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ABSTRACT
Finding a good embedding of a unit disk graph given by
its connectivity information is a problem of practical impor-
tance in a variety of fields. In wireless ad hoc and sensor
networks, such an embedding can be used to obtain virtual
coordinates. In this paper, we prove a non-approximability
result for the problem of embedding a given unit disk graph.
Particularly, we show that if non-neighboring nodes are not
allowed to be closer to each other than distance 1, then two
neighbors can be as far apart as

√
3/2− ε, where ε goes to

0 as n goes to infinity, unless P = NP . We further show
that finding a realization of a d-quasi unit disk graph with
d ≥ 1/

√
2 is NP -hard.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems
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Algorithms, Theory
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1. INTRODUCTION
In a unit disk graph [4], there is an edge between two nodes

u and v if and only if the Euclidean distance between u and
v is at most 1. Equivalently, each node is identified with
a disk of unit radius r = 1 in the plane, and is connected
to all nodes within (or on the edge of) its corresponding
disk. Unit disk graphs have proven to be useful in mod-
eling various physical real world problems. One prominent
application of unit disk graphs can be found in the field of
wireless networking, where a unit disk graph represents an
idealized multi-hop radio network. Nodes are located in the
Euclidean plane and are assumed to have identical (unit)
transmission radii. They can communicate only if they are
within mutual transmission range. Clearly, the unit disk
graph model neatly captures this behavior and it is not sur-
prising that it has become a standard when studying ad hoc
and sensor networks.

When modeling ad hoc and sensor networks as a unit disk
graph, it seems plausible that the connectivity information
of the network graph contains sufficient information in or-
der to obtain topologically correct coordinate information.
Such coordinate information, in turn, would serve a number
of needs arising in many applications of ad hoc and sensor
networks.

To be more concrete, we are interested in assigning to each
node a coordinate in the plane, such that nodes that are
neighbors in the connectivity graph have at most Euclidean
distance 1 in the plane, and nodes that are not neighbors
in the connectivity graph have at least distance 1. In other
words, we would like to embed a given unit disk graph in the
plane. Unfortunately, it can be shown that this is impossible
in polynomial time unless P = NP . In [3], Breu and Kirk-
patrick show that given a graph G, deciding whether G is a
unit disk graph is NP -complete. Finding a realization of a
unit disk graph, that is, finding an embedding which fulfils
all unit disk graph constraints, can be polynomially reduced
to the recognition problem of [3] by a straightforward re-
duction. Assume there is an algorithm A which computes
valid coordinates for a given unit disk graph GU . Letting
A run on an arbitrary graph G, we can subsequently verify
whether the computed coordinates fulfil all conditions for a
unit disk graph. G is a unit disk graph if and only if this is
the case.

In this paper, we extend the result by Breu and Kirk-
patrick by showing that a unit disk graph cannot even be
approximatively embedded in the plane. In particular, we
show that if we do not allow non-neighboring nodes to be
closer to each other than distance 1, then, unless P = NP ,



two neighbors can be as far apart as
√

3/2−ε, where ε tends
to 0 as the number of nodes n goes to infinity.

This inapproximability lower bound comes along with an-
other impossibility result, namely, given a d-quasi unit disk
graph G [8] with parameter d ≥ 1/

√
2, it is NP -hard to

find a realization (an embedding fulfilling all requirements
of the quasi unit disk graph) of G. In a quasi unit disk
graph, two nodes are connected by an edge if their distance
is less than or equal to d, d being a parameter between 0
and 1. Furthermore, if the distance between two nodes is
greater than 1, there is no edge between them. In the range
between d and 1, the existence of an edge is not specified.
Modeling ad hoc and sensor networks as a quasi unit disk
graph (as opposed to a unit disk graph) has the advantage of
being significantly closer to reality, while still being concise
enough to permit stringent theoretical results [8, 1]. From
a computational geometry point of view, the impossibility
of finding a realization for a d-quasi unit disk graph with
d ≥ 1/

√
2 may be of independent interest.

Our lower bound results are of particular interest in the
light of recent work on virtual coordinates for wireless ad
hoc and sensor networks [12, 13, 10]. The reason is that the
problems of finding a good embedding of a unit disk graph
in the plane, and assigning virtual coordinates to nodes in
wireless multi-hop networks – when being modelled as a unit
disk graph – are equivalent.

For many higher-layer protocols, such as routing algo-
rithms, it would be of great help if the nodes of an ad
hoc or sensor network could be assigned virtual coordinates.
As nodes may be tiny sensors in a sensor network (where
equipment is restricted to the minimum due to limitations
in energy consumption, weight, or cost), we may not gen-
erally assume that nodes are capable of sensing directions
and/or distances to neighboring nodes. Hence, it is highly
desirable to derive coordinates from connectivity informa-
tion only, which can be collected even by the simplest nodes.
In the literature on virtual coordinates, there have been
several suggestions for heuristics [12, 13] without provable
performance guarantees. The only existing approximation
algorithm given in [10] achieves an approximation ratio of
O(log2.5n · √log log n). Our results show that none of the
proposed heuristics can have a better approximation ratio
than roughly

√
3/2. As a direct consequence, this rules out

any kind of polynomial time approximation scheme (PTAS)
for the problem. Independently, Lotker et. al. also showed
that no PTAS exists for the problem of assigning virtual co-
ordinates to the nodes of a unit disk graph [9]. However,
in [9], no actual lower bound on the approximability of the
problem is given.

The primary application of virtual coordinate approaches
lies in the area of routing where virtual coordinates represent
a simple way to embody the topology of the network. Based
on virtual coordinates, geometric routing algorithm such as
GFG/GPSR [2] or GOAFR [7] can be applied. Other than
for routing algorithms in multi-hop radio networks, virtual
coordinates have found prominent application in the con-
text of Internet mapping [5, 11]. Here, the goal is to derive
topological information about the Internet graph in order to
improve anycast and peer-to-peer systems.

The paper is organized as follows. After introducing vari-
ous definitions in Section 2, the central Section 3 states and
proves the lower bounds. The paper is concluded in Section
4.

2. MODEL AND NOTATION
As indicated in the introduction, the lower bound con-

struction is based to some extent on a generalization of the
unit disk graph, the so-called d-quasi unit disk graph [8].

Definition 2.1 (Quasi Unit Disk Graph). Let V ∈
R2 be a set of points in the 2-dimensional plane and let d ∈
[0, 1] be a parameter. The symmetric Euclidean graph G =
(V, E), such that for any pair u, v ∈ V

• dist(u, v) ≤ d =⇒ {u, v} ∈ E

• dist(u, v) > 1 =⇒ {u, v} /∈ E

is called a d-quasi unit disk graph (d-QUDG).

Note that the definition of a quasi unit disk graph does
not specify whether there is an edge between two nodes u
and v having distance d < dist(u, v) < 1. Such an edge may
be there, but it may not be there. Clearly, a unit disk graph
is a special case of a d-quasi unit disk graph for d = 1.

As our goal is to find a good representation of the unit disk
graph (given by its connectivity information) in the plane,
we need to formalize the notion of such a representation. An
embedding of a Graph G = (V, E) in the Euclidean plane is
a mapping f : V → R2, such that each vertex v corresponds
to a point (x, y) in the plane. An embedding which satisfies
all constraints of a d-quasi unit disk graph G is called a
realization of G.

Definition 2.2 (Realization). A realization of a d-
QUDG graph G = (V, E) in the Euclidean plane is an embed-
ding r(G) of G such that {vi, vj} ∈ E ⇒ dist(f(vi), f(vj)) ≤
1 and {vi, vj} /∈ E ⇒ dist(f(vi), f(vj)) ≥ d, where dist(u, v)
denotes the Euclidean distance between two points.

As shown in the introduction, finding a realization for unit
disk graphs is NP -hard. Therefore, we resort to finding
algorithms which compute an approximate realization, i.e.,
an embedding which may violate some unit disk constraints,
but does not do so too much. The goal of an approximation
algorithm is to map adjacent nodes to close-by coordinates,
and non-adjacent nodes to distant coordinates. Hence, the
measure for determining the quality of an approximation
algorithm is based on the ratio between the most distant
adjacent pair of nodes, to the closest non-adjacent pair of
nodes. We formally evaluate approximation algorithms for
virtual coordinates and UDG realizations by means of the
so-called quality of an embedding as defined in [10].

Definition 2.3 (Quality). Let r(G) be an embedding
of UDG G = (V, E) in the plane. Let ρ(u, v) denote the Eu-
clidean distance between nodes u and v in r(G). We define
the quality of the embedding r(G) as

q(r(G)) :=
max{u,v}∈E ρ(u, v)

min{û,v̂}/∈E ρ(û, v̂)
.

Let G denote the family of all unit disk graphs. We con-
sider algorithms which, given an input graph G ∈ G, com-
pute an embedding rALG(G). We say that an algorithm
achieves approximation ratio α if q(rALG(G)) ≤ α for all
G ∈ G.

In the following, we are going to place an inherent bound
on the approximability of virtual coordinates and unit disk



graph embeddings. In particular, we prove in the Section
3 that finding an embedding r(G) for a unit disk graph G
such that,

q(r(G)) ≤
√

3/2− ε

where ε approaches 0 as n tends to infinity is NP -hard.

3. LOWER BOUND
In this central section, we prove the lower bound on the

approximation ratio. More particularly, Theorem 3.1 shows
that, given a unit disk graph G, it is hard to find a good
embedding in the plane. More precisely, it states that not
only it is impossible to find a unit disk graph embedding for
G, but it is even impossible to embed G as a d-quasi unit
disk graph for certain values of d.

Theorem 3.1. Given a unit disk graph G = (V, E), it
is NP -hard to find a realization of G as a d-QUDG with
d ≥

√
2/3 + ε, where ε tends to 0 as n goes to infinity.

As motivated in the introduction, this theorem has man-
ifold implications. In the context of ad-hoc and sensor net-
works, for instance, it places a bound on the ability to derive
virtual coordinates from the graph’s connectivity properties
only.

The proof is based on a reduction from an instance of 3-
SAT. Without loss of generality, we can assume that each
variable appears in at most 3 clauses [6]. We give a polyno-
mial time construction of a graph GC = (VC , EC) from an
instance C of SAT, such that the following holds:

• C is satisfiable ⇒ GC is realizable as UDG

• C is not satisfiable ⇒ GC is not realizable as d-QUDG
with d ≥

√
2/3 + ε.

Hence, an approximation algorithm A with approxima-
tion ratio better than

√
2/3 + ε could be used to decide

in polynomial time whether the given instance of 3-SAT is
satisfiable, thus implying P = NP.

3.1 The Reduction
The construction of GC = (VC , EC) was inspired by a

construction in [3]. In the following, we summarize the re-
duction given in [3] to a level of detail which is necessary to
understand our result.

We begin by constructing an intermediate (undirected)
graph GSAT

C from the instance C of 3-SAT, such that the
clauses and literals of C correspond to vertices in GSAT

C .
There is an edge between a literal vertex and a clause ver-
tex if the literal appears in the clause. The graph GSAT

C is
orientable if its edges can be directed such that the follow-
ing two conditions hold. First, the outdegree of each clause
vertex is at least 1. And secondly, for each variable, either
the positive literal vertex or the negative literal vertex has
indegree 0. Intuitively, the first condition secures that each
clause is satisfied and the second condition guarantees that
each variable can be set to either true or false. Using this
notion of orientability, the following Lemma can easily be
shown [3]:

Lemma 3.2 ([3]). C is satisfiable if and only if GSAT
C

is orientable.

The next step is to draw GSAT
C on a grid of size O(|C|·|V |),

where C and V are the set of clauses and variables of the
3-SAT instance, respectively. See Figure 1 for an example
of how clauses and literals are linked to each other by paths
for the instance C = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨
x2 ∨ x3). Each grid vertex is either unused, or is associated
with a unique component of the drawing. Each component
has up to 4 terminals located in the north, south, west, or
east of the component. Each terminal is associated with a
unique direction, i.e., a terminal can either be directed away
or directed towards its component.
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Figure 1: The grid drawing of GSAT
C .

The grid drawing of GSAT
C is called orientable if all termi-

nals can be oriented subject to the condition that

1. For every variable, there is a literal component with
all (potentially zero) terminals directed away from it.

2. For all other components, there is at least one terminal
directed away from it.

The following Lemma states the equivalence of GSAT
C and

its drawing in the grid.

Lemma 3.3 ([3]). A grid drawing is orientable if and
only if the underlying graph GSAT

C is orientable, i.e., if the
underlying instance C of 3-SAT is satisfiable.

The basic idea of the reduction is to find a construction
of GC which simulates the grid drawing of GSAT

C . In partic-
ular, we create a graph component for each of the different
grid drawing components and connect them according to
the grid drawing. We then show that GC can be realized
as a unit disk graph in case the grid drawing of GSAT

C is
orientable, and it cannot be realized as a d-quasi unit disk
graph otherwise.

3.2 Cages and Chains
We begin by introducing the main building block of the

constructed graph GC , the cages and the chains, from which
all components introduced in subsequent sections are built.
A cage is a cycle of length k. Cages are hooked together
(as shown in Figure 2) by merging two adjacent vertices on
each cycle. The edge incident to these connecting vertices
serves as a hinge for a path of independent vertices, the
so-called chain. These chains come in two flavors. Single-
chains have length 2t, while double-chains have length 4t,
where the exact value of t is to be determined later.



Intuitively, the idea of this construction is as follows. Each
cage has a maximum number of independent nodes which
can be placed within the cage. If the chain between two
adjacent cages is placed in the interior of one of the cages,
it diminishes the available space inside that cage and may
thereby squeeze out other chains (into the next neighboring
cage) which may otherwise have been embedded in the cage.
By connecting several such cages together, we are able to
construct directable paths as imposed by the grid drawing
of GSAT

C .
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Figure 2: Two QUDG-cages connected by a hinge,
the chain being embedded in the left cage. Both
cages well-defined interior is shaded grey.

In order to ensure that this construction works, several
properties must be guaranteed. Unlike in unit disk graphs,
a realization of a cycle of length k in a d-QUDG does not
necessarily have to be planar. Nonetheless, for our reduction
to work, cages must have a well-defined interior into which
chains can (and must) embed. Moreover, it must be ensured
that chains embed entirely in one of its two adjacent cages,
i.e., chains cannot leave a cage or be located outside of any
cage. In the following, we are going to establish these and
other vital properties.

The following two lemmas show that a cage does have a
well-defined interior, and hence, the notion of a chain being
embedded inside a cage makes sense. The first lemma was
proven in [8].

Lemma 3.4. Let e1 = {u1, v1} and e2 = {u2, v2} be two
intersecting edges in a d-QUDG G with parameter d ≥ 1/

√
2.

Then, at least one of the edges {u1, u2}, {u1, v2}, {v1, u2},
or {v1, v2} exists in G.

Using this lemma, it is now easy to show that, in spite of
its possibly being non-planar, the realization of a cycle in a
d-QUDG for d ≥ 1/

√
2 must have a well-defined interior.

Lemma 3.5. Given a cycle C of length k ≥ 5 of a d-
QUDG with d ≥ 1/

√
2, any realization r(C) of C has a

well-defined interior. The area AC of this interior is at most

AC ≤ k2/4π.

Proof. Let r(C) be a realization of C. Consider two
intersecting edges {u, v} and {x, y}. By Lemma 3.4 and
the fact that k ≥ 5, exactly one of the edges {u, x}, {u, y},
{v, x}, or {v, y} is in the cycle C. Assume without loss of
generality that {u, x} ∈ C. Now, replace {u, x} by a node x′

located at the intersection of {u, v} and {x, y} and repeat the
same procedure for all intersecting edges (see Figure 2 where

nodes x′ are represent by dark nodes). This yields a cycle
of at least half the length of C with no intersecting edges.
The ratio of area to perimeter is optimal in a circle and
hence, the interior area of r(C) is maximized if the vertices
are realized as a regular k-gon. Because r(C)’s perimeter is
at most k, the encircled area cannot be larger than k2/4π.

An immediate consequence of Lemmas 3.4 and 3.5 is that,
if a part of a chain is embedded inside the interior of a cage,
the remainder of the chain must also be embedded therein.
A crossing edge would contradict the independence of at
least one chain vertex and cycle vertex.

It is now time to establish a relationship between the
perimeter k of a cage and the length 2t (or 4t) of the chains.
Intuitively, we want the following to hold: One the one hand,
for unit disk graphs, we want cages to have an imaginary
capacity of 2, i.e., exactly two single-chains or one double-
chain may be embedded in a cage. If two single-chains or
one double-chain embed in a cage, all other adjacent chains
are forced from that cage into neighboring cages. This way,
not only can information be propagated over paths, but it
is also possible to build complex components such as the
ones needed in Subsection 3.3. On the other hand, we want
to guarantee that in a d-QUDG with d ≥

√
2/3 + O(1/k),

cages do not have capacity more than 2, either. In other
words, we want at most two single-chains or one double-
chain to embed in the interior of a cage in a realization of
GC as a d-QUDG. With these properties, we ensure that
realizing GC as a unit disk graph and as a d-QUDG with
d ≥

√
2/3 + O(1/k) are equally hard. The approximation

lower bound then follows.
Obviously, a chain of length 2t contains t mutually inde-

pendent vertices, each of which covers an area of at least
d2π in a d-QUDG realization. Since we want 2t such inde-
pendent unit disks to fit into a cage, we define t as

t :=
⌈ηhk2

8π
− βk

⌉
(1)

where β is the smallest constant such that, for all k, at least
2t independent disks can be packed into the cage. For large
enough k, β can be chosen smaller than 1. Subtracting the
second term ensures that areas of less packing density along
the cage’s border (which is obviously in the order of the
length of the perimeter O(k)) are taken into account. The
constant ηh := 1

6
π
√

3 denotes the packing density of circles
in the plane in a hexagonal lattice, which is the densest
possible packing.

Lemma 3.6. Let C be a circle of length k. In any realiza-
tion r(C) of C as a d-QUDG with d ≥

√
2/3 + O(1/k), at

most two single-chains each of length 2t or one double-chain
of length 4t can be embedded in the interior of r(C).

Proof. By Lemma 3.5, the area of the interior of a cage
C is at most AC ≤ k2/4π. We need to show that 3t in-
dependent disks (which corresponds to having three single-
chains or both a double-chain and a single-chain) with radius

d ≥
√

2/3+αk cannot be packed in C. The number of unit
disks mu and disks md with radius d which can maximally
be packed in C is therefore

mu =
ηhAC

π
− βk md =

ηhAC

d2π
+ β′k (2)



where, again, the constants β and β′ are used to account for
border effects. We want to find the smallest d such that the
two conditions

mu ≥ 2t and md ≤ 3t

hold. Plugging (1) and (2) into the resulting system of in-
equalities and solving for d yields the desired result.

Observe that a cage can indeed be realized having two
single-chains or one double-chain embedded in its interior by
packing the chains in a “snake-like” fashion. This is possible
regardless from which direction the chains are entering the
cage.

3.3 Components
In this section, we describe the realization of the various

components shown in Figure 1, starting with the basic wire.
We then go on to describe clauses, variables and crossings.
Note that the components used in the proof of [3] serve the
same purposes (and bear the same names) as the compo-
nents described in the sequel. Their construction, partic-
ularly of the variable and crossing component, is different
since it is built on multiple types of cages differing from the
ones used in this paper.
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Figure 3: An oriented wire with mortar.

3.3.1 Wire:
A wire connects the various components of the grid draw-

ing to one another and hence serves as the directable path
between them. A wire consists of a sequence of cages hooked
together, and a double-chain at each connecting link. In or-
der to make sure that this chain indeed embeds in one of
the two adjacent cages, we borrow an idea from [3] and add
mortar around the hinge vertices, as shown in Figure 3.
Mortar forces the chain to embed in one of the two cages.
This intuition is concretized in the following lemma.

Lemma 3.7. In any realization r(G) of GC as a d-QUDG
with d ≥ 1/

√
2, the chain between two cages is embedded

entirely in one of the cages.

Proof. Let v1 be the first independent node in the chain.
Let I and I ′ denote the interior areas of the two adjacent
cages, and let IM be the interior of a corresponding mortar.
If v1 is in I or I ′, the rest of the chain is embedded in the
same cage by Lemma 3.4. Now, assume for contradiction
that v1 is located outside of I and I ′. If v1 is in IM , one of
the subsequent chain vertices must cross an edge of either

the mortar or a cage as the capacity of IM is too small. This
leads to a contradiction with Lemma 3.4 and the assumption
that each chain vertex is independent of all cage and mortar
vertices. Similarly, if v1 is outside of I, I ′, and IM , there
must be a crossing between one of the hinge edges and a
cage edge.

Mortars are also used in the remaining components where
necessary. It is easy to see that for large enough k, the mor-
tars of different “connections” do not overlap or interfere,
because the number of vertices per mortar is constant. This
is the case even if a cage has four adjacent cages, one in each
direction. Further, note that corners (i.e., wire components
where the direction of the grid-drawing path turns by 90
degrees) are built the same way as wires, the only difference
being the placement of the hinge.

We write that a wire is oriented towards the clause if
all chains on this wire are embedded in the adjacent cage
closer to the corresponding clause component. The wire is
oriented towards the variable if all chains are embedded in
the adjacent cage closer to the variable component. The
behavior of wires is summarized in the following lemma.

Lemma 3.8. In any realization r(G) of GC as a d-QUDG
with

d ≥
√

2/3 + O(1/k),

a wire is uniquely oriented towards either the clause compo-
nent or the variable component.

Proof. Once one chain in the wire is embedded in the
cage closer to the either the clause or the variable compo-
nent, all other chains in the same wire must be oriented
towards the same direction by Lemmas 3.6 and 3.7.

For the description of the remaining components, we ab-
stract cages as octagons (mortars are omitted for the sake
of clarity). Chains are denoted by lines with one or two
filled dots, corresponding to single-chains or double-chains,
respectively.

A

Figure 4: Clause component.

3.3.2 Clause component:
For the clause component, we can easily adapt the con-

struction given in [3], merely replacing the various kinds of
cages with our cage introduced in Section 3.2. As shown in
Figure 4, the central cage A can contain exactly two of the



three adjacent single-chains. Hence, in accordance to the
requirement imposed by GSAT

C , at least one terminal must
be directed away from the component. In case a clause con-
tains less than three variables, some of the terminals may be
capped. Such a capped terminal can easily be constructed by
reducing the capacity of a cage, such that the double-chain
must be directed towards the component.

A B

Figure 5: Variable component. The left half repre-
sents the positive literal, the right half the negative
literal. All terminals of the positive literal are di-
rected away from the component.

3.3.3 Variable component:
The variable component (see Figure 5) contains the two

literal components. It must guarantee that all terminals are
directed away from one of its two literal components, i.e.,
that the variable can be set either true or false. Assume
that one negative terminal (i.e., on the right side) is di-
rected towards the component. It follows that at least one
single-chain is embedded in cage B, thus forcing the double-
chain between A and B into A. This consequently forces
all positive terminals to be directed away from the terminal.
By symmetry, the same holds in the other direction as well.

B
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Figure 6: Crossing component.

3.3.4 Crossing component:
The most challenging component is the crossing compo-

nent depicted in Figure 6. Note that the crossing component
given in [3] cannot be used because it uses cages of greater
capacity than two.

Lemma 3.9. The crossing component ensures that, if the
TS (resp. TW , TN , TE) terminal is oriented towards the
component, then TN (resp. TE, TS, TW ) is oriented away
from it. However, it is possible for TN (TE) and TS (TW )
to be simultaneously directed away from the component.

Proof. Let H denote the horizontal path between TW

and TE . Let d(R) : ↑ and d(R) : ↓ denote that wire R is
directed in northern and southern direction, respectively.
In the example drawn in Figure 6, the following properties
hold: d(A), d(A′), d(B), d(C), d(D′) : ↓, and d(B′), d(D) : ↑.

We start with the simpler, horizontal direction. Assume
TE is directed towards the component as in Figure 6. All
chains on H must point to the left (because each cage has
capacity 2) and it follows that TW must be directed away
from the crossing. By symmetry, the same holds in the
opposite direction.

Now, consider the vertical direction and assume TS is
directed towards the crossing. It follows that d(D) : ↑ or
d(D′) : ↑. Observe that it is not possible that both D and D′

are directed north since this would lead to a contradiction
on H. Whether D or D′ is directed upwards is imposed by
the direction of the horizontal terminals. In case both hor-
izontal terminals are directed away from the component, a
realization arbitrarily “chooses” one of the two. Assuming
w.l.o.g. that d(D) : ↓ and d(D′) : ↑, it follows d(B′) : ↓ and
d(A′) : ↑. Combining d(B′) : ↓ with d(C) : ↑) yields d(B) : ↑
and consequently, d(A) : ↑. By d(A) : ↑ and d(A′) : ↑, we have
the TN is directed away from the crossing.

Last, we have to show that the crossing works if TN is
directed towards the component. Again, it is not possible
to have both d(D′) : ↑ and d(D′) : ↑. In case d(D′) : ↓ and
d(D′) : ↓, it clearly holds that TS is directed south. Hence, it
remains to analyze the cases for which exactly one of D and
D′ is directed upwards (again, a directed horizontal terminal
decides which of the two is directed upwards). Assuming
w.l.o.g. that d(D) : ↓ and d(D′) : ↑ forces the part of H
between the two outermost cages to be directed towards the
west and therefore, it follows d(B′) : ↓ and d(A′) : ↑. d(A′) : ↑
and d(TN ) : ↓ leads to d(A) : ↓ and consequently d(B) : ↓. In
combination with d(B′) : ↓, this results in d(C) : ↓ and finally,
d(TS) : ↓. The case d(D) : ↑ and d(D′) : ↓ is symmetric.

Having described all components, it is now straightfor-
ward to conclude the lower bound proof.

Proof of Theorem 3.1. From the above description of
the components, it follows that GC can be realized as a
d-unit disk graph with d ≥

√
2/3 + ε if and only if the un-

derlying grid drawing is orientable. By Lemma 3.3, this is
the case if and only if the underlying SAT instance C is sat-
isfiable. The construction of GC is clearly polynomial in the
number of clauses and variables and hence, approximating
the optimal q(r(G)) within

√
3/2− ε is NP -hard.

Our lower bound reduction can be used to prove a slightly
more general result which is summarized by the following
corollary.



Corollary 3.10. Given a d-quasi unit disk graph G, it
is NP -hard to find a realization of G as a d′-quasi unit disk
graph with d′ ≥ 1/

√
2 such that, d′ ≥ (

√
2/3 + ε)d.

Proof. The corrollary can be proven using exactly the
same techniques as in the prove of Theorem 3.1. The re-
striction d′ ≥ 1/

√
2 stems from Lemma 3.4. For details, we

refer to the full version of the paper.

Note that for d = 1, Corollary 3.10 is equivalent to The-
orem 3.1.

Finally, it is straightforward to obtain another impossi-
bility result. It is a strengthening of [3] in the sense that
the impossibility of finding a perfect embedding is not only
restricted to unit disk graph, but even to quasi unit disk
graphs for large enough d.

Corollary 3.11. Given a graph G, it is NP -hard to de-
termine whether G can be realized as a d-quasi unit disk
graph with d ≥ 1/

√
2.

Proof. The proof follows from the lower bound construc-
tion. Based on a 3SAT instance, we construct a graph GU

which is a unit disk graph if the 3SAT instance has a sat-
isfying assignment. If the 3SAT instance is not satisfiable,
GU cannot be embedded as a (

√
2/3 + ε)-quasi UDG. It

follows that it is NP hard to decide whether a given graph
is a d-quasi UDG for d ≥

√
2/3 + ε. Applying the same

reasoning to the construction of the proof of Corollary 3.10,
yields graphs Gd for which it is NP hard to decide whether
Gd is a d-quasi UDG for any d ≥ 1/

√
2.

4. CONCLUSION
In this paper, we have given the first inapproximability

result for the problem of embedding a unit disk graph into
the Euclidean plane. Besides being of theoretical interest
in the field of computational geometry, our result has di-
rect consequences for the study of virtual coordinates in ad
hoc and sensor networks. It places a bound on how well
virtual coordinates can be derived from connectivity infor-
mation alone. Currently, the gap between the best known
approximation algorithm achieving an approximation ratio
of O(log2.5n

√
log log n) [10] and our lower bound of

√
3/2−ε

is still glaring and we believe that neither of the current
bounds is tight. Considering the great potential of virtual
coordinates in a variety of applications — particularly in ad
hoc and sensor networks —, diminishing the chasm between
upper and lower bound promises to be an interesting field
for future research.
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