateAtcv(κ2+1). That is, two nodes with
subsequent intra-cluster colorstcv andtcv + 1 enter statesAi andAj , where|i − j| = κ2 + 1.
By the definition of Algorithm 1, the only way a node can move from stateAi to stateAi+1

is by receiving a messageM i
C from a neighboring node that has already enteredCi. Without

receivingM i
C a node will eventually join stateCi itself. Hence, whenever a nodev in Ai moves

on to stateAi+1, at least one of its neighbors must have joinedCi. From this, it follows that each
of the at mostκ2 neighbors of a nodev that are assigned the same intra-cluster colortcv will
decide on a color in the rangetcv(κ2 + 1), . . . , tcv(κ2 + 1) + κ2. Notice that this range does not
overlap with the corresponding range of the next higher intra-cluster color which starts with color
(tcv + 1)(κ2 + 1) > tcv(κ2 + 1) + κ2. Consequently, nodes assigned to different intra-cluster
colors are never in the same stateAi for any i > 0. And because at mostκ2 nodes are assigned
the sametcv in the1-hop neighborhood of any nodev, the lemma follows.

The proof of Lemma 5.6 implicitly gives raise to the following corollary.

Corollary 5.7. While executing the algorithm, every nodev is at most inκ2 + 1 different states
Ai, namelyA0,Atcv(κ2+1), . . . ,Atcv(κ2+1)+κ2 . This holds under the condition that the nodes in
C0 are independent.

The next lemma gives a lower bound on the counterscv of any nodev ∈ Ai.

Lemma 5.8. Let cv be the counter of nodev ∈ Ai. It holds throughout the execution of the
algorithm thatcv ≥ −2γ∆log n−1, if i = 0, andcv ≥ −2κ2γ∆log n−1, otherwise. This holds
under the condition that the nodes inC0 are independent.

Proof. Consider a nodev ∈ Ai. The only timev’s countercv is set to a negative value is when
(re)settingcv to χ(Pv) in Lines 9 or 18 of Algorithm 1.χ(Pv) is defined as the largest value such
thatχ(Pv) < 0 andχ(Pv) /∈ [cu − γζi log n, . . . , cu + γζi log n] for eachu ∈ Pv. Because the
setPv contains only nodes that are also in stateAi, it follows from Lemma 5.6 that|Pv| ≤ κ2 for
any i > 0, if the nodes inC0 form an independent set. In the casei = 0, it trivially holds that
|Pv| ≤ ∆.

The number of values that are prohibited forχ(Pv) is therefore at mostκ2 · 2γζi log n in the
casei > 0 and∆ · 2γζ0 log n if i = 0. Plugging in the values forζi, we can write

χ(Pv) ≥
{ −2γ∆ log n− 1 , i = 0
−2κ2γ∆log n− 1 , i > 0 ,

which concludes the proof.
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Having the last two helper lemmas, we are now ready to analyze the algorithm’s running time,
that is, to bound the maximum amount of time between a node’s waking up and its entering a color
classCi. We first obtain a bound on the amount of progress achieved by nodes in a stateAi in
every part of the graph.

Lemma 5.9. LetT i
v denote the number of time slots a nodev spends in stateAi. With probability

1− 3n−3, it holds for allv andi thatT i
v ∈ O(κ3∆log n).

Proof. By Lemma 5.5, we know that with probability1− 2n−3, the set of nodes in stateC0 form
an independent set. In the sequel of the proof, we focus on this case and assume that all nodes in
C0 are mutually independent.

Let tv denote the time slot in which nodev ∈ Ai executes Line 9 of Algorithm 1. Until
tv, v spends exactlyα∆log n time slots inAi. By Lemma 5.4, we know that at least one node
w ∈ Nv ∩ Ai is able to transmit successfully during the intervalI = [tv, tv + σ

2 ∆log n] with
probability1−n−5 (unlessv leaves stateAi during that interval in which case Lemma 5.9 clearly
holds). Say this happens at timetsw. According to Lines 6 and 17 of Algorithm 1, all nodes
u ∈ Nw ∩Ai store a local copydu(w) of w’s current countercw upon receivingw’s messageM i

A
in time slottsw. In Lines 5 and 12, this local copy is incremented by one in each subsequent time
slot. That is, as long asw’s real counter is not reset toχ(Pw), every nodeu ∈ Nw ∩ Ai has a
correct local copydu(w) of w’s current countercw.

We now show thatw’s countercw cannot be reset by any nodeu ∈ Nw ∩Ai aftertsw anymore.
First, in Line 18, every nodeu ∈ Nw ∩ Ai whose countercu(tsw) at timetsw is in the range

[cw(tsw)− γζi log n, . . . , cw(tsw) + γζi log n]

resets its own counter toχ(Pu) in time slottsw. Recall thatχ(Pu) is defined as the maximum value
such thatχ(Pu) ≤ 0 andχ(Pu) /∈ [cx−γζi log n, . . . , cx+γζi log n] for eachx ∈ Pu. Specifically,
becausew transmited successfully, this means thatχ(Pu) /∈ [cw − γζi log n, . . . , cw + γζi log n],
and hence|cu(tsw + 1)− cw(tsw + 1)| > γζi log n. Clearly, the same inequality also holds for all
nodesu ∈ Nw ∩Ai whose counter was not in the critical range[cw(tsw)−γζi log n, . . . , cw(tsw)+
γζi log n] in the first place.

In summary, we have that in time slottsw +1, every nodeu ∈ Nw∩Ai has a correct local copy
du(w) of cw, and

|cu(tsw + 1)− cw(tsw + 1)| > γζi log n.

Because the counter of every neighbor inAi thus differs by at leastγζi log n from cw, none of
these nodes can causew to reset its counter in Line 18 of the algorithm. Nodew can thus increment
its counter in each time slot and hence, all nodesu ∈ Nw ∩ Ai continue to have a correct local
copy ofcw aftertsw. Consequently, even if a neighboring nodeu has to reset its counter toχ(Pu),
this cannot causecu to come withinγζi log n of cw by the definition ofχ(Pu). Thus, it follows by
induction over the subsequent time slots that no nodeu ∈ Ai is able to resetw’s counter after its
successful transmission at timetsw. By Lemma 5.8, we know that for alli, cw ≥ −2γκ2∆log n−1
at timetsw. Hence, ifw stays inAi, it requires at most(2γκ2 + σ)∆ log n + 1 time slots in order
to reach the thresholdσ∆log n, which enables to enter stateCi. Also, nodes that joinAi after
tsw do not transmit for at leastα∆log n time slots, and becauseα > 2γκ2 + σ + 1, it follows
that such nodes cannot interfere withw’s incrementing its counter either. Hence, after a successful
transmission, there remains only one way to preventw from incessantly incrementing its counter
and enteringCi: if w receives a messageM i

C beforeits counter reachesσ∆log n.
In summary, we have that after a successful transmission, eitherw entersCi itself within

(2γκ2 + σ)∆ log n + 1 time slots or there must exist a neighboring nodex of w that joinsCi

16



earlier (see Figure 2). In the first case,v receives a messageM i
C from w within γζi log n after

w’s enteringCi with probability at least1 − n−5 (by Lemma 5.2 ifi > 0 and by Lemma 5.3 if
i = 0). In the other case, the nodex (which, in this case, is not a direct neighbor ofv) must be a
2-hop neighbor ofv. If v is not covered byx and remains inAi, at least one nodew2 ∈ Nv ∩ Ai

can transmit successfully withinσ2 ∆ log n time slots thereafter with high probability (Lemma 5.4),
and the argument repeats itself. That is, as long asv is active inAi, at least one node inv’s 2-hop
neighborhood entersCi per σ

2 ∆log n+(2γκ2 +σ)∆ log n+1 time slots with probability1−n−5.
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Figure 2: Whenv is active, a neighborw can transmit successfully withinσ2 ∆log n time slots.
This nodew can only be blocked from enteringCi if one of its neighborsx joinsCi earlier.

As shown in Figure 2, the number of times a nodex ∈ N 2
v can joinCi without coveringv

(and thus forcingv to leave stateAi) is by definition at mostκ2. Finally, oncev becomes covered,
an additionalγζi log n time slots inAi may be required before, with probability1− n−5, its first
neighbor inCi sends a messageM i

C to v. As stated at the beginning of the proof, our argument
holds under the condition that the set of leadersC0 forms an independent set which is true with
probability1− 2n−3 by Theorem 5.5. Therefore, with probabilityPv, nodev spends at most

T i
v ≤ α∆log n + κ2

(σ

2
∆ log n + (2γκ2 + σ)∆ log n + 1

)
+ γζi log n ∈ O(κ3

2∆ log n)

time slots in stateAi, wherePv is at least

Pv ≥ 1− (κ2 · n−5 + n−5 + 2n−3) > 1− 3n−3,

for large enoughn becauseκ2 ≤ n andγ ∈ O(κ2). This concludes the proof.

Next, we bound the time until a nodev in the request stateR receives its intra-cluster color
(via a messageM0

C (w, v, tcv)) from its leaderw upon which it leaves stateR (cf Line 4 of
Algorithm 2). Specifically, the following lemma shows that each nodev spends at most time
O(κ2∆ log n) in stateR.

Lemma 5.10. LetTRv denote the number of time slots a nodev spends in stateR. With probability
1− 3n−3 it holds for eachv ∈ V thatTRv ≤ (γ + β)∆ log n.

Proof. The timeTRv denotes the time betweenv starting to request an intra-cluster color from
its leaderL(v) ∈ C0 to the time this leader succeeds in assigning the intra-cluster colortcv to v
without collision. Letw be the leader ofv, i.e.,w = L(v). We divideTRv into two parts. First, by
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Lemma 5.2,v is able to send its requestMR(v, L(v)) to w within timeγ∆log n with probability
1 − n−5. Upon receipt,w queuesv’s request until it has served all its other, previously received
requests. In Line 15 of Algorithm 3,w transmits a messageM0

C with probability 1/κ2 to the
currently considered requesting node forβ log n time slots, before moving on to the next request,
if available. Becauseβ ≥ γ, Lemma 5.3 holds forw’s response tov with probability1 − n−5.
Becausew can have at most∆ requesting nodes in its queue,TRv is at most

TRv ≤ γ∆log n + ∆ · β log n = (γ + β)∆ log n

for each nodev ∈ V with probability at least1 − 2n−5. As the setC0 forms an independent set
with probability1−2n−3, for large enoughn the claim holds with probability1−2n−5−2n−3 ≥
1− 3n−3.

Lemmas 5.9 and 5.10 are the ingredients required to prove the following theorem that bounds
the algorithm’s running time, i.e., the amount of time every node requires after its wake-up before
deciding on a color.

Theorem 5.11. Every node decides on its color within timeO(κ4
2∆log n) after its wake-up with

probability1− 3n−1.

Proof. Let TYv be the number of time slots a nodev spends in stateY. For each nodev, we have

Tv =
∑

i≥0

TAi
v + TRv .

Lemma 5.10 boundsTRv by (γ + β)∆ log n with probability1 − 3n−3 for eachv, and thus with
probability1−3n−2 for all nodes inV . Moreover, when applying the union bound to the result of
Lemma 5.9, it follows thatTAi

v ∈ O(κ3
2∆log n) for all v andi with probability1−3n−1. Finally,

because every node is in at mostκ2 + 1 different states (due to Corollary 5.7)Ai, it follows that
for some constantλ,

Tv = (κ2 + 1) · λκ3
2∆log n + (γ + β)∆ log n ∈ O(κ4

2∆log n)

with probability at least1− 4n−1, for large enoughn.

The only thing remaining is a bound on the number of different colors assigned by the algo-
rithm. For practical purposes, thelocality of the assignment of colors to nodes plays a crucial role.
Generally, the colors assigned to each node should be as “low” as possible. If the vertex coloring
in the graph is used for setting up atime-division schedulingin a wireless network, for instance,
the bandwidth assigned to a nodev is often inversely proportional to the value of thehighest color
in its neighborhood. The highest color assigned to a neighbor of a nodev by the algorithm in
Section 4 is dependent only onlocal graph properties. This allows nodes located in low density
areas of the network to send more frequently than nodes in dense and congested parts.

Theorem 5.12. Let θv := maxw∈N 2
v

δw be the maximum node degree inN 2
v and letφv be the

highest color assigned to a node inNv. With probability at least1− 2n−3 the algorithm produces
a coloring such that, for allv ∈ V , φv ≤ κ2 · θv.

Proof. Let w ∈ C0 be a leader and letsw be the number of nodesv ∈ Nw havingw as their leader.
Leaderw assigns unique intra-cluster colors1, 2, . . . , sw to these nodes. As shown in Corollary
5.7, if the set of leaders forms a correct independent set, a non-leader nodev assigned intra-cluster
color tcv ends up selecting a color from the rangetcv(κ2 + 1), . . . , tcv(κ2 + 1) + κ2. Since
sw ≤ δw and every nodeu ∈ Nv is assigned to a leaderw ∈ N 2

v , the theorem follows.
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The following theorem combines the results obtained in Theorems 5.5, 5.11, and 5.12.

Theorem 5.13. The algorithm produces a correct coloring with at mostκ2∆ colors with proba-
bility 1 − 2n−3. Furthermore, with probability1 − 4n−1 every node irrevocably decides on its
color O(κ4∆log n) time slots after its wake up.

Theorem 5.13 gives raise to a number of specific results for graphs that have been frequently
studied in the literature on ad hoc and sensor networks. The most frequently adopted model has
been the unit disk graph in which nodes are assumed to be located in the Euclidean plane and there
is a communication link between two nodes iff their mutual distance is at most1. In unit disk
graphs as well as any other family of graphs in whichκ2 ∈ O(1), we have the following result.

Corollary 5.14 (Unit Disk Graph). LetG = (V, E) be a unit disk graph. With high probability,
the algorithm produces a correct coloring withO(∆) colors and every node decides on its color
within O(∆ log n) time slots after its wake up.

In [17], the unit disk graph model has been extended to general metric spaces resulting in so-
calledunit ball graphs(UBG). The nodes of a UBG are the points of a (possibly non-Euclidean)
metric space; two nodes are connected if and only if their distance is at most1. Using this defini-
tion, we can formulate a result on coloring in general network graphs that depends on thedoubling
dimensionof the underlying metric. A metric’s doubling dimension is the smallestρ such that
every ball of radiusd can be covered by at most2ρ balls of radiusd/2.

Lemma 5.15. Let G be a unit ball graph and letρ be the doubling dimension of the underlying
metric space. Every2-hop neighborhood inG contains at most4ρ mutually independent nodes,
i.e.,κ2 ≤ 4ρ.

Proof. By the definition of a UBG, the2-hop neighborhood of nodev in G is completely covered
by the ballB2(v) with radius2 aroundv. By the definition of the doubling dimensionρ, B2(v)
can be covered by at most22ρ balls of radius1/2. By the triangle inequality, two nodes inside
a ball of radius1/2 have distance at most1, that is, the nodes inside a ball of radius1/2 form a
clique inG. The number of independent nodes in the2-hop neighborhood ofv is therefore at most
4ρ.

Plugging in the result of Lemma 5.15, we obtain the following result for coloring in the un-
structured radio network model of general graphs.

Corollary 5.16 (Unit Ball Graphs). LetG = (V, E) be a unit ball graph and letρ be the doubling
dimension of the underlying metric space. With high probability, the algorithm produces a correct
coloring withO(4ρ∆) colors and every node decides on its color withinO(44ρ∆log n) time slots
after its wake-up. For metrics with constant doubling dimension, the same asymptotic bounds as
in the unit disk graph are achieved.

6 Conclusions

Setting up an initial structure in newly deployed ad hoc and sensor networks is a challenging task
that is of great practical importance. In this paper, we have given a randomized algorithm that
computes an initial coloring from scratch. This is a step towards the ultimate goal of establishing
an efficient medium access control (MAC) scheme.
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A direction for future research is to address the issue that our algorithm is based on the as-
sumption that nodes know an estimate ofn and∆. In single-hop radio networks with synchronous
wake-up, there are efficient methods enabling nodes to approximately count the number of their
neighbors, e.g. [11]. If such techniques could be adapted to an asynchronous multi-hop scenario,
nodes might be able to estimate the local maximum degree, which could then be used instead of
∆ throughout the algorithm.
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