Coloring Unstructured Radio Networks

Thomas Moscibroda Roger Wattenhofer

SPAA 2005

Wireless Ad Hoc and Sensor Networks

Application Scenarios:

- Data Gathering
- Monitoring, Surveillance
- Disaster Relief
- Many others....

Challenges: Differences to Wired Networks

- No built-in infrastructure
- Nodes need to set up their own infrastructure (Initially, no available MAC layer)
- Communication on shared medium
- Collisions, Interference,...

- Absence of a-priori knowledge
- Nodes do not know network topology
- Nodes do not even know neighbors!
- Energy and memory are scarce
- Mobility, node failures,
- Nodes may be deployed at different times...

Challenges: Differences to Wired Networks

\rightarrow Nodes need to bring structure into the network.
\rightarrow Nodes must set up a MAC layer!

Distributed Vertex Coloring

${ }^{\circ}$ - A particularly useful structure is a vertex coloring!

- We model the network as a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

Each node assigns itself a color such that, No two neighbors have the same color
\rightarrow A coloring is a step towards a functional MAC layer!

- Frequency Division Multiple Access (FDMA) (identify each color with a frequency)
- Time Division Multiple Access (TDMA) (identify each color with a time-slot)

A good coloring should use as few colors as possible!

Distributed Vertex Coloring

- In our paper, we study 1-hop coloring!
- A 1-hop coloring is no MAC layer, but...
- ...it avoids direct interference between nodes!
- ...it can be turned into a 2-hop coloring by halving transmission ranges (in dense networks!)
- ...it induces clusters
- And from a theory point of view...

The distributed complexity of
 coloring in unstructured radio networks.

Distributed Coloring: Related Work

- Three-coloring a ring in time $\mathrm{O}\left(\log ^{*} \mathrm{n}\right) \quad$ [Cole, Vishkin, 86$]$
- In time $\mathrm{O}\left(\log ^{*} \mathrm{n}\right)$, rooted trees and bounded degree graphs can be colored with 3 and $\Delta+1$ colors, respectively.
[Goldberg, Plotkin, Shannon STOC 87]
- All these results are asymptotically optimal [Linial, 92]
- Arbitrary graphs colorable with $\Delta+1$ colors in time $\mathrm{O}\left(\Delta^{2}+\log ^{*} \mathrm{n}\right) \ldots$ [Goldberg, Plotkin, Shannon, STOC 87]
- .. or in time $\mathrm{O}(\Delta \log \mathrm{n})$... [Awerbuch, Goldberg, Luby, Plotkin, FOCS 89]
- Further improvements via network decomposition
[Panconesi, Srinivasan, 96]
- Coloring for the purpose of obtaining a TDMA scheme [Ramanathan, Lloyd, SIGCOMM 92], [Krumke, Marathe, Ravi, 01]

Distributed Coloring: Related Work

In multi-hop radio network models...

- Communication primitives such as broadcast or the wake-up problem have been thoroughly studied
- Less is known about local network coordination structures (e.g. colorings)

Distributed Coloring: Related Work

- Most existing algorithms assume...
- ... point-to-point connections
\rightarrow Message-Passing Model
- ... absence of interference issues
\rightarrow Collision detection mechanism
- ... Synchronous wake-up
- ... nodes know their neighbors, or even two hop neighbors

Chicken-and-Egg Problem:

1) Coloring algorithms are used to establish a MAC layer
2) Coloring algorithms are based on a MAC layer!

Ceriginal Artist Reproduction rights obtainable from

Overview

- Coloring in Ad Hoc and Sensor Networks
- Related Work
- Model
- Algorithm \& Analysis
- Conclusions \& Open Problems

Unstructured Radio Networks - Model (1)

- Multi-Hop
- Hidden Terminal Problem
- No collision detection

- Nodes cannot distinguish collisions from ambient noise
- A sender does not know whether its transmission was correctly received!
- Unit Disk Graph (UDG)
- Two nodes can communicate iff Euclidean distance is at most 1
- No knowledge about (the number of) neighbors...
... except upper bounds n and Δ for number of nodes in network and the largest degree, respectively.

Unstructured Radio Networks - Model (2)

- Messages are restricted to $\mathrm{O}(\log \mathrm{n})$ bits
- Nodes can wake-up at any time!

1) When waking up, a node does not know, how many neighboring nodes are already awake!
2) A node does not know when new neighbors wake up!
3) The nodes' wake-up pattern is chosen by an adversary.
4) Sleeping nodes do neither receive nor send messages
different from work on the
wake-up problem or broadcast in radio networks
Thomas Moscibroda, ETH Zurich @ SPAA 2005

Unstructured Radio Networks - Model (3)

- What are the performance measures in this model?

Running Time:

- Let t_{v} be the time of node v 's wake-up.

- Let t^{*} be the time of v 's final, irrevocable decision on a color.
\rightarrow The running time of v is: $T_{v}=t^{*}{ }_{v}-t_{v}$
\rightarrow The algorithm's running time is: $T_{A L G}=\max _{v \in V} T_{v}$

Colors:

- The local distribution of the colors!

In UDG, $\Omega(\Delta)$ lower bound!

- The maximum color used by the algorithm

Thomas Moscibroda, ETH Zurich @ SPAA 2005

Locality in Vertex Coloring

- A good coloring should....
- use few colors!
- use high colors in dense areas only!

This precludes simple probabilistic algorithms In which every node chooses a random color

Overview

- Ad Hoc and Sensor Networks
- Clustering
- Model
- Algorithm \& Analysis
- Conclusions \& Open Problems

Algorithm Overview (system's view)

- Idea: Color in a two-step process!
- First, nodes select a (sparse) set of leaders among themselves
\rightarrow induces a clustering

- Leaders assign initial coloring that is correct within the cluster
- Problem: Nodes in different clusters may be neighbors!

- In a final verification phase, nodes select final (conflict-free) color from color-range!

Algorithm Overview (a node's view)

Thomas Moscibroda, ETH Zurich @ SPAA 2005

Algorithm Overview (Challenges)

- Problems:
\rightarrow Everything happens concurrently!
\rightarrow Nodes do not know in which state neighbors are
(they do not even know whether there are any neighbors!)
\rightarrow Messages may be lost due to collisions
\rightarrow New nodes may join in at any time...
How to achieve both?
- Correctness!
\rightarrow No two neighbors must choose the same color.
- No starvation!
\rightarrow Every node must be able to choose a color within time $\mathrm{O}(\Delta \log n)$ after its wake-up.

Avoid Starvation - Idea

- Use counters and appropriate thresholds
- Example: Consider state \mathcal{K}, node v verifies c

0) When receiving $\mathrm{M}_{\text {color }}(\mathrm{c})$ verify $\mathrm{c}+1$

1) When entering state \mathcal{K}, set counter to 0 .
2) In each time-slot, increase counter by 1 .

3) When reaching $\sigma \Delta \log n$, choose color and move to state \mathcal{C}
4) With probability p_{K}, transmit $\mathrm{M}_{\text {verification }}$ (counter,c) and set counter to

$$
\text { counter }:=\max \{\text { counter }, \gamma \Delta \log n\}+1
$$

Cascading
5) When receiving $\mathrm{M}_{\text {Verification }}\left(\right.$ counter $\left.{ }^{*}, \mathrm{c}\right)$ from another node: resets..? If counters are within $\gamma \Delta \log n$ of one another \rightarrow Reset counter!

This method achieves both correctness and
quick progress (in every region of the graph)!
Thomas Moscibroda, ETH Zurich @ SPAA 2005

Avoid Starvation - Idea

- Consider a node v entering state \mathcal{K} at time t_{v} and verifying color C
- We show that by time $\mathrm{t}_{\mathrm{v}}+\mathrm{O}(\Delta \log \mathrm{n})$, at least one neightor wory has transmitted (broadcast!) without collision.
- w has counter at least $\gamma \Delta \log n+1$
- All neighbors of w verifying c
- either reset their counter
- or have a counter that is at least $\gamma \Delta \log n$ away from w's counter.
$\rightarrow \mathrm{w}$ cannot be reset anymore by nodes in \mathcal{K} !
\rightarrow w may get $\mathrm{M}_{\text {color }}$ from a node $x \in \mathcal{C}$ that has chosen the color c earlier!
x covers a constant fraction of the disk of radius 2 !

Avoid Starvation - Idea

Each taking time $\mathbf{O}(\Delta \log n)$

- After a constant number of repetitions, the disk will be covered
\rightarrow node v either chooses c or receives $M_{\text {color }}$ and verifies $\mathrm{c}+1$
\rightarrow The argument repeats itself for $\mathrm{c}+1$
- Because the set of leaders is sparse
\rightarrow v must verify only up to color $\mathrm{c}+\mu$, for $\mu \in \mathrm{O}(1)$
W.h.p, every node spends only $O(\Delta \log n)$ time-slots in state \mathcal{K}

In the proof, we similarly avoid starvation in all states!

- Specifically, we prove that: $T_{\mathcal{W}}, T_{\mathcal{A}}, T_{\mathcal{R}}, T_{\mathcal{K}} \subset O(\Delta \log n)$ Hence, $\quad T=T_{\mathcal{W}}+T_{\mathcal{A}}+T_{\mathcal{R}}+T_{\mathcal{K}} \in O(\Delta \log n)$

Results

With high probability, the distributed coloring algorithm ...
$\rightarrow \ldots$ achieves a correct coloring using $O(\Delta)$ colors
\rightarrow... every node irrevocably decides on a color within time $O(\Delta \log n)$ after its wake-up
$\rightarrow \ldots$ the highest color depends only on the local maximum degree

Of Theory and Practice...

Practice
Theory

There is often a big gap between theory and practice in the field of wireless ad hoc and sensor networks.

Conclusions / Open Problems

- $\mathrm{O}(\Delta)$ coloring in harsh radio network model in time $\mathrm{O}(\Delta \log n)$ w.h.p.
\rightarrow Tight up to a factor of $\mathrm{O}(\log n)$
\rightarrow Color assignment according to local density

Future Directions:

- Close the remaining complexity gap
- Algorithm assumes knowledge of n and Δ
\rightarrow Remove this assumption
- 2-hop coloring ?
- Asynchronous wake-up: many open questions

Questions? Comments?

Thomas Moscibroda

Roger Wattenhofer

Thomas Moscibroda, ETH Zurich @ SPAA 2005

Of Theory and Practice...

