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ABSTRACT
Tennis sport has become more popular all over the world in
recent years. While tennis lovers wish to improve their ten-
nis skill set for better performance, unfortunately only few
of them could be guided under professional training. Espe-
cially, serve is probably the most important skill in tennis
skill set. In this paper, we present TennisMaster, an online
diagnosis and feedback system, that aims at performing on-
line assessment of tennis serve during the training process
using IMU sensors. In particular, we propose a hierarchical
evaluation approach based on the fusion of two IMU sen-
sors mounted on the racket and shank of the player. In
order to achieve online serve assessment, we first develop an
online serve extraction algorithm to identify the serve seg-
ments and filter the non-serve events. Then we use Hidden
Markov Model (HMM) to segment the serve process into
eight stages. By extracting unique features on the basis of
the serve segmentation, we build a regression model which
outputs the score of a serve. We conduct experiments to col-
lect 1,030 serves involving 12 subjects at various profession-
al levels. Evaluation results show that our system achieves
high accuracy of performance assessment for tennis serves.

CCS Concepts
•Human-centered computing → Human computer in-
teraction (HCI);
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Figure 1: An application scenario of TennisMaster
through the IMU sensors mounted on the bottom
of racket and the shank of user with smartphone
controlling.
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1. INTRODUCTION
With the advance of mobile computing, cyber physical

systems, as well as communication with almost every phys-
ical and virtual object for fine grained automatic control,
wearable devices are becoming more and more popular nowa-
days. The development and popularity of wearable devices
make the interaction between human and computers not lim-
ited to the PCs or mobile phones. The applications of wear-
able devices widely span the fields of health [6], fitness [19]
and sports [7]. The shape of wearable devices includes wrist-
bands, watches, or even sensing device embedded in clothes
or sports equipment like tennis rackets [1].



Figure 2: The eight stages of tennis serve process.

More and more wearable devices have been used in the
field of sports. In [15], Hao et al. propose a running rhythm
monitoring system based on capturing breath sound through
smartphone embedded sensors. In [19], Kranz et al. propose
an automated assessment system for balance board training
called Gymskill, which provides training quality and feed-
back to the user based on smartphone integrated sensors.
Additionally, there are several research papers in other s-
ports like running [4], skiing [11], climbing [18], swimming
[8], football [22], dressage [21], and table tennis [10].

There are also applications of wearable devices in tennis
training. Several commercial tennis assistant systems [1, 2,
3] are available on the market that aim to improve play-
ers performance. For example, Zepp Inc.[1] places a special
type of sensor at the bottom of the racket, in order to record
the frequency of fore-hands, back-hands, and serve. The in-
formation of speed and type (e.g., flat, topspin, slice) when
hitting the ball is also collected. The Smart Tennis Sensor
for Tennis Rackets project from Sony[2] adopts similar tech-
nology. There have also been existing works in the research
on analyzing tennis performance, for instance, Yuri et al.[16]
use a wrist mounted gyroscope to analyze the tennis stroke
and serve between novice and expert players.

However, existing systems are only capable of collecting
statistics of performance, but cannot provide diagnosis and
evaluation of the motion performance. Motivated by the
unique characteristics of tennis skill set, in this paper we
propose TennisMaster - an online diagnosis and feedback
system for tennis players using multiple wearable IMU sen-
sors. TennisMaster is designed to provide online assessment
of the serve performance to the user based on smartphone
and IMU sensors. Specifically, TennisMaster assesses the
serve performance on the basis of the theory of 8-stage ten-
nis serve evaluation model proposed by Mark et al.[17]. In
this model, a serve can be divided into eight stages thus pro-
viding a more in-depth analysis of the serve. Figure 1 shows
the application scenario of our system.

To implement the proposed system, we address several
challenges in practice. First, while a standard and high qual-
ity serve always correctly follows the 8-stage serve model,
there are also many serves, especially the serves of the low-
level players, in these serves the boundary of different stages
are not as clear as the good serves. This situation request
the robustness of serve assessment algorithm for adapting
among different levels of player. Moreover, since the pro-

cess of a tennis training always involves other unconcerned
activities such as bouncing the ball, running in the court,
we need precisely identify and locate the serve segment and
filter the data of other motions. Lastly, in order to provide
real-time feedback, the serve evaluation algorithm must be
low time complexity while achieving good accuracy.

The main technical contribution of our work lies in an
online assessment system. In order to achieve accurate on-
line evaluation, we propose a novel online serve extracting
approach which precisely identifies and locates the serve seg-
ments and filters the non-serve events such as forehand and
backhand strokes. In order to provide in-depth assessmen-
t of the serve performance, we propose a novel hierarchi-
cal evaluation method based on serve segmentation. After
extracting the serve segment, we use hidden Markov mod-
el(HMM) to segment the serve into eight stages on the basis
of the 8-stage serve model. By extracting the features from
each of the stage, we propose a regression model to make
score on the performance of the serve. The evaluation re-
sult is based on the analysis of the sub-stages of a serve, not
directly based on the simple domain knowledge.

To evaluate the performance of our system, we conduct
experiments to collect 1,030 serves involving 12 subjects at
various professional levels. Evaluation results demonstrate
that our TennisMaster system achieves 96.0% serve detec-
tion precision and 94.9% phase dividing precision of the sys-
tem. In addition, we achieve an average mean absolute error
(MAE) of 0.398 for the serve assessment accuracy, which is
quite a promising result.

The remainder of this paper is organized as follows. We
introduce the related work in Section 2 and present the sys-
tem design in Section 3. The implementation and evaluation
for our proposed solution is discussed in Section 4. Finally,
we conclude the paper in Section 5.

2. RELATED WORK
Skill assessment is an important research direction in per-

vasive computing. Existing skill assessment approaches are
typically through two methods: the assessment based on do-
main knowledge and the assessment based on segmentation.

For the assessment based on domain knowledge, for ex-
ample, in [18] Ladha et al. propose a climbing skill assess-
ment system called ClimbAX, this system uses power, con-
trol, stability, speed as the assessment parameter to evalu-



ate the climbing performance. In [21] Robin et al. propose
a framework for automatically providing quality feedback
about dressage, the evaluation is based on the measurement
of six fundamental aspects: (1) Rhythm; (2) Suppleness; (3)
Contact; (4) Impulsion; (5) Straightness; and (6) Collection.

In recent years, many research go further and analyze the
motion through segmentation methods which evaluate the
quality of the motion based on the result of the segmenta-
tion. For example, in [13], Joseph proposed an audio-based
method for evaluating tooth brushing performance, they use
hidden Markov models (HMMs) to recognize various types
of tooth brushing actions, such as brushing the outer surface
of the front teeth and brushing the inner surface of the back
teeth, then use the output of HMMs to build the regres-
sion model for the tooth brushing performance evaluation.
In [14], Ghasemzadeh et al. using a method called motion
transcript to evaluate the performance of the baseball swing,
the transcript describes the order and timing of sub-motion,
so that the quality of the swing is decided on the coordina-
tion of certain sub-motion.

3. SYSTEM DESIGN
In this section, we describe the computational pipeline

and design details of our TennisMaster system. We first
introduce our serve assessment model and sensing platform,
and then describe the system overview, followed by each step
of the pipeline.

3.1 8-Stage Serve Evaluation Model
Tennis serve is the most complicated stroke in tennis play-

ing. In this section, we analyze the tennis serve through the
8-stage serve model proposed by Mark et al. [17] to get an
intuitive segmentation of the tennis serve. This model uses
the kinetic chain theory [12] to analyze the whole process of
the serve, which was first studied in nationally ranked ten-
nis players over 25 years ago. According to this model, each
tennis serve can be divided into 8 stages: start, release, load-
ing, cocking, acceleration, contact, deceleration and finish.
These eight stages map to three phases in the serve: prepa-
ration phase, acceleration phase and follow-through phase.
The 8 stages of the model are listed in Figure 2. In this
study, we use Hidden Markov Models (HMMs) based on
IMU characteristics to recognize the above eight stages in
the serve process. The performance assessment of the serve
is then based on the output of the segmentation.

3.2 Sensing Platform
The players in the studies are asked to wear two IMU

sensors in the process of the training. The inertial measure
module consists of a 6-axis inertial measurement unit B-
MI160 which is an integration of a 3-axis accelerometer and a
3-axis gyroscope and 3-axis compass HMC5983. Each of the
sensor transmits the readings to the mobile phone through
BlueTooth-V2.0. The modules are also equipped with a
600mAH battery, which could enable the modules work as
long as 6 hours. The size of the module is 47*43*17mm,
which is comfortable for mounting on the body. The con-
sumption of the module is 240mw, with the sampling rate
of 100Hz. The IMU sensors are mounted on the right shank
and the bottom of the racquet, as shown in Figure 1.

3.3 System Overview

Raw Sensor 
Data

Data Pre-
processing

Raw Sensor 
Data

Serve 
Extraction

Serve 
Segmentation

Feature 
Extraction

Score 
Calculation

Figure 3: The computational pipeline of TennisMas-
ter.

Figure 4: An illustration of serve extraction. When
the acceleration exceeds the threshold, the data
around the detected point is extracted as candidate
event.

Figure 3. presents an overview of the computational pipeline
of Tennis Master, which analyzes the raw streaming of the
accelerometer and gyroscope data and output the assess-
ment of the serve performance. The first step of the pipeline
is to filter the raw data. The second step of the pipeline is
the serve extraction process, we first locate the candidate
event and filter the non-serve event through Support Vec-
tor Machine (SVM). As the third step, we divide the serve
into several stages according to the theory of 8-stage serve
assessment model. First, we detect the impact stage of the
serve, so that the serve segmentation problem is converted
to the segmentation before the impact phase and after the
impact phase. Then, we use HMM to segment the phases
before and after the impact stage into certain stages through
Viterbi algorithm [20]. Fourth, we extract features for the
assessment of the performance of the serve. The feature ex-
traction protocol is based on the evaluation metric of the
first serve emphasizing the speed and placement of the ten-
nis. Our serve evaluation model assesses the serve from three
aspect: rhythm, power and gesture, each of the aspects is e-
valuated through the feature extracted from different stages
of the serve. The last step of the pipeline is the score calcu-
lation step. The score of the serve is based on the features
extracted before. By extracting the features on the basis of
the serve segmentation, we propose our serve scoring algo-
rithm based on regression model.

3.4 Serve Extraction



(a) Elite (b) Mid-level (c) Novice

Figure 5: An segmentation result of the serve in the player of three different levels. The five dashed divide
a whole serve into several stages through our serve segmentation method. The stages are, from left to right:
start, release and loading, cocking, acceleration, deceleration and finish with the fourth dashed as the impact
point.

The basis of serve extraction is detecting the candidate
events. In this study, we propose the magnitude of the accel-
eration of racket as detector to detect the candidate events.
The magnitude of acceleration is calculated by the 3-axis
readings of the accelerometer mounted on the racket, xt, yt
and zt representing the acceleration of X-Axis, Y-Axis and
Z-Axis, using the equation: mt =

√
x2t + y2t + z2t .

Our serve extraction method contains three steps. First,
the algorithm will continuously maintain “listening” at the
data sent from the IMU sensor to the smartphone and calcu-
late the magnitude of the acceleration in realtime. Once the
magnitude of the acceleration exceeds the threshold of event
detection, this means that a candidate event in the training
is detected. Based on the detected point xi, the candidate
events are extracted around the detect point in the range
[xi − a, xi + b], the value of a,b in this step is set through
the average length of a serve.

Then, after getting the candidate events, we need filter the
non-serve events from the candidate events. Since the char-
acteristics between the stroke events and non-stroke events
are obvious, we first make a classification between stroke
events and non-stroke events. We use the features of the
accelerometer readings from different players to train a clas-
sifier between stroke events and non-stroke events. The clas-
sification method we use is Support Vector Machine (SVM),
which is proved to be useful in most of the classification
problems. The third step is to recognize the serve events
from the stroke events, this is a problem of classification
between the forehand, backhand and serve. Similarly, the
classifier between the three stroke events is trained using
SVM through the features of the accelerometer readings.

The features use to train the classifiers are computed us-
ing the acceleration readings from the racket, and do not
involve the data from the other sensor. These features in-
volve the time-domain features and heuristic features et al.,
which are proved to be useful in stroke classification [9]. In
our experiment, the threshold of the event detection is em-
pirically set to 5g, this threshold could filter out most of the
slight movement in the tennis training, and keep the intense
movement, such as the fast running. Figure 4 illustrates an
serve extraction example using racket acceleration.

3.5 Serve Segmentation
The next step of serve assessment is serve segmentation.

In this study, we use HMM based on IMU readings to rec-

ognize the eight stages described above. To correctly divide
the serve into eight stages, a signal processing chain was
developed:

• detect the impact stage of the serve.

• segment and extract features of the IMU readings be-
fore and after the impact stage.

• apply hidden Markov models to divide the rest stages
of the serve.

First, we detect the impact stage of the serve, thus the seg-
mentation of the serve can be changed into the segmentation
of the stage before the serve, and the segmentation after the
serve. This usually improve the accuracy of the segmen-
tation, since the impact stage has obvious characteristics.
The impact stage detection is based on the observation that
when the tennis impact the racket, there will be a hop in
the acceleration of the racket, and the acceleration always
get maximum before the hop, after getting the minimum of
the acceleration, a second hop will cause the acceleration to
another maximum.

The second step of the segmentation is segmenting the
serve and extract the features from each of the segments.
We segment the serve through a window of 80ms with 50%
overlap. The features of the segment involves the readings
from both accelerometer and gyroscope of the racket.

The third step of the segmentation is using HMM to seg-
ment the sensor data before and after the impact stage into
certain stages according to the 8-stage model. The motion of
serve is an 8-stage process with obvious boundary between
each stage, which can be described by Hidden Markov Model
(HMM). Considering a HMM with N observation states and
M hidden states, the observation states and hidden states in
HMM can be defined as:

S = {S1, S2, · · · , SN} (1)

V = {V1, V2, · · · , VN} (2)

We can use a five-item tuple λ = {M,N, π,A,B} to define
it. A = {aij} donates the transition matrix which contains
the probability transits from state i to state j, where:

aij = P (qt = sj |qt−1 = si) (3)

π = {πi} is the initial probability, where:

πi = P (q0 = si) (4)



Figure 6: The APP screenshots of our system. (a) The screen showing the serve score and stroke numbers
of the player during the training. (b) The screen showing the history of the user. (c)The screen gives an
detailed description of a former training with the score of every serve in the training process.

B = {bj(k)} denotes the observation matrix which contains
the probability of observation state k related from hidden
state j, where:

bj(k) = P (Ot = vk|qt = sj) (5)

In this problem, O = {o0, o1, o2, ..., ot} which denotes the
sequence of observations is modeled as the IMU readings,
S = {s0, s1, s2, ..., st} which denotes the sequence of hidden
states is modeled as the serve stage sequence. The problem
of serve segmentation is equivalent to finding the most prob-
able serve state sequence from the IMU readings which can
be defined as:

S∗ = argmax
s
P (O,S|λ) = argmax

s
{P (O,S|λ) · P (S|λ)}

(6)
through Viterbi algorithm we can solve this problem using
the Viterbi likelihood (score):

S∗ = argmax
s
πsbs1(O1)

T∏
t=2

aSt−1StbSt(Ot) (7)

In this problem, we use Gaussian Mixture Model (GMM)
to model the observation matrix bj(O), where:

B = {bj(O)} , bj(O) =

M∑
l=1

cjl(0, µjl, Ujl) (8)

O in this equation is the observation vector, M is the num-
ber of mixed Gaussian elements contained in each state,
G donates the normal Gauss probability density function,
cjl,µjl,Ujl is the weight, mean vector, covariance matrix of
the jth mixed Gauss elements in lth states.
Aij can be calculated as the number of segments in the

training set extracted in the last step with a transition from
stage qi to stage qj divided by the total number of segments
labeled as stage qi. Generally, we can estimate the transition
matrix as follows:

P (qt = sj |qt−1 = si) =
Count(qt−1 = si|qt = sj)

Count(qt−1 = si)
(9)

We use the video of each serve as the ground truth of the
segmentation, the video of each serve is segmented manually
as the reference of the segmentation. We limit the least time
of each stage based on the statistical results of the experi-
ments. Figure 5 illustrates an example of segmentation in
different levels of player.

3.6 Feature Extraction
The scoring metric is based on the segmentation result of

the step above. Since a whole serve can be divided into eight
stages, each stage has a distinct impact on the serve. For
example, at ball contact stage, ball velocity is determined
by shoulder internal rotation and wrist flexion. What is
more, as is described in [17], the power and angle variance
of the joint in each of the stage is the vital contributor to
the performance of the serve. We evaluate the performance
of a serve in three aspects: rhythm, gesture and power. The
feature extraction protocol is based on the three aspects.

For the assessment of rhythm, we use the duration of the 5
stages: release, loading, cocking, acceleration, deceleration,
except the stage of start, finish and impact as the rhythm
feature. The duration of these stages usually different a-
mong different levels of serve, since the high quality and low
quality finish of different stages usually cause different time
duration.

For the assessment of gesture, we use the orientation char-
acteristics for the evaluation, since different orientation of
the sensor usually reflects different motion. On the basis
of this consideration, we use the average of pitch and roll of
the IMU sensors in each stage except the impact stage as the
gesture feature to evaluate the gesture performance in the
serve. The angle of the sensors mounted on the shank and
the racket are both used for the gesture evaluation, since the
serve is a motion corresponding to the whole body, and the
upper and lower body are both involved in the serve.

For the assessment of power, we use the average signal
energy of the IMU sensors in the acceleration stage,impact
stage and deceleration stage to evaluate the power perfor-



(a) 3-level Accuracy (b) Elite (c) Mid-level (d) Novice

Figure 7: (a)Shows the accuracy of serve segmentation of 3 different level of players. (b)-(d)Shows the
corresponding confusion matrix of 3 different levels.

mance in the serve, since the acceleration stage is the stage
to build up the power for the impact point, and the energy
of the impact stage always reflect the ball hitting strength.
These two stages along with deceleration stage form the
three most powerful stages in the serve. The signal energy
of the stage can be calculated using the 3-axis accelerometer
signals of the X-axis ax(t), the Y-axis ay(t) and the Z-axis
az(t) as follows:E(t) = a2x(t) + a2y(t) + a2z(t)

3.7 Score Calculation
The last step of our serve assessment pipeline is to pre-

dict the serve score with the features extracted in the above
subsection. We model it as a regression problem, which
aims at performing the serve score to the user with least
error. In order to choose the regression model with best
performance, we compare various kinds of regression mod-
els, such as regularized linear regression, regression trees,
and support vector regression using cross-validation. After
comparing the predicting result of these models, we choose
linear regression model as our serve assessment model. In
order to avoid overfitting, we also use L1 regularization as
the feature selection method.

4. IMPLEMENTATION AND EVALUATION
We have finished an Android-based app as the implement

of our system. The whole data processing pipeline of Tennis
Master from serve detection to serve evaluation is performed
on a smartphone. Our application could inform the player
with the score after the player perform a serve in the train-
ing, the user can also get the number of the serve and strokes
that performs in the training. Before starting the training,
the user should click the start button to enable the system
start the built-in algorithm. After that, the player can start
training, every time the system detect a serve in the train-
ing, the view serves will be added, and inform the player
with the score of the serve. The user can also use the app to
watch former training, to get a view of the former training
log, and each score of the serve can be achieved from the
former training log. The screen shots are shown in Figure
6. The complete serve detection and analysis algorithm is
implemented using the Java language. The serve detection
algorithm is running during the whole training process.

4.1 Data Collection
In order to evaluate Tennis Master, we recruited 12 sub-

jects and collected data from 40 trainings in total (1,030

Table 1: The performance of serve extraction.
Session Precison(%) Recall(%) F1-score(%)

Stroke detection 97.02 90.76 93.16
Serve detection 98.96 96.13 97.04

serves). Based on their self-report information, we divided
the subjects into three categories: Novice level, Mid-level,
and Elite level. Our experiments for data collection was
conducted in a tennis court of our university. In order to
collect data, each subject used a smartphone (Google Nexus
5) and two IMU sensors during the experiment. The IMU
sensor nodes are mounted on the right shank and the bottom
of the racket.

The ground truth for serve evaluation is collected in the
following two ways. For the ground truth for the evalua-
tion of the serve, we invited the professional tennis coach
to give score to each of the serve in the training set. The
level of the player forms the nominal score of the serve, and
the placement and speed of the serve form the performance
score of the serve. The score of each serve is the sum of
nominal score and performance score. For the evaluation of
the ground truth of the segmentation, we take video for each
of the serve, and segment each of the serve into eight stages
manually.

4.2 Performance of Serve Extraction
We first examine now how well we can recognize the serve

event during the whole process of a training. First, we e-
valuate how well individual stroke events can be detected
by the Support Vector Machine (SVM) classifier which ex-
amines each segment independently of the others. Then we
evaluate the performance of the SVM that infers the type of
stroke for each segment. And we perform 5-fold cross valida-
tion towards the two classification problem involving all the
stroke events and non-stoke events detect using our serve ex-
traction method. We can see that the precision in the stroke
event detection using Support Vector Machine classifier is
over 97.02%. The detection precision in the serve events
detection among the stroke events is 98.96%. Considering
the 2 steps together, the overall precision of serve detection
in the all data is 96.01%. The result of serve extraction is
shown in Table 1. We can see that our serve detection algo-
rithm performs well in the experiment. It is apparent that
our serve event detection is sufficiently accurate.



Figure 8: The assessment performance between dif-
ferent number of sensors.

Table 2: The serve segmentation performance of all
the stages.

Stage Precison(%) Recall(%) F1-score(%)
start 97.59 96.04 96.81

release+loading 93.88 91.40 92.62
cocking 90.06 93.83 91.91

acceleration 96.71 96.40 96.56
deceleration 94.90 96.40 95.64

finish 96.84 97.14 96.99

4.3 Performance of Serve Segmentation
We then explore the segmentation performance achieved

by Tennis Master. Twelve players participated in the ex-
periments. Table 2. shows segmentation performance of
Tennis Master with different players in the 6 stages. We can
see that the average F1-score in the six phase is over 95%.
Considering the 6 stages together, the highest F1-score is
96.99%, the lowest F1-score is 91.91%. We can see that
TennisMaster performs well in our serve dataset at the 6
different stages. The difference between the maximum and
the minimum F1-score is 5.1%.

The players of different level may perform serve with d-
ifferent quality, the serve between high level and low level
is usually very different, thus we further investigate the im-
pact of the level of the players on the performance of Ten-
nis Master. The classification result of 3 different level of
players are shown in Figure 7. It can be seen that Tennis
Master achieves good accuracy both on level elite and mid-
level players with accuracy of 96.28% and 94.03%, but the
accuracy is slightly lower on novice level with accuracy of
90.86%. This is because the players of high level usually
perform the serve with standard, and the player of low level
usually perform the serve with bad quality, and these serves
usually different from person to person. In addition, the
serve of the low level players usually tend short in some of
the stages, this makes the recognition of these stages more
difficult. These stages are usually falsely recognized into
other stages.

4.4 Performance of Score Calculation
We use the mean absolute error (MAE) and Pearson corre-

lation to measure the performance of score prediction. MAE
measures how close predictions are to the outcomes. We al-

Figure 9: The assessment performance between dif-
ferent number of sensors.

so use Pearson correlation to measure the linear relations
between the ground truth and the predictive score.

For comparison, we choose another knowledge-based serve
assessment method as baseline. For the knowledge based as-
sessment, we use the peak values of the upper arm internal
rotation, wrist flexion, and shoulder rotation before impact
stage as the feature representation of a serve, since these
three motions are the main contributors to the performance
of a serve. The calculation method of these three elements
can be get in [5]. The score of the serve evaluation is based
on the 5-point scale. And we perform 5-fold cross validation
using the two assessment method on all of 12 players. We
use P1, P2,..., P12 to denote them respectively. We use half
of the serve sets of all the 12 players as training set, and use
the rest serves with each of them to test the performance of
the two models. The average MAE of tennis master is 0.398
through the evaluation of 12 players, which is much better
than the average MAE of baseline: 0.458, the result is shown
in Figure 8. The predicted serve performance strongly cor-
relates with the ground truth , with the Pearson correlation
of 0.702.

4.5 Performance of Various Sensor Placements
In this system, we use two sensors to evaluate the perfor-

mance of the serve, this design choice is based on the result
of our sensor selection protocol. At first, we mount sensor
on all of the eight limb of the body as well as the chest and
the bottom of the racket. The power features and gesture
feature were extracted from all of the ten sensors. Then,
we perform feature selection method through the RRelief-
F algorithm, this algorithm can calculate the weight of the
feature which indicates the importance of the feature. And
the importance of the sensor in the system is indicated by
the sum of the feature extracted from it [13]. Through this
we sort the importance of the ten sensors in the system.

Figure 9 shows the MAE of the serve assessment with
different number of sensors. At first we use all of the 10
sensors to assess the performance of the serve, and each time
we discard the least important sensor through the method
above. We can see from the figure, that when the number of
sensor is larger than 5, the MAE tends not to become smaller
with the raise of sensor number and the MAE various small
when the sensor number is 2, 3, and 4. In consideration of
the mounting comfort, price and accuracy, we choose the



sensor number as two.

5. CONCLUSION
Wearable devices play an important role in the research

and application of cyber physical systems. In this paper, we
present the design, implementation, and evaluation of Ten-
nisMaster, an IMU-based online feedback system to perfor-
m on-line assessment of tennis serve to the player during
the training process. TennisMaster provides accurate and
real-time evaluation of serve performance. The evaluation
is based on the segmentation of the serve and makes as-
sessment through the fields of power, gesture and rhythm.
Experimental results demonstrate that our system achieves
excellent accuracy in the recognition, segmentation and per-
formance evaluation of tennis serve.
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[8] Marc Bächlin, Kilian Förster, and Gerhard Tröster.
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horses: automated quality feedback for dressage
riders. In Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous
Computing, pages 325–336. ACM, 2015.

[22] Bo Zhou, Harald Koerger, Markus Wirth, Constantin
Zwick, Christine Martindale, Heber Cruz, Bjoern
Eskofier, and Paul Lukowicz. Smart soccer shoe:
monitoring foot-ball interaction with shoe integrated
textile pressure sensor matrix. In Proceedings of the
2016 ACM International Symposium on Wearable
Computers, pages 64–71. ACM, 2016.


