
Programming Languages for

Building Trustworthy Systems

Ben Zorn

Microsoft Research

Ben Zorn, Microsoft Research 1ITI Workshop Core Technologies

Which Programming Language To Use?

 Safe versus unsafe, difficult choice?

 Safe – Java, C#, Modula-3, …

 Unsafe – C, C++, assembler, …

 But choice is really more complex

 How much of a Java app is “safe”?

 In a large system, there are many components

 Should they all be safe?

 Does it make sense to have 50% safe?

 Platforms require extensibility

 Economics may demand leveraging existing code

 Is the debate religious? Is one answer right?

Ben Zorn, Microsoft Research ITI Workshop Core Technologies 2

Amdahl’s Law Recast

 “Fraction of a system that is sequential determines

maximum possible speedup”

similarly…

 “Fraction of a system that is unsafe determines that

maximum possible trustworthiness”

 Suggests two research agendas:

 Build systems with 0% unsafe code (Singularity)

 Make existing C / C++ code safer (DieHard)

 We don’t know the answer yet, but we do know what

questions to ask…

Ben Zorn, Microsoft Research ITI Workshop Core Technologies 3

0% Approach - Singularity (MSR)

 Jim Larus, Galen Hunt, and others

 “Punctuated equilibrium” approach to evolution

 Re-architect and implement OS from scratch

 Design based on latest analysis techniques

 Design principles (partial list)

 Complete process isolation

 Type-checked process interaction (channels)

 As much static analysis / checking as possible

 Controlled dynamic extensibility (no dlls)

 Type-safe at the bottom (all code, including OS)

Ben Zorn, Microsoft Research ITI Workshop Core Technologies 4

Ben Zorn, Microsoft Research

Making C and C++ Safer

 Gradualism approach

 Static analysis / safe subset of C or C++

 Cyclone [Morrisett], SAFECode [Adve], etc.

 Runtime detection, fail fast

 Jones & Kelly, CRED [Lam], CCured [Necula],

SAFECode [Adve], SafeMem [Zhou], etc.

 Runtime toleration

 Failure oblivious [Rinard] (unsound)

 Rx [Zhou], Boundless Memory Blocks [Rinard],

ECC, DieHard, Samurai, etc.

5Tolerating and Correcting Memory Errors in C and C++

DieHard Allocator in a Nutshell

 Emery Berger and Ben Zorn
 “Gradualism” approach

 Existing heaps are packed
tightly to minimize space
 Tight packing increases

likelihood of corruption

 Predictable layout is easier for
attacker to exploit

 We randomize and
overprovision the heap
 Expansion factor determines how

much empty space

 Semantics are identical

 Easy to use – rejust relink app

6

Normal Heap

DieHard Heap

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

Summary

 Most applications and systems are…

 Written in C and C++

 Do not detect memory corruptions as they happen

 Nevertheless, usually robust and reliable…

 Alternatives are available, but

 More research is needed

 Answering the question “rebuild from scratch” is

expensive

 Runtime technologies are promising

Ben Zorn, Microsoft Research ITI Workshop Core Technologies 7

Additional Information

 Web sites:
 Singularity: http://research.microsoft.com/os/singularity/

 Spec# : http://research.microsoft.com/specsharp/

 DieHard: http://www.diehard-software.org/

 Publications
 Galen Hunt and James Larus, “Singularity: Rethinking the

Software Stack”, Operating Systems Review, Vol. 41, Iss. 2, pp.
37-49, April 2007.

 Emery D. Berger and Benjamin G. Zorn, "DieHard: Probabilistic
Memory Safety for Unsafe Languages", PLDI’06.

Ben Zorn, Microsoft Research 8Tolerating and Correcting Memory Errors in C and C++

http://research.microsoft.com/os/singularity/
http://research.microsoft.com/specsharp/
http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.diehard-software.org/

Backup Slides

Ben Zorn, Microsoft Research ITI Workshop Core Technologies 9

 Buffer overflow

char *c = malloc(100);

c[101] = ‘a’;

 Dangling reference

char *p1 = malloc(100);

char *p2 = p1;

free(p1);

p2[0] = ‘x’;

a

Avoiding Heap Memory Corruptions

Ben Zorn, Microsoft Research ITI Workshop Core Technologies 10

c

0 99

p1

0 99

p2

x

