
Systematically exploring
control programs (Lecture I)

Ratul Mahajan

Microsoft Research

Joint work with Jason Croft,
Matt Caesar, and Madan Musuvathi

Control programs are everywhere

From the smallest of networks to the largest

Control programs are everywhere

From the smallest of networks to the largest

The nature of control programs

Collection of rules with triggers and actions

motionPorch.Detected:

if (Now - tLastMotion < 1s

&& lightLevel < 20)

porchLight.Set(On)

tLastMotion = Now

@6:00:00 PM:

porchLight.Set(On)

@6:00:00 AM:

porchLight.Set(Off)

packetIn:

entry = new Entry(inPkt.src,

inPkt.dst)

if (!cache.Contains(entry)

cache.Insert(entry, Now)

CleanupTimer:

foreach entry in cache

if (Now – cache[entry] < 5s)

cache.Remove(entry)

Buggy control programs wreak havoc

One nice morning in
the summer

Buggy control programs wreak havoc

“I had a rule that would turn on the heat, disarm the
alarm, turn on some lights, etc. at 8am …..

I came home from vacation to find a warm, inviting,
insecure, well lit house that had been that way for a
week……

That’s just one example, but the point is that it has
taken me literally YEARS of these types of mistakes to
iron out all the kinks.”

Control programs are hard to reason about

motionPorch.Detected:

if (Now - timeLastMotion < 1 secs

&& lightMeter.Level < 20)

porchLight.Set(On);

timeLastMotion = Now;

porchLight.StateChange:

if (porchLight.State == On)

timerPorchLight.Reset(5 mins);

timerPorchLight.Fired:

if (Now.Hour > 6AM && Now.Hour < 6PM)

porchLight.Set(Off);

Dependence on
time

Rule
interaction

Large input
space

9:00 PM Physical
actuation

9:04 PM Motion

9:05 PM Lights off

Desirable properties for bug finders

Sound Complete Fast

Two bug finding methods

Testing Model checking

Two threads in model checking

Check models Check code

Model checking code

FSM is the most popular abstraction

Model checking code

FSM is the most popular abstaction

Model checking code

FSM is the most popular abstraction

– Decide what are “states” and “transitions”

S0

S1 S2

T1 T2

S3

T1
T2 T1

S4

T2

Example

motionPorch:

porchLight.Set(On)

timer.Start(5 mins)

porchLight.On:

timer.Start(5 mins)

timer.Fired:

porchLight.Set(Off)

[PorchLight, Timer]

[Off, Off]

[On, On]

Motion
LightOn

Motion LightOn

Timer

[Off, On]

LightOff
LightOn
MotionTimer

Exploring input space

motionPorch:

if (lightLevel < 20)

porchLight.Set(On)

timer.Start(10 mins)

porchLight.On:

timer.Start(5 mins)

timer.Fired:

porchLight.Set(Off)

To explore comprehensively,
must consider all possible
values of input parameters

[Off, Off]

[…]

LtLvl=0

[…]

LtLvl=99
● ● ●

[PorchLight, Timer]

[Off, Off]

[Off, Off]

LtLvl=0

[On, On]

LtLvl=19 LtLvl=99
LtLvl=20● ● ● ● ● ●

[PorchLight, Timer]

Symbolic execution

if (x < 2)

if (y > 5)

p = 1;

else

p = 2;

else

if (y > 10)

p = 3;

else

p = 4;

(x,y,p) = (𝜎𝑥, 𝜎𝑦, 𝜎𝑝)

𝜎𝑥 < 2

𝜎𝑦 > 5

𝜎𝑥 < 2
𝜎𝑦 > 5

𝜎𝑝 = 1

𝜎𝑥 ≥ 2

𝜎𝑦 ≤ 5

𝜎𝑝 = 2

𝜎𝑥 ≥ 2
𝜎𝑦 > 10

𝜎𝑝 = 3

𝜎𝑥 ≥ 2
𝜎𝑦 ≤ 10

𝜎𝑝 = 4

𝜎𝑦 ≤ 5

𝜎𝑥 ≥ 2

𝜎𝑦 > 10 𝜎𝑦 ≤ 10

Finding equivalent inputs using
symbolic execution

motionPorch:

if (lightMeter.level < 20)

porchLight.Set(On)

timer.Start(5 mins)

porchLight.On:

timer.Start(5 mins)

timer.Fired:

porchLight.Set(Off)

1. Symbolically execute each trigger

2. Find input ranges that lead to same state

LtLvl < 20 LtLvl ≥ 20

LtLvl=∗

LtLvl=∗

Finding equivalent inputs using
symbolic execution

motionPorch:

x = lightMeter.Level

porchLight.On:

timer.Start(5 mins)

timer.Fired:

porchLight.Set(Off)

1. Symbolically execute each trigger

2. Find input ranges that lead to same state

LtLvl= 0 LtLvl= 99• • • •

Efficiently exploring the input space

[Off, Off]

[Off, Off]

Motion,
LtLvl =10

[On, On]

Motion,
LtLvl = 20

motionPorch:

if (lightMeter.level < 20)

porchLight.Set(On)

timer.Start(5 mins)

porchLight.On:

timer.Start(5 mins)

timer.Fired:

porchLight.Set(Off)

LtLvl < 20 LtLvl ≥ 20

Pick random values in equivalent classes

Use symbolic execution alone?

Trigger0,
Trigger1,
Trigger2

[] Trigger0 []

Trigger1

Trigger2

Symbolic, path-based Concrete, state-based

Exploring temporal behavior:
soundness

motionPorch:

porchLight.Set(On)

timerDim.Start(5 mins)

timerOff.Start(10 mins)

porchLight.On:

timerDim.Start(5 mins)

timerOff.Start(10 mins)

timerDim.Fired:

porchLight.Set(Dim)

timerOff.Fired:

porchLight.Set(Off)

if timerDim.On()

Abort();

[PorchLight, TimerDim, TimerOff]

[Off, Off, Off]

[On, On, On]

LightOff

[Off, On, On] [Off, On, Off][Dim, Off, On]

Motion
LightOn

TimerOffLightOff

Motion
LightOn

TimerDim

Exploring temporal behavior:
completeness

motionPorch:

if (Now - tLastMotion < 60)

porchLight.Set(On)

timer.Start(600)

tLastMotion = Now

porchLight.On:

timer.Start(600)

timer.Fired:

porchLight.Set(Off)

To explore comprehensively,
must fire all possible events
at all possible times

Trigger0:

tTrigger1 = Now

tTrigger2 = Now

trigger1Seen = false

Trigger1:

if (Now – tTrigger1 < 5)

trigger1Seen = true

tTrigger1 = Now

Trigger2:

if (trigger1Seen)

if (Now – tTrigger2 < 2)

DoSomething()

else

DoSomethingElse()

[trigger1Seen, tTrigger1, tTrigger2]

[false, T, T]

[true, T+3, T]

Trigger2

Trigger1
[Now=T+3]

[false, T+6, T]

Trigger1
[Now=T+6]

DoSomething() DoSomethingElse()

[trigger1Seen, tTrigger1, tTrigger2]

[false, T, T]

[true, T+1, T]

Trigger2

Trigger1
[Now=T+1]

[false, T+6, T]

Trigger1
[Now=T+6]

DoSomething() DoSomethingElse()

Trigger0:

tTrigger1 = Now

tTrigger2 = Now

trigger1Seen = false

Trigger1:

if (Now – tTrigger1 < 5)

trigger1Seen = true

tTrigger1 = Now

Trigger2:

if (trigger1Seen)

if (Now – tTrigger2 < 2)

DoSomething()

else

DoSomethingElse()

The tyranny of “all possible times”

Speed

Completeness

Timed automata

FSM (states, transitions) + the following:

• Finite number of real-values clocks (VCs)

• All VCs progress at the same rate, except that
one or more VCs may reset on a transition

• VC constraints gate transitions

[trigger1Seen]

[false]

[true]

Trigger0
() [x1,x2]

Trigger1
(x1<5) [x1]

Trigger1
(x1 >=5) [x1]

Trigger2 (x2 < 2)
[] {DoSomething}

Trigger2 (x2 >= 2)
[] {DoSomethingElse}

Trigger0
() [x1,x2]

Trigger1
(x1 >= 5) [x1]

Trigger1
(x1 < 5) [x1]

Trigger2
() []

Trigger0:

tTrigger1 = Now

tTrigger2 = Now

trigger1Seen = false

Trigger1:

if (Now – tTrigger1 < 5)

trigger1Seen = true

tTrigger1 = Now

Trigger2:

if (trigger1Seen)

if (Now – tTrigger2 < 2)

DoSomething()

else

DoSomethingElse()

Properties of timed automata

If VC constraints are such that:

No arithmetic operation involving two VCs

No multiplication operation involving a VC

No irrational constants in constraints

Time can be partitioned into equivalence regions

x + y < z

2x < 3

x < 2

x < y + 2

[s0] [s1]

t1 (x<2) [x]

t2 (y<1) [y] X 

Y


0 1 2

1

28 regions

• Corner points (6)

• Line segments (14)

• Spaces (8)

x < 2

X1 

X
2

 
1 2 3 4 5

1

2

0

Trigger0:

tTrigger1 = Now

tTrigger2 = Now

trigger1Seen = false

Trigger1:

if (Now – tTrigger1 < 5)

trigger1Seen = true

tTrigger1 = Now

Trigger2:

if (trigger1Seen)

if (Now – tTrigger2 < 2)

DoSomething()

else

DoSomethingElse()

Why regions are fine-grained

[s0] [s1]

t1 (x<2) [x]

t2 (y<1) [y] X 

Y


0 1 2

1

X 

Y


0 1 2

1
● ●

● ●

● (0.5, 0.5) ● (1.5, 0.5)

● (1.5, 1.5) ● (2.5, 1.5)
[s0] [s1]

t1 (x<2) [x]

t2 (y<1) [y]

[s2]t3 (x<2, y > 1)

Region construction
If integer constants and simple constraints (e.g., 𝑥 < c)

Straight lines

∀𝑥: {𝑥 = 𝑐 | 𝑐 = 0, 1, … 𝑐𝑥}

Diagonals lines

∀𝑥, y: fract 𝑥 = fract y 𝑥 < c𝑥 , y < cy}

X1 

X
2

 

1 2 3 4 5

1

2

0

x2 < x1 + 2

Why this construction works

X1 

X
2

 

1 2 3 4 5

1

2

0

● ●

● ●
1. X1 < 5

2. X2 < 2

3. X1 < 5 && X2 > 2

Why this construction works

X1 

X
2

 

1 2 3 4 5

1

2

0

● ●

●
●

1. X1 < 5

2. X2 < 2

3. X1 < 5 && X2 > 2

Exploring a TA

[false]

[true]

Trigger0 ()
[x1,x2]

Trigger1
(x1<5) [x1]

Trigger1
(x1 >=5)

[x1]

Trigger2 (x2 < 2)
[] {DoSomething}

Trigger2 (x2 > 2)
[] {DoSomethingElse}

Trigger0 () [x1,x2]

Trigger1 (x1 >= 5)
[x1]

Trigger1
(x1 < 5) [x1]

Trigger2
() []

[false]
x1=0, x2=0

Trigger0
Trigger2

[true]
x1=0, x2=0

[false]
x1=0.5, x2=0.5

Trigger1
δTrigger0

Trigger1

Trigger2
{DoSomething}

[true]
x1=0.5, x2=0.5

δ

Trigger0

[true]
x1=0, x2=0.5

Trigger1
Trigger2

[false]
x1=1, x2=1

δ

Exploring a TA

[false]

[true]

Trigger0 ()
[x1,x2]

Trigger1
(x1<5) [x1]

Trigger1
(x1 >=5)

[x1]

Trigger2 (x2 < 2)
[] {DoSomething}

Trigger2 (x2 > 2)
[] {DoSomethingElse}

Trigger0 () [x1,x2]

Trigger1 (x1 >= 5)
[x1]

Trigger1
(x1 < 5) [x1]

Trigger2
() []

[false]
x1=0, x2=0

Trigger0
Trigger2

[true]
x1=0, x2=0

[false]
x1=0.5, x2=0.5

Trigger1
δTrigger0

Trigger1

Trigger2
{DoSomething}

[true]
x1=0.5, x2=0.5

δ

Trigger0

[true]
x1=0, x2=0.5

Trigger1
Trigger2

[false]
x1=1, x2=1

δ

Systematically exploring
control programs (Lecture II)

Ratul Mahajan

Microsoft Research

Joint work with Jason Croft,
Matt Caesar, and Madan Musuvathi

Recap: The nature of control programs

Collection of rules with triggers and actions

motionPorch.Detected:

if (Now - tLastMotion < 1s

&& lightLevel < 20)

porchLight.Set(On)

tLastMotion = Now

@6:00:00 PM:

porchLight.Set(On)

@6:00:00 AM:

porchLight.Set(Off)

packetIn:

entry = new Entry(inPkt.src,

inPkt.dst)

if (!cache.Contains(entry)

cache.Insert(entry, Now)

CleanupTimer:

foreach entry in cache

if (Now – cache[entry] < 5s)

cache.Remove(entry)

Recap: Timed automata

FSM (states, transitions) + the following:

• Finite number of real-values clocks (VCs)

• All VCs progress at the same rate, except that
one or more VCs may reset on a transition

• VC constraints gate transitions

Recap: Properties of timed automata

If VC constraints are such that:

No arithmetic operation involving two VCs

No multiplication operation involving a VC

No irrational constants in constraints

Time can be partitioned into equivalence regions

x + y < z

2x < 3

x < 2

x < y + 2

[s0] [s1]

t1 (x<2) [x]

t2 (y<1) [y] X 

Y


0 1 2

1

28 regions

• Corner points (6)

• Line segments (14)

• Spaces (8)

x < 2

Recap: Region construction
If integer constants and simple constraints (e.g., 𝑥 < c)

Straight lines

∀𝑥: {𝑥 = 𝑐 | 𝑐 = 0, 1, … 𝑐𝑥}

Diagonals lines

∀𝑥, y: fract 𝑥 = fract y 𝑥 < c𝑥 , y < cy}

X1 

X
2

 

1 2 3 4 5

1

2

0

x2 < x1 + 2

Recap: Exploring a TA

[false]

[true]

Trigger0 ()
[x1,x2]

Trigger1
(x1<5) [x1]

Trigger1
(x1 >=5)

[x1]

Trigger2 (x2 < 2)
[] {DoSomething}

Trigger2 (x2 > 2)
[] {DoSomethingElse}

Trigger0 () [x1,x2]

Trigger1 (x1 >= 5)
[x1]

Trigger1
(x1 < 5) [x1]

Trigger2
() []

[false]
x1=0, x2=0

Trigger0
Trigger2

[true]
x1=0, x2=0

[false]
x1=0.5, x2=0.5

Trigger1
δTrigger0

Trigger1

Trigger2
{DoSomething}

[true]
x1=0.5, x2=0.5

δ

Trigger0

[true]
x1=0, x2=0.5

Trigger1
Trigger2

[false]
x1=1, x2=1

δ

Exploring control programs with TAs

1. Mapping time-related activity to VCs

2. Model devices

3. Construct time regions

4. Compute equivalent classes for inputs

5. Explore states

Mapping to VCs (1/4): Delay measurers

Trigger1:

...

tLast = Now

...

Trigger2:

...

if (Now - tLast < 60)

...

Trigger1:

...

VC_tLast = 0

...

Trigger2:

...

if (VC_tLast < 60)

...

Mapping to VCs (2/4): Periodic timers

timer1.Period = 600

timer1.Event += Timer1Fired

...

Timer1Fired:

...

VC_timer1 = 0

...

VC_timer1 == 600:

...

VC_timer1 = 0

Mapping to VCs (2/4): Delayed actions

Trigger1:

...

timer1.Start(600)

...

timer1.Fired:

...

Trigger1:

...

VC_timer1 = 0

...

VC_timer1 == 600:

...

Mapping to VCs (4/4): Sleep calls

Trigger:

...

Sleep(10)

...

Trigger:

... // pre-sleep actions

VC_sleeper = 0

VC_sleeper == 10:

... // post-sleep actions

Reducing the number of VCs:
Combining periodic timers

timer1.Period = 600

timer1.Event += Timer1Fired

timer2.Period = 800

timer2.Event += Timer2Fired

...

Timer1Fired:

...

Timer2Fired:

...

VC_timer = 0

...

VC_timer == 600:

...

VC_timer == 800:

...

VC_timer = 0

Reducing the number of VCs:
Combining sleep calls

Trigger:

Act1()

Sleep(5)

Act2()

Sleep(10)

Act3()

Trigger:

Act1()

VC_sleeper = 0

sleep_counter = 1;

VC_sleeper == 5:

Act2()

VC_sleeper == 15:

Act3()

Modeling devices

Model a device using one of more key value pairs

– Motion sensor: Single key with binary value

– Dimmer: Single key with values in range [0..99]

– Thermostat: Multiple keys

Keys can be notifying or non-notifying

– Triggers are used for notifying keys

Queries for values are treated as program inputs

Limitations of device modeling

Values can change arbitrarily

Key value pairs of a device are independent

Different devices are independent

Constructing time regions

1. Extract VC constraints
using symbolic execution

2. Construct time regions
using the constraints

Trigger0:

tTrigger1 = Now

tTrigger2 = Now

trigger1Seen = false

Trigger1:

if (Now – tTrigger1 < 5)

trigger1Seen = true

tTrigger1 = Now

Trigger2:

if (trigger1Seen)

if (Now – tTrigger2 < 2)

DoSomething()

else

DoSomethingElse()

Exploration using TA

Region state = Variables values + VC region + ready timers

1. exploredStates = {}

2. unexploredStates = {𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙}

3. While (unexploredStates ≠ 𝜙)

4. 𝑆𝑖 = PickNext(UnexploredStates)

5. foreach event in Events, 𝑆𝑖 . 𝑅𝑒𝑎𝑑𝑦𝑇𝑖𝑚𝑒𝑟𝑠

6. foreach input in Inputs

7. 𝑆𝑜 = Compute(𝑆𝑖, event, input)

8. if (𝑆𝑜 ∉ exploredStates) unexploredStates.Add(𝑆𝑜)

9. if (𝑆𝑖 . 𝑅𝑒𝑎𝑑𝑦𝑇𝑖𝑚𝑒𝑟𝑠 = 𝜙)

10. 𝑆𝑜 = AdvanceRegion(𝑆𝑖) //also marks ReadyTimers

11. if (𝑆𝑜 ∉ exploredStates) unexploredStates.Add(𝑆𝑜)

12. exploredStates.Add(𝑆𝑖)

Optimization: Predicting successor states

Observation: Multiple region states can have
identical response to a trigger

Trigger1:

if (x1 < 5)

trigger1Seen = true

x1= 0

Trigger2:

if (trigger1Seen)

if (x2 < 2)

DoSomething()

else

DoSomethingElse()

tTrigger1

tT
ri

gg
er

2

1 2 3 4 5

1

2

0

●

●

Optimization: Predicting successor states

Observation: Multiple region states can have
identical response to a trigger

Clock personality: region’s evaluation of clock constraints

𝑆1 𝑆2

Same variable values and ready timers

Different regions but same personality

● ● ● ●

Compute

● ● ● ●
Predict

Optimization: Independent control loops

Observation: Control programs tend to have
multiple, independent control loops

1. Determine independent sets of variables

2. Explore independent sets independently

DeLorean

Control program
Safety invariants

Front
end

Program with
virtualized devices

Program
analyzer

Clock constraints
Input space classes

Control loops

Region states
Paths

Explorer

Demo

Evaluation on ten real home
automation rograms

Example bugs

P9-1: Lights turned on even in the absence of motion
– Bug in conditional clause: used OR instead of AND

P9-2: Lights turned off between sunset and 2AM
– Interaction between rules that turned lights on and off

P10-1: Dimmer wouldn’t turn on despite motion
– No rule to cover a small time window

P10-2: One device in a group behaved differently
– Missing reference to the device in one of the rules

Performance of exploration

Time to “fast forward” the home by one hour

Benefit of successor prediction

Successor prediction yields significant advantage

Comparison with untimed model
checking

Untimed model checking reaches many invalid states

Comparison with randomized testing

Random testing misses many valid states

Exploring OpenFlow programs

#devs SLoC #VCs GCD

MAC-Learning Switch
(PySwitch)

2 hosts, 2
sw, 1 ctrl

128 >= 6 1

Web Server Load
Balancer

3 hosts, 1
sw, 1 ctrl

1307 >= 4 1

Energy-Efficient
Traffic Engineering

3 hosts, 3
sw, 1 ctrl

342 >= 8 2

Additional challenges in OF programs

Dynamically created VCs

Variable number of VCs along different paths

packetIn:

timer = new Timer(5s)

Insert(timer, inPkt.src, inPkt.dst)

Open problems

Handling communicating control programs

Exploring all possible topologies

Summary

Control programs are tricky to debug

– Interaction between rules

– Large space of inputs

– Intimate dependence on time

These challenges cab be tacked using

– Systematic exploration (model checking)

– Symbolic execution to find equivalent input classes

– Timed automata based exploration (equivalent times)

