
Approximation Lasso Methods for Language Modeling

Jianfeng Gao
Microsoft Research
One Microsoft Way

Redmond WA 98052 USA
jfgao@microsoft.com

Hisami Suzuki
Microsoft Research
One Microsoft Way

Redmond WA 98052 USA
hisamis@microsoft.com

Bin Yu

Department of Statistics
University of California

Berkeley., CA 94720 U.S.A.
binyu@stat.berkeley.edu

Abstract
Lasso is a regularization method for pa-
rameter estimation in linear models. It opti-
mizes the model parameters with respect to
a loss function subject to model complexities.
This paper explores the use of lasso for sta-
tistical language modeling for text input.
Owing to the very large number of parame-
ters, directly optimizing the penalized lasso
loss function is impossible. Therefore, we
investigate two approximation methods, the
boosted lasso (BLasso) and the forward
stagewise linear regression (FSLR). Both
methods, when used with the exponential
loss function, bear strong resemblance to the
boosting algorithm which has been used as a
discriminative training method for language
modeling. Evaluations on the task of Japa-
nese text input show that BLasso is able to
produce the best approximation to the lasso
solution, and leads to a significant im-
provement, in terms of character error rate,
over boosting and the traditional maximum
likelihood estimation.

1 Introduction
Language modeling (LM) is fundamental to a wide
range of applications. Recently, it has been shown
that a linear model estimated using discriminative
training methods, such as the boosting and per-
ceptron algorithms, outperforms significantly a
traditional word trigram model trained using
maximum likelihood estimation (MLE) on several
tasks such as speech recognition and Asian lan-
guage text input (Bacchiani et al. 2004; Roark et al.
2004; Gao et al. 2005; Suzuki and Gao 2005).

The success of discriminative training methods
is largely due to fact that unlike the traditional
approach (e.g., MLE) that maximizes the function
(e.g., likelihood of training data) that is loosely
associated with error rate, discriminative training

methods aim to directly minimize the error rate on
training data even if they reduce the likelihood.
However, given a finite set of training samples,
discriminative training methods could lead to an
arbitrary complex model for the purpose of
achieving zero training error. It is well-known that
complex models exhibit high variance and perform
poorly on unseen data. Therefore some regulariza-
tion methods have to be used to control the com-
plexity of the model.

Lasso is a regularization method for parameter
estimation in linear models. It optimizes the model
parameters with respect to a loss function subject to
model complexities. The basic idea of lasso is
originally proposed by Tibshirani (1996). Recently,
there have been several implementations and ex-
periments of lasso on multi-class classification
tasks where only a small number of features need
to be handled and the lasso solution can be directly
computed via numerical methods. To our knowl-
edge, this paper presents the first empirical study
of lasso for a realistic, large scale task: LM for Asian
language text input. Because the task utilizes mil-
lions of features and training samples, directly
optimizing the penalized lasso loss function is
impossible. Therefore, two approximation meth-
ods, the boosted lasso (BLasso, Zhao and Yu 2004)
and the forward stagewise linear regression (FSLR,
Hastie et al. 2001), are investigated. Both methods,
when used with the exponential loss function, bear
strong resemblance to the boosting algorithm
which has been used as a discriminative training
method for LM. Evaluations on the task of Japanese
text input show that BLasso is able to produce the
best approximation to the lasso solution, and leads
to a significant improvement, in terms of character
error rate, over the boosting algorithm and the
traditional MLE.

2 LM Task and Problem Definition
This paper studies LM on the application of Asian
language (e.g. Chinese or Japanese) text input, a
standard method of inputting Chinese or Japanese

text by converting the input phonetic symbols into
the appropriate word string. In this paper we call
the task IME, which stands for input method editor,
based on the name of the commonly used Win-
dows-based application.

Performance on IME is measured in terms of the
character error rate (CER), which is the number of
characters wrongly converted from the phonetic
string divided by the number of characters in the
correct transcript.

Similar to speech recognition, IME is viewed as
a Bayes decision problem. Let A be the input pho-
netic string. An IME system’s task is to choose the
most likely word string W* among those candidates
that could be converted from A:

)|()(maxarg)|(maxarg
(A))(

* WAPWPAWPW
WAW GENGEN ∈∈

== (1)

where GEN(A) denotes the candidate set given A.
Unlike speech recognition, however, there is no
acoustic ambiguity as the phonetic string is input-
ted by users. Moreover, we can assume a unique
mapping from W and A in IME as words have
unique readings, i.e. P(A|W) = 1. So the decision of
Equation (1) depends solely upon P(W), making
IME an ideal evaluation test bed for LM.

In this study, the LM task for IME is formulated
under the framework of linear models (e.g., Duda
et al. 2001). We use the following notation, adapted
from Collins and Koo (2005):

• Training data is a set of example input/output
pairs. In LM for IME, training samples are repre-
sented as {Ai, WiR}, for i = 1…M, where each Ai is an
input phonetic string and WiR is the reference tran-
script of Ai.

• We assume some way of generating a set of
candidate word strings given A, denoted by
GEN(A). In our experiments, GEN(A) consists of
top n word strings converted from A using a base-
line IME system that uses only a word trigram
model.

• We assume a set of D+1 features fd(W), for d =
0…D. The features could be arbitrary functions that
map W to real values. Using vector notation, we
have f(W)∈ℜD+1, where f(W) = [f0(W), f1(W), …,
fD(W)]T. f0(W) is called the base feature, and is de-
fined in our case as the log probability that the
word trigram model assigns to W. Other features
(fd(W), for d = 1…D) are defined as the counts of
word n-grams (n = 1 and 2 in our experiments) in
W.

• Finally, the parameters of the model form a
vector of D+1 dimensions, each for one feature
function, λ = [λ0, λ1, …, λD]. The score of a word
string W can be written as

)(),(WWScore λfλ = ∑
=

=
D

d
dd Wfλ

0
)(. (2)

The decision rule of Equation (1) is rewritten as

),(maxarg),(
(A)

* λλ
GEN

WScoreAW
W∈

= . (3)

Equation (3) views IME as a ranking problem,
where the model gives the ranking score, not
probabilities. We therefore do not evaluate the
model via perplexity.

Now, assume that we can measure the number
of conversion errors in W by comparing it with a
reference transcript WR using an error function
Er(WR,W), which is the string edit distance function
in our case. We call the sum of error counts over the
training samples sample risk. Our goal then is to
search for the best parameter set λ which mini-
mizes the sample risk, as in Equation (4):

∑
=

=
Mi

ii
R

i

def

MSR AWW
...1

*)),(,Er(minarg λλ
λ

. (4)

However, (4) cannot be optimized easily since Er(.)
is a piecewise constant (or step) function of λ and
its gradient is undefined. Therefore, discriminative
methods apply different approaches that optimize
it approximately. The boosting algorithm described
below is one of such approaches.

3 Boosting
This section gives a brief review of the boosting
algorithm, following the description of some recent
work (e.g., Schapire and Singer 1999; Collins and
Koo 2005).

The boosting algorithm uses an exponential loss
function (ExpLoss) to approximate the sample risk
in Equation (4). We define the margin of the pair
(WR, W) with respect to the model λ as

),(),(),(λλ WScoreWScoreWWM RR −= (5)

Then, ExpLoss is defined as

∑ ∑
= ∈

−=
Mi AW

i
R

i
ii

WWM
...1)(

)),(exp()ExpLoss(
GEN

λ (6)

Notice that ExpLoss is convex so there is no prob-
lem with local minima when optimizing it. It is
shown in Freund et al. (1998) and Collins and Koo

(2005) that there exist gradient search procedures
that converge to the right solution.

Figure 1 summarizes the boosting algorithm we
used. After initialization, Steps 2 and 3 are repeated
N times; at each iteration, a feature is chosen and its
weight is updated as follows.

First, we define Upd(λ, k, δ) as an updated
model, with the same parameter values as λ with
the exception of λk, which is incremented by δ

},...,,...,,{),,Upd(10 Dkk λδλλλδ +=λ

Then, Steps 2 and 3 in Figure 1 can be rewritten as
Equations (7) and (8), respectively.

)),,d(ExpLoss(Upminarg*)*,(
,

δδ
δ

kk
k

λ= (7)

),,Upd(1 δktt −= λλ (8)

The boosting algorithm can be too greedy: Each
iteration usually reduces the ExpLoss(.) on training
data, so for the number of iterations large enough
this loss can be made arbitrarily small. However,
fitting training data too well eventually leads to
overfiting, which degrades the performance on
unseen test data (even though in boosting overfit-
ting can happen very slowly).

Shrinkage is a simple approach to dealing with
the overfitting problem. It scales the incremental
step δ by a small constant ν, ν ∈ (0, 1). Thus, the
update of Equation (8) with shrinkage is

),,Upd(1 νδktt −= λλ (9)

Empirically, it has been found that smaller values
of ν lead to smaller numbers of test errors.

4 Lasso
Lasso is a regularization method for estimation in
linear models (Tibshirani 1996). It regularizes or
shrinks a fitted model through an L1 penalty or
constraint.

Let T(λ) denote the L1 penalty of the model, i.e.,
T(λ) = ∑d = 0…D|λd|. We then optimize the model λ
so as to minimize a regularized loss function on
training data, called lasso loss defined as

)()ExpLoss(),LassoLoss(λλλ Tαα += (10)

where T(λ) generally penalizes larger models (or
complex models), and the parameter α controls the
amount of regularization applied to the estimate.
Setting α = 0 reverses the LassoLoss to the un-
regularized ExpLoss; as α increases, the model
coefficients all shrink, each ultimately becoming
zero. In practice, α should be adaptively chosen to
minimize an estimate of expected loss, e.g., α de-
creases with the increase of the number of itera-
tions.

Computation of the solution to the lasso prob-
lem has been studied for special loss functions. For
least square regression, there is a fast algorithm
LARS to find the whole lasso path for different α’ s
(Obsborn et al. 2000a; 2000b; Efron et al. 2004); for
1-norm SVM, it can be transformed into a linear
programming problem with a fast algorithm simi-
lar to LARS (Zhu et al. 2003). However, the solution
to the lasso problem for a general convex loss
function and an adaptive α remains open. More
importantly for our purposes, directly minimizing
lasso function of Equation (10) with respect to λ is
not possible when a very large number of model
parameters are employed, as in our task of LM for
IME. Therefore we investigate below two methods
that closely approximate the effect of the lasso, and
are very similar to the boosting algorithm.

It is also worth noting the difference between L1
and L2 penalty. The classical Ridge Regression
setting uses an L2 penalty in Equation (10) i.e., T(λ)
= ∑d = 0…D(λd)2, which is much easier to minimize
(for least square loss but not for ExpLoss). How-
ever, recent research (Donoho et al. 1995) shows
that the L1 penalty is better suited for sparse situa-
tions, where there are only a small number of fea-
tures with nonzero weights among all candidate
features. We find that our task is indeed a sparse
situation: among 860,000 features, in the resulting
linear model only around 5,000 features have non-
zero weights. We then focus on the L1 penalty. We
leave the empirical comparison of the L1 and L2
penalty on the LM task to future work.

4.1 Forward Stagewise Linear
Regression (FSLR)

The first approximation method we used is FSLR,
described in (Algorithm 10.4, Hastie et al. 2001),
where Steps 2 and 3 in Figure 1 are performed
according to Equations (7) and (11), respectively.

)),,d(ExpLoss(Upminarg*)*,(
,

δδ
δ

kk
k

λ= (7)

1 Set λ0 = argminλ0ExpLoss(λ); and λd = 0 for d=1…D
2 Select a feature fk* which has largest estimated

impact on reducing ExpLoss of Eq. (6)
3 Update λk* λk* + δ*, and return to Step 2

Figure 1: The boosting algorithm

))sign(,,Upd(1 δε ×= − ktt λλ (11)

Notice that FSLR is very similar to the boosting
algorithm with shrinkage in that at each step, the
feature fk* that has largest estimated impact on
reducing ExpLoss is selected. The only difference is
that FSLR updates the weight of fk* by a small fixed
step size ε. By taking such small steps, FSLR im-
poses some implicit regularization, and can closely
approximate the effect of the lasso in a local sense
(Hastie et al. 2001). Empirically, we find that the
performance of the boosting algorithm with
shrinkage closely resembles that of FSLR, with the
learning rate parameter ν corresponding to ε.

4.2 Boosted Lasso (BLasso)
The second method we used is a modified version
of the BLasso algorithm described in Zhao and Yu
(2004). There are two major differences between
BLasso and FSLR. At each iteration, BLasso can
take either a forward step or a backward step. Similar
to the boosting algorithm and FSLR, at each for-
ward step, a feature is selected and its weight is
updated according to Equations (12) and (13).

)),,d(ExpLoss(Upminarg*)*,(
,

δδ
εδ

kk
k

λ
±=

= (12)

))sign(,,Upd(1 δε ×= − ktt λλ (13)

However, there is an important difference between
Equations (12) and (7). In the boosting algorithm
with shrinkage and FSLR, as shown in Equation
(7), a feature is selected by its impact on reducing
the loss with its optimal update δ*. In contract, in
BLasso, as shown in Equation (12), the optimiza-
tion over δ is removed, and for each feature, its loss
is calculated with an update of either +ε or -ε, i.e.,
the grid search is used for feature selection. We will
show later that this seemingly trivial difference
brings a significant improvement.

The backward step is unique to BLasso. In each
iteration, a feature is selected and its weight is
updated backward if and only if it leads to a de-
crease of the lasso loss, as shown in Equations (14)
and (15):

))sign(,,d(ExpLoss(Upminarg*
0,

ελ
λ

×−=
≠

k
k

kk
k

λ (14)

))sign(*,,Upd(*
1 ελ ×−= −

k
tt kλλ

θαα >−−−),LassoLoss(),LassoLoss(if 11 tttt λλ

(15)

where θ is a tolerance parameter.
Figure 2 summarizes the BLasso algorithm we

used. After initialization, Steps 4 and 5 are repeated

N times; at each iteration, a feature is chosen and its
weight is updated either backward or forward by a
fixed amount ε. Notice that the value of α is adap-
tively chosen according to the reduction of ExpLoss
during training. The algorithm starts with a large
initial α, and then at each forward step the value of
α decreases until the ExpLoss stops decreasing.
This is intuitively desirable: It is expected that most
highly effective features are selected in early stages
of training, so the reduction of ExpLoss at each step
in early stages are more substantial than in later
stages. These early steps coincide with the boosting
steps most of the time. In other words, the effect of
backward steps is more visible at later stages.

Our implementation of BLasso differs slightly
from the original algorithm described in Zhao and
Yu (2004). Firstly, because the value of the base
feature f0 is the log probability (assigned by a word
trigram model) and has a different range from that
of other features as in Equation (2), λ0 is set to op-
timize ExpLoss in the initialization step (Step 1 in
Figure 2) and remains fixed during training. As
suggested by Collins and Koo (2005), this ensures
that the contribution of the log-likelihood feature f0
is well-calibrated with respect to ExpLoss. Sec-
ondly, when updating a feature weight, if the size
of the optimal update step (computed via Equation
(7)) is smaller than ε, we use the optimal step to
update the feature. Therefore, in our implementa-
tion BLasso does not always take a fixed step; it
may take steps whose size is smaller than ε. In our
initial experiments we found that both changes
(also used in our implementations of boosting and
FSLR) were crucial to the performance of the meth-
ods.
1 Initialize λ0: set λ0 = argminλ0ExpLoss(λ), and λd = 0

for d=1…D.
2 Take a forward step according to Eq. (12) and (13),

and the updated model is denoted by λ1
3 Initialize α = (ExpLoss(λ0)-ExpLoss(λ1))/ε
4 Take a backward step if and only if it leads to a

decrease of LassoLoss according to Eq. (14) and (15),
where θ = 0; otherwise

5 Take a forward step according to Eq. (12) and (13);
update α = min(α, (ExpLoss(λt-1)-ExpLoss(λt))/ε);
and return to Step 4.

Figure 2: The BLasso algorithm

(Zhao and Yu 2004) provides theoretical justifi-
cations for BLasso. It has been proved that (1) it
guarantees that it is safe for BLasso to start with an
initial α which is the largest α that would allow an ε
step away from 0 (i.e., larger α’s correspond to

T(λ)=0); (2) for each value of α, BLasso performs
coordinate descent (i.e., reduces ExpLoss by up-
dating the weight of a feature) until there is no
descent step; and (3) for each step where the value
of α decreases, it guarantees that the lasso loss is
reduced. As a result, it can be proved that for a
finite number of features and θ = 0, the BLasso
algorithm shown in Figure 2 converges to the lasso
solution when ε 0.

5 Evaluation

5.1 Settings
We evaluated the training methods described
above in the so-called cross-domain language
model adaptation paradigm, where we adapt a
model trained on one domain (which we call the
background domain) to a different domain (adapta-
tion domain), for which only a small amount of
training data is available.

The data sets we used in our experiments came
from five distinct sources of text. A
36-million-word Nikkei Newspaper corpus was
used as the background domain, on which the
word trigram model was trained. We used four
adaptation domains: Yomiuri (newspaper corpus),
TuneUp (balanced corpus containing newspapers
and other sources of text), Encarta (encyclopedia)
and Shincho (collection of novels). All corpora have
been pre-word-segmented using a lexicon con-
taining 167,107 entries. For each of the four do-
mains, we created training data consisting of 72K
sentences (0.9M~1.7M words) and test data of 5K
sentences (65K~120K words) from each adaptation
domain. The first 800 and 8,000 sentences of each
adaptation training data were also used to show
how different sizes of training data affected the
performances of various adaptation methods. An-
other 5K-sentence subset was used as held-out data
for each domain.

We created the training samples for discrimina-
tive learning as follows. For each phonetic string A
in adaptation training data, we produced a lattice
of candidate word strings W using the baseline
system described in (Gao et al. 2002), which uses a
word trigram model trained via MLE on the Nikkei
Newspaper corpus. For efficiency, we kept only the
best 20 hypotheses in its candidate conversion set
GEN(A) for each training sample for discriminative
training. The oracle best hypothesis, which gives

the minimum number of errors, was used as the
reference transcript of A.

We used unigrams and bigrams that occurred
more than once in the training set as features in the
linear model of Equation (2). The total number of
candidate features we used was around 860,000.

5.2 Main Results
Table 1 summarizes the results of various model
training (adaptation) methods in terms of CER (%)
and CER reduction (in parentheses) over compar-
ing models. In the first column, the numbers in
parentheses next to the domain name indicates the
number of training sentences used for adaptation.

Baseline, with results shown in Column 3, is the
word trigram model. As expected, the CER corre-
lates very well the similarity between the back-
ground domain and the adaptation domain, where
domain similarity is measured in terms of cross
entropy (Yuan et al. 2005) as shown in Column 2.

MAP (maximum a posteriori), with results
shown in Column 4, is a traditional LM adaptation
method where the parameters of the background
model are adjusted in such a way that maximizes
the likelihood of the adaptation data. Our imple-
mentation takes the form of linear interpolation as
described in Bacchiani et al. (2004): P(wi|h) =
λPb(wi|h) + (1-λ)Pa(wi|h), where Pb is the probabil-
ity of the background model, Pa is the probability
trained on adaptation data using MLE and the
history h corresponds to two preceding words (i.e.
Pb and Pa are trigram probabilities). λ is the inter-
polation weight optimized on held-out data.

Boosting, with results shown in Column 5, is
the algorithm described in Figure 1. In our imple-
mentation, we use the shrinkage method suggested
by Schapire and Singer (1999) and Collins and Koo
(2005). At each iteration, we used the following
update for the kth feature

ZC
ZC

k

k
k ε

ε
δ

+
+

=
+

_log
2
1 (16)

where Ck+ is a value increasing exponentially with
the sum of margins of (WR, W) pairs over the set
where fk is seen in WR but not in W; Ck- is the value
related to the sum of margins over the set where fk

is seen in W but not in WR. ε is a smoothing factor
(whose value is optimized on held-out data) and Z
is a normalization constant (whose value is the
ExpLoss(.) of training data according to the current
model). We see that εZ in Equation (16) plays the
same role as ν in Equation (9).

BLasso, with results shown in Column 6, is the
algorithm described in Figure 2. We find that the
performance of BLasso is not very sensitive to the
selection of the step size ε across training sets of
different domains and sizes. Although small ε is
preferred in theory as discussed earlier, it would
lead to a very slow convergence. Therefore, in our
experiments, we always use a large step (ε = 0.5)
and use the so-called early stopping strategy, i.e.,
the number of iterations before stopping is opti-
mized on held-out data.

In the task of LM for IME, there are millions of
features and training samples, forming an ex-
tremely large and sparse matrix. We therefore
applied the techniques described in Collins and
Koo (2005) to speed up the training procedure. The
resulting algorithms run in around 15 and 30 min-
utes respectively for Boosting and BLasso to con-
verge on an XEON™ MP 1.90GHz machine when
training on an 8K-sentnece training set.

The results in Table 1 give rise to several ob-
servations. First of all, both discriminative training
methods (i.e., Boosting and BLasso) outperform
MAP substantially. The improvement margins are
larger when the background and adaptation do-
mains are more similar. The phenomenon is at-
tributed to the underlying difference between the
two adaptation methods: MAP aims to improve the
likelihood of a distribution, so if the adaptation
domain is very similar to the background domain,
the difference between the two underlying distri-
butions is so small that MAP cannot adjust the
model effectively. Discriminative methods, on the
other hand, do not have this limitation for they aim
to reduce errors directly. Secondly, BLasso out-
performs Boosting significantly (p-value < 0.01) on
all test sets. The improvement margins vary with
the training sets of different domains and sizes. In
general, in cases where the adaptation domain is
less similar to the background domain and larger
training set is used, the improvement of BLasso is
more visible.

Note that the CER results of FSLR are not in-
cluded in Table 1 because it achieves very similar
results to the boosting algorithm with shrinkage if
the controlling parameters of both algorithms are
optimized via cross-validation. We shall discuss
their difference in the next section.

5.3 Dicussion
This section investigates what components of
BLasso bring the improvement over Boosting.

Comparing the algorithms in Figures 1 and 2, we
notice three differences between BLasso and
Boosting: (i) the use of backward steps in BLasso; (ii)
BLasso uses the grid search (fixed step size) for
feature selection in Equation (12) while Boosting
uses the continuous search (optimal step size) in
Equation (7); and (iii) BLasso uses a fixed step size
for feature update in Equation (13) while Boosting
uses an optimal step size in Equation (8). We then
investigate these differences in turn.

To study the impact of backward steps, we
compared BLasso with the boosting algorithm with
a fixed step search and a fixed step update, hence-
forth referred to as F-Boosting. F-Boosting was
implemented as Figure 2, by setting a large value to
θ in Equation (15), i.e., θ = 103, to prohibit backward
steps. We find that although the training error
curves of BLasso and F-Boosting are almost iden-
tical, the T(λ) curves grow apart with iterations, as
shown in Figure 3. The results show that with
backward steps, BLasso achieves a better ap-
proximation to the true lasso solution: It leads to a
model with similar training errors but less complex
(in terms of L1 penalty). In our experiments we find
that the benefit of using backward steps is only
visible in later iterations when BLasso’s backward
steps kick in. A typical example is shown in Figure
4. The early steps fit to highly effective features and
in these steps BLasso and F-Boosting agree. For
later steps, fine-tuning of features is required.
BLasso with backward steps provides a better
mechanism than F-Boosting to revise the previ-
ously chosen features to accommodate this fine
level of tuning. Consequently we observe the su-
perior performance of BLasso at later stages as
shown in our experiments.

As well-known in linear regression models,
when there are many strongly correlated features,
model parameters can be poorly estimated and
exhibit high variance. By imposing a model size
constraint, as in lasso, this phenomenon is allevi-
ated. Therefore, we speculate that a better ap-
proximation to lasso, as BLasso with backward
steps, would be superior in eliminating the nega-
tive effect of strongly correlated features in model
estimation. To verify our speculation, we per-
formed the following experiments. For each train-
ing set, in addition to word unigram and bigram
features, we introduced a new type of features
called headword bigram.

As described in Gao et al. (2002), headwords are
defined as the content words of the sentence.

Therefore, headword bigrams constitute a special
type of skipping bigrams which can capture de-
pendency between two words that may not be
adjacent. In reality, a large portion of headword
bigrams are identical to word bigrams, as two
headwords can occur next to each other in text. In
the adaptation test data we used, we find that
headword bigram features are for the most part
either completely overlapping with the word bigram
features (i.e., all instances of headword bigrams
also count as word bigrams) or not overlapping at all
(i.e., a headword bigram feature is not observed as
a word bigram feature) – less than 20% of head-
word bigram features displayed a variable degree
of overlap with word bigram features. In our data,
the rate of completely overlapping features is 25%
to 47% depending on the adaptation domain. From
this, we can say that the headword bigram features
show moderate to high degree of correlation with
the word bigram features.

We then used BLasso and F-Boosting to train the
linear language models including both word bi-
gram and headword bigram features. We find that
although the CER reduction by adding headword
features is overall very small, the difference be-
tween the two versions of BLasso is more visible in
all four test sets. Comparing Figures 5 – 8 with
Figure 4, it can be seen that BLasso with backward
steps outperforms the one without backward steps
in much earlier stages of training with a larger
margin. For example, on Encarta data sets, BLasso
outperforms F-Boosting after around 18,000 itera-
tions with headword features (Figure 7), as op-
posed to 25,000 iterations without headword fea-
tures (Figure 4). The results seem to corroborate
our speculation that BLasso is more robust in the
presence of highly correlated features.

To investigate the impact of using the grid
search (fixed step size) versus the continuous
search (optimal step size) for feature selection, we
compared F-Boosting with FSLR since they differs
only in their search methods for feature selection.
As shown in Figures 5 to 8, although FSLR is robust
in that its test errors do not increase after many
iterations, F-Boosting can reach a much lower error
rate on three out of four test sets. Therefore, in the
task of LM for IME where CER is the most impor-
tant metric, the grid search for feature selection is
more desirable.

To investigate the impact of using a fixed versus
an optimal step size for feature update, we com-
pared FSLR with Boosting. Although both algo-

rithms achieve very similar CER results, the per-
formance of FSLR is much less sensitive to the
selected fixed step size. For example, we can select
any value from 0.2 to 0.8, and in most settings FSLR
achieves the very similar lowest CER after 20,000
iterations, and will stay there for many iterations.
In contrast, in Boosting, the optimal value of ε in
Equation (16) varies with the sizes and domains of
training data, and has to be tuned carefully. We
thus conclude that in our task FSLR is more robust
against different training settings and a fixed step
size for feature update is more preferred.

6 Conclusion
This paper investigates two approximation lasso
methods for LM applied to a realistic task with a
very large number of features with sparse feature
space. Our results on Japanese text input are
promising. BLasso outperforms the boosting algo-
rithm significantly in terms of CER reduction on all
experimental settings.

We have shown that this superior performance
is a consequence of BLasso’s backward step and its
fixed step size in both feature selection and feature
weight update. Our experimental results in Section
5 show that the use of backward step is vital for
model fine-tuning after major features are selected
and for coping with strongly correlated features;
the fixed step size of BLasso is responsible for the
improvement of CER and the robustness of the
results. Experiments on other data sets and theo-
retical analysis are needed to further support our
findings in this paper.

References
Bacchiani, M., Roark, B., and Saraclar, M. 2004. Language

model adaptation with MAP estimation and the per-
ceptron algorithm. In HLT-NAACL 2004. 21-24.

Collins, Michael and Terry Koo 2005. Discriminative
reranking for natural language parsing. Computational
Linguistics 31(1): 25-69.

Duda, Richard O, Hart, Peter E. and Stork, David G. 2001.
Pattern classification. John Wiley & Sons, Inc.

Donoho, D., I. Johnstone, G. Kerkyachairan, and D.
Picard. 1995. Wavelet shrinkage; asymptopia? (with
discussion), J. Royal. Statist. Soc. 57: 201-337.

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani. 2004.
Least angle regression. Ann. Statist. 32, 407-499.

Freund, Y, R. Iyer, R. E. Schapire, and Y. Singer. 1998. An
efficient boosting algorithm for combining preferences.
In ICML’98.

Hastie, T., R. Tibshirani and J. Friedman. 2001. The ele-
ments of statistical learning. Springer-Verlag, New York.

Gao, Jianfeng, Hisami Suzuki and Yang Wen. 2002.
Exploiting headword dependency and predictive clus-
tering for language modeling. In EMNLP 2002.

Gao. J., Yu, H., Yuan, W., and Xu, P. 2005. Minimum
sample risk methods for language modeling. In
HLT/EMNLP 2005.

Osborne, M.R. and Presnell, B. and Turlach B.A. 2000a. A
new approach to variable selection in least squares
problems. Journal of Numerical Analysis, 20(3): 389-403

Osborne, M.R. and Presnell, B. and Turlach B.A. 2000b.
On the lasso and its dual. Journal of Computational and
Graphical Statistics, 9(2): 319-337.

Roark, Brian, Murat Saraclar and Michael Collins. 2004.
Corrective language modeling for large vocabulary ASR
with the perceptron algorithm. In ICASSP 2004.

Schapire, Robert E. and Yoram Singer. 1999. Improved
boosting algorithms using confidence-rated predictions.
Machine Learning, 37(3): 297-336.

Suzuki, Hisami and Jianfeng Gao. 2005. A comparative
study on language model adaptation using new
evaluation metrics. In HLT/EMNLP 2005.

Tibshirani, R. 1996. Regression shrinkage and selection
via the lasso. J. R. Statist. Soc. B, 58(1): 267-288.

Yuan, W., J. Gao and H. Suzuki. 2005. An Empirical
Study on Language Model Adaptation Using a Metric
of Domain Similarity. In IJCNLP 05.

Zhao, P. and B. Yu. 2004. Boosted lasso. Tech Report,
Statistics Department, U. C. Berkeley.

Zhu, J. S. Rosset, T. Hastie, and R. Tibshirani. 2003.
1-norm support vector machines. In NIPS 16. MIT Press.

Table 1. CER (%) and CER reduction (%) (Y=Yomiuri; T=TuneUp; E=Encarta; S=-Shincho)

Domain Entropy vs.Nikkei Baseline MAP (over Baseline) Boosting (over MAP) BLasso (over MAP/Boosting)
Y (800) 7.69 3.70 3.70 (+0.00) 3.13 (+15.41) 3.01 (+18.65/+3.83)
Y (8K) 7.69 3.70 3.69 (+0.27) 2.88 (+21.95) 2.85 (+22.76/+1.04)
Y (72K) 7.69 3.70 3.69 (+0.27) 2.78 (+24.66) 2.73 (+26.02/+1.80)
T (800) 7.95 5.81 5.81 (+0.00) 5.69 (+2.07) 5.63 (+3.10/+1.05)
T (8K) 7.95 5.81 5.70 (+1.89) 5.48 (+5.48) 5.33 (+6.49/+2.74)
T (72K) 7.95 5.81 5.47 (+5.85) 5.33 (+2.56) 5.05 (+7.68/+5.25)
E (800) 9.30 10.24 9.60 (+6.25) 9.82 (-2.29) 9.18 (+4.38/+6.52)
E (8K) 9.30 10.24 8.64 (+15.63) 8.54 (+1.16) 8.04 (+6.94/+5.85)
E (72K) 9.30 10.24 7.98 (+22.07) 7.53 (+5.64) 7.20 (+9.77/+4.38)
S (800) 9.40 12.18 11.86 (+2.63) 11.91 (-0.42) 11.79 (+0.59/+1.01)
S (8K) 9.40 12.18 11.15 (+8.46) 11.09 (+0.54) 10.73 (+3.77/+3.25)
S (72K) 9.40 12.18 10.76 (+11.66) 10.25 (+4.74) 9.64 (+10.41/+5.95)

Figure 3. L1 curves: models are trained
on the E(8K) dataset.

Figure 4. Test error curves: models are
trained on the E(8K) dataset.

Figure 5. Test error curves: models are
trained on the Y(8K) dataset, including
headword bigram features.

Figure 6. Test error curves: models are
trained on the T(8K) dataset, including
headword bigram features.

Figure 7. Test error curves: models are
trained on the E(8K) dataset, including
headword bigram features.

Figure 8. Test error curves: models are
trained on the S(8K) dataset, including
headword bigram features.

