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ABSTRACT
We study local, distributed algorithms for the capacitated minimum
dominating set (CapMDS) problem, which arises in various dis-
tributed network applications. Given a network graph G = (V, E),
and a capacity cap(v) ∈ N for each node v ∈ V , the CapMDS
problem asks for a subset S ⊆ V of minimal cardinality, such that
every network node not in S is covered by at least one neighbor in
S, and every node v ∈ S covers at most cap(v) of its neighbors.
We prove that in general graphs and even with uniform capacities,
the problem is inherently non-local, i.e., every distributed algorithm
achieving a non-trivial approximation ratio must have a time com-
plexity that essentially grows linearly with the network diameter. On
the other hand, if for some parameter ε > 0, capacities can be vi-
olated by a factor of 1 + ε, CapMDS becomes much more local.
Particularly, based on a novel distributed randomized rounding tech-
nique, we present a distributed bi-criteria algorithm that achieves
an O(log ∆)-approximation in time O(log3n + log(n)/ε), where
n and ∆ denote the number of nodes and the maximal degree in
G, respectively. Finally, we prove that in geometric network graphs
typically arising in wireless settings, the uniform problem can be ap-
proximated within a constant factor in logarithmic time, whereas the
non-uniform problem remains entirely non-local.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems—computations on discrete struc-
tures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph algorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network problems
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Algorithms, Theory
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1. INTRODUCTION
In large-scale and highly-decentralized networks, the concept of

clustering plays an important role in a variety of network coordi-
nation tasks. In wireless multi-hop networks, for instance, self-
organized clustering of nodes has been proposed and used for facil-
itating communication between nodes in physical proximity (MAC
layer protocols [14]), for enabling efficient routing [28, 30, 29]), or
to improve localization [7] and energy efficiency [9]. As different as
these applications are, the required structures are typically based on
key primitives and boil down to classic graph-theoretic objects.

One of the most well-studied combinatorial optimization prob-
lems in this context is the minimum dominating set (MDS) problem,
which, given a graph G = (V, E), is the problem of choosing a
subset S ⊆ V of minimal cardinality such that every node V \ S
has at least one neighbor in S. In a sensor network, for instance,
if only nodes in S stay awake, each remaining node can go to an
energy-saving sleep-mode while still having an active node within
its communication range.

Although the MDS problem formulation thus captures an impor-
tant problem domain, it has the shortcoming that it allows (in fact, fa-
vors) solutions in which some nodes cover a large number of neigh-
boring nodes. In principle, applying an MDS algorithm therefore
requires that each node can manage all its neighbors, as this situa-
tion may turn out to be the solution. Considering that a cluster center
offers a service to all its “clients”, cluster centers can handle only a
limited number of covered nodes.

In this paper, we therefore study distributed approximation algo-
rithms for the capacitated minimum dominating set problem (Cap-
MDS). In this problem, every network node v ∈ V can cover only
a certain number cap(v) of neighboring nodes. The task is to se-
lect a subset S ⊆ V of dominators and to assign each of the re-
maining nodes V \ S to one of the dominators such that all capac-
ity bounds are satisfied. To the best of our knowledge, this paper
presents the first distributed algorithms and lower bounds for the ca-
pacitated dominating set problem.

We derive a number of results on the distributed complexity of
the capacitated dominating set problem, both in general graphs as
well as in bounded independence graphs, which more accurately
model the communication graphs encountered in wireless networks.
In general graphs, we prove that even the uniform CapMDS problem
cannot be approximated to within a non-trivial approximation ratio
by any local algorithm. If small violations of capacities are allowed,
much better solutions become possible. Specifically, we present a
bi-criteria algorithm that achieves an O(log ∆)-approximation in
time O(log3(n) + log(n)/ε) and violates capacity constraints by
at most a factor of 1 + ε for an arbitrary parameter ε > 0. We
also prove that any distributed algorithm that violates constraints
only by a factor of 1 + ε must have a time complexity of at least
Ω(1/ε ·

√
log n/ log log n) in order to achieve a polylogarithmic



approximation ratio. In contrast to this lower bound, we present a
distributed algorithm for the uniform CapMDS problem in bounded
independence graphs with constant appoximation ratio and polylog-
arithmic time complexity.

These results shed new light on the local approximability of an
important capacitated network problem and we believe that in this
larger context, it is of theoretical interest beyond the aforementioned
application scenarios. Modern distributed systems such as peer-to-
peer networks, wireless sensor networks, or the Internet have grown
so large that in many cases, global requirements, solutions, or equi-
libria can only be achieved by local algorithms, in which each node
requires knowledge only about their vicinity in the network graph (as
opposed to global knowledge). Technically speaking, a distributed
algorithm is called local if its distributed time complexity is signifi-
cantly smaller than the network’s diameter. Inevitably, if the number
of communication rounds is smaller than the network’s diameter,
each node can base its decision only on partial, in fact local knowl-
edge. This observation evokes the question of what can and what
cannot be computed locally? [26, 16].

In recent years, the distributed computing community has been
particularly interested in characterizing the local and distributed ap-
proximability of network problems [10, 18, 6]. Clearly, there exists
a trade-off between the amount of local knowledge and the time-
complexity of the distributed algorithm on the one hand, and the
achievable global approximation ratio on the other hand. Our lower
bounds and distributed approximation algorithms characterize this
trade-off thereby capturing the inherent locality of the CapMDS prob-
lem.

The remainder of this paper is organized as follows. An overview
of relevant previous work is given in Section 2. The different net-
work and communication models are introduced in Section 3. The
main technical contributions are then presented in Sections 4 and 5
in which we give upper and lower bounds on the distributed approx-
imability of the capacitated DS problem in bounded independence
graphs and general graphs, respectively. Finally, Section 6 concludes
the paper.

2. RELATED WORK
Because of its practical importance in different areas of network-

ing, and in the wake of a genuine interest in the distributed approx-
imability of combinatorial optimization problems [10], there has re-
cently been a lot of work on distributed algorithms for finding mini-
mum dominating sets.

In general graphs, the algorithm in [30] computes a connected
dominating set in a constant number of communication rounds, but
has no non-trivial approximation guarantee. In [21], an algorithm
that computes a dominating set of size at most n/2 in time O(log∗n)
is presented. While being extremely fast, the algorithm’s approxi-
mation ratio can be Θ(∆). The algorithm proposed in [30] and its
recent adaptation in [8] computes a connected dominating set in con-
stant time, but does not have any worst-case guarantees. Algorithms
with polylogarithmic time-complexity and polylogarithmic or log-
arithmic approximation guarantees have been presented in [15, 20,
18]. On the other hand, hardness of distributed approximation and
time lower bounds for the MDS problem were derived in [16].

For the unit disk graph, a multiplicity of algorithms have been pro-
posed in the wireless networking community. Unfortunately, most of
them have the property that in the worst case, they have either linear
running time [28, 2, 29] or no non-trivial approximation guarantees
[30, 8]. In [11], an algorithm was recently proposed that computes
a constant approximation to the connected dominating set problem
in polylogarithmic time in a model that accounts for possible colli-
sions of messages. In an even harsher model of computation, [25]

presents a polylogarithmic time algorithm for computing a maximal
independent set, which is a constant approximation to the dominat-
ing set problem in unit disk graphs. Finally, the fastest currently
known algorithm for the minimum dominating set problem in unit
disk graphs has been given in [17], which achieves a constant ap-
proximation in time O(log∗n), in a message passing model without
collisions and only if nodes can measure distances to their neighbors.

In contrast to the regular dominating set problem, there exists no
previous work on the distributed computation of capacitated domi-
nating sets. Centralized approximation algorithms for the problem
were given by Bar-Ilan, Kortsarz, and Peleg in [4] and [5], respec-
tively. More specifically, [4] presents approximation algorithms for
a variety of NP-hard capacitated network center allocation prob-
lems. For the capacitated dominating set problem with uniform
capacities, they give a beautiful greedy algorithm, which (unless
NP = DTIME(nO(log log n))) achieves an optimal approximation
ratio of ln n. The only paper that studies the distributed approxima-
bility of capacitated covering problem is the recent work of Grandoni
et al [13] on the capacitated vertex cover problem.

3. MODEL AND DEFINITIONS
We model the network as a graph G = (V, E), where vertices

and edges represent network nodes and communication links, re-
spectively. Every node has a unique identifier ID(v) (for instance its
IP-address) and, at the outset of the algorithm, has no global knowl-
edge about the network. For the sake of simplicity, we consider the
standard synchronous message passing model in which time is di-
vided into communication rounds. In each round, a node can send
a message to all its neighbors. However, note that at the cost of
higher message complexity, our algorithms can also be deployed in
asynchronous settings without deteriorating their time complexity
using the notion of synchronizers [3]. As for notation, d(u, v) de-
notes the shortest hop-distance between two nodes u and v. For
any r ≥ 0, and v ∈ V , we define the (closed) r-neighborhood
Γr(v) := {u ∈ V | d(u, v) ≤ r}. As a special case, the 1-
neighborhood Γ1(v) consists of v and all its direct neighbors and
is abbreviated as Γ(v).

In a graph G = (V, E), a dominating set S ⊆ V is a subset of the
nodes such that every node is either in S or has at least one neighbor
in S. The Minimum Dominating Set Problem asks for a dominat-
ing set of minimal cardinality and is known to be NP-hard [12]. In
the capacitated minimum dominating set problem (CapMDS), each
node v ∈ V has a capacity that places an upper bound on the number
of neighboring nodes that v can cover.

DEFINITION 3.1. Consider a graph G = (V, E). For every
node v ∈ V , let cap(v) ≥ 1 be the capacity of v. A capac-
itated dominating set (CapDS) is a subset S ⊆ V and a map-
ping φ : V → S, such that φ(v) ∈ Γ(v) for all v ∈ V and
|{u|φ(u) = v}| ≤ cap(v) for all v ∈ S holds. The CapMDS
problem asks for a CapDS with a set S of minimum cardinality.

The CapMDS problem can be formulated as the following integer
linear program ILPCapDS:

min
∑

vi∈V

xi

∑

vj∈Γ(vi)

yji ≥ 1 , ∀vi ∈ V (1)

∑

vj∈Γ(vi)

yij ≤ xi · cap(vi), ∀vi ∈ V (2)

yij ≤ xi , ∀vi, vj ∈ V (3)
xi, yij ∈ {0, 1} , ∀vi, vj ∈ V. (4)



The communication graphs formed by wireless networks are much
more structured than captured by general graphs. In particular, if two
nodes are physically too far from each other, there is guaranteed to
be no direct communication link. Moreover, if there are many nodes
in close physical proximity, not too many of them can be mutually
independent.1 The frequently studied unit disk graph captures these
intuitions, but tends to be a too optimistic and rigid model. In this
paper, we study a more general family of graphs to model wireless
networks.

DEFINITION 3.2 (BOUNDED INDEPENDENCE GRAPH[19]). A
graph G is called f -independence-bounded if there is a function
f(r) such that every r-neighborhood Γr(v) of G contains at most
f(r) independent (i.e., pairwise non-adjacent) nodes. A graph G
has polynomially bounded independence if f(r) is a polynomial in
r.

Unlike unit disk graphs, bounded independence graphs (BIG) can
model the existence of walls and obstacles which may increase f(r).
Note that f(r) depends neither on n nor on any other property of G.
Hence, for constant r, the number of independent nodes in an r-
neighborhood is constant. Further, notice that an f -independence
bounded graph is K1,f(1)+1-free.

Finally, a maximal independent set (MIS) is a subset R ⊆ V in
which every node v /∈ R has at least one neighbor in R, but any two
nodes in R are independent. While in a centralized scenario, finding
a MIS is completely trivial—pick an arbitrary node and discard all its
neighbors from the graph, and repeat this process until there are no
more nodes left—, the MIS problem is a core problem in distributed
computing because it prototypically captures the fundamental notion
of symmetry breaking [24, 22].

4. GENERAL GRAPHS
In this section, we derive upper and lower bounds on the dis-

tributed approximability of the capacitated minimum dominating set
problem in general graphs.

4.1 Lower Bounds
Consider the capacitated version of the minimum vertex cover

problem. On a simple ring network, it can easily be seen that this
problem is inherently non-local and therefore cannot be efficiently
solved by a distributed algorithm: If every node has a capacity of 1
on a ring, all nodes in the ring have to decide on a common direc-
tion in order to be able to cover all edges. However, finding such
a common direction requires knowledge about the entire ring. In
contrast, the capacitated dominating set problem intuitively appears
to be a much more “local” problem, because every node is capa-
ble of covering itself. However, the following theorem proves that
the capacitated dominating set is inherently non-local, too, even if
capacities are uniform.

THEOREM 4.1. There are graphs G, such that in k communica-
tion rounds, every (possibly randomized) distributed algorithm for
the minimum capacitated dominating set problem on G has approx-
imation ratios at least

Ω
( n

k2

)
and Ω

(
∆

k

)
,

even if capacities are uniform.

PROOF. For every k > 0, consider a graph Ik as illustrated in
Figure 1. We assume for ease of presentation that k is even, the case
1Two nodes u and v are independent if there is no link (u, v) ∈ E.
A set of nodes W ⊆ V is mutually independent if there is no link
between any two nodes in W .

1C k+2C

v0

m nodes

hopskk hops

v*

Figure 1: The structure of lower-bound graph Ik.

where k is odd is analogous. Ik is defined as follows. The node set
is partitioned into k + 2 clusters C1, . . . , Ck+2 each containing m
nodes. Additionally, there are k +1 connecting nodes v1, . . . , vk+1.
There is an edge between a connecting node vi and every node in Ci

and Ci+1. Finally, there is a designated connecting node v0 that has
a link to either all nodes in C1 or all nodes in Ck+2. Let the capacity
of all nodes v ∈ V be cap(v) = m + 1.

Let v∗ denote the connecting node vk/2+1 in the middle of the
graph. After communicating for k rounds, every node has only
knowledge about its k-hop neighborhood. By the definition of Ik,
neither v∗ nor any of its neighbors knows the location of v0. There-
fore, the decision of which nodes v∗ covers cannot depend on the
location of v0.

Consider the nodes that are covered by v∗. Because cap(v∗) =
m + 1, at most m/2 nodes are covered by v∗ in either Ck/2+1 or
Ck/2+2. Without loss of generality, assume that v∗ covers at most
m/2 nodes in Ck/2+2. If v0 is connected to C1 as in Figure 1, there
are at least (k/2+1)m nodes to the right of v∗ that must be covered,
but there are only k/2 connecting nodes vj for j > k/2+1, each of
which can cover at most m + 1 nodes. The total number of nodes to
the right of v∗ that can be covered by connecting nodes is therefore
at most k/2 · (m + 1) + m/2. Therefore, at least (m− k)/2 nodes
in the clusters to the right of v∗ must cover themselves and hence,
ALG ≥ (m − k)/2. The optimal solution can cover all nodes
using only connecting nodes. Because of n = (m + 1)(k + 2),
the approximation ratio α of every k-local distributed algorithm is
therefore at best

α ≥ (m− k)/2

k + 2
=

n
k+2

− k − 1

2(k + 2)
∈ Ω

( n

k2

)
.

The second bound follows due to ∆ = 2m.

Theorem 4.1 essentially thwarts all our hopes of devising a lo-
cal approximation algorithm with non-trivial guarantees in general
graphs. In the sequel, we therefore focus on the question whether
there exist substantially better solutions once we allow small viola-
tions of the capacity constraints. As it turns out, even in this case,
no constant-time distributed algorithm can approximate CapMDS
within a polylogarithmic approximation ratio.

In order to prove this result, we present a locality-preserving re-
duction [16] from CapMDS with (1 + ε)-violations to the fractional
minimum vertex cover (MVC) problem. In this problem, given a
graph G = (V, E), we need to assign a fractional value 0 ≤ ai ≤ 1
to each node vi ∈ V such that each edge is covered, i.e., for each
(u, v) ∈ E, it holds that au + av ≥ 1. The goal is to minimize∑

v∈V av .
Our locality-preserving reduction shows that a local distributed

algorithm for solving CapMDS with (1+ε)-violations can be used to
devise a local distributed approximation algorithm for MVC. Since it
has been proven that no such distributed MVC algorithm exists, our
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Figure 2: Each edge e = (vi, vj) ∈ E is replaced by an edge-
chain of width β + 1 and height α. Nodes in clusters Ci and Cj

form cliques.

theorem rules out the existence of any corresponding local CapMDS
approximation algorithm.

Locality-preserving reduction: Given a graph G = (V, E) with
|V | = n and maximal degree ∆. Construct a graph HG = (VH , EH)
as follows. Define two parameters β = 1/(2ε) and α = ∆/ε.
For each node vi ∈ V , HG contains a clique Ci of α nodes Ci =
{v̂1

i , . . . , v̂α
i }. For each edge eij = (vi, vj) ∈ E in G, connect

the cliques Ci and Cj as shown in Figure 2: Node v̂`
i ∈ Ci is con-

nected to a node w`
e,1, and node v̂`

j ∈ Cj is connected to w`
e,β+1.

For every edge e ∈ E, HG additionally contains β− 1 clusters each
containing α nodes w`

e,g , for g = 2, . . . , β and ` = 1, . . . , α, and
β center-nodes ce,1, . . . , ce,β . For all ` = 1, . . . , α, HG contains
edges (ce,g, w`

e,g) and (ce,g, w`
e,g+1). We call this construction for

each edge in G an edge-chain in HG. All nodes in GH have capacity
α + 1.

For the locality preserving reduction from CapMDS to MVC, we
need the following definitions. Given a graph G, let OV C(G) and
OCap(HG) be the optimal solutions to the MVC problem on G and
the CapMDS problem on corresponding HG, respectively. Further-
more, letAV C(G) be the MVC solution in G computed by a (possi-
bly randomized) distributed algorithm with time complexity at most
k, and let ACap(HG) denote the solution to the CapMDS problem
with (1 + ε)-capacity violations on HG by a (possibly randomized)
distributed algorithm with time complexity k/ε.

The first lemma bounds the relative size of the optimum solution
in G and GH .

LEMMA 4.2. For a graph G and its corresponding HG, it holds
that OCap(HG) ≤ 5

2
α · OV C(G).

PROOF. Given an optimal solution OPT to MVC, construct a
solution S to CapMDS of size at most 3α ·OV C(G) as follows. For
every node vi ∈ V with value xi in OPT , select αxi nodes from
the corresponding clique Ci in HG and use these nodes to cover all
its adjacent node on each incident edge-chain. This is possible due
to α ≥ ∆. In addition, select all center-nodes ce,g for each edge
e ∈ E and finally, select one arbitrary node from each clique Ci,
vi ∈ V to the capacitated dominating set.

The union of nodes thus selected can cover all nodes in HG and
hence, forms a feasible solution to the CapMDS problem on HG.
Specifically, because OPT is a feasible MVC solution, every edge
in G is covered and hence, at least α nodes on each edge-chain in
HG are covered by nodes v̂`

i ∈ Ci. The remaining βα nodes in
every edge-chain can be covered by its β selected center-nodes. Fi-
nally, a single node selected in each clique Ci, vi ∈ V suffices to
cover the remaining clique nodes.

The number of edges in G (and hence, edge-chains in HG) is at
most ∆OV C(G). Because αxi + 1 nodes are selected from each

clique Ci, the size of S is upper bounded by

|S| ≤ αOV C(G) + β∆OV C(G) + n

≤ 5

2
α · OV C(G),

because of n ≤ ∆OV C(G) and the definitions of α and β.

In the sequel, let ρG(k) be defined as the maximum value such
that for any randomized distributed algorithm ALG with expected
running time at most k, it holds that AV C(G) ≥ ρG(k) · OV C(G).
In other words, ρG(k) denotes the best achievable approximation ra-
tio by any such k-local MVC algorithm on G. The following lemma
shows that given an efficient (k/ε)-local CapMDS algorithm, a k-
local MVC algorithm with good approximation ratio can be con-
structed.

LEMMA 4.3. Given a graph G and corresponding HG, every
(possibly randomized) distributed algorithm with time complexity at
most O(k/ε) produces a solution to the (1 + ε)-violated CapMDS
problem of size ACap(HG) ≥ 1

2
(α− 1)ρG(k) · OV C(G).

PROOF. Assume for contradiction that there is a distributed algo-
rithm ALGCap whose solution ACap(HG) after k/ε communica-
tion rounds is of size less than 1

2
(α − 1)ρG(k) · OV C(G). Using

ALGCap we can construct a distributed MVC algorithm ALGV C

for G with time complexity k whose solution is of size AV C(G) <
ρG(k)OV C(G), which contradicts the definition of ρG(k).

Given ALGCap, ALGV C proceeds as follows. Each node vi ∈
V collects in time k its entire k-hop neighborhood. It then locally
constructs the (k/ε)-hop neighborhood of a graph HG using an arbi-
trary assignment of identifiers to nodes wi

e,g and ce,g on its incident
edge-chains and simulates ALGCap on this local part of HG. Let
ACap(HG) be the outcome of this simulation. Without loss of gen-
erality, we can assume that only clique nodes v̂`

i and center nodes
ce,g are chosen as dominators in ACap(HG). The reason is that any
solution containing nodes wi

e,g can be transformed into a solution
of less or equal size in which the dominating set is formed only of
nodes v̂`

i and ce,g in time O(β) = O(1/ε). Each node vi then trans-
forms the resulting CapMDS solution to a MVC solution by setting
its local variable ai := 2

α−1

∑α
j=1 x`

i , where x`
i is the primal value

assigned to v̂`
i .

We now show that the assignment vector a = (a1, . . . , an) forms
a feasible solution to the MV C problem on G. The number of nodes
on each edge-chain eij is (β + 1)α + β. Without violating their
capacity constraints, the center nodes ce,g can cover β(α + 1) of
these nodes in total. If each center node is allowed to violate its
capacity constraints by a factor of (1 + ε), the number of nodes on
the edge-chain covered by center nodes is at most β(α + 1)(1 + ε).
Hence, at least (β +1)α+β−β(α+1)(1+ ε) = α− (α+1)βε =
α−1

2
nodes must be covered using clique nodes x`

i ∈ Ci and x`
j ∈

Cj . For each edge eijinE, it therefore holds that
∑

v̂`
i∈Ci

x`
i +∑

v̂`
j∈Cj

x`
j ≥ α−1

2
and consequently, ai + aj ≥ 1.

Because ACap(HG) consists of clique nodes and center nodes, it
holds thatACap(HG) >

∑
vi∈V

∑
v̂`

i∈Ci
x`

i . The sizeAV C(G) of
the resulting MVC solution is at most

AV C(G) =
∑

vi∈V

ai ≤
∑

vi∈V

(
2

α− 1

α∑

`=1

x`
i

)

<
2

α− 1
· ACap(HG).

The proof is now concluded by observing that if ACap(HG) <
α−1

2
ρG(k)OV C(G), then AV C(G) < ρG(k)OV C(G), which con-

tradicts the definition of ρG(k).



Combining the results obtained in Lemmas 4.2 and 4.3 allows us
to derive a hardness of distributed approximation result on CapMDS
with (1 + ε)-violations by reduction to a known result on MVC.

THEOREM 4.4. For every ε ≥ 1 and some constant c, there are
graphs H with n nodes and maximum degree ∆ such that every
possibly randomized distributed algorithm with time complexity at
most k/ε has an approximation ratio γ at least

γ ∈ Ω

(
nc/k2

k

)

for the CapMDS problem in which capacities can be violated by a
factor of 1 + ε.

PROOF. It has been shown in [16] that there exist graphs G with
nG nodes and maximum degree ∆G in which no (possibly random-
ized) distributed algorithm with running time k can achieve an ap-
proximation ratio better than ρG(k) ∈ Ω(n

c′/k2

G /k). For such a
graph G, construct the corresponding graph HG. By Lemma 4.2,
it holds that OCap(HG) ≤ 5

2
α · OV C(G). Furthermore, we know

from Lemma 4.3 that ACap(HG) ≥ 1
2
αρG(k) · OV C(G) for any

distributed algorithm with running time at most k/ε. Finally, the
number of nodes n in HG is

n = O

(
nG∆α

ε

)
= O

(
nG∆2

ε2

)
= O

(
n3

G

ε2

)
.

Plugging in these values in the above bounds and adjusting c′ to an
appropriate c′′ yields a lower bound of Ω((εn)c′′/k2

/k). Because
n > nG/ε2, we know that ε > 1/

√
n and we obtain the theorem by

appropriately adapting the constant c′′.

Finally, solving the approximability lower bound of Theorem 4.4,
we can derive the following time lower bound on any distributed al-
gorithm that achieves a polylogarithmic approximation to the Cap-
MDS problem with (1 + ε)-violations.

COROLLARY 4.5. Consider an ε ≥ 1. Every distributed algo-
rithm for the CapMDS problem that achieves an approximation ratio
of O(polylog(n)) and violates capacity constraints by at most a fac-

tor of (1+ε) must have a time complexity of at least Ω
(

1
ε

√
log n

log log n

)

communication rounds.

In the following subsection, we present a distributed algorithm
whose approximation ratio is within a polylogarithmic ratio of this
lower bound.

4.2 Upper Bounds
The lower bound established by Theorem 4.4 is much weaker than

the one in Theorem 4.1 which raises hope that, indeed, moderate re-
laxations of the capacity constraints can significantly improve the
approximability of the problem. In this section, we present a lo-
cal distributed approximation algorithm that runs in O(log3(n) +
log(n)/ε) communication rounds and computes an O(log ∆) ap-
proximation, while violating the capacity constraints by a factor of
at most 1 + ε.

The algorithm works in two phases. First, we compute a solution
for the linear programming relaxation of the integer LP ILPCapDS.
This results in a fractional solution to the CapMDS problem where
the variables xi and yij can have arbitrary values in [0, 1], i.e., Equa-
tion (4) of ILPCapDS is relaxed to xi, yij ∈ [0, 1]. We denote
the LP version of ILPCapDS by LPCapDS. In a second phase, we
then round this fractional solution to an integer one. Both phases
make use of a distributed network decomposition algorithm which
was proposed by Linial and Saks in [23]. The rest of this section is

organized as follows. We first summarize the main properties of the
network decomposition described in [23]. Using this algorithm, we
then show how to compute an approximate solution for LPCapDS

and we show how to round the fractional solution to an integer one.

Distributed Network Decomposition
Let G = (V, E) be a graph with n = |V| nodes. The basic building
block of the algorithm in [23] is a randomized algorithm A(p, R)
which computes a subset S ⊆ V such that each node u ∈ S has
a leader `(u) ∈ V and the following properties hold for arbitrary
parameters p ∈ [0, 1] and R ≥ 1:
1. ∀u ∈ S : dG(u, `(u)) ≤ R

2. ∀u, v ∈ S : `(u) 6= `(v) =⇒ (u, v) 6∈ E .
3. S can be computed in O(R) rounds.
4. ∀u ∈ V : P[u ∈ S] ≥ p(1− pR)n.

Thereby dG(u, v) denotes the distance between two nodes u and
v in G. Algorithm A(p, R) computes a set of clusters of nodes such
that nodes of different clusters are at distance at least 2 and any two
nodes of the same cluster are at distance at most 2R in G. Moreover,
every node belongs to some cluster with probability at least p(1 −
pR)n. Note that the algorithm does not bound the diameter of the
graph which is induced by the nodes of a given cluster. It merely
bounds the distance on G between any two nodes of the same cluster.
The maximal distance dG in a graph G between any two nodes of a
cluster of nodes of G is called the weak diameter of the cluster.

We will invoke A(p, R) on graphs Gk where G is the graph on
which we want to solve CapMDS. Because nodes in Gk are con-
nected by an edge whenever their distance in G is at most k, a single
communication round on Gk can be simulated by k communication
rounds on G. When applied to Gk, Algorithm A(p, R) therefore
computes clusters of weak diameter kR and the distance between
two nodes in different clusters is larger than k (both with regard to
G). The time complexity of A(p, R) on Gk is O(kR).

Solving the Linear Program
The basic approach for our distributed solution of the LP relaxation
of CapMDS is as follows. We use the clusters constructed by Algo-
rithmA(p, R) to divide the given LP into a set of smaller LPs which
can be solved efficiently by a distributed algorithm. By choosing
the parameters p and R in the right way and by doing sufficiently
many parallel executions of A(p, R), we can combine the solutions
of all small local LPs to obtain an approximate solution of the origi-
nal global LP. This technique has already been applied successfully
for the LP of the classical dominating set problem without capacities
in [18].

Let S ⊆ V be the subset of nodes which is selected in an execu-
tion of A(p, R) on G2. Consider a subproblem LPCapDS[S] of the
original LP LPCapDS where only nodes in S have to covered, that is,
we change LPCapDS such that Condition (1) (

∑
vj∈Γ(vi)

yji ≥ 1)
only needs to hold for all nodes vj ∈ S. Lemma 4.6 shows that
LPCapDS[S] can be solved efficiently.

LEMMA 4.6. Given the node set S of an execution of A(p, R),
an optimal solution of LPCapDS[S] can be computed in 4R + 2
rounds.

PROOF. Let Ci for i = 1, . . . , C(S) be the clusters induced
by S where C(S) denotes the number of clusters of S. Because
nodes of different clusters Ci and Cj are at distance at least 3, the
sets of nodes which can cover nodes in Ci and the set of nodes
which can cover nodes in Cj are disjoint. We can therefore solve
LPCapDS[S] by solving LPCapDS[Ci] for each cluster Ci and sum
the solutions of all clusters. Let `i be the leader node of a clus-
ter Ci, i.e., u ∈ Ci → `(u) = `i. Because the distance on G2



between any node u ∈ Ci and `i is at most R, all information
needed to solve LPCapDS[Ci] is at distance 2R + 1 from `i. In
4R+2 communication rounds, node `i can therefore collect its com-
plete (2R + 1)-neighborhood, locally compute an optimal solution
of LPCapDS[Ci], and send this information back to the nodes of its
(2R + 1)-neighborhood. Given the set S, we can therefore compute
an optimal solution for LPCapDS[S] in time 4R + 2.

The following theorem shows that by invoking A(p, R) suffi-
ciently many times with the right choices of p and R, LPCapDS can
be well approximated if we allow a small violation of the capacities.

THEOREM 4.7. If capacities are allowed to be violated by a fac-
tor of 1 + ε, it is possible to compute a (1 + ε)-approximation of the
linear programming relaxation of CapMDS in O(log(n)/ε) rounds
with high probability.

PROOF. Consider K parallel executions of A(p, R) on G2 re-
sulting in K node sets S1, . . . , SK . Let ki be the number of times,
a node vi occurs in one of the sets, i.e., ki = |{h ∈ [K]|vi ∈
Sh}|. Further let kmin = mini ki. Assume that we choose K large
enough such that kmin ≥ 1. By Lemma 4.6, we can solve all LPs
LPCapDS[Sh] for h ∈ [K] in 4R+2 rounds. Note that we can solve
all K LPs in parallel. Let x

(h)
i and y

(h)
ij be the values of the variables

xi and yij in the solution of LPCapDS[Sh]. As a first step we com-
bine the solutions of LPCapDS[Sh] to get a solutions of LPCapDS

as follows. We sum the variables of the LPs LPCapDS[Sh] to get
variables x̂i and ŷij :

∀vi, vj ∈ V : x̂i =

K∑

h=1

x
(h)
i and ŷij =

K∑

h=1

y
(h)
ij .

Because Inequalities (2) and (3) hold for the variables x
(h)
i and y

(h)
ij ,

they also hold for the variables x̂i and ŷij . Inequality (1) which
states that every node has to be covered becomes

∀vi ∈ V :
∑

vj∈Γ(vi)

ŷji ≥ ki. (5)

In order to have every node be covered exactly once, we define

yij :=
ŷij

kj
and xi := x̂i · max

vj∈Γ(vi)

yij

ŷij
≤ x̂i

kmin
. (6)

Inequalities (1) and (3) are now satisfied and instead of Inequality
(2), the following inequality holds for all vi ∈ V :

∑

vj∈Γ(vi)

yij ≤ maxvj∈Γ(vi) kj

minvj∈Γ(vi) kj
· xi · cap(vi)

≤ K

kmin
· xi · cap(vi).

We therefore have to allow to violate the capacity constraints by a
factor of K/kmin. For vi ∈ V , let x∗i be the value of variable xi in
an optimal solution of LPCapDS. Recall that x

(h)
i is the value of xi

in an optimal solution of LPCapDS[Sh]. For all h, we therefore get∑
i x

(h)
i ≤ ∑

i x∗i and thus by Inequality (6),

∑
vi∈V

xi ≤ 1

kmin
·

K∑

h=1

∑
vi∈V

x
(h)
i ≤ K

kmin
·

∑
vi∈V

x∗i .

By allowing to violate the capacities by a factor of K/kmin, we can
therefore compute a K/kmin-approximation in time O(R). It re-
mains to set p, R, and K such that K/kmin ≤ 1 + ε w.h.p.

Let p = e−αε, R = β ln(n)/ε, and K = γ ln(n)/ε2 for con-
stants α, β, and γ, and let q := p(1 − pR)n. For any node vi and

Algorithm 1 Selecting the Dominating Set

1: pi := min
{
1, xi · ln(∆ + 1)

}

2: x′i :=

{
1 with probability pi

0 otherwise
3: ∀vj ∈ Γ(vi) : y′ij := yij · x′i/xi

4: send x′i, y
′
ij for vj ∈ Γ(vi) to all neighbors

5: if
∑

vj∈Γ(vi)
yji < 1 then

6: x′i := 1; y′ii := 1
7: fi

any set Sh, we have P[vi ∈ Sh] ≥ q. By choosing p and R as given,
we obtain

q = e−αε ·
(

1− 1

nαβ

)n

≥ e−2αε ≥ 1− 2αε (7)

if we choose β such that nαβ ≥ (1 + o(1)) · n/ε. Note that we
can assume that ε ≤ n (the lemma becomes trivial for ε > n) and
therefore get β ∈ O(1) if α ∈ O(1). Let µ(ki) ≥ q · K be the
expected value of ki. We can bound the probabilty that ki < (1 −
δ)µ(ki) by using the Chernoff inequality and Inequality (7):

P[ki < (1− δ)µ(ki)] ≤ e−µ(ki)/δ2 ≤ e
− (1−αε)K

δ2 .

We choose K = γ ln(n)/ε2 and δ ∈ O(ε) such that 1/(1 + ε) =
(1− δ)(1− 2αε) and obtain

P
[

K

kmin
< 1 + ε

]
≤ n · e−

(1−αε)K

δ2 ≤ 1

nc
.

for an arbitrary constant c by using a union bound argument and by
choosing the constants α and γ appropriately.

Rounding
Having found a solution for LPCapDS, the next step is to convert
the computed fractional solution into an integer one. For this means,
we develop a novel distributed randomized rounding technique that
consists of two steps. First, we only round the variables xi to values
in {0, 1} but still allow the variables yij to be fractional. Thus, we
select a dominating set but still allow the assignment to be fractional.
We then round the assignment of nodes to dominators in a second
step.

While solving the LP only requires a small multiplicative viola-
tion of the capacity constraints, we also have to allow additive vio-
lations of the capacity constraints for the rounding. We say that the
capacity constraints of a solution of LPCapDS are (ρ, β)-violated if
instead of Inequality (2), we have

∀vi ∈ V :
∑

vj∈Γ(vi)

yij ≤ xi ·
(
ρ · cap(vi) + β

)
. (8)

Assume that we start the rounding process with an α-approximate
solution of LPCapDS with (ρ, β)-violated capacity constraints. Let
us denote the variables before the rounding by xi and yij and the
variables after the rounding by x′i and y′ij . Recall that before the
rounding each node vi only knows its own (fractional) variables xi

and yij , for all neighbors vj .
To round the variables xi, we use a standard randomized rounding

technique which has been introduced in [27] and which has been
adapted to a distributed context in [20]. The basic idea is to interpret
the values of the variables xi as probabilities for the nodes to join the
dominating set. The details of this distributed randomized rounding
are given by Algorithm 1 which is executed by all nodes vi.



LEMMA 4.8. When applied to an α-approximate solution with
(ρ, β)-violated capacities, Algorithm 1 computes a new solution of
LPCapDS with integer variables x′i and (ρ, β + 1)-violated capac-
ity constraints in 1 round. The expected approximation ratio of the
computed solution is α ln(∆ + 1) + 1.

PROOF. Let us first consider the situation after Line 4 of Algo-
rithm 1. The violation of the capacity constraints is not affected by
changing the variables xi and yij to x′i and y′ij in Lines 2 and 3,
respectively. Because xi and yij are multiplied by the same factor,
Inequality (8) holds for the variables x′i and y′ij if it holds for the
variables xi and yij . The expected number of nodes in the dominat-
ing set after Line 4 is ln(∆ + 1) ·∑i xi.

Let qi be the probability that a node vi is not covered after Line
4, i.e., qi is the probability that the condition in the if statement in
Line 5 is true for vi. The probability qi can be bounded as follows
(δi denotes the degree of vi):

qi =
∏

vj∈Γ(vi)

(
1− pj

yij

xi

)

≤
∏

vj∈Γ(vi)

(
1− yij ln(∆ + 1)

)

≤
(

1−
∑

vj∈Γ(vi)
yij ln(∆ + 1)

δi + 1

)δi+1

≤
(

1− ln(∆ + 1)

δi + 1

)δi+1

≤ e− ln(∆+1)

=
1

∆ + 1
.

The expected number of nodes which are added to the dominating
set in Line 6 therefore is at most n/(∆ + 1). Note that since every
node can cover at most ∆ + 1 nodes, every capacitated dominating
set has size at least n/(∆+1). The expected approximation ratio of
the computed solution therefore is α ln(∆ + 1) + 1 as claimed.

To conclude the proof, let us now consider the capacity violation
caused by Line 6. Assume that a node vi has to cover itself in Line 6.
If vi has already set x′i = 1 but has not covered itself before coming
to Line 6, it might already exhaust its capacity. Setting y′ii = 1 in
Line 6 can therefore cause an additional additive capacity violation
of 1.

Having selected the nodes for the capacitated dominating set, it
remains to convert the fractional assignment of nodes to dominators
into an integer assignment. We first consider the problem of round-
ing the assignments in a non-distributed fashion and then show how
to obtain a distributed algorithm.

W.l.o.g., we can assume that nodes are covered exactly once, i.e.,
we can assume that Inequality (1) holds with equality, because, if
for some vi,

∑
vj∈Γ(vi)

y′ji > 1, we can decrease the values of the
variables y′ji in order to obtain equality. Let D = {vi|x′i = 1} be
the nodes selected as dominators. Consider the following directed
acyclic graph H . Graph H has |D| + n + 2 nodes, a node pi for
every vi ∈ D, a node qi for every vi ∈ V , and two nodes s and t.
There is an arc from s to every node pi, there is an arc from a node
pi to qj if there is an edge between vi and vj in G, and there is an
arc between every node qi and t.

The problem of assigning nodes to dominators can be considered
as a maximal (s, t)-flow problem on H in which the flow capacities
of arcs from s to pi are cap(vi) (or ρcap(vi) + β if we allow a
(ρ, β)-violation of the capacity constraints) and the flow capacities
of all other arcs are 1. The fractional assignments y′ij induce the
following flow on H . The flow on an arc from pi to qj is y′ij and

consequently, the flow from s to a node pi is
∑

vj∈Γ(vi)
y′ij and the

flow from nodes qi to t is 1.
The fractional flow induced by the fractional assignment given

by the variables y′ij can be converted into an integer flow step-by-
step using the following simple algorithm. Let us call an arc with
a fractional flow, a fractional arc. Note that the total flow at each
node of H is an integer (the total flow is n at s and t and 0 at all
inner nodes). Therefore, every fractional arc of H must lie on a
cycle consisting only of fractional arcs. Consider such a cycle C =
(a1, . . . , at) of fractional arcs. Let ai be the arc of C whose flow is
closest to an integer value and let ξi be the difference between the
flow of ai and this integer value. We can traverse the cycle C and
depending on the direction in which we traverse an arc aj add +ξi or
−ξi to the flow of aj such that the total flow at every node remains
the same and such that the flow of ai is rounded to an integer. Note
that by the choice of arc ai and because the flow capacities of all arcs
are integers, we do not violate any of the capacities when adapting
the flow values like that. The described method eventually constructs
an integer flow because in each step, the number of fractional arcs
of H is reduced by at least one.

The above rounding scheme is inherently centralized and when
trying to implement it using a distributed algorithm, we face two
main problems. First, in k rounds, nodes can only detect cycles of
length at most 2k. Second, even if all fractional cycles were short,
in order to have enough parallelism, a large number of cycles needs
to be handled simultaneously. Unfortunately, the only solution for
the first problem is to only look at short cycles and to round frac-
tional arcs which do not lie on short cycles by some other method.
The second problem can be solved by again using the network de-
composition algorithm from [23] described at the beginning of this
section. The details of the distributed rounding mechanism for node
assignments are defined by Algorithm 2. The algorithm executes the
decomposition algorithm A(p, R) K times on a graph GO(log n).
We use the following notation. Denote the set of nodes which is se-
lected in execution h by Sh and let C

(h)
i , i = 1, . . . , C(Sh) be the

clusters induced by Sh. Further let `
(h)
i be the leader of cluster C

(h)
i .

For a cluster C, define H[C] to be the subgraph of H induced by s,
t, and all nodes pi and qi corresponding to nodes vi ∈ C. Finally,
Algorithm 2 uses two constants c and d which we will specify later.

LEMMA 4.9. When applied to an α-approximation of LPCapDS

with integer variables xi and (ρ, β)-violated capacities, Algorithm 2
computes a 3α-approximation of ILPCapDS with capacity violation
(ρ, β + 1) in time O(log3 n) w.h.p.

PROOF. When choosing p = 1/2 and R = log2(n+1), we have
p(1 − pR)n ≥ 1/(2e). The number K of executions of A(p, R) is
chosen such that every node v ∈ V is in a cluster of Gd ln n at least
once w.h.p. when choosing c ≥ 1:

P[∃v ∈ V : ∀h ∈ [K] : v 6∈ Sh]

≤ n ·
(
1− p(1− pR)n

)K

≤
(

1− 1

2e

)2e·c·ln n

<
1

nc
.

Let us therefore assume that every node v ∈ V is in at least one
cluster of Gd ln n. In Lines 5-9, for each node v in a cluster C

(h)
i ,

all nodes at distance ≤ d ln(n)/2 from v (the (d ln(n)/2)-ball of
v) is added to cluster C

(h)
i . Because the distance between nodes

of different clusters of Sh are at distance more than d ln n in G,
two clusters C

(h)
i and C

(h)
j remain disjoint even after adding all

(d ln(n)/2)-balls. This means that every (d ln(n)/2)-ball of G is
completely contained in some cluster C

(h)
i .



Algorithm 2 Assigning Nodes to Dominators
1: p := 1/2; R := log2(n + 1); K := 2e · c · ln n
2: K executions of A(p, R) on Gd ln n

3: for h := 1 to K do
4: for all clusters C

(h)
i do

5: for all nodes u ∈ C
(h)
i do

6: for all nodes v : dG(u, v) ≤ d ln n
2

do
7: Add v to C

(h)
i

8: od
9: od

10: `
(h)
i collects induced subgraph of C

(h)
i

11: remove all fractional cycles in H[C
(h)
i ]

12: od
13: od
14: for all (vi, vj) ∈ E do
15: if y′ij 6∈ {0, 1} then
16: y′ij := 0
17: fi
18: od
19: for all vi ∈ V do
20: if

∑
vj∈Γ(vi)

y′ji < 1 then
21: x′i := 1; y′ii := 1
22: fi
23: od

In Line 11, the rounding algorithm which we described for the
non-distributed case is applied to subgraphs H[C

(h)
i ] of H induced

by clusters C
(h)
i . Because every ball of radius d ln(n)/2 of G is

contained in some cluster, every cycle of length d ln(n) of G is also
completely contained in some cluster. Therefore, also every cycle of
length d ln(n) of H is completely contained in some H[C

(h)
i ]. After

applying the rounding step in Line 11 for all clusters (for all i and
h), H does not contain fractional cycles of length at most d ln(n)
any more.

It is well-known that the number of edges of every graph G with
n nodes and girth g (smallest cycle has length g) is upper bounded
by n1+τ/g for some constant τ . Let Vf be the set of nodes which are
still covered by fractional edges after Line 13 and let D be the initial
dominating set. The number of remaining fractional edges ef (H) of
H after Line 13 is at most

ef (H) ≤ (1 + |D|+ |Vf |)1+
τ

d ln n . (9)

Because every node in Vf is covered by at least 2 fractional edges,
we also have

ef (H) ≥ 2 · |Vf |. (10)

Combining (9) and (10) gives |Vf | ≤ 2|D| if we choose d = τ(ln 3+
o(1)). Note that the nodes which are added to the dominating set in
Line 21 are exactly the nodes in Vf . The size of the dominating set
is therefore increased by at most a factor of 3. The only possible ad-
ditional capacity constraint violation of Algorithm 2 is caused when
a node vi has to cover itself in Line 21.

We have therefore proven the claimed approximation ratio and
capacity constraint violation and it remains to show that the time
complexity of Algorithm 2 is O(log3 n). The number of rounds
needed to compute the K executions of A(p, R) is O(Rd ln n) =
O(log2 n) when done in parallel and O(KRd ln n) = O(log3 n)
when done sequentially. Lines 3-13 have to be done sequentially for
h = 1, . . . , K. However for a particular h, all clusters can be han-
dled concurrently. The time to add the (d ln(n)/2)-balls to the clus-
ters, to collect the topology of each cluster, and to do the local com-
putation at the cluster leaders is O(Rd ln n) = O(log2 n). The total

time complexity for Lines 3-13 therefore becomes O(K log2 n) =
O(log3 n). The rest of the algorithm can be computed in a constant
number of rounds.

Combining Theorem 4.7 and Lemmas 4.8 and 4.9, we obtain the
main theorem of this section.

THEOREM 4.10. There is a distributed capacitated dominating
set algorithm with expected approximation ratio O(log ∆) and time
complexity O(log3(n) + log(n)/ε) w.h.p. if we allow (1 + ε, 2)-
violated capacity constraints.

Message Size: Our distributed capacitated dominating set algo-
rithm makes frequent use of the assumption that we can pack as
much information as we like in every message. Many of the compu-
tations such as computing a network decomposition of a graph Gk,
however, can be implemented with messages of size only O(log n)
if we allow the time complexity to grow by a polylogarithmic fac-
tor [23]. However there are parts of the algorithm for which we do
not know how to implement them with small messages in polylog-
arithmic time. In particular, this is true for solving the local LPs in
the LPCapDS approximation algorithm and for removing short frac-
tional cycles of H in the second rounding step. Whether a result
similar to the one given by Theorem 4.10 can be achieved with mes-
sages of polylogarithmic size is an interesting open problem.

Alternative Rounding: For ε À 1/ log2 n, the main contribu-
tion to the time complexity of our CapMDS algorithm comes from
the rounding of the assignments. If we allow to violate the capac-
ity constraints by a multiplicative constant factor, it is possible to
compute integer assignments in O(1) rounds by using the following
simple method. Each node vj chooses a dominator vi according to
the distribution given by the values of yij and requests to be covered
by vi. Each dominator vi accepts γ such requests for a suitable con-
stant γ. If vi does not accept the dominating request from a node
vj , vj joins the capacitated dominating set and covers itself. It can
be shown that when choosing γ large enough, the number of nodes
added to the dominating set is proportional to the number of nodes
already in the dominating set w.h.p.

5. BOUNDED INDEPENDENCE GRAPHS

5.1 Lower Bounds
In the non-uniform case, the CapMDS problem remains non-local

even in geometric graphs such as the unit disk graphs or general
BIGs. The reason is that by appropriately adjusting capacities, the
example in Figure 1 can be drawn as a BIG.

THEOREM 5.1. There are bounded independence graphs G with
non-uniform capacities, such that in k communication rounds, every
(possibly randomized) distributed algorithm for the minimum ca-
pacitated dominating set problem on G has approximation ratios
at least Ω

(
n/k2

)
and Ω(∆/k).

PROOF. Consider the example in Figure 1, but collapse every
cluster to a clique. Arrange these cliques in such a way that bridge-
nodes cover all nodes in their neighboring cliques. Every node in a
clique has capacity 1, whereas the capacity of bridge-nodes remains
m + 1. The remainder of the proof is then analogous to the proof of
Theorem 4.1.

5.2 Upper Bounds for the Uniform Case
We have seen that for general graphs, even for uniform capacities,

it is impossible to compute a non-trivial approximation for CapMDS
in time substantially less than the diameter of the network without
violating the capacity constraints. We now show that the situation is



Algorithm 3 Dominating Set of Cluster Ci

1: S := MIS(V )
2: {(ui, Ci)} := cluster(S, V )
3: return

⋃
ui∈S CapDS(ui, Ci)

4:
5: function CapDS(v, Cv)
6: begin
7: if |Cv| ≤ cap then
8: return {(v, Cv)}
9: else

10: Sv := MIS(Cv \ {v})
11: {(ui, Ci)} := cluster(Sv, Cv)
12: t := |{(ui, Ci)}|
13: if t ≤ 2 then
14: A ⊂ Ct \ {ut} s.t. |Cv \ Ct ∪A| = dcap/2e
15: if t = 1 then
16: C0 := A ∪ {v}
17: else
18: C0 := C1 ∪A ∪ {v}
19: fi
20: return CapDS(v, C0) ∪ CapDS(ut, Ct)
21: fi
22: Ct+1 := C1 ∪ {v}; ut+1 := v; i := 2
23: while |Ct+1|+ |Ci| ≤ cap do
24: Ct+1 := Ct+1 ∪ Ci; i := i + 1
25: od
26: if |Ct+1| < cap/t then
27: A ⊂ Ci \ {ui} s.t. |A| = dcap/te − |Ct+1|
28: Ci := Ci \A; Ct+1 := Ct+1 ∪A
29: fi
30: return

⋃t+1
j=i CapDS(uj , Cj)

31: fi
32: end

different for geometric network graphs G by presenting an efficient
distributed algorithm which computes a constant approximation for
CapMDS with uniform capacities without violating capacities if G
is a BIG.

In the following we assume that cap(v) = cap for all v ∈ V . Our
algorithm (Algorithm 3) for computing a small capacitated dominat-
ing set on BIGs consists of two phases. In the first phase, a maximal
independent set (MIS) S of G is computed. S induces a partition
of the nodes of G into clusters Ci of radius 1 as follows. We con-
struct a cluster Ci for every node vi ∈ S. Every node v ∈ V \ S is
added to an arbitrary cluster Ci of an adjacent node vi ∈ S. In the
second phase, for each cluster Ci, a capacitated dominating set of
size O(|Ci|/cap) is computed. The details of the computation are
defined in Algorithm 3 which returns a set of pairs (u, C) consisting
of a node u of the dominating set and the set of nodes C assigned
to u. In Line 2 and 11, Algorithm 3 calls a function cluster(S, V )
which computes the clustering induced by a MIS S. We assume that
the clusters (ui, Ci) returned by cluster(S, V ) are sorted according
to non-decreasing cluster size |Ci|.

THEOREM 5.2. Let G be a graph of bounded independence. Al-
gorithm 3 computes an O(1)-approximation of the minimum capac-
itated dominating set problem in time O(TMIS), where TMIS denotes
the time to compute a maximal independent set on G.

PROOF. Assume that G is f -independence bounded for some
function f(r). We show that Algorithm 3 computes a capacitated
dominating set D of size

|D| ≤ |S|+ n · f(1)/cap. (11)

It is well known that a MIS S is an f(1)-approximation of the
minimum dominating set problem without capacity constraints. For
an optimal dominating set D∗, every node u ∈ S can be assigend
to an adjacent node v ∈ D∗ and by the definitions of a MIS and f -
independence boundedness, at most f(1) nodes u ∈ S are assigend
to every node v ∈ D∗. Because in a capacitated dominating set
D, every node v ∈ D can dominate at most cap(v) = cap nodes,
Inequality (11) implies that the set D is a 2f(1)-approximation for
CapMDS.

To prove Inequality (11), we show that the set C of every recursive
call of CapDS(u, C) in Lines 20 and 30 of Algorithm 3 contains at
most

|C| ≥ cap

f(1)
(12)

nodes. This means that every node u ∈ D \ S covers at least
cap/f(1) nodes, which implies Inequality (11).

Consider an execution of the function CapDS. Because G is f -
independence bounded, we have t ≤ f(1). First consider the case
t ≤ 2. Because Cv > cap (otherwise there is no recursive call), sets
C0 and Ct in the recursive calls in Line 20 contain at least dcap/2e
elements. Note that we can assume that f(1) ≥ 2 because otherwise
G would be a complete graph. Inequality (12) is thus satisfied if
t ≤ 2.

If t ≥ 3, Inequality (12) holds for j = t + 1 because set Ct+1 is
constructed such that |Ct+1| ≥ dcap/te. For i ≤ j ≤ t where i is
the index for which the while loop condition in Line 23 is violated,
we first consider the case where the condition in the if statements in
Line 26 is not satisfied. Recall that we assume |Cj | ≤ |Cj+1| for
all j. For the sake of contradiction, assume that |Cj | < cap/t for
j ≥ i. We then have

j∑

h=1

|Ch| < j · cap

t
< t · cap

t
< cap.

This is a contradiction to the assumption that the while loop condi-
tion in Line 23 is violated for j = i. We therefore know that Inequal-
ity (12) is satisfied for all j if the if-condition in Line 26 is not true.
If the condition in Line 26 is satisfied, Inequality (12) holds for j > i
by using the same argument and it remains to prove that it also holds
for j = i in this case. By combining the while-condition of Line 23
and the if-condition of Line 26, we obtain |Ci| > cap−cap/t−|A|.
Before adding |A|, the set Ct+1 contains at least the two nodes v
and u1. We therefore have |A| ≤ dcap/te − 2 < cap/t and thus
|Ci| > cap/t if t ≥ 3, which concludes the proof of Inequality (12),
and hence the approximation ratio.

For the time complexity, note that all computations in function
CapDS(v, Cv) are within v’s 1-neighborhood. MIS nodes ui ∈ S
can learn all edges between their neighbors in one round and then
compute CapDS(v, Cv) locally without communicating.

Computing a MIS: Depending on the network graph model, the
time TMIS for computing a MIS in a distributed way varies.
• For general graphs, a MIS can be computed in expected TMIS ∈

O(log n) rounds by using messages of size O(log n) [1, 24].
• For general BIGs, there is a deterministic algorithm which com-

putes a MIS in time TMIS∈ O(log ∆ log∗n) with messages-size
O(log n)[19].

• If G is a unit ball graph which with underlying doubling metric2

and if all nodes know the distance to their neighbors, a MIS can
2The unit ball graph induced by a metric space (V, d) is the graph
with node set V and where two nodes u, v ∈ V are connected by
an edge iff d(u, v) ≤ 1. A metric space is said to be doubling if
every ball can be covered with a constant number of balls of half the
radius. For instance, unit disk graphs are such unit ball graphs.



be computed in time TMIS ∈ O(log∗n) [17] with messages of
size O(∆ log n).

• Combining techniques from [17] and [19], it can be shown that
if G is a unit disk graph and every node knows its coordinates,
then TMIS ∈ O(1).

Message Size: As described above, Algorithm 3 requires sending
messages of size O(∆ log n) (a neighbor v of a node u ∈ S has to
send a list of its at most ∆ neighbors to u). It is straightforward to
implement the algorithm in time O(TMIS log n) by using messages
of size only O(log n) if the recursion depth of CapDS(v, Cv) can
be bounded by O(log n) and if we use a MIS algorithm which only
requires messages of size O(log n). This is possible by making the
following simple adjustment. If the largest cluster Ct contains more
than 2|Cv|/3 elements, we can move |Cv|/3 of its elements to the
cluster of v. This reduces the number of nodes in each recursive call
by at least a factor of 2/3.

6. CONCLUSION
In this work, we have derived the first distributed approximation

results on the capacitated dominating set problem, which naturally
arises in numerous distributed application and networking scenarios.
Our results show that even in simple geometric network graphs, the
problem with non-uniform capacities is inherently non-local. That
is—like 2-coloring a ring, or constructing an MST, for instance—
CapMDS belongs to a class of distributed computing problems for
which every distributed algorithm requires a running time that cor-
responds to the network diameter in the worst-case. Interestingly,
if capacities are allowed to be violated by a factor of 1 + ε, for an
ε > 0, the problem becomes much more local. The relaxed ver-
sion of CapMDS belongs to the same class of distributed problems
as, say maximum matching, minimum vertex cover, or the normal
dominating set problem [16, 18]. For these problems, a logarithmic
or polylogarithmic time complexity is both necessary and sufficient
for achieving a polylogarithmic approximation ratio. In future work,
it will be interesting to narrow the gap between upper and lower
bounds and—more generally—to devise local approximation algo-
rithms for other important network coordination problems.
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