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Abstract 
Lasso is a regularization method for pa-
rameter estimation in linear models. It opti-
mizes the model parameters with respect to 
a loss function subject to model complexities. 
This paper explores the use of lasso for sta-
tistical language modeling for text input. 
Owing to the very large number of parame-
ters, directly optimizing the penalized lasso 
loss function is impossible. Therefore, we 
investigate two approximation methods, the 
boosted lasso (BLasso) and the forward 
stagewise linear regression (FSLR). Both 
methods, when used with the exponential 
loss function, bear strong resemblance to the 
boosting algorithm which has been used as a 
discriminative training method for language 
modeling. Evaluations on the task of Japa-
nese text input show that BLasso is able to 
produce the best approximation to the lasso 
solution, and leads to a significant im-
provement, in terms of character error rate, 
over boosting and the traditional maximum 
likelihood estimation. 

1 Introduction 
Language modeling (LM) is fundamental to a wide 
range of applications. Recently, it has been shown 
that a linear model estimated using discriminative 
training methods, such as the boosting and per-
ceptron algorithms, outperforms significantly a 
traditional word trigram model trained using 
maximum likelihood estimation (MLE) on several 
tasks such as speech recognition and Asian lan-
guage text input (Bacchiani et al. 2004; Roark et al. 
2004; Gao et al. 2005; Suzuki and Gao 2005). 

The success of discriminative training methods 
is largely due to fact that unlike the traditional 
approach (e.g., MLE) that maximizes the function 
(e.g., likelihood of training data) that is loosely 
associated with error rate, discriminative training 

methods aim to directly minimize the error rate on 
training data even if they reduce the likelihood. 
However, given a finite set of training samples, 
discriminative training methods could lead to an 
arbitrary complex model for the purpose of 
achieving zero training error. It is well-known that 
complex models exhibit high variance and perform 
poorly on unseen data. Therefore some regulariza-
tion methods have to be used to control the com-
plexity of the model. 

Lasso is a regularization method for parameter 
estimation in linear models. It optimizes the model 
parameters with respect to a loss function subject to 
model complexities. The basic idea of lasso is 
originally proposed by Tibshirani (1996). Recently, 
there have been several implementations and ex-
periments of lasso on multi-class classification 
tasks where only a small number of features need 
to be handled and the lasso solution can be directly 
computed via numerical methods. To our knowl-
edge, this paper presents the first empirical study 
of lasso for a realistic, large scale task: LM for Asian 
language text input. Because the task utilizes mil-
lions of features and training samples, directly 
optimizing the penalized lasso loss function is 
impossible. Therefore, two approximation meth-
ods, the boosted lasso (BLasso, Zhao and Yu 2004) 
and the forward stagewise linear regression (FSLR, 
Hastie et al. 2001), are investigated. Both methods, 
when used with the exponential loss function, bear 
strong resemblance to the boosting algorithm 
which has been used as a discriminative training 
method for LM. Evaluations on the task of Japanese 
text input show that BLasso is able to produce the 
best approximation to the lasso solution, and leads 
to a significant improvement, in terms of character 
error rate, over the boosting algorithm and the 
traditional MLE. 

2 LM Task and Problem Definition 
This paper studies LM on the application of Asian 
language (e.g. Chinese or Japanese) text input, a 
standard method of inputting Chinese or Japanese 



text by converting the input phonetic symbols into 
the appropriate word string. In this paper we call 
the task IME, which stands for input method editor, 
based on the name of the commonly used Win-
dows-based application. 

Performance on IME is measured in terms of the 
character error rate (CER), which is the number of 
characters wrongly converted from the phonetic 
string divided by the number of characters in the 
correct transcript.  

Similar to speech recognition, IME is viewed as 
a Bayes decision problem. Let A be the input pho-
netic string. An IME system’s task is to choose the 
most likely word string W* among those candidates 
that could be converted from A: 
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where GEN(A) denotes the candidate set given A. 
Unlike speech recognition, however, there is no 
acoustic ambiguity as the phonetic string is input-
ted by users. Moreover, we can assume a unique 
mapping from W and A in IME as words have 
unique readings, i.e. P(A|W) = 1. So the decision of 
Equation (1) depends solely upon P(W), making 
IME an ideal evaluation test bed for LM.  

In this study, the LM task for IME is formulated 
under the framework of linear models (e.g., Duda 
et al. 2001). We use the following notation, adapted 
from Collins and Koo (2005):  

• Training data is a set of example input/output 
pairs. In LM for IME, training samples are repre-
sented as {Ai, WiR}, for i = 1…M, where each Ai is an 
input phonetic string and WiR is the reference tran-
script of Ai. 

• We assume some way of generating a set of 
candidate word strings given A, denoted by 
GEN(A).  In our experiments, GEN(A) consists of 
top n word strings converted from A using a base-
line IME system that uses only a word trigram 
model. 

• We assume a set of D+1 features fd(W), for d = 
0…D. The features could be arbitrary functions that 
map W to real values. Using vector notation, we 
have f(W)∈ℜD+1, where f(W) = [f0(W), f1(W), …, 
fD(W)]T. f0(W) is called the base feature, and is de-
fined in our case as the log probability that the 
word trigram model assigns to W. Other features 
(fd(W), for d = 1…D) are defined as the counts of 
word n-grams (n = 1 and 2 in our experiments) in 
W. 

• Finally, the parameters of the model form a 
vector of D+1 dimensions, each for one feature 
function, λ = [λ0, λ1, …, λD]. The score of a word 
string W can be written as 
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The decision rule of Equation (1) is rewritten as 
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Equation (3) views IME as a ranking problem, 
where the model gives the ranking score, not 
probabilities. We therefore do not evaluate the 
model via perplexity. 

Now, assume that we can measure the number 
of conversion errors in W by comparing it with a 
reference transcript WR using an error function 
Er(WR,W), which is the string edit distance function 
in our case. We call the sum of error counts over the 
training samples sample risk. Our goal then is to 
search for the best parameter set λ which mini-
mizes the sample risk, as in Equation (4):  
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However, (4) cannot be optimized easily since Er(.) 
is a piecewise constant (or step) function of λ and 
its gradient is undefined. Therefore, discriminative 
methods apply different approaches that optimize 
it approximately. The boosting algorithm described 
below is one of such approaches.  

3 Boosting 
This section gives a brief review of the boosting 
algorithm, following the description of some recent 
work (e.g., Schapire and Singer 1999; Collins and 
Koo 2005).  

The boosting algorithm uses an exponential loss 
function (ExpLoss) to approximate the sample risk 
in Equation (4). We define the margin of the pair 
(WR, W) with respect to the model λ as 

),(),(),( λλ WScoreWScoreWWM RR −=  (5)

Then, ExpLoss is defined as 
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Notice that ExpLoss is convex so there is no prob-
lem with local minima when optimizing it. It is 
shown in Freund et al. (1998) and Collins and Koo 



(2005) that there exist gradient search procedures 
that converge to the right solution.  

Figure 1 summarizes the boosting algorithm we 
used. After initialization, Steps 2 and 3 are repeated 
N times; at each iteration, a feature is chosen and its 
weight is updated as follows.  

First, we define Upd(λ, k, δ) as an updated 
model, with the same parameter values as λ with 
the exception of λk, which is incremented by δ 
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Then, Steps 2 and 3 in Figure 1 can be rewritten as 
Equations (7) and (8), respectively. 
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The boosting algorithm can be too greedy: Each 
iteration usually reduces the ExpLoss(.) on training 
data, so for the number of iterations large enough 
this loss can be made arbitrarily small. However, 
fitting training data too well eventually leads to 
overfiting, which degrades the performance on 
unseen test data (even though in boosting overfit-
ting can happen very slowly).  

Shrinkage is a simple approach to dealing with 
the overfitting problem. It scales the incremental 
step δ by a small constant ν, ν ∈ (0, 1). Thus, the 
update of Equation (8) with shrinkage is 
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Empirically, it has been found that smaller values 
of ν lead to smaller numbers of test errors. 

4 Lasso 
Lasso is a regularization method for estimation in 
linear models (Tibshirani 1996). It regularizes or 
shrinks a fitted model through an L1 penalty or 
constraint.  

Let T(λ) denote the L1 penalty of the model, i.e., 
T(λ) = ∑d = 0…D|λd|. We then optimize the model λ 
so as to minimize a regularized loss function on 
training data, called lasso loss defined as 

)()ExpLoss(),LassoLoss( λλλ Tαα +=  (10)

where T(λ) generally penalizes larger models (or 
complex models), and the parameter α controls the 
amount of regularization applied to the estimate. 
Setting α = 0 reverses the LassoLoss to the un-
regularized ExpLoss; as α increases, the model 
coefficients all shrink, each ultimately becoming 
zero. In practice, α should be adaptively chosen to 
minimize an estimate of expected loss, e.g., α de-
creases with the increase of the number of itera-
tions.  

Computation of the solution to the lasso prob-
lem has been studied for special loss functions. For 
least square regression, there is a fast algorithm 
LARS to find the whole lasso path for different α’ s 
(Obsborn et al. 2000a; 2000b; Efron et al. 2004); for 
1-norm SVM, it can be transformed into a linear 
programming problem with a fast algorithm simi-
lar to LARS (Zhu et al. 2003). However, the solution 
to the lasso problem for a general convex loss 
function and an adaptive α remains open. More 
importantly for our purposes, directly minimizing 
lasso function of Equation (10) with respect to λ is 
not possible when a very large number of model 
parameters are employed, as in our task of LM for 
IME. Therefore we investigate below two methods 
that closely approximate the effect of the lasso, and 
are very similar to the boosting algorithm. 

It is also worth noting the difference between L1 
and L2 penalty. The classical Ridge Regression 
setting uses an L2 penalty in Equation (10) i.e., T(λ) 
= ∑d = 0…D(λd)2, which is much easier to minimize 
(for least square loss but not for ExpLoss). How-
ever, recent research (Donoho et al. 1995) shows 
that the L1 penalty is better suited for sparse situa-
tions, where there are only a small number of fea-
tures with nonzero weights among all candidate 
features. We find that our task is indeed a sparse 
situation: among 860,000 features, in the resulting 
linear model only around 5,000 features have non-
zero weights. We then focus on the L1 penalty. We 
leave the empirical comparison of the L1 and L2 
penalty on the LM task to future work. 

4.1 Forward Stagewise Linear 
Regression (FSLR) 

The first approximation method we used is FSLR, 
described in (Algorithm 10.4, Hastie et al. 2001), 
where Steps 2 and 3 in Figure 1 are performed 
according to Equations (7) and (11), respectively. 
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1 Set λ0 = argminλ0ExpLoss(λ); and λd = 0 for d=1…D 
2 Select a feature fk* which has largest estimated 

impact on reducing ExpLoss of Eq. (6) 
3 Update λk*   λk* + δ*, and return to Step 2 

Figure 1: The boosting algorithm 
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Notice that FSLR is very similar to the boosting 
algorithm with shrinkage in that at each step, the 
feature fk* that has largest estimated impact on 
reducing ExpLoss is selected. The only difference is 
that FSLR updates the weight of fk* by a small fixed 
step size ε. By taking such small steps, FSLR im-
poses some implicit regularization, and can closely 
approximate the effect of the lasso in a local sense 
(Hastie et al. 2001). Empirically, we find that the 
performance of the boosting algorithm with 
shrinkage closely resembles that of FSLR, with the 
learning rate parameter ν corresponding to ε. 

4.2 Boosted Lasso (BLasso) 
The second method we used is a modified version 
of the BLasso algorithm described in Zhao and Yu 
(2004). There are two major differences between 
BLasso and FSLR. At each iteration, BLasso can 
take either a forward step or a backward step. Similar 
to the boosting algorithm and FSLR, at each for-
ward step, a feature is selected and its weight is 
updated according to Equations (12) and (13). 
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However, there is an important difference between 
Equations (12) and (7). In the boosting algorithm 
with shrinkage and FSLR, as shown in Equation 
(7), a feature is selected by its impact on reducing 
the loss with its optimal update δ*. In contract, in 
BLasso, as shown in Equation (12), the optimiza-
tion over δ is removed, and for each feature, its loss 
is calculated with an update of either +ε or -ε, i.e., 
the grid search is used for feature selection. We will 
show later that this seemingly trivial difference 
brings a significant improvement. 

The backward step is unique to BLasso. In each 
iteration, a feature is selected and its weight is 
updated backward if and only if it leads to a de-
crease of the lasso loss, as shown in Equations (14) 
and (15): 
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where θ  is a tolerance parameter. 
Figure 2 summarizes the BLasso algorithm we 

used. After initialization, Steps 4 and 5 are repeated 

N times; at each iteration, a feature is chosen and its 
weight is updated either backward or forward by a 
fixed amount ε. Notice that the value of α is adap-
tively chosen according to the reduction of ExpLoss 
during training. The algorithm starts with a large 
initial α, and then at each forward step the value of 
α decreases until the ExpLoss stops decreasing. 
This is intuitively desirable: It is expected that most 
highly effective features are selected in early stages 
of training, so the reduction of ExpLoss at each step 
in early stages are more substantial than in later 
stages. These early steps coincide with the boosting 
steps most of the time. In other words, the effect of 
backward steps is more visible at later stages. 

Our implementation of BLasso differs slightly 
from the original algorithm described in Zhao and 
Yu (2004). Firstly, because the value of the base 
feature f0 is the log probability (assigned by a word 
trigram model) and has a different range from that 
of other features as in Equation (2), λ0 is set to op-
timize ExpLoss in the initialization step (Step 1 in 
Figure 2) and remains fixed during training. As 
suggested by Collins and Koo (2005), this ensures 
that the contribution of the log-likelihood feature f0 
is well-calibrated with respect to ExpLoss. Sec-
ondly, when updating a feature weight, if the size 
of the optimal update step (computed via Equation 
(7)) is smaller than ε, we use the optimal step to 
update the feature. Therefore, in our implementa-
tion BLasso does not always take a fixed step; it 
may take steps whose size is smaller than ε. In our 
initial experiments we found that both changes 
(also used in our implementations of boosting and 
FSLR) were crucial to the performance of the meth-
ods.  
1 Initialize λ0: set λ0 = argminλ0ExpLoss(λ), and λd = 0 

for d=1…D. 
2 Take a forward step according to Eq. (12) and (13), 

and the updated model is denoted by λ1 
3 Initialize α = (ExpLoss(λ0)-ExpLoss(λ1))/ε 
4 Take a backward step if and only if it leads to a 

decrease of LassoLoss according to Eq. (14) and (15), 
where θ  = 0; otherwise 

5 Take a forward step according to Eq. (12) and (13); 
update α = min(α, (ExpLoss(λt-1)-ExpLoss(λt))/ε ); 
and return to Step 4. 

Figure 2: The BLasso algorithm 

(Zhao and Yu 2004) provides theoretical justifi-
cations for BLasso. It has been proved that (1) it 
guarantees that it is safe for BLasso to start with an 
initial α which is the largest α that would allow an ε 
step away from 0 (i.e., larger α’s correspond to 



T(λ)=0); (2) for each value of α, BLasso performs 
coordinate descent (i.e., reduces ExpLoss by up-
dating the weight of a feature) until there is no 
descent step; and (3) for each step where the value 
of α decreases, it guarantees that the lasso loss is 
reduced.  As a result, it can be proved that for a 
finite number of features and θ = 0, the BLasso 
algorithm shown in Figure 2 converges to the lasso 
solution when ε  0. 

5 Evaluation 

5.1 Settings 
We evaluated the training methods described 
above in the so-called cross-domain language 
model  adaptation paradigm, where we adapt a 
model trained on one domain (which we call the 
background domain) to a different domain (adapta-
tion domain), for which only a small amount of 
training data is available. 

The data sets we used in our experiments came 
from five distinct sources of text. A 
36-million-word Nikkei Newspaper corpus was 
used as the background domain, on which the 
word trigram model was trained. We used four 
adaptation domains: Yomiuri (newspaper corpus), 
TuneUp (balanced corpus containing newspapers 
and other sources of text), Encarta (encyclopedia) 
and Shincho (collection of novels). All corpora have 
been pre-word-segmented using a lexicon con-
taining 167,107 entries. For each of the four do-
mains, we created training data consisting of 72K 
sentences (0.9M~1.7M words) and test data of 5K 
sentences (65K~120K words) from each adaptation 
domain. The first 800 and 8,000 sentences of each 
adaptation training data were also used to show 
how different sizes of training data affected the 
performances of various adaptation methods. An-
other 5K-sentence subset was used as held-out data 
for each domain.  

We created the training samples for discrimina-
tive learning as follows. For each phonetic string A 
in adaptation training data, we produced a lattice 
of candidate word strings W using the baseline 
system described in (Gao et al. 2002), which uses a 
word trigram model trained via MLE on the Nikkei 
Newspaper corpus. For efficiency, we kept only the 
best 20 hypotheses in its candidate conversion set  
GEN(A) for each training sample for discriminative 
training. The oracle best hypothesis, which gives 

the minimum number of errors, was used as the 
reference transcript of A.  

We used unigrams and bigrams that occurred 
more than once in the training set as features in the 
linear model of Equation (2). The total number of 
candidate features we used was around 860,000.  

5.2 Main Results 
Table 1 summarizes the results of various model 
training (adaptation) methods in terms of CER (%) 
and CER reduction (in parentheses) over compar-
ing models. In the first column, the numbers in 
parentheses next to the domain name indicates the 
number of training sentences used for adaptation. 

Baseline, with results shown in Column 3, is the 
word trigram model. As expected, the CER corre-
lates very well the similarity between the back-
ground domain and the adaptation domain, where 
domain similarity is measured in terms of cross 
entropy (Yuan et al. 2005) as shown in Column 2.  

MAP (maximum a posteriori), with results 
shown in Column 4, is a traditional LM adaptation 
method where the parameters of the background 
model are adjusted in such a way that maximizes 
the likelihood of the adaptation data. Our imple-
mentation takes the form of linear interpolation as 
described in Bacchiani et al. (2004): P(wi|h) = 
λPb(wi|h) + (1-λ)Pa(wi|h), where Pb is the probabil-
ity of the background model, Pa is the probability 
trained on adaptation data using MLE and the 
history h corresponds to two preceding words (i.e. 
Pb and Pa are trigram probabilities). λ is the inter-
polation weight optimized on held-out data.  

Boosting, with results shown in Column 5, is 
the algorithm described in Figure 1. In our imple-
mentation, we use the shrinkage method suggested 
by Schapire and Singer (1999) and Collins and Koo 
(2005). At each iteration, we used the following 
update for the kth feature 
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where Ck+ is a value increasing exponentially with 
the sum of margins of (WR, W) pairs over the set 
where fk is seen in WR but not in W; Ck-  is the value 
related to the sum of margins over the set where fk 

is seen in W but not in WR. ε is a smoothing factor 
(whose value is optimized on held-out data) and Z 
is a normalization constant (whose value is the 
ExpLoss(.) of training data according to the current 
model). We see that εZ in Equation (16) plays the 
same role as ν in Equation (9).  



BLasso, with results shown in Column 6, is the 
algorithm described in Figure 2. We find that the 
performance of BLasso is not very sensitive to the 
selection of the step size ε across training sets of 
different domains and sizes. Although small ε is 
preferred in theory as discussed earlier, it would 
lead to a very slow convergence. Therefore, in our 
experiments, we always use a large step (ε = 0.5) 
and use the so-called early stopping strategy, i.e., 
the number of iterations before stopping is opti-
mized on held-out data. 

In the task of LM for IME, there are millions of 
features and training samples, forming an ex-
tremely large and sparse matrix. We therefore 
applied the techniques described in Collins and 
Koo (2005) to speed up the training procedure. The 
resulting algorithms run in around 15 and 30 min-
utes respectively for Boosting and BLasso to con-
verge on an XEON™ MP 1.90GHz machine when 
training on an 8K-sentnece training set. 

The results in Table 1 give rise to several ob-
servations. First of all, both discriminative training 
methods (i.e., Boosting and BLasso) outperform 
MAP substantially. The improvement margins are 
larger when the background and adaptation do-
mains are more similar. The phenomenon is at-
tributed to the underlying difference between the 
two adaptation methods: MAP aims to improve the 
likelihood of a distribution, so if the adaptation 
domain is very similar to the background domain, 
the difference between the two underlying distri-
butions is so small that MAP cannot adjust the 
model effectively. Discriminative methods, on the 
other hand, do not have this limitation for they aim 
to reduce errors directly. Secondly, BLasso out-
performs Boosting significantly (p-value < 0.01) on 
all test sets. The improvement margins vary with 
the training sets of different domains and sizes. In 
general, in cases where the adaptation domain is 
less similar to the background domain and larger 
training set is used, the improvement of BLasso is 
more visible.    

Note that the CER results of FSLR are not in-
cluded in Table 1 because it achieves very similar 
results to the boosting algorithm with shrinkage if 
the controlling parameters of both algorithms are 
optimized via cross-validation. We shall discuss 
their difference in the next section. 

5.3 Dicussion 
This section investigates what components of 
BLasso bring the improvement over Boosting. 

Comparing the algorithms in Figures 1 and 2, we 
notice three differences between BLasso and 
Boosting: (i) the use of backward steps in BLasso; (ii) 
BLasso uses the grid search (fixed step size) for 
feature selection in Equation (12) while Boosting 
uses the continuous search (optimal step size) in 
Equation (7); and (iii) BLasso uses a fixed step size 
for feature update in Equation (13) while Boosting 
uses an optimal step size in Equation (8). We then 
investigate these differences in turn. 

To study the impact of backward steps, we 
compared BLasso with the boosting algorithm with 
a fixed step search and a fixed step update, hence-
forth referred to as F-Boosting. F-Boosting was 
implemented as Figure 2, by setting a large value to 
θ in Equation (15), i.e., θ = 103, to prohibit backward 
steps. We find that although the training error 
curves of BLasso and F-Boosting are almost iden-
tical, the T(λ) curves grow apart with iterations, as 
shown in Figure 3. The results show that with 
backward steps, BLasso achieves a better ap-
proximation to the true lasso solution: It leads to a 
model with similar training errors but less complex 
(in terms of L1 penalty). In our experiments we find 
that the benefit of using backward steps is only 
visible in later iterations when BLasso’s backward 
steps kick in. A typical example is shown in Figure 
4. The early steps fit to highly effective features and 
in these steps BLasso and F-Boosting agree. For 
later steps, fine-tuning of features is required. 
BLasso with backward steps provides a better 
mechanism than F-Boosting to revise the previ-
ously chosen features to accommodate this fine 
level of tuning. Consequently we observe the su-
perior performance of BLasso at later stages as 
shown in our experiments.  

As well-known in linear regression models, 
when there are many strongly correlated features, 
model parameters can be poorly estimated and 
exhibit high variance. By imposing a model size 
constraint, as in lasso, this phenomenon is allevi-
ated. Therefore, we speculate that a better ap-
proximation to lasso, as BLasso with backward 
steps, would be superior in eliminating the nega-
tive effect of strongly correlated features in model 
estimation. To verify our speculation, we per-
formed the following experiments. For each train-
ing set, in addition to word unigram and bigram 
features, we introduced a new type of features 
called headword bigram.  

As described in Gao et al. (2002), headwords are 
defined as the content words of the sentence. 



Therefore, headword bigrams constitute a special 
type of skipping bigrams which can capture de-
pendency between two words that may not be 
adjacent. In reality, a large portion of headword 
bigrams are identical to word bigrams, as two 
headwords can occur next to each other in text. In 
the adaptation test data we used, we find that 
headword bigram features are for the most part 
either completely overlapping with the word bigram 
features (i.e., all instances of headword bigrams 
also count as word bigrams) or not overlapping at all 
(i.e., a headword bigram feature is not observed as 
a word bigram feature) – less than 20% of head-
word bigram features displayed a variable degree 
of overlap with word bigram features. In our data, 
the rate of completely overlapping features is 25% 
to 47% depending on the adaptation domain. From 
this, we can say that the headword bigram features 
show moderate to high degree of correlation with 
the word bigram features.  

We then used BLasso and F-Boosting to train the 
linear language models including both word bi-
gram and headword bigram features. We find that 
although the CER reduction by adding headword 
features is overall very small, the difference be-
tween the two versions of BLasso is more visible in 
all four test sets. Comparing Figures 5 – 8 with 
Figure 4, it can be seen that BLasso with backward 
steps outperforms the one without backward steps 
in much earlier stages of training with a larger 
margin. For example, on Encarta data sets, BLasso 
outperforms F-Boosting after around 18,000 itera-
tions with headword features (Figure 7), as op-
posed to 25,000 iterations without headword fea-
tures (Figure 4). The results seem to corroborate 
our speculation that BLasso is more robust in the 
presence of highly correlated features. 

To investigate the impact of using the grid 
search (fixed step size) versus the continuous 
search (optimal step size) for feature selection, we 
compared F-Boosting with FSLR since they differs 
only in their search methods for feature selection. 
As shown in Figures 5 to 8, although FSLR is robust 
in that its test errors do not increase after many 
iterations, F-Boosting can reach a much lower error 
rate on three out of four test sets. Therefore, in the 
task of LM for IME where CER is the most impor-
tant metric, the grid search for feature selection is 
more desirable.  

To investigate the impact of using a fixed versus 
an optimal step size for feature update, we com-
pared FSLR with Boosting. Although both algo-

rithms achieve very similar CER results, the per-
formance of FSLR is much less sensitive to the 
selected fixed step size. For example, we can select 
any value from 0.2 to 0.8, and in most settings FSLR 
achieves the very similar lowest CER after 20,000 
iterations, and will stay there for many iterations. 
In contrast, in Boosting, the optimal value of ε in 
Equation (16) varies with the sizes and domains of 
training data, and has to be tuned carefully. We 
thus conclude that in our task FSLR is more robust 
against different training settings and a fixed step 
size for feature update is more preferred. 

6 Conclusion 
This paper investigates two approximation lasso 
methods for LM applied to a realistic task with a 
very large number of features with sparse feature 
space. Our results on Japanese text input are 
promising. BLasso outperforms the boosting algo-
rithm significantly in terms of CER reduction on all 
experimental settings. 

We have shown that this superior performance 
is a consequence of BLasso’s backward step and its 
fixed step size in both feature selection and feature 
weight update.  Our experimental results in Section 
5 show that the use of backward step is vital for 
model fine-tuning after major features are selected 
and for coping with strongly correlated features; 
the fixed step size of BLasso is responsible for the 
improvement of CER and the robustness of the 
results. Experiments on other data sets and theo-
retical analysis are needed to further support our 
findings in this paper. 
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Table 1. CER (%) and CER reduction (%) (Y=Yomiuri; T=TuneUp; E=Encarta; S=-Shincho) 

Domain Entropy vs.Nikkei Baseline MAP (over Baseline) Boosting (over MAP) BLasso (over MAP/Boosting) 
Y (800) 7.69 3.70 3.70 (+0.00) 3.13 (+15.41) 3.01 (+18.65/+3.83) 
Y (8K) 7.69 3.70 3.69 (+0.27) 2.88 (+21.95) 2.85 (+22.76/+1.04) 
Y (72K) 7.69 3.70 3.69 (+0.27) 2.78 (+24.66) 2.73 (+26.02/+1.80) 
T (800) 7.95 5.81 5.81 (+0.00) 5.69 (+2.07) 5.63 (+3.10/+1.05) 
T (8K) 7.95 5.81 5.70 (+1.89) 5.48 (+5.48) 5.33 (+6.49/+2.74) 
T (72K) 7.95 5.81 5.47 (+5.85) 5.33 (+2.56) 5.05 (+7.68/+5.25) 
E (800) 9.30 10.24 9.60 (+6.25) 9.82 (-2.29) 9.18 (+4.38/+6.52) 
E (8K) 9.30 10.24 8.64 (+15.63) 8.54 (+1.16) 8.04 (+6.94/+5.85) 
E (72K) 9.30 10.24 7.98 (+22.07) 7.53 (+5.64) 7.20 (+9.77/+4.38) 
S (800) 9.40 12.18 11.86 (+2.63) 11.91 (-0.42) 11.79 (+0.59/+1.01) 
S (8K) 9.40 12.18 11.15 (+8.46) 11.09 (+0.54) 10.73 (+3.77/+3.25) 
S (72K) 9.40 12.18 10.76 (+11.66) 10.25 (+4.74) 9.64 (+10.41/+5.95) 

 

  
 

Figure 3. L1 curves: models are trained 
on the E(8K) dataset. 

Figure 4. Test error curves: models are 
trained on the E(8K) dataset. 

Figure 5. Test error curves: models are 
trained on the Y(8K) dataset, including 
headword bigram features. 

   
Figure 6. Test error curves: models are 
trained on the T(8K) dataset, including 
headword bigram features. 

Figure 7. Test error curves: models are 
trained on the E(8K) dataset, including 
headword bigram features. 

Figure 8. Test error curves: models are 
trained on the S(8K) dataset, including 
headword bigram features. 


