
Systematically exploring control programs

Ratul Mahajan

Joint work with Jason Croft,
Matt Caesar, and Madan Musuvathi

Control programs run networks

From the smallest to the largest

Control programs run networks

From the smallest to the largest

The nature of control programs

Collection of rules with triggers and actions

motionPorch.Detected:

if (Now - tLastMotion < 1s

&& lightLevel < 20)

porchLight.Set(On)

tLastMotion = Now

@6:00:00 PM:

porchLight.Set(On)

@6:00:00 AM:

porchLight.Set(Off)

packetIn:

entry = new Entry(inPkt.src,

inPkt.dst)

if (!cache.Contains(entry)

cache.Insert(entry, Now)

CleanupTimer:

foreach entry in cache

if (Now – cache[entry] < 5s)

cache.Remove(entry)

Buggy control programs wreak havoc

One nice morning in
the summer

Buggy control programs wreak havoc

“I had a rule that would turn on the heat, disarm the
alarm, turn on some lights, etc. at 8am … I came home
from vacation to find a warm, inviting, insecure, well lit
house that had been that way for a week … That’s just
one example, but the point is that it has taken me literally
YEARS of these types of mistakes to iron out all the kinks.”

Control programs are hard to reason about
motionPorch.Detected:

if (Now - timeLastMotion < 1 sec

&& lightMeter.Level < 20)

porchLight.Set(On);

timeLastMotion = Now;

porchLight.StateChange:

if (porchLight.State == On)

timerPorchLight.Reset(5 mins);

timerPorchLight.Fired:

if (Now.Hour > 6AM && Now.Hour < 6PM)

porchLight.Set(Off);

Intimate
dependence on time

Cross-rule
interactions

Many possible
environments

9:00 PM Physical
actuation

9:04 PM Motion

9:05 PM Lights off

Systematically exploring programs

Exploring programs using FSMs

Exploring programs using FSMs

1. Decide what are states and transitions

2. Explore all transitions from all states

S0

S1 S2

T1 T2

S3

T1
T2 T1

S4

T2

Challenge: Dependence on time

To explore comprehensively,
must we fire all possible
events at all possible times?

Trigger0:

tTrigger1 = Now

tTrigger2 = Now

trigger1Seen = false

Trigger1:

if (Now – tTrigger1 < 5)

trigger1Seen = true

tTrigger1 = Now

Trigger2:

if (trigger1Seen)

if (Now – tTrigger2 < 2)

DoSomething()

else

DoSomethingElse()

The tyranny of “all possible times”

Tractability

Completeness

Timed automata

FSM (states, transitions) plus:

• Finite number of real-values clocks (VCs)

• All VCs progress at the same rate, except that one or more VCs
may reset on a transition

• VC constraints gate transitions

[trigger1Seen]

[false]

[true]

Trigger0
() [x1,x2]

Trigger1
(x1<5) [x1]

Trigger1
(x1 >=5) [x1]

Trigger2 (x2 < 2)
[] {DoSomething}

Trigger2 (x2 >= 2)
[] {DoSomethingElse}

Trigger0
() [x1,x2]

Trigger1
(x1 >= 5) [x1]

Trigger1
(x1 < 5) [x1]

Trigger2
() []

Trigger0:

tTrigger1 = Now

tTrigger2 = Now

trigger1Seen = false

Trigger1:

if (Now – tTrigger1 < 5)

trigger1Seen = true

tTrigger1 = Now

Trigger2:

if (trigger1Seen)

if (Now – tTrigger2 < 2)

DoSomething()

else

DoSomethingElse()

Properties of timed automata

If VC constraints are such that:

No arithmetic operation involving two VCs

No multiplication operation involving a VC

No irrational constants in constraints

Time can be partitioned into equivalence regions

x + y < z

2x < 3

x < 2

x < y + 2x < 2

Region construction

If integer constants and simple constraints (e.g., 𝑥 < c)

Straight lines ∀𝑥: {𝑥 = 𝑐 | 𝑐 = 0, 1, … 𝑐𝑥}

Diagonals lines ∀𝑥, y: fract 𝑥 = fract y 𝑥 < c𝑥 , y < cy}

X1

X
2

1 2 3 4 5

1

2

0

x2 < x1 + 2

Exploring a TA: Region automata

[false]

[true]

Trigger0 ()
[x1,x2]

Trigger1
(x1<5) [x1]

Trigger1
(x1 >=5)

[x1]

Trigger2 (x2 < 2)
[] {DoSomething}

Trigger2 (x2 > 2)
[] {DoSomethingElse}

Trigger0 () [x1,x2]

Trigger1 (x1 >= 5)
[x1]

Trigger1
(x1 < 5) [x1]

Trigger2
() []

[false]
x1=0, x2=0

Trigger0
Trigger2

[true]
x1=0, x2=0

[false]
x1=0.5, x2=0.5

Trigger1
δTrigger0

Trigger1

Trigger2
{DoSomething}

[true]
x1=0.5, x2=0.5

δ

Trigger0

[true]
x1=0, x2=0.5

Trigger1
Trigger2

[false]
x1=1, x2=1

δ

Challenge: Many possible environments

motionPorch:

if (lightLevel < 20)

porchLight.Set(On)

timer.Start(10 mins)

porchLight.On:

timer.Start(5 mins)

timer.Fired:

porchLight.Set(Off)

To explore comprehensively, must we
consider all possible environments?

[Off, Off]

[…]

LtLvl=0

[…]

LtLvl=99
● ● ●

[PorchLight, Timer]

[Off, Off]

[Off, Off]

LtLvl=0

[On, On]

LtLvl=19 LtLvl=99
LtLvl=20● ● ● ● ● ●

[PorchLight, Timer]

Symbolic execution

if (x < 2)

if (y > 5)

p = 1;

else

p = 2;

else

if (y > 10)

p = 3;

else

p = 4;

(x,y,p) = (𝜎𝑥, 𝜎𝑦, 𝜎𝑝)

𝜎𝑥 < 2

𝜎𝑦 > 5

𝜎𝑥 < 2
𝜎𝑦 > 5

𝜎𝑝 = 1

𝜎𝑥 ≥ 2

𝜎𝑦 ≤ 5

𝜎𝑝 = 2

𝜎𝑥 ≥ 2
𝜎𝑦 > 10

𝜎𝑝 = 3

𝜎𝑥 ≥ 2
𝜎𝑦 ≤ 10

𝜎𝑝 = 4

𝜎𝑦 ≤ 5

𝜎𝑥 ≥ 2

𝜎𝑦 > 10 𝜎𝑦 ≤ 10

Finding equivalent environments

motionPorch:

if (lightMeter.level < 20)

porchLight.Set(On)

timer.Start(5 mins)

porchLight.On:

timer.Start(5 mins)

timer.Fired:

porchLight.Set(Off)

1. Symbolically execute each trigger

2. Find environmental conditions that lead to same state

LtLvl < 20 LtLvl ≥ 20

LtLvl=∗

LtLvl=∗

Efficiently exploring environments

motionPorch:

if (lightMeter.level < 20)

porchLight.Set(On)

timer.Start(5 mins)

porchLight.On:

timer.Start(5 mins)

timer.Fired:

porchLight.Set(Off)

[Off, Off]

[Off, Off]

Motion,
LtLvl =10

[On, On]

Motion,
LtLvl = 20

LtLvl < 20 LtLvl ≥ 20

Pick random values in equivalent classes

DeLorean: A tool to explore control programs

Map temporal
activity to VCs

Model devices

Symbolically
execute

Explore

Mapping to VCs (1/2): Delay measurers

Trigger1:

...

tLast = Now

...

Trigger2:

...

if (Now - tLast < 60)

...

Trigger1:

...

VC_tLast = 0

...

Trigger2:

...

if (VC_tLast < 60)

...

Mapping to VCs (2/2): Timers

Trigger1:

...

timer1.Start(600)

...

timer1.Fired:

...

Trigger1:

...

VC_timer1 = 0

...

VC_timer1 == 600:

...

Reducing the number of VCs: Combining timers

timer1.Period = 600

timer1.Event += Timer1Fired

timer2.Period = 800

timer2.Event += Timer2Fired

...

Timer1Fired:

...

Timer2Fired:

...

VC_timer = 0

...

VC_timer == 600:

...

VC_timer == 800:

...

VC_timer = 0

Modeling devices

Model a device using one of more key value pairs

– Motion sensor: Single key with binary value

– Dimmer: Single key with values in range [0..99]

– Thermostat: Multiple keys

Keys can be notifying or non-notifying

– Triggers are used for notifying keys

Queries for values are treated as environmental condition

Limitations of device modeling

Values can change arbitrarily

Key value pairs of a device are independent

Different devices are independent

Exploration using TA

1. unexploredStates = {𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙} //state = Variables values + VC region + ready timers

2. exploredStates = {}

3. While (unexploredStates ≠ 𝜙)

4. 𝑆𝑖 = PickNext(unexploredStates)

5. foreach trigger in Events, 𝑆𝑖 . 𝑅𝑒𝑎𝑑𝑦𝑇𝑖𝑚𝑒𝑟𝑠

6. foreach environment in Environments

7. 𝑆𝑜 = Compute(𝑆𝑖, trigger, environment)

8. if (𝑆𝑜 ∉ exploredStates) unexploredStates.Add(𝑆𝑜)

9. if (𝑆𝑖 . 𝑅𝑒𝑎𝑑𝑦𝑇𝑖𝑚𝑒𝑟𝑠 = 𝜙)

10. 𝑆𝑜 = AdvanceRegion(𝑆𝑖)

11. if (𝑆𝑜 ∉ exploredStates) unexploredStates.Add(𝑆𝑜)

12. exploredStates.Add(𝑆𝑖)

Optimization: Predicting successor states

Observation: Multiple region states can have identical response to a trigger

Trigger1:

if (x1 < 5)

trigger1Seen = true

x1= 0

Trigger2:

if (trigger1Seen)

if (x2 < 2)

DoSomething()

else

DoSomethingElse()

tTrigger1
tT

ri
gg

er
2

1 2 3 4 5

1

2

0

●

●

Optimization: Predicting successor states

Observation: Multiple region states can have identical response to a trigger

Clock personality: region’s evaluation of clock constraints

𝑆1 𝑆2

Same variable values and ready timers

Different regions but same personality

● ● ● ●

Compute

● ● ● ●
Predict

Evaluation on ten real home
automation rograms

Example bugs

P9-1: Lights turned on even in the absence of motion
– Bug in conditional clause: used OR instead of AND

P9-2: Lights turned off between sunset and 2AM
– Interaction between rules that turned lights on and off

P10-1: Dimmer wouldn’t turn on despite motion
– No rule to cover a small time window

P10-2: One device in a group behaved differently
– Missing reference to the device in one of the rules

Performance of exploration

Time to “fast forward” the home by one hour

Benefit of successor prediction

Successor prediction yields significant advantage

Ongoing work: Exploring OpenFlow programs

Scale is similar but additional challenges:

• Dynamically created VCs

• Variable number of VCs along different paths

packetIn:

timer = new Timer(5s)

Insert(timer, inPkt.src, inPkt.dst)

Control program verification in context

Data plane

Control plane

Policy

Config

Bottoms-up
verification

Top-down
synthesis Protocols

Control
programs

Summary

Control programs are tricky to debug

Interaction between rules

Intimate dependence on time

Many possible environments

DeLorean addresses these challenges using

Systematic exploration (model checking)

Timed automata based exploration to determine equivalent times

Symbolic execution to find equivalent environments

Backup

Two bug finding methods

Testing Model checking

Example

motionPorch:

porchLight.Set(On)

timer.Start(5 mins)

porchLight.On:

timer.Start(5 mins)

timer.Fired:

porchLight.Set(Off)

[PorchLight, Timer]

[Off, Off]

[On, On]

Motion
LightOn

Motion LightOn

Timer

[Off, On]

LightOff
LightOn
MotionTimer

Exploring temporal behavior: soundness

motionPorch:

porchLight.Set(On)

timerDim.Start(5 mins)

timerOff.Start(10 mins)

porchLight.On:

timerDim.Start(5 mins)

timerOff.Start(10 mins)

timerDim.Fired:

porchLight.Set(Dim)

timerOff.Fired:

porchLight.Set(Off)

if timerDim.On()

Abort();

[PorchLight, TimerDim, TimerOff]

[Off, Off, Off]

[On, On, On]

LightOff

[Off, On, On] [Off, On, Off][Dim, Off, On]

Motion
LightOn

TimerOffLightOff

Motion
LightOn

TimerDim

Use symbolic execution alone?

Trigger0,
Trigger1,
Trigger2

[] Trigger0 []

Trigger1

Trigger2

Symbolic, path-based Concrete, state-based

Trigger0:

tTrigger1 = Now

tTrigger2 = Now

trigger1Seen = false

Trigger1:

if (Now – tTrigger1 < 5)

trigger1Seen = true

tTrigger1 = Now

Trigger2:

if (trigger1Seen)

if (Now – tTrigger2 < 2)

DoSomething()

else

DoSomethingElse()

[trigger1Seen, tTrigger1, tTrigger2]

[false, T, T]

[true, T+3, T]

Trigger2

Trigger1
[Now=T+3]

[false, T+6, T]

Trigger1
[Now=T+6]

DoSomething() DoSomethingElse()

[trigger1Seen, tTrigger1, tTrigger2]

[false, T, T]

[true, T+1, T]

Trigger2

Trigger1
[Now=T+1]

[false, T+6, T]

Trigger1
[Now=T+6]

DoSomething() DoSomethingElse()

Trigger0:

tTrigger1 = Now

tTrigger2 = Now

trigger1Seen = false

Trigger1:

if (Now – tTrigger1 < 5)

trigger1Seen = true

tTrigger1 = Now

Trigger2:

if (trigger1Seen)

if (Now – tTrigger2 < 2)

DoSomething()

else

DoSomethingElse()

X1

X
2

1 2 3 4 5

1

2

0

Trigger0:

tTrigger1 = Now

tTrigger2 = Now

trigger1Seen = false

Trigger1:

if (Now – tTrigger1 < 5)

trigger1Seen = true

tTrigger1 = Now

Trigger2:

if (trigger1Seen)

if (Now – tTrigger2 < 2)

DoSomething()

else

DoSomethingElse()

Why this construction works

X1

X
2

1 2 3 4 5

1

2

0

● ●

● ●
1. X1 < 5

2. X2 < 2

3. X1 < 5 && X2 > 2

Why this construction works

X1

X
2

1 2 3 4 5

1

2

0

● ●

●
●

1. X1 < 5

2. X2 < 2

3. X1 < 5 && X2 > 2

Why regions are fine-grained

[s0] [s1]

t1 (x<2) [x]

t2 (y<1) [y] X

Y

0 1 2

1

X

Y

0 1 2

1
● ●

● ●

● (0.5, 0.5) ● (1.5, 0.5)

● (1.5, 1.5) ● (2.5, 1.5)
[s0] [s1]

t1 (x<2) [x]

t2 (y<1) [y]

[s2]t3 (x<2, y > 1)

Finding equivalent environments

motionPorch:

x = lightMeter.Level

porchLight.On:

timer.Start(5 mins)

timer.Fired:

porchLight.Set(Off)

LtLvl= 0 LtLvl= 99• • • •

1. Symbolically execute each trigger

2. Find environmental conditions that lead to same state

Mapping to VCs (2/4): Periodic timers

timer1.Period = 600

timer1.Event +=

Timer1Fired

...

Timer1Fired:

...

VC_timer1 = 0

...

VC_timer1 == 600:

...

VC_timer1 = 0

Mapping to VCs (4/4): Sleep calls

Trigger:

... //pre-sleep actions

Sleep(10)

... //post-sleep actions

Trigger:

... //pre-sleep actions

VC_sleeper = 0

VC_sleeper == 10:

... //post-sleep actions

Reducing the number of VCs: Combining timers

timer1.Period = 600

timer1.Event += Timer1Fired

timer2.Period = 800

timer2.Event += Timer2Fired

...

Timer1Fired:

...

Timer2Fired:

...

VC_timer = 0

...

VC_timer == 600:

...

VC_timer == 800:

...

VC_timer = 0

Constructing time regions

1. Extract VC constraints using
symbolic execution

2. Construct time regions using
the constraints

Trigger0:

tTrigger1 = Now

tTrigger2 = Now

trigger1Seen = false

Trigger1:

if (Now – tTrigger1 < 5)

trigger1Seen = true

tTrigger1 = Now

Trigger2:

if (trigger1Seen)

if (Now – tTrigger2 < 2)

DoSomething()

else

DoSomethingElse()

DeLorean

Control program
Safety invariants

Front
end

Program with
virtualized devices

Program
analyzer

Clock constraints
Environmental classes

Control loops

Region states
Paths

Explorer

Comparison with untimed model checking

Untimed model checking reaches many invalid states

Reducing the number of VCs: Combining sleep calls

Trigger:

Act1()

Sleep(5)

Act2()

Sleep(10)

Act3()

Trigger:

Act1()

VC_sleeper = 0

sleep_counter = 1;

VC_sleeper == 5:

Act2()

VC_sleeper == 15:

Act3()

Optimization: Independent control loops

Observation: Control programs tend to have multiple,
independent control loops

1. Determine independent sets of variables

2. Explore independent sets independently

Comparison with randomized testing

Random testing misses many valid states

Exploring OpenFlow programs

#devs SLoC #VCs GCD

MAC-Learning Switch
(PySwitch)

2 hosts, 2
sw, 1 ctrl

128 >= 6 1

Web Server Load
Balancer

3 hosts, 1
sw, 1 ctrl

1307 >= 4 1

Energy-Efficient
Traffic Engineering

3 hosts, 3
sw, 1 ctrl

342 >= 8 2

