
1

To appear in Computational Linguistics and Chinese Language Processing

The Use of Clustering Techniques for Language Modeling –
Application to Asian Languages

Jianfeng Gao

Microsoft Research, China
Beijing, 100080, P.R.C

jfgao@microsoft.com

Joshua T. Goodman

Microsoft Research, Redmond
Washington 98052, USA

joshuago@microsoft.com

Jiangbo Miao1

Department of Computer &
Information Sciences

University of Delaware, USA

Abstract

Cluster-based n-gram modeling is a variant of normal word-based n-gram modeling. It attempts to
make use of the similarities between words. In this paper, we present an empirical study of clustering
techniques for Asian language modeling. Clustering is used to improve the performance (i.e. perplexity)
of language models as well as to compress language models. Experimental tests are presented for
cluster-based trigram models on a Japanese newspaper corpus, and on a Chinese heterogeneous corpus.
While the majority of previous research on word clustering has focused on how to get the best clusters,
we have concentrated our research on the best way to use the clusters. Experimental results show that
some novel techniques we present work much better than previous methods, and achieve up to more
than 40% size reduction at the same perplexity

1. Introduction

Statistical language modelling (SLM) has been successfully applied to many domains such as speech
recognition, optical character recognition, machine translation, spelling correction, information retrieval,
and spoken language understanding (Jelinek, 1990; Church, 1988; Brown et al., 1990; Kernighan et al.,
1990; Miller et al., 1999; Zue, 1995). The dominant technology in SLM is n-gram models.

Typically, n-gram models are trained on very large corpora. In constructing n-gram models, we always face
two problems. First, for a general domain model, large amounts of training data can lead to models that are
too large for realistic applications. On the other hand, for specific domains, n-gram models usually suffer
from the data sparseness problem, because large amounts of domain-specific data are usually not available.

When n-gram models are used, we can define clusters for similar words in a corpus. We thus augment
word-based n-gram models to cluster-based n-gram models. This has been demonstrated as an effective
way to handle the data sparseness problem. Recent research also shows that cluster-based n-gram models
are effective for rapid domain adaptation, training on small data sets, and reduced memory requirements for
realistic applications.

Extending our previous work in (Goodman, 2001; Gao et al., 2001; Goodman and Gao, 2000), this paper
presents an empirical study of clustering techniques for Asian language modeling. Clustering is used to
improve the performance (i.e. perplexity) of language models as well as to compress language models.
Experimental tests will be presented for cluster-based trigram models on a Japanese newspaper corpus of
more than 10 million words, and on a Chinese heterogeneous corpus of more than 11 million characters.
The majority of previous research on word clustering has focused on how to get the best clusters. We have

1 This work was done while the author was visiting Microsoft Research China.

2

concentrated our research on the best way to use the clusters. Experimental results show that some novel
techniques work much better than previous methods.

This paper is structured as follows: In the remainder of this section, we present an introduction to n-gram
models, smoothing, and performance evaluation. In Section 2, we review briefly previous work on word
clustering and cluster-based n-gram models. In Section 3, we present our technique of using clusters for
trigram models. In Section 4, we describe our method to find the clusters. In Section 5, we present the
results of our main experiments. Finally, we present our conclusions in Section 6.

1.1 N-gram models

The classic task of language modeling is to predict the next word given the previous words. The n-gram
model is the usual approach. It states the task of predicting the next word as attempting to estimate the
conditional probability:

)|()(11 −= nnn wwwPwP L (1)

In practice, the cases of n-gram models that people usually use are for n=2,3,4, referred to as a bigram, a
trigram, and a four-gram model, respectively. For example, in trigram models, the probability of a word is
assumed to depend only on the two previous words:

)|()|(1211 −−− ≈ nnnnn wwwPwwwP L (2)

An estimate of the probability)|(12 −− iii wwwP is given by Equation (3), called the maximum likelihood

estimation (MLE):

)(

)(
)|(

12

12
12

−−

−−
−− =

ii

iii
iii wwC

wwwC
wwwP

(3)

where)(12 iii wwwC −− represents the number of times the sequence iii www 12 −− occurs in training text.

A difficulty with this approximation is that for word sequences that do not occur in the training text,
where 0)(12 =−− iii wwwC , the predicted probability is 0. This makes it impossible for a system, such as a

speech recognition system, to accept such a 0 probability sequence. Thus, these probabilities are typically
smoothed (Chen and Goodman, 1999): some probability is removed from all non-zero counts, and used to
add probability to the 0 count items. The added probability is typically in proportion to some less specific,
but less noisy model. For trigram models, typically a formula of the following form is used:

 >−

=
−−−

−−
−−

−−−−

−−

otherwisewwPww

wwwCif
wwC

wwwCDwwwC
wwwP

iiii

iii
ii

iiiiii

iii

)|()(

0)(
)(

))(()(
)|(

112

12
12

1212

12

α

(4)

where)(12 −− ii wwα is a normalization factor, and is defined in such a way that the probabilities sum to 1.

The function))((12 iii wwwCD −−
is a discount function. It can, for instance, have constant value, in which

3

case the technique is called “Absolute Discounting” or it can be a function estimated using the Good-
Turing method, in which case the technique is called Good-Turing or Katz smoothing (Katz, 1987; Chen
and Goodman 1999).

1.2 Performance evaluation

The most common metric for evaluating a language model is perplexity. Formally, the word perplexity PPW

of a model is the reciprocal of the geometric average probability assigned by the model to each word in the
test set. It is defined as:

∑
=

−−−

=

WN

i

iii
W

wwwP
N

WPP 1

122)|(log
1

2

(5)

where NW is the total number of words in the test set. The perplexity can be roughly interpreted as the
geometric mean of the branching factor of the test document when presented to the language model.
Clearly, lower perplexities are better.

For applications, such as speech recognition, handwriting recognition, and spelling correction, it is
generally assumed that lower perplexity correlates with better performance. In (Gao, et al., 2001), we
present results that indicate this correlation is especially strong when the n-gram model is applied to the
application of pinyin to Chinese character conversion, which is a similar problem to speech recognition.

2. Word Cluster and Cluster-based N-grams

For any given assignment of a word wi to a cluster (also called a class) ci, there may be many to many
mappings, i.e. a word wi may belong to more than one cluster, and a cluster ci will typically contain more
than one word. For the sake of simplicity, in this paper, we assume that a word wi can only be uniquely
mapped to its own cluster ci, which is called hard clustering. The cluster-based n-gram model is a variant of
the word-based n-gram model that uses the frequency of sequences of clusters to help produce a more
knowledgeable estimate of the probability of word strings. The basic cluster-based n-gram model defines
the conditional probability of a word wi based on its history as the product of the two factors: the
probability of the cluster given the preceding clusters, and the probability of a particular word given the
cluster (Brown et al., 1990). For example, in cluster-based trigram models, we have

)|()|()|(1212 −−−− ×= iiiiiiii cccPcwPwwwP (6)

The MLE of the probability of the word given the cluster, and the probability of the cluster given the two
previous clusters can be computed as follows:

)(

)(
)|(

i

i
ii cC

wC
cwP =

(7)

)(

)(
)|(

12

12
12

−−

−−
−− =

ii

iii
iii ccC

cccC
cccP

(8)

4

A large amount of previous research has focused on how to best cluster similar words together. Their
methods can be roughly grouped into two categories: (1) knowledge based clustering, and (2) data-driven
clustering.

In knowledge based clustering, words are clustered based on the syntactic/semantic information we have
for the language and the task (Jelinek, 1990; Heeman, 1999; Heeman and Allen, 1997; Placeway et al.,
1993; Issar and Ward, 1994; Ward and Young, 1993). For example, part of speech (POS) tags can be
generally used to produce a small number of clusters although this may lead to significantly increased
perplexity (Srinivas, 1996; Niesler et al., 1998). Alternatively, if we have domain knowledge, it is often
advantageous to cluster words that have a similar semantic functional role together. For example, (Issar and
Ward, 1994) used tags like CITY and AIRLINE for an airline information system. There is also some
interesting research on word clustering for Chinese language. For example, (Yang, et al., 1994) present a
method in which Chinese words are simply clustered according to their starting and ending characters. It
assumes that because almost every Chinese character is a morpheme with its own meaning, very often
words having the same starting or ending characters share some common linguistic properties and, thus,
can form a word cluster. A good example is the cluster containing “yesterday” (��), “tomorrow” (��),
“everyday” (��), and “Sunday” (���) etc.

In data-driven clustering, words are clustered automatically in a way that the overall perplexity of the
corpus is minimized (Brown et al., 1992). A greedy search algorithm is generally used for clustering. It
basically works as follows. First, each word is initialized to a random cluster. Then, at each iteration, every
word is moved to a cluster such that the resulting model has the minimum perplexity. The algorithm
converges when no single word can be moved to another cluster in a way that reduces the perplexity of the
cluster-based n-gram model. Most previous research has found only small differences between different
techniques for finding clusters (Kneser and Ney, 1993; Yamamoto and Sagisaka, 1999; Ueberla, 1996;
Pereira et al., 1993; Bellegarda et al., 1996; Bai et al., 1998). One result, however, is that automatically
derived clusters outperform POS tags (Niesler et al., 1998), at least when there is enough training data (Ney,
et al., 1994).

While cluster-based n-gram models often offer no perplexity reduction in comparison to word-based n-
gram models, it is beneficial to smooth the word-based n-gram model via either backoff or interpolation
methods (although the improvement is marginal) (Maltese and Mancini, 1992; Miller and Alleva, 1997).
One typical example is a combined model where the cluster-based n-gram model can be linearly
interpolated with a normal word-based n-gram model (Brown et al., 1992)

)|()|()1()|(1212 −−−− ×−+ iiiiiiii cccPcwPwwwP λλ (9)

where λ is the interpolation weight optimized on heldout data.

In this paper, we focus our research on novel techniques of using clusters rather than different ways of
finding clusters. We also notice that all realistic applications have memory constraints. Therefore, we
concentrate our experiments on finding the best way to use cluster-based n-gram models together with
word-based n-gram models to seek the optimum balance between memory storage and perplexity. As will
be shown in Section 5, most experimental results are presented in the form of size/perplexity curves.

3. Using Clusters

In this section, we describe our techniques of using clusters, which are a bit different than traditional
clustering as shown in Equation (6). As a typical example, consider the trigram probability P(w3|w1w2),
where w3 is the word to be predicted, called the predicted word, w1 and w2 are context words to predict w3,
called the conditional word. Either the predicted word or the conditional word can be clustered in building
cluster-based trigram models. Therefore, there are three basic forms of cluster-based trigram models. When
using clusters for the predicted word as shown in Equation (10), we get the first kind of cluster-based
trigram model, called predictive clustering. When using clusters for the conditional word as shown in

5

Equation (11), we get the second model, called conditional clustering. When using clusters for both the
predicted word and the conditional word, we have Equation (12), called combined clustering.

)|()|()|(121212 iiiiiiiiii cwwwPwwcPwwwP −−−−−− ×= (10)

)|()|(1212 −−−− = iiiiii ccwPwwwP (11)

)|()|()|(121212 iiiiiiiiii cccwPcccPwwwP −−−−−− ×= (12)

In what follows, each technique will be discussed in detail, and illustrated by an example.

3.1 Predictive clustering

Consider a probability such as P(Tuesday| party on). Perhaps the training data contains no instances of the
phrase “party on Tuesday”, although other phrases such as “party on Wednesday” and “party on Friday” do
appear. We can put words into clusters, such as the word “Tuesday” into the cluster WEEKDAY. Now, we
can consider the probability of the word “Tuesday” given the phrase “party on”, and also given that the
next word is a WEEKDAY. We will denote this probability by P(Tuesday | party on WEEKDAY). We can
then decompose the probability

P(Tuesday | party on) = P(WEEKDAY | party on) × P(Tuesday | party on WEEKDAY)

When each word belongs to only one cluster, this decomposition is a strict equality. This can be trivially
proven as follows:

)(

)(

)(

)(
)|()|(

12

12

12

12
1212

iii

iiii

ii

iii
iiiiiii cwwP

wcwwP

wwP

cwwP
cwwwPwwcP

−−

−−

−−

−−
−−−− ×=×

)(

)(

12

12

−−

−−=
ii

iiii

wwP

wcwwP (13)

Now, since each word belongs to a single cluster, P(ci|wi)=1, and thus

)|()()(121212 iiiiiiiiiii wwwcPwwwPwcwwP −−−−−− ×=

)|()(12 iiiii wcPwwwP ×= −−

)(12 iii wwwP −−= (14)

Substituting Equation (14) into Equation (13), we get

)|(
)(

)(
)|()|(12

12

12
1212 −−

−−

−−
−−−− ==× iii

ii

iii
iiiiiii wwwP

wwP

wwwP
cwwwPwwcP

(15)

6

Now, although Equation (15) is a strict equality, when smoothing is taken into consideration, using the
clustered probability will be more accurate than the non-clustered probability. For instance, even if we have
never seen an example of “party on Tuesday”, perhaps we have seen examples of other phrases, such as
“party on Wednesday” and thus, the probability P(WEEKDAY | party on) will be relatively high. And
although we may never have seen an example of “party on WEEKDAY Tuesday”, after we backoff or
interpolate with a lower order model, we may able to accurately estimate P(Tuesday|on WEEKDAY). Thus,
our smoothed clustered estimate may be a good one. We call this particular kind of clustering predictive
clustering. The general form is Equation (10).

3.2 Conditional clustering

On the other hand, we can also cluster the words we are conditioning on. For instance, if “party” is in the
cluster EVENT and “on” is in the cluster “PREPOSITION”, then we could write

P(Tuesday | party on) ≈ P(Tuesday | EVENT PREPOSITION)

We call this kind of clustering conditional clustering. The general form is Equation (11).

3.3 Combined clustering

It is also possible to combine both predictive and conditional clustering, and, in fact, for some applications,
this combination works better than either one separately. Thus, we can compute

P(Tuesday | party on) =
P(WEEKDAY | EVENT PREPOSITION) × P(Tuesday | EVENT PREPOSITION WEEKDAY)

We call this kind of clustering combined clustering. The general form is Equation (12). Equation (12) is a
generalization of predictive clustering of Equation (10), in which case we used no clustering for conditional
words; and is a generalization of conditional clustering of Equation (11), in which case we used no
clustering for predicted words. Also notice that the combined cluster-based trigram model of Equation (12)
is actually a generalization of a technique invented at IBM (Brown et al., 1992), which uses the
approximation P(wi|ci-2 ci-1 ci) ≈P(wi|ci) to get

P(Tuesday | party on) ≈
P(WEEKDAY| EVENT PREPOSITION) × P(Tuesday | WEEKDAY)

The approximation is suboptimal unless we use high (count) cutoffs for bigram and trigram. Given that
combined clustering uses more information than regular IBM clustering, we assume that it would lead to
improvements. As will be shown in Section 5, it works about the same or a little better, at least when
interpolated with a normal word-based trigram model.

4. Finding Clusters

As described in Section 2, a large number of techniques for finding clusters have been presented, but
previous studies showed that no one outperformed others significantly. In this paper, we do not explore
different techniques for finding cluster, but simply pick one we think would be good, based on previous
research.

7

There is no need for the clusters used for different positions to be the same. In particular, for a model like
IBM clustering, with P(wi|ci)×P(ci|ci-2 ci-1), we call the cluster ci a predictive cluster, and the clusters ci-2

and ci-1 conditional clusters. The predictive and conditional clusters can be different (Yamamoto and
Sagisaka, 1999). For instance, consider a pair of words like “a” and “an”. In general, “a” and “an” can
follow the same words, and so, for predictive clustering, belong to the same cluster. But, there are very few
words that can follow both “a” and “an”, and so, for conditional cluster, they belong to different clusters.
We have also found in experiments that the optimal numbers of clusters used for predictive and conditional
clustering are different. In this paper, we always optimize both the number of conditional and predictive
clusters separately, and reoptimize for each technique on each training data set. This is a very time
consuming experiment, since each time the number of clusters is changed, the models must be rebuilt from
scratch. We always try numbers of clusters that are powers of 2, e.g. 1, 2, 4, etc. This seems to produce
numbers of clusters that are close enough to optimal.

The clusters are found automatically using a tool that attempts to minimize perplexity. In particular, for the
conditional clusters, we try to minimize the perplexity of training data for a bigram of the form P(wi|ci-1),
which is equivalent to maximizing

∏
=

−

N

i
ii cwP

1
1)|((16)

For the predictive clusters, we try to minimize the perplexity of training data of P(ci|wi-1)×P(wi|ci). We do
not minimize P(ci|wi-1)×P(wi|wi-1 ci), because we are doing our minimization on unsmoothed training data,
and the latter formula would thus be equal to P(wi|wi-1) for any clustering. If we were to use the method of
leaving-one-out (Kneser and Ney, 1993), then we could use the latter formula, but the approach is more
difficult. Now,

∏∏
= −

−

=
− ×=×

N

i i

ii

i

ii
N

i
iiii cP

wcP

wP

cwP
cwPwcP

1 1

1

1
1)(

)(

)(

)(
)|()|(

∏
=

−

−

×=
N

i i

ii

i

ii

cP

cwP

wP

wcP

1

1

1)(

)(

)(

)(

∏
=

−
−

×=
N

i
ii

i

i cwP
wP

wP

1
1

1

)|(
)(

)(

(17)

Now,
)(

)(

1−i

i

wP

wP is independent of the clustering used. Therefore, for the selection of the best clusters, it is

sufficient to try to maximize ∏ = −
N

i ii cwP
1 1)|(. This is very convenient, since it is exactly the opposite of

what was done for conditional clustering. It means that we can use the same clustering tool for both, and
simply switch the order used by the program used to get the raw counts for clustering. We give more details
about the clustering algorithm in Appendix B.

5. Results and Discussion

In this section, we report our main experiments. In Section 5.1, we describe the text corpus we used. In
Section 5.2, we compare the performance of word-based trigram models with cluster-based n-gram models.
We show perplexity results of cluster-based n-gram models alone, as well as combined models where the
cluster-based n-gram models were interpolated with word-based n-gram models. In Section 5.3, we present
a fairly thorough comparison of different techniques of using clusters for language model compression. We
then show that our novel clustering techniques can produce much smaller models at a given perplexity.

8

5.1 Corpora

We performed our experiments on both Chinese and Japanese text corpora. In both cases, we built language
models on training data sets of medial size. We performed parameter optimization on a separate set of
heldout data, and performed testing on a set of test set. None of the three data sets overlapped. Out-of-
vocabulary words were not included in perplexity computations.

For the Chinese corpus, we used the IME corpus for language model training. It is a balanced corpus, and is
of great variety in domain as well as in style. It is collected from the Microsoft input method editor (IME –
a software layer that converts keystrokes into Chinese character) tasks. It consists of 11 million characters
(or 7 million words after word segmentation). We used 10,000 words for heldout data, and 20,000 words
for testing data. The heldout and test data set were every 50th sentence from two non-overlapping sets of an
independent open test set. The open test set is carefully designed, and contains approximately half a million
characters that have been proofread and balanced among domains, styles, and time (Gao et al., 2001). The
lexicon we used is defined by Chinese linguists, with 50,180 entries. The experiments on the Chinese
corpus are fairly open tests, since we used heterogeneous (in domain and style) data sets from different
sources for language model training and testing. Thus, we assume that problems from data sparseness and
training-test mismatch are relatively serious.

For experiments on Japanese language modeling, we used a subset of the Nikkei newspaper corpus. In
particular, we used the most recent ten million words of the Nikkei corpus for training. As in the Chinese
case, we used 10,000 words for heldout data, and 20,000 words for testing data. The heldout and test data
set were every 50th sentence from two non-overlapping sets, taken from another section of the Nikkei
corpus. The lexicon we used contains 180,187 Japanese words. The experiments on the Japanese corpus are
more like closed tests, since we used homogeneous (at least in style) data sets from the same corpus for
language model training and testing. We then assume that data sparseness and training-test mismatch are
less serious than for the Chinese corpus. We also assume that the Japanese lexicon is far more complete
than the Chinese one. A certain number of the entries in the Japanese lexicon are expressions (e.g. of time
and date).

By using the abovementioned Chinese and Japanese text corpora, we would like to test the robustness of
our clustering techniques for different languages, corpora, and word sets (e.g. lexicons).

5.2 Clustering for language model improvement

The techniques of finding clusters described in Section 4 were applied to the training corpus to determine
suitable word clusters. The word clusters obtained were used to define a cluster-based trigram model and to
compute the perplexity on the test sets.

In the experiments, the clustering technique we used creates a binary branching tree with words at the
leaves. By cutting the tree at a certain level, it is possible to achieve a wide variety of different numbers of
clusters. For instance, if the tree is cut after 8th level, there will be roughly 2^8=256 clusters. Since the tree
is not balanced, the actual number of clusters may be somewhat smaller. So in what follows, we use the
level of the tree to represent approximately the number of clusters, such as 2^1, 2^2, 2^3, etc. Many more
details about the clustering techniques used are given in Appendix B.

5.2.1 Using cluster-based trigram models alone

In the first series of experiments, we used the traditional cluster-based trigram model of Equation (6) to
compute the perplexity. The results are shown in Table 1 for the Chinese and the Japanese corpora. For the
sake of comparison, the perplexities of the word trigram models are included. In addition, the perplexities
of several human defined word clusters sets are shown as well. These include (1) the 28 POS tags of
Chinese corpus (Zhou, 1996), (2) the 1428 semantic clusters of the Chinese corpus, which is taken from
“�����” (TongYiCi CiLing), a widely used Chinese thesaurus (Mei, 1983). As shown in Table 1, the
perplexity is drastically decreased by increasing the number of word clusters. The best results on both
Chinese and Japanese corpora are still the word-based trigram values. It turns out that human defined

9

clusters work much worse than automatically derived clusters with similar numbers of word clusters. The
results are consistent with those of Ney et al.(1994), who observed that for small amounts of training data
(100,000 words), hand clustering outperformed automatic one, but for larger sizes (1.1 million words),
automatic clustering was better.

Notice that although the perplexity of the hand clustering model is much higher than the perplexity of the
automatic clustering model. It does not mean that human defined clusters are unreasonable or worse than
automatically derived clusters. The two cluster sets are generated by different criteria and motivations.
Hand clustering is usually based on semantic/syntactic similarity, while automatic clustering uses the
perplexity measurement directly. So the former is more widely used for knowledge systems such as spoken
language understanding, while the latter is good for statistical systems such as speech recognition. As
shown in table 4, although most of the automatically derived clusters look reasonable, there are also
clusters which are difficult to interpret from a linguistic point of view.

Number of clusters Chinese Japanese

���� 	

��� �
	����

��	� �
���� �	�����

����
	
��	� �������

����
������ �
��	�

���� ������� ���	��

���� ������ ������

28 (POS clusters) �����	� �������

1428 (semantic clusters) 	�	���� �������

Word trigram �
���
� �	����

Table 1: Test set perplexities with cluster-based trigram models�

5.2.2 Using combined models

In the second series of experiments, we used the combined models of Equation (9), where the cluster-based
trigram model is linearly interpolated with the word-based trigram model. The interpolation constant λ is
optimized on heldout data. The results are shown in Table 2. We still used word-based trigram models as
baseline systems. It turns out that combined models outperform baseline models consistently. Unlike the
case in the Table 1, the perplexity is decreased slowly at first by increasing the number of word clusters.
We thus have an optimum at about 2^9 clusters for both the Chinese and the Japanese corpus. Beyond these
numbers, the perplexity increases slightly again. Depending on the corpus, we have different perplexity
reduction: about 3% on the Chinese corpus (at 2^9 clusters), and more than 10% on the Japanese corpus (at
2^9 clusters).

10

Number of clusters Chinese Japanese

���� ��	��� �����

��	� ������� �����

���� ��
��� �	�	��

���� ������� ������

���� ����
�� ���
�

���� ��
�� ���		�

��� ��
��� �	����

���� ������� ���	��

���� ��	���� ������

Word trigram �
���
� �	����

Table 2: Test set perplexities with combined trigram models�

5.2.3 Using high-order n-gram models

While the trigram approximation has been proven, in practice, to be reasonable, there is an argument that
longer context can be helpful. This leads to research on using n-gram models where n>3, called higher-
order n-grams. Most previous experiments with higher-order n-grams showed little improvement because
of the data sparseness problem. For example, (Goodman, 2001) showed that even using a very large corpus
for n-gram model training (e.g. 280 million words), very small improvements occurred for n-gram models,
where n is larger than 5. Clustering is an alternative way of dealing with the data sparseness problem other
than smoothing. It is thus interesting to explore the effectiveness of cluster-based higher-order n-gram
models.

We performed the third series of experiments on the relationship between cluster-based n-gram order and
perplexity. We fixed the number of clusters on 2^8, and built a series of n-gram models, with n from 2 to
20. The cluster-based higher-order n-gram models were then linearly interpolated with normal word-based
trigram models. The perplexity results are shown in Table 3. We can see that although we used training
corpora of medial size, improvement still occurred even into very high order n-gram models. After 10-gram
models, depending on the corpus, we obtained approximately 10% perplexity reduction on the Chinese
corpus, and obtained more than 11% perplexity reduction on the Japanese corpus. It then turns out that
clustering works significantly better with higher-order n-gram models than the traditional smoothing
methods as described in (Chen and Goodman, 1999).

11

Order of cluster-based n-gram model Chinese Japanese

�� ������� ������

�� ������� ������

� ������ ����
�

�� ��	���� ���	��

	� ��
���� �����

�� ������ �
���

�� ������ �
����

�� ������� �
�
��

�� ���

� �
�
��

�� ���
� �
����

��� ����� �
����

word trigram �
���
� �	����

Table 3: Test set perplexities with cluster-based higher-order n-gram models�

5.2.4 Analysis of words in clusters

We divided the 50,180-entry Chinese lexicon into 2^8�clusters by automatic clustering. The number of
words in each cluster is highly varied from 0 to more than 2000. Table 4 gives 11 examples of word
clusters. For each cluster from A to C, we randomly selected 10 two-character Chinese words, and removed
those words that occur less than 10 times in the training corpus. For each remaining cluster in table 4, we
give top 15 to 30 two-character Chinese words with the highest frequency (at lest 10 times) in the training
corpus.

We see that most of the words in each cluster belong to the same syntactic class, namely verbs for cluster A,
nouns for cluster B and C, etc. Furthermore there are some semantic similarities between the words in a
cluster. The majority of the words in cluster A are verbs expressing some kind of motion, some of the
words of cluster B are titles, and some of the words in cluster C are games. There are also words which
appear to be in the wrong cluster: words like “earth” and “banquet” are not game, and words like
“parsimony” and “mournful” are not verbs. Although most of the clusters look reasonable, there are also
clusters that are difficult to interpret from a linguistic point of view. The other 8 clusters, which contain
only high frequent words, look quite reasonable. It turns out that, given enough training corpus, the degree
to which the clusters capture both syntactic and semantic aspects of Chinese is quite impressive, although
they were constructed from nothing more than counts of bigrams.

12

Cluster Words

A
�(walk), ��(run), ��(rush), ��(climb up), ��(overset), ��(jump), ��(flow), !
(parsimony),"#(mournful), …

B
$%(teacher), &'(sir), ()(miss), �*(comrade), +,(father), -,(mother), ./(crusade
against),01(promise), …

C 23 (basketball), 43 (baseball), 563 (ping-pang), 73 (shot), 83 (earth), 9:
(banquet), …

D
;<(conduct),=>(build),?@(bring forth),AB(accomplish),CD(gain),?E(provide),@
B (advent), DF (annex), GH (form), 0' (occur), 0I (develop), J' (accrue), KH
(complete),LD(get),0M(publish),NO(create),PQ(convene),@R(attend),ST(all), …

E

UV(keep on),WX(once more),YZ(over again),[\(determined),]^X(the first time),_
X(several times), `a(often), bb(one after another), c#(suddenly), >d(at once), ee(a
moment ago), fg(gradually), hi(as soon as possible), j�(active), kl(from it), ,m
(personally),no(thoroughly),?p(advanced),qr(again and again),st(immediately), …

F

uv(automobile), wx(petroleum), =y(architecture), zO(manufacture), {|(process), }
~(food), ��(chemistry), �|(chemical engineering), ��(mechanics), �8(native), ��
(advertisement), ��(aerial), z�(manufacture), ��(spaceflight), ��(demonstration), ��
(power),��(garment),��(spinning),��(steel and iron),��(smuggle), …

G

Y�(important), j�(dominant), ��(mass), ^�(certain), ��(elementary), Y�(fatal), A
�(practical),^�(the whole),��(high),��(mankind),^ (general),¡¢(concrete),£�
(basic), m# (natural), ¤¥ (kernel), ¦§ (special), m¨ (oneself), ©ª (objective), «m
(respective), ¬^ (unique), ® (best), m¯ (self), °± (surrounding), ²� (soldier), ³´
(absolute),µ¶·(historic),¸¹(one another),º(lowest), …

H

�» (Guangzhou), ¼½ (poor), ¾¿ (Shenzhen), �À (Tientsin), ÁÂ (New York), ÃÄ
(Nanking), ÅÆ(Xiamen), YÇ(Chongqing), ÈÉ(Paris), ÊË(northeast), ÌÍ(Xi’an), Î»
(Fuzhou), ÏÐ(Yangtze River), ÑÒÓ(Washington), ÊÄ(Tokyo), HÔ(Chengdu), �Õ
(Dalian), Ö× (Zhuhai), ØÙ (Wuhan), Ú× (coastal), ÌÃ (southwest), ÃÛ (south), ÜÝ
(Yellow River),ÞÓ(put to order),ßà(mountain region), …

I
Sá(so-called), âã(call), äã(call), åá(call), æç(call), âèã(call), éê(address a
letter), ëã(call), �â(namely), 0ì(hand out), â�(call), íT(have), îâ(reputed), ïð
(promote by publicity),ñ�(regard as), …

J

òó(past), ôõ(after), èõ(later on), ñö(at that time), ^�(one day), õ÷(later on), øù
(now),ã¹(for the purpose),úû(for purpose),ñü(that year),ýt(night),þ�(soon),�p
(in front), èp(before), ¨t(body), �ö(this time), �³(reject), l�(intermediate), �õ
(later on),��(that day), …

K

�	 (positively), þ
 (constantly), �� (adequately), � (seriously), �� (widely), ¾�
(deeply), ��(correctly), T�(availably), ��(really), f�(stepwise), ��(healthily), ��
(obviously), ��(promptly), ��(sternly), ��(explicitly), ��(smoothly), � (generally),
!"(warmly), !#(passionately), $%(reasonably), &ö(timely), �A(practically), '®(get
better), T � (strongly), � � (greatly), � ((significantly), m) (voluntarily), * +
(correspondingly), …

Table 4: Most frequent words of some sample clusters from the Chinese corpus

13

5.3 Clustering for language model compression

As shown in the last subsection, Equation (9) leads to better results (lower perplexities) than a simple
trigram model. But at the same time, the combined model is larger, since it includes both a cluster-based
trigram model and a normal trigram model. In this subsection, we take memory constraints into
consideration, and concentrate our experiments on using clustering for language model compression. We
performed experiments on the three basic cluster-based trigram models described in Section 3, and we
show that our novel clustering techniques can be combined with language model pruning methods to
produce much smaller models at a given perplexity than pruning methods without clustering.

Since we are seeking the correct balance between memory storage and perplexity, all experimental results
below are presented in the form of size/perplexity curves. The size was measured as the total number of
parameters of the language model: one parameter for each bigram and trigram, as well as one parameter for
each normalization parameter α that was needed, and one parameter for each unigram. In the pruning
experiments, bigrams and trigrams were both pruned, unigrams never were. This resulted in the smallest
possible number of parameters being equal to the vocabulary size, e.g. 50,187 unigrams for Chinese models,
and 180,187 unigrams for Japanese models.

In our experiments described below, we used Stolcke’s (1998) pruning method to produce a series of
language models of different sizes. This method is an entropy-based cutoff method, and can be considered
an extension of the work of Seymore and Rosenfeld (1996) and of Kneser (1996). The basic idea is to
remove as many “useless” probabilities as possible, and at the same time to keep the perplexity increase as
small as possible. This is achieved by examining the weighted relative entropy or Kullback-Leibler distance
between each probability)|(hwP and its value from the backoff distribution,)|(hwP ,

)|(

)|(
log)|())|(||)|((

hwP

hwP
hwPhwPhwPD ∗= (18)

where h is the reduced history. When the Kullback-Leibler distance is small, the backoff probability is a
good approximation and the probability P(w|h) does not carry much additional information and can be
deleted. The Kullback-Leibler distance is calculated for each n-gram entry, and we remove entries and
reassign the deleted probability mass to backoff mass for any n-gram entry whose deletions increases the
Kullback-Leibler distance by less than a specified threshold value. Compared to traditional count cutoff
methods, Stolcke pruning performed a little better (Goodman and Gao, 2000). More importantly, the
Stolcke method can prune a model to a specific size, simply by finding the threshold level that results in a
model of that size. For all models, we used a smoothing method called modified absolute discounting for
backoff. We give more details about Stolcke pruning and modified absolute discounting in Appendix A.

We then performed a number of experiments comparing our different models. For these experiments, the
baseline system is the word-based trigram model.

5.3.1 Predictive clustering

We first used predictive clustering of Equation (10). The results are shown in Figures 1 and 2. It turns out
that we have the best result at about 2^6 clusters for both the Chinese and Japanese corpora. Depending on
the corpus, comparing to the baseline systems, at the same size, we get a maximum 6.6% perplexity
reduction for the Chinese corpus, and a maximum 5.1% perplexity reduction for the Japanese corpus; at the
same perplexity, we get a maximum 54% size reduction for the Chinese corpus, and a maximum 57% size
reduction for the Japanese corpus. We notice that for these two corpora, although we have the best result at
2^6 clusters for both of them, the results at other numbers of clusters (e.g. 2^4, 2^7) are very different. For
the Chinese corpus, all predictive clustering models performed about the same. For the Japanese corpus,
models at larger number of clusters performed much better than models at small clusters (e.g. 2^4). In
general with our clustering, when there is only a small amount of training data, the clusters become less
useful. Perhaps, this is because there is a more serious data sparseness problem for the Chinese corpus, and

14

lots of parameters are out of training, thus larger clusters do not bring benefits. For the Japanese corpus, the
data sparseness problem is much less serious, so a large number of clusters lead to significant perplexity
reduction.

We also tried to set different pruning threshold values for the two components of predictive clustering
models. We could not obtain any improvement. Therefore, in what follows, we always assume that we used
the same pruning threshold value for both components in predictive clustering and combined clustering
models.

5.3.2 Conditional clustering

We used the conditional clustering of Equation (11). As shown in Figures 3 and 4, the results for two
languages are qualitatively very similar. The performance is consistently improved by increasing the
number of clusters. But no conditional clustering model beats the baseline model. This is not surprising,
because the conditional clustering model always discards information for predicting words, and even with
smoothing it does not bring any additional benefits.

15

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

400 500 600 700 800 900

perplexity

si
ze

2^4
clusters

2^5
clusters

2^6
clusters

2^8
clusters

Baseline:
Word
Trigram

Figure 1. Comparison of predictive models with different number of clusters on Chinese corpus.

Figure 2. Comparison of predictive models with different number of clusters on Japanese corpus

Figure 2. Comparison of predictive models with different number of clusters on Japanese corpus.

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

1.8E+06

2.0E+06

100 120 140 160 180 200
perplexity

si
ze

2 4̂
clusters

2 6̂
clusters

2 8̂
clusters

Baseline:
Word
Trigram

16

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

400 500 600 700 800 900

perplexity

si
ze

2^10
clusters

2^12
clusters

2^14
clusters

2^16 cluster

Baseline:
Word
Trigram

Figure 3. Conditional models with different number of clusters on Chinese corpus

Figure 4. Comparison of conditional models with different number of clusters on Japanese corpus

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

1.8E+06

2.0E+06

100 110 120 130 140 150 160 170 180

perplexity

si
ze

2^10
clusters

2^12
clusters

2^14
clusters

Baseline:
Word
Trigram

17

5.3.3 Combined clustering

Now, we used combined clustering of Equation (12). As mentioned early, we can use different numbers of
cluster for predictive clusters and conditional clusters. This leads to a very large number of possible
parameter settings. We present detailed analysis of parameter settings of the combined clustering model in
(Goodman and Gao, 2000). In this paper, we only report results of some sample parameter settings.

For the Chinese corpus, as shown in Figure 5, we set the number of predictive clusters to 2^4, 2^6, and, 2^8,
and set the number of conditional clusters to 2^12, 2^14, and 2^16. We then built a large number of models.
Rather than graph all points of all models, we show only the outer envelope of the points for each number
of predictive clusters in Figure 5. That is, if for a model with a given number of predictive clusters, there is
some other point with the same number of predictive clusters (and perhaps a different number of
conditional clusters) with both lower perplexity and smaller size than the first model, then we do not graph
the first, worse point. We show the outer envelope of size/perplexity curves of 2^4, 2^6, and, 2^8 predictive
clusters.

For the Japanese corpus, as shown in Figure 6, we do not show the outer envelopes like Figure 5. Instead,
we show results of the top three best parameter settings we obtained, for instance, (2^4, 2^12) represent the
combined cluster-based trigram model with 2^4 predictive clusters and 2^12 conditional clusters.

It turns out that, for the Japanese corpus, the best combined clustering models outperformed the baseline
model. At small model sizes, we have the best result at 2^14 conditional clusters and 2^6 predictive clusters.
At large model sizes, we have the best result at 2^12 conditional clusters and 2^4 predictive clusters. We
achieved a maximum 6.5% perplexity reduction at the same size, and a maximum 40% size reduction at the
same perplexity. But for the Chinese corpus, no improvement over the baseline model was achieved until
we used models at very large number of conditional clusters. This is not difficult to explain. Recall that
predictive clustering is a special case of combined clustering. Actually, in most combined clustering
models for Chinese, it turns out to be optimal to use conditional clusters no less than the vocabulary size,
i.e. no conditional clustering.

Now, consider IBM clustering of Equation (6), which is a special case of combined clustering model. As
shown in Figure 6, it is by far the worst, with roughly an order of magnitude worse performance than the
others. We hypothesized that this was because the IBM model throws away too much useful information.
We thus tried a variation on the IBM model,

)|()|()1()|(121212 −−−−−− ×−+ iiiiiiiiii cccPcccwPwwwP λλ (20)

This model is just like the standard IBM model, but conditions the probability of the word also on the
previous clusters. We compared this model to a standard IBM model. The results are shown in Tables 5
and 6. It turns out that, for the Chinese corpus, models in the form of Equation (20) consistently outperform
standard IBM models (e.g. we achieved 4% perplexity reduction at 2^9 clusters), and for the Japanese
corpus, they work about the same. Notice that for these experiments, no pruning was done.

We summarize all experiments in this subsection in Figures 7 and 8. It turns out clearly that our novel
clustering techniques produce much smaller models than previous methods (i.e. baseline systems) at the
same perplexity level. In addition, several more detailed conclusions are suggested:

1. Conditional clustering does not help for both the Chinese and the Japanese corpus, since it always
discards information.

2. For closed tests on homogeneous text corpora (e.g. the Japanese corpus), both combined clustering
and predictive clustering outperform the baseline system consistently. Combined clustering is
better at small model sizes, while predictive clustering is better at larger sizes.

3. For open tests on heterogeneous text corpora (e.g. the Chinese corpus), predictive clustering
outperforms the baseline system consistently. Although our results in this paper showed that

18

combined clustering achieved no improvements, in (Goodman and Gao, 2000), we showed that
with more sophisticated techniques, it appears possible to make combined clustering better than
predictive clustering.

19

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

450 550 650 750 850

perplexity

si
ze

combined
(2^4,2^n)
n=12,14,16

combined
(2^6,2^n)
n=12,14,16

combined
(2^8,2^n)
n=12,14,16

Baseline:
Word
Trigram

Figure 5. Comparison of combined clustering models with different number of clusters on Chinese corpus

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

100 120 140 160 180 200

perplexity

si
ze

combined
(2^4,2^12)

combined
(2^6,2^14)

combined
(2^8,2^18)

IBM model
(2^12)

IBM model
(2^14)

IBM model
(2^18)

Baseline:
Word
Trigram

Figure 6. Comparison of combined clustering models with different number of clusters on Japanese corpus,
and the IBM model.

20

Number of clusters Equation (9) Equation (20)

���� ������� 226.65

��	� ��
���� 224.65

���� ������� 224.29

��� ����
�� 224.99

����� ��
���� 226.53

����� ��
���� 228.26

����� ������� 230.95

����� ������� 234.78

word trigram �
��	
� 242.74

Table 5: Comparison of different combined trigram models on Chinese corpus�

Number of clusters Equation (9) Equation (20)

���� ����� 97.06

��	� ����� 96.42

���� ��	�� 96.33

��� ��
�� 96.41

����� ����� 96.82

����� ��	�� 	��	�

����� 	���� �����

����� ���� �������

word trigram ������� �������

Table 6: Comparison of different combined trigram models on Japanese corpus�

21

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

400 450 500 550 600 650 700 750 800 850

perplexity

si
ze

2^14 conditional clusters

2^6 predictive clusters

2^6 predictive cluster and 2^18
conditional clusters (combined cluster)

Baseline: Word Trigram

Figure 7. Summary of clustering models on Chinese corpus

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

100 120 140 160 180

perplexity

si
ze

Predictive
Model (2^6)

combined
Model (2^6,
2^14)

Conditional
Model
(2^14)

IBM model
(2^14)

Baseline:
Word
Trigram

Figure 8. Summary of clustering models on Japanese corpus

22

6. Conclusion

Cluster-based n-gram models are a variation on traditional word-based n-gram models. They attempt to
make use of the similarities between words. In this paper, we present an empirical study of clustering
techniques for Asian language modeling. While the majority of previous research on word clustering has
focused on how to get the best clusters, we have concentrated our research on the best way to use the
clusters. We studied in detail three cluster-based n-gram models, namely predictive clustering, conditional
clustering, and combined clustering. In our experiments, clustering was used to improve the performance
(i.e. perplexity) of language models as well as to compress language models. We performed experimental
tests on a Japanese newspaper corpus of more than 10 million words, and on a Chinese mixed-domain
corpus of more than 7 million words. Results show that our novel techniques work much better than
previous methods. They not only showed better performance when interpolated with normal n-gram models,
but can be combined with Stolcke pruning to produce models much smaller than unclustered models with
the same perplexity.

Most language modeling improvements, reported previously, require significantly more space than the
normal trigram baseline model, or have higher perplexity. Their practical value is questionable. In this
paper, we proposed a technique that results in lower perplexity than traditional trigram models at every
memory size. In other research (Gao et al., 2001) we have shown that cluster-based models of this form can
be used effectively for pinyin to Chinese character conversion. One area we consider promising for future
research is the combination of human defined and automatically derived clustering. While human defined
clusters alone generally work worse than automatically derived clusters, there has been little research on
their combination. It is an open question whether such a combination can lead to further improvements.

Acknowledgements

We would like to thank Prof. Changning Huang, Dr. Ming Zhou, and other colleagues from Microsoft
Research, Yoshiharu Sato, and Hiroaki Kanokogi from the Microsoft (Japan) IME group, for their help in
developing the ideas and implementation in this paper. We would also like to thank Jiang Zhu, and Miyuki
Seki, for their help in our experiments and providing Chinese and Japanese text corpora.

23

References

Bai, S., Li, H., Lin, Z., and Yuan, B. (1998). Building class-based language models with contextual
statistics. In ICASSP-98, pp. 173-176.

Bellegarda, J. R., Butzberger, J. W., Chow, Y. L., Coccaro, N. B., and Naik, D. (1996). A novel word
clustering algorithm based on latent semantic analysis. In ICASSP-96, pp. I172-I175.

Brown, P. F., Cocke, J., DellaPietra, S. A., DellaPietra, V. J., Jelinek, F., Lafferty, J. D., Mercer, R. L., and
Roossin, P. S. (1990). A statistical approach to machine translation. Computational Linguistics, 16(2),
pp. 79-85.

Brown, P. F., DellaPietra V. J., deSouza, P. V., Lai, J. C., and Mercer, R. L. (1992). Class-based n-gram
models of natural language. Computational Linguistics, 18(4), pp. 467-479.

Chen, S. F., and Goodman, J. (1999). An empirical study of smoothing techniques for language modeling.
Computer Speech and Language, 13:359-394, October.

Church, K. (1988). A stochastic parts program and noun phrase parser for unrestricted text. In Proceedings
of the Second Conference on Applied Natural Language Processing, pp. 136-143.

Cutting, D. R., Karger, D. R., Pedersen, J. R., and Tukey, J. W. (1992). Scatter/gather: A cluster-based
approach to browsing large document collections. In SIGIR 92.

Gao, J., Goodman, J., Li, M., and Lee, K. F. (2001). Toward a unified approach to statistical language
modeling for Chinese. To appear in ACM Transactions on Asian Language Information Processing.

Goodman, J. (2001). A bit of progress in language modeling. Submitted to Computer Speech and Language.
Draft available from http://www.research.microsoft.com/~joshuago

Goodman, J., and Gao, J. (2000). Language model compression by predictive clustering. ICSLP-2000,
Beijing, October.

Heeman, P. (1999). POS tags and decision trees for language modeling. In ACL-99, pp. 129-137.

Heeman, P., and Allen, J. (1997). Incorporating POS tagging into language modeling. In Eurospeech-97,
Ghodes, Greece, pp. 2767-2770.

Huang, X. D., Acero, A., and Hon, H. (2001). Spoken language processing. Prentice Hall PTR.

Issar, S., and Ward, W. (1994). Flexible parsing: CMU’s approach to spoken language understanding. In
Proceedings of the ARPA Spoken Language Technology Workshop, pp. 53-58.

Jelinek, F. (1990). Self-organized language modeling for speech recognition. In Readings in Speech
Recognition, A. Waibel and K. F. Lee, eds., Morgan-Kaufmann, San Mateo, CA, 1990, pp. 450-506.

Jurafsky, D., and Martin, J. H. (2000). Speech and language processing. Prentice Hall.

Katz, S. M. (1987). Estimation of probabilities from sparse data for the language model component of a
speech recognizer. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-35(3):400-
401, March.

Kernighan, M. D., Church, K. W., and Gale, W. A. (1990). A spelling correction program based on a noisy
channel model. In Proceedings of the Thirteenth International Conference on Computational
Linguistics, pp. 205-210.

Kneser, R. and Ney, H. (1993). Improved clustering techniques for class-based statistical language
modeling. In Eurospeech, Vol. 2, pp. 973-976, Berlin, Germany.

Kneser, R. (1996). Statistical language modeling using a variable context length. Proc. ICSLP, volume 1,
pages 494-497, Oct.

Maltese, B., and Mancini, F. (1992). An automatic technique to include grammatical and morphological
information in a trigram-based statistical language model. In ICASSP-92, pp. I157-I160.

24

Manning, C. D., and Schutze, H. (1999). Foundations of Statistical Natural Language Processing. MIT
Press, Cambridge, MA.

Mei, J. Z. (1983). Tongyici Cilin. Shanghai Cishu Publishing House, Shanghai.

Miller, D., Leek, T., and Schwartz, R. M. (1999). A hidden Markov model information retrieval system. In
Proc. 22nd International Conference on Research and Development in Information Retrieval, Berkeley,
CA, 1999, pp. 214-221.

Miller, J. W., and Alleva, F. (1997). Evaluation of a language model using a clustered model backoff. In
ICASSP-97, pp. 390-393.

Ney, H., Essen, U., and Kneser, R. (1994). On structuring probabilistic dependences in stochastic language
modeling. Computer Speech and Language, 8:1-38.

Niesler, T. R., Whittaker, E. W. D., and Woodland, P. C. (1998). Comparison of part-of-speech and
automatically derived category-based language models for speech recognition. In ICASSP-98, pp.
I177-I180.

Pereira, F., Tishby, N., and Lee L. (1993). Distributional clustering of English words. In Proceedings of the
31st Annual Meeting of the ACL.

Placeway, P., Schwartz, R., Fung, P., and Nguyen, L. (1993). The estimation of powerful language models
from small and large corpora. In ICASSP-93, II33-36.

Seymore, K. and Rosenfeld, R. “Scalable backoff language models”, Proc. ICSLP, Vol. 1., pp.232-235, Philadelphia,
1996

Srinivas, B. (1996). Almost parsing techniques for language modeling. In ICSLP-96, pp. 1169-1172.

Stolcke, A. (1998). Entropy-based Pruning of Backoff Language Models. In Proc. DARPA News
Transcription and Understanding Workshop, Lansdowne, VA. 1998. pp. 270-274. See corrections at
http://www.speech.sri.com/people/stolcke

Ueberla, J. P. (1996). An extended clustering algorithm for statistical language models. IEEE Transactions
on Speech and Audio Processing, 4(4): 313-316.

Ward, W., and Young, S. (1993). Flexible use of semantic constraints in speech recognition. In ICASSP-93,
pp. II49-50.

Yamamoto, H., and Sagisaka, Y. (1999) Multi-class Composite N-gram based on Connection Direction. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, May,
Phoenix, Arizona.

Yang, Y. J., et al., (1994). An intelligent and efficient word-class-based Chinese language model for
Mandarin speech recognition with very large vocabulary. In ICSLP-94, Yokohama, Japan, pp. 1371-
1374.

Zhou, Q. (1996). Phrase bracketing and annotating on Chinese language corpus. Ph.D. dissertation. Beijing
University.

Zue, V. W. (1995). Navigating the information superhighway using spoken language interfaces. IEEE
Expert, vol. 10, no. 5, pp. 39-43, October, 1995

25

A. Methods of Trigram Training

We describe methods for language model training. These include the modified absolute discounting
smoothing method and Stolcke’s entropy-based pruning method.

Absolute Discounting

Trigram Language models make the approximation that the probability of a word depends only on the
identity of the immediately two preceding words, say P(wi|w1 w2… wi-1) ≈ P(wi|wi-2 wi-1).

Smoothing is used to address the problem of data sparseness. Experimental results show that a novel
variation of absolute discounting, Kneser-Ney smoothing, consistently outperforms all others (Chen and
Goodman, 1999). However, because Kneser-Ney smoothing is less commonly used, slightly more difficult
to implement, and we suspect may not work as well when pruning is done, we use a slightly different
technique in this research, modified absolute discounting. First, we describe basic absolute discounting.
Letting D represent a discount, we set the probability as follows:

 >

−
=

−−−

−−
−−

−−

−−

otherwisewwPww

wwwCif
wwC

DwwwC
wwwP

iiabsoluteii

iii
ii

iii

iiiabsolute

)|()(

0)(
)(

)0,)(max(
)|(

112

12
12

12

12

α

(21)

)(12 −− ii wwα is defined in such a way that the probabilities sum to 1,

∑

∑

>
−

>
−−

−−

−−

−−

−

−
=

0)(:
1

0)(:
12

12

12

12

)|(1

)|(1

)(

iiii

iiii

wwwCw
iiabsolute

wwwCw
iiiabsolute

ii
wwP

wwwP

wwα

(22)

The trigram backs off to the bigram, and the bigram backs off to the unigram. The unigram does not need
to be smoothed, although it can be smoothed with the uniform distribution. In practice, a different D is
used for the bigram and trigram.

A further improvement is to use multiple discounts D. Taking the trigram as an example, D1 for counts
1)(12 =−− iii wwwC , D2 for 2)(12 =−− iii wwwC , and a final one, D3 for 3)(12 ≥−− iii wwwC . Chen and

Goodman (1999) introduce an estimate for the optimal D for absolute discounting smoothing as a function
of training data counts2. In practice, we can use Equation (23) to Equation (26) to approximately estimate
the optimal value for D1, D2, and D3.

21

1

2nn

n
Y

+
=

(23)

1

2
1 21

n

n
YD −=

(24)

2 Thanks to Ries, K.

26

2

3
2 32

n

n
YD −=

(25)

3

4
3 43

n

n
YD −=

(26)

where n1, n2, n3, and n4 are total number of trigrams with exactly one, two, three, and four counts.

Notice that for experiments in this paper, we do not use this approximation, but instead optimize the
discounts on heldout data. This leads to very limited improvements.

Entropy-based pruning

Stolcke (1998) proposed a criterion for pruning n-gram language models based on the relative entropy
between the original and the pruned model. The relative entropy measure can be expressed as a relative
change in training data perplexity. All n-grams that change perplexity by less than a threshold are removed
from the model.

Formally, let P denote the trigram probabilities assigned by the original model, say P=P(wi|wi-2wi-1), and let
P’= P(wi| wi-1), denote the probabilities in the pruned model, assuming that we have pruned the trigram
probability. Then, the relative entropy between the two models is

∑
=

−−−−−−

−−−−−−−−−

−−

−+

−+−=

0),(:
121212

121211212

12

)}|()](log)('[log

)]|(log)('log)|()[log|(){()'||(

iiii wwwCw
iiiiiii

iiiiiiiiiiii

wwwPwwww

wwwPwwwwPwwwPwwPPPD

αα
α (27)

where)(' 12 −− ii wwα is the revised backoff weight after pruning. Recall that)(12 −− ii wwα is estimated by

Equation (22),)(' 12 −− ii wwα is obtained by dropping the term for the pruned trigram (wi-2wi-1wi) from the

summation in both numerator and denominator.

B. Clustering Algorithm

There is no shortage of techniques for generating clusters, and there appears to be little evidence that
different techniques that optimize the same criterion result in a significantly different quality of clusters.
We note, however, that different algorithms may require significantly different amounts of run time. We
used several techniques to speed up our clustering significantly.

The basic criterion we followed was to minimize entropy. In particular, assume that the model we are using
is of the form P (z |Y); we want to find the placement of words y into clusters Y that minimizes the entropy
of this model. This is typically done by swapping words between clusters whenever such a swap reduces
the entropy.

The first important approach we took for speeding up clustering was to use a top-down approach. We note
that agglomerative clustering algorithms – those which merge words bottom up – may require significantly
more time than top-down, splitting algorithms. Thus, our basic algorithm is top-down. However, at the end,
we sometimes perform four iterations of swapping all words between all clusters. Notice that for
experiments reported in this paper, we used the basic top-down algorithm without swapping.

Another technique we use is Buckshot (Cutting et al., 1992). The basic idea is that even with a small
number of words, we are likely to have a good estimate of the parameters of a cluster. So, we proceed top
down, splitting clusters. When we are ready to split a cluster, we randomly pick a few words, and put them
into two random clusters, and then swap them in such a way that entropy is decreased, until convergence

27

(no more decrease can be found). Then we add a few more words, typically 2 more, and put each into
the best bucket, then swap again until convergence. This is repeated until all words in the current cluster
have been added and split. We haven’t tested this particularly thoroughly but out intuition is that it should
lead to large speedups.

We use one more important technique that speeds computations, adapted from earlier work of (Brown et al.,
1992). We attempt to minimize the entropy of our clusters. Let v represent words in the vocabulary, and W
represent a potential cluster. We minimize

∑
v

WvPWvC)|(log)(

The inner loop of this minimization considers adding (or removing) a word x to cluster W. What will the
new entropy be? On its face, this would appear to require computation proportional to the vocabulary size
to re-compute the sum. However, letting the new cluster, W + x be called X,

∑∑∑
=≠

+=
0)(|0)(|

)|(log)()|(log)()|(log)(
xvCvxvCvv

XvPXvCXvPXvCXvPXvC (28)

The first summation in Equation 28 can be computed relatively efficiently, in time proportional to the
number of different words that follow x; it is the second summation that needs to be transformed:

∑∑

∑∑

==

==

+=

=

0)(|0)(|

0)(|0)(|

)(
)(

)(
log)|(log)(

)(

)(
)|(log)()|(log)(

xvCvxvCv

xvCvxvCv

WvC
XC

WC
WvPWvC

XC

WC
WvPWvCXvPXvC

(29)

Now, notice that

∑∑∑
≠=

−=
0)(|0)(|

)|(log)()|(log)()|(log)(
xvCvvxvCv

WvPWvCWvPWvCWvPWvC (30)

and that

−= ∑∑

≠= 0)(|0)(|

)()()(
xvCvxvCv

WvCWCWvC (31)

Substituting Equation 30 and 31 into Equation (29), we get

28

−

+−= ∑∑∑

∑

≠≠

=

0)(|0)(|

0)(|

)()(
)(

)(
log)|(log)()|(log)(

)|(log)(

xvCvxvCvv

xvCv

WvCWC
XC

WC
WvPWvCWvPWvC

XvPXvC

(32)

Now, notice that ∑
v

WvPWvC)|(log)(is just the old entropy, before adding x. Assuming that we have

pre-computed/recorded this value, all the other summations only sum over words v for which C(xv) > 0,
which, in many cases, is much smaller than the vocabulary size.

Many other clustering techniques (Brown et al., 1992) attempt to maximize∑
ZY ZP

ZYP
YZP

,)(

)|(
log)(, where

the same clusters are used for both. The original speedup formula uses this version, and is much more
complex to minimize, Using different clusters for different positions not only leads to marginally lower
entropy, but also leads to simpler clustering.

