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Abstract: Wireless sensor networks can revolutionize soil ecology by providing mea-
surements at temporal and spatial granularities previously impossible. This paper
presents our first steps towards fulfilling that goal by developing and deploying two
experimental soil monitoring networks at urban forests in Baltimore, MD. The nodes
of these networks periodically measure soil moisture and temperature and store the
measurements in local memory. Raw measurements are incrementally retrieved by
a sensor gateway and persistently stored in a database. The database also stores
calibrated versions of the collected data. The measurement database is available to
third-party applications through various Web Services interfaces.

At a high level, the deployments were successful in exposing high level variations of
soil factors. However, we have encountered a number of challenging technical problems:
need for low-level programming at multiple levels, calibration across space and time,
and sensor faults. These problems must be addressed before sensor networks can fulfill
their potential as high-quality instruments that can be deployed by scientists without
major effort or cost.
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1 Introduction

Lack of field measurements, collected over long periods of
time and at biologically significant spatial granularity, hin-
ders scientific understanding of the effects of environmen-
tal conditions to the soil ecosystem. Wireless Sensor Net-
works (WSNs) promise to address the ecologists’ predica-
ment through a fountain of measurements from low-cost
wireless sensors deployed with minimal disturbance to the
monitored site.
During the Fall of 2005, we set out to evaluate the va-

lidity of this claim through a proof-of-concept WSN that
we built and deployed in two urban forests. The end-
to-end system includes motes that collect environmental
parameters such as soil moisture and temperature, static
and mobile gateways that receive status updates from
the motes and periodically download collected measure-
ments through a reliable transfer protocol, a database that
stores collected measurements, access tools for analyzing
the data, a Web site that serves the data, and tools to
monitor the network.
The unique aspects of our system are: (1) Unlike pre-

vious WSNs, all the measurements are temporarily stored
on each mote’s local flash and are periodically retrieved
using a reliable transfer protocol. (2) We implemented so-
phisticated calibration techniques that translate raw sen-
sor measurements to high quality scientific data. (3) The
database and WSN are accessible via the Internet, provid-
ing access to the collected data through graphical and Web
Services interfaces.
We acknowledge that this system is only one link in the

long chain of steps from collecting raw measurements to
producing scientifically important results. At the same
time, it shows great promise in improving ecological data
collection, analysis, and thus ecologists productivity. How-
ever, today the project has one ecologist and several sup-
porting computer scientists, a ratio we are working to re-
verse.
The rest of the paper is structured as follows: In Sec-

tion 2, we provide background information on soil ecology,
how sensor networks can help gather data from field de-
ployments, and what are the requirements for doing so.
Sections 3 and 4 cover the overall architecture of the end-
to-end data collection system we designed and elaborate
on each of its subsystems. We present results from the
deployments in Section 5, whereas Section 6 presents the
lessons we learned from these deployments. We present re-
lated work in Section 7 and close in Section 8 with remarks
about future research directions.

2 Soil Ecology

The most spatially complex stratum of a terrestrial ecosys-
tem is its soil. Soil harbors an enormous variety of plants,
microorganisms, invertebrates and vertebrates. These or-
ganisms are not passive inhabitants of the soil; their move-
ment and feeding activities significantly influence its phys-

ical and chemical properties. In this respect, the soil biota
is an active agent of soil formation in the short and long
term. At the same time, soil is an important water reser-
voir in terrestrial ecosystems and, thus, an important com-
ponent for hydrology models. Despite the enormous diver-
sity and abundance of these organisms and the role they
play in the life support system of the Earth, we poorly
understand how biodiversity, abundance, and functioning
of the soil system are linked together (Wardle et al., 2004;
Young and Crawford, 2004).

Among the major challenges of studying soil biota are
the cryptic nature of these organisms and the enormous
spatial and temporal heterogeneity of the soil substrate.
Soil organisms are patchily distributed in all three dimen-
sions. Often these distributions reflect patchiness of the
physical environment, because many soil invertebrates are
sensitive to such abiotic factors as soil moisture, tempera-
ture, and light. They can be biologically driven (Szlavecz,
1985; Takeda, 1980) but sometimes there are no obvious
physical or biological mechanisms behind these aggrega-
tions (Jimenez et al., 2001). Any field study on soil biota
includes background information on the weather, soil tem-
perature, moisture, and other physical factors. These data
are usually collected by a technician visiting the field site
once a week, month, or season and taking a few spa-
tial measurements that would be subsequently averaged.
Data-loggers used for continuous monitoring are expensive.
Therefore, only one or two per site are used. These tech-
niques are labor-intensive and do not capture spatial and
temporal variation at a scale that would be meaningful for
a given invertebrate population. Moreover, frequent visits
to a site disturb the habitat and may distort the results.

2.1 Requirements

WSNs promise inexpensive, hands-free, low-cost, and low-
impact data collection – an attractive alternative to man-
ual data logging – in addition to providing considerably
richer data. However, to be of scientific value, the data col-
lection system design should be driven by the experiment’s
requirements, rather than by technology limitations. Fol-
lowing this principle, we present a list of key requirements
that soil ecology sensor networks must satisfy:

Measurement Fidelity: All the raw measurements
should be collected and persistently stored. Should the sci-
entist later decide to analyze the data in a different way,
to compare it to another data set, or to look for discrep-
ancies and outliers, the original data must be available.
Furthermore, given the communal nature of field measure-
ment locations, other scientists might use the data in ways
unforeseen when the original measurements were taken.
Generally speaking, techniques that distill measurements
for a specific purpose potentially discard data that are im-
portant for future studies.

Measurement Accuracy and Precision: To support
ecological research, temperature data must have accuracy
of at least 0.5◦C and volumetric moisture data should be
given within 1%. While temperature variation of half a



degree does not directly affect soil animal activity, soil res-
piration exponentially increases with temperature, so half
a degree makes a big difference. Therefore, raw measure-
ments need to be precisely calibrated, to give scientists high
confidence that measured variations reflect changes in the
underlying processes rather than random noise, systematic
errors, or drift.

Sampling Frequency: While fixed sampling periods
are adequate for the majority of the foreseen tasks, there
are a number of scenarios in which variable sampling rates
are desirable. For example, while constant hourly sam-
pling is adequate for environmental monitoring, during an
extreme event, such as a rainstorm, one wants to sam-
ple more frequently (e.g., every five minutes). In other
cases – sampling gas concentrations, for example – prelimi-
nary measurements are necessary to determine the optimal
sampling frequency. It is evident from the above that the
network should support on-the-fly adjustments in sampling
frequency, at minimum based on external commands and
potentially based on application-aware logic implemented
in the network.

Fusion with External Sources: Comparing measure-
ments with external data sources is crucial. For instance,
soil moisture and temperature measurements must be cor-
related with air temperature, humidity, and precipitation
data. Animal activity is determined by these factors as
much as by soil temperature and moisture. In the case of
hydrology models, one can only make sense of soil mois-
ture if precipitation data is available. In addition to “tra-
ditional” external data sources, data from other WSNs
can be integrated with the results collected from the local
WSN. For this reason, collected data should be exported
using a controlled vocabulary and well defined schema and
formats.

Experiment Duration: The scientific questions un-
derlying the deployment should drive the length of the
measurement effort. Often, collected measurements are
used as background data (similar to the collection of me-
teorological data) and, thus, should be collected for the
duration of the project. At one extreme, scientists might
want to observe long-term changes. For example: How
do soil conditions change during secondary succession af-
ter clear cutting? Such an experiment should last at least
fifty to sixty years. On the other hand, researchers might
just want to take measurements during the growing season,
to detect how plant growth affects soil moisture. Measure-
ments for ecosystem studies should generally last at least a
few years.

Size of Deployment: Scientists have very little infor-
mation about the size of the patches that underground or-
ganisms form and therefore of the spatial granularity that
measurements need to be taken. In general, to observe
earthworm aggregations one needs at least a 10 x 5 point
grid with the grid-points 5-10 m apart. However, in many
cases using a grid is not the preferred method of sampling.
For instance, scientists would like to deploy ecology WSNs
in people’s lawns, flowerbeds, vegetable gardens, and other
land cover types. In these cases, the emphasis is on the
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Figure 1: Architecture of the end-to-end data collection
system.

land cover categories, as they presumably drive patchiness.
Therefore, networks should be deployed in ways that cap-
ture the heterogeneity of land use.

3 System Architecture

Figure 1 depicts the overall architecture of the system that
we developed to monitor soil abiotic factors. This system
was deployed during the Fall of 2005 in an urban forest
adjacent to he campus of Johns Hopkins University and
during the Spring of 2006 at Leakin Park, an urban park
in Baltimore, MD. Soil conditions are measured by each of
the motes deployed over the covered area. The collected
measurements are stored on the nodes’ local flash mem-
ory and are periodically retrieved by a base station over a
single-hop wireless link. Once the raw measurements are
successfully retrieved by the base station, they are inserted
into a SQL database. At this point, raw measurements are
calibrated using sensor-specific calibration tables and are
cross-correlated with data from external data sources (i.e.,
data from the weather service). The database acts not
only as a repository for collected data, but also drives vi-
sualization tools and provides access to the data through
SQL-query and Web Services interfaces.

In the paragraphs that follow, we present the hardware
and software components of the systems from the point
at which raw measurements are collected to the point at
which they are inserted into the database.
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Figure 3: Status report protocol (a) and download protocol
(b). The Receiving timeline on the left illustrates the time
that the mote’s radio is turned on (2 sec) and the total
cycle time (2 min).

3.1 Sensor Node Hardware

We use the MicaZ mote (Crossbow Inc., 2007) to collect
soil data. Each MicaZ mote is equipped with a Crossbow
MTS101 data acquisition board used to interface the nec-
essary custom sensors. The MTS101 features an ambient
light and temperature sensor in addition to a prototyp-
ing area that supports connections for up to five external
sensors to the mote’s analog to digital converters (ADC).
The whole assembly, including the mote and the acquisi-
tion board, is enclosed in a custom waterproof case and
is powered by two AA batteries. Figure 2 illustrates the
complete assembly in the lab and in the field.
The motes are equipped with Watermark soil moisture

sensors, which vary their resistance with soil moisture, and
soil thermistors which vary their resistance with temper-
ature. We chose the Watermark soil moisture sensor be-
cause it responds well to rain events, closely follows the soil
wetting-drying cycle (Shock et al., 2001), and because it
is inexpensive – an important issue for large WSNs. Both
sensors were purchased from Irrometer.
The soil moisture and temperature sensors react to

changes in physical parameters by changing their resis-
tance, whereas the mote’s ADC translates voltage read-
ings. For this reason, we built a custom interface circuit
that employs a simple voltage divider to vary the voltage
at the ADC pin with the sensor resistance.

3.2 Sensor Node Software

The motes run custom software we developed based on
TinyOS 1.x (Hill et al., 2000), using the nesC program-
ming language (Gay et al., 2003). Specifically, a mote
take samples from each of its on-board sensors once ev-
ery minute and stores them on a circular buffer in its local
flash. The use of flash memory allow us to retrieve all
observed data even over lossy wireless links – in contrast
to sample-and-collect schemes such as TinyDB which can
lose up to 50% of the collected measurements (Tolle et al.,
2005). Because each mote collects approximately 23 KB of

samples per day, the MicaZ 512 KB flash will be overwrit-
ten if data is not retrieved after 22 days. In practice, sensor
measurements were downloaded from the motes weekly or
at most once every two weeks.

To allow on-line monitoring, each mote broadcasts a se-
ries of status messages once every two minutes. Each sta-
tus message contains the mote’s ID, the amount of data
currently stored, the current battery voltage reading, and a
link-quality indicator (LQI)1. Figure 3(a) depicts the mes-
sages exchanged during the status report. Immediately
after turning the radio on, the mote sends a status mes-
sage to signal its presence. During the two seconds that the
radio is active, the mote sends five more status messages,
each 250 msec apart. If the base station does not request
any downloads during this period, the mote turns its ra-
dio off until the end of the two-minute period to conserve
energy.

The base station periodically retrieves collected samples
from each of network’s motes. Figure 3(b) illustrates the
messages exchanged during such a data transfer. Upon re-
ceiving a status message from the mote, the base station
issues a request to download a range of collected measure-
ments. In response, the mote streams the requested data
sequentially, starting from the lower end of the requested
range, during the Bulk Phase of the transfer, which con-
cludes with the transmission of another status message
once the mote transmits the data corresponding to the
upper range requested by the gateway. However because
the radio channel is unreliable, some packets sent during
the Bulk Phase might be lost. To ensure reliable deliv-
ery in the presence of packet loss, we use a NACK-based
automatic repeat request (ARQ) protocol in which base
station maintains a list of “holes” signifying missing or
malformed (e.g., bad CRC) packets. These packets are
recovered during the Send-and-Wait Phase, during which
the base station sequentially requests all missing messages.
The operation ends when the base station successfully re-
trieves all the requested data. At that point the mote
returns to its normal cycle of broadcasting a series of sta-
tus messages every two minutes. Note, that data are only
removed from flash memory only when overwritten by new
data. Given that a record is overwritten 22 days after it
has been generated, this provides the gateway with ample
opportunity to retrieve all the collected data even when
individual downloads fail.

4 Database Design

The database design, visualized in Figure 4, follows nat-
urally from the experimental design and the WSN. Each
entry in the Site table is a geographic region. All the
sites in our case are in the greater Baltimore area, for
which common macro-weather patterns apply. Each site
is partitioned into Patches which in turn contain Nodes

1The LQI is provided by the mote connected to the base station
that receives the status report.



(a) MicaZ mote with attached data acquisition
board and soil moisture and temperature sensors.

(b) Mote inside its waterproof enclosure
deployed in the field.

Figure 2: Motes used for soil monitoring.

Figure 4: Sensor Network Database Schema. The differ-
ent boxes correspond to database tables, while the arrows
correspond to relations between tables.

(i.e., motes). A particular Node has an array of Sensors
that report environmental measurements. Each patch is
a coherent deployment area, defined through its GPS co-
ordinates. Sensor locations are relative to the reference
coordinates of a patch.

The Node and Sensor types (metadata) are described
in corresponding Type tables in Figure 4. Each mote
has a record in the Nodes table describing its model, de-
ployment, and other metadata. Each Sensor table en-
try describes its type, position, calibration information,
and error characteristics. The Event table records state
changes of the experiment such as battery changes, main-
tenance, site visits, replacement of a sensor, sensor fail-
ure, etc. Global events are represented by pointing to
the NULL patch or NULL node. The site configuration

tables (Site, Patch, SiteMap) and hardware configura-
tion tables (Node, Sensor, NodeType, SensorType) are
loaded prior to the data collection. The DataConstants

and RToSoilTemp contain constants that are used in the
calibration process (see Sec.4.1) and are also loaded before
measurements are added to the database. As new motes
or sensors are added, new records are added to those ta-
bles. When new types of motes or sensors are added, those
types are added to the database type tables.

Raw measurements arrive the database as comma-
separated-list ASCII files. They are then loaded to the
database using a two-step process common to data ware-
house applications. (1) The data are first loaded into a
quality-control (QC) table (RawData) in which duplicate
records and other erroneous data are removed. (2) Next,
the quality-controlled data are copied into the CleanData

table, while faulty data (e.g., duplicates) are inserted into
the BadData table. The contents of the CleanData table
are then inserted to the DataSeries table after convert-
ing the timestamps of the collected measurements from
“sensor time” (i.e., ticks from the mote’s local clock) to
GMT. We describe the time reconstruction process we de-
veloped for this task in Section 5.5. Finally the contents
of the DataSeries table are calibrated using the process
described in the next section.

Background weather data from the Baltimore (BWI) air-
port is harvested from wunderground.com and loaded into
the WeatherInfo table. This data includes temperature,
precipitation, humidity, pressure as well as weather events
(rain, snow, thunderstorms, etc.). In the next version of
the database the weather data will be treated as values
from just other sensors.

The database, implemented in Microsoft SQL Server
2005, benefits from the skyserver.sdss.org database



Figure 5: Calibration workflow converting raw to derived
science data.

that was built for Astronomy applications (Sloan Digital
Sky Survey, 2002). It inherited a self-documenting frame-
work that uses embedded markup tags in the comments
of the DDL scripts to characterize the metadata (units,
descriptions, enumerations, for the database objects, ta-
bles, views, stored procedures, and columns). The DDL
is parsed a second time, and the metadata information
is extracted and inserted into the database itself. A set
of stored procedures generate an HTML rendering of the
hyperlinked documentation (see Schema Browser on our
website (Life Under Your Feet, 2007)).

4.1 Calibration

Knowing and decreasing the sensor uncertainty requires
a thorough calibration process. To alleviate errors due
to sensor variation, we test them for both precision and
accuracy. Moisture sensor precision was tested with eight
sensors in buckets of wet sand measuring their resistance
every ten minutes, while varying the temperature from 0◦C
to 35◦C over 24 hours. We found that six sensors gave
similar readings, but two did not. This process indicates
that bad sensors need to be identified and replaced before
deployment.

We also performed a preliminary check with the soil
thermistors and found they are relatively precise (±0.5◦C),
yet consistently returned values 1.5◦C below a NIST ap-
proved thermocouple. The 1.5◦C bias does not present a
large problem because we convert resistance to tempera-
ture using the manufacturer’s regression technique. Fur-
thermore, a 10 kΩ reference resistance is connected in series
with the moisture sensors on each mote. Since the resis-
tance’s value directly factors into the estimation of the sen-
sor resistance, the bias is measured individually, recorded

in the database, and used during the conversion from raw
to derived temperature.

The temperature sensors can be calibrated relatively eas-
ily as their output is only a function of temperature. On
the other hand, moisture sensors require a two-dimensional
function that relates resistance to both soil moisture and
temperature. We calibrate each moisture sensor individu-
ally by taking resistance values at nine points (three mois-
ture contents each at three temperatures) and using these
values to calculate individual coefficients to an already
published regression form (Shock et al., 1998).

Figure 5 illustrates the data flow in the calibration
pipeline that provides the precision and accuracy neces-
sary for sensor-based science. Since some motes do not
have a soil temperature sensor, but the soil moisture sen-
sors have a strong temperature dependence, we compute
for each time-step an average soil temperature, which is
used for the nodes without a soil temperature value. In
this way, we can still achieve meaningful moisture results
for all sensors. The multistage program pipeline we de-
scribed runs within the database as a set of SQL stored
procedures.

4.2 Data Access

Current and historical sensor measurements are avail-
able from the Life Under Your Feet website (www.
lifeunderyourfeet.org) via standard reports. These re-
ports present the data in tabular forms at common aggre-
gation levels, for all the sensors on a given mote or for
one sensor type across all motes. The time series data
can also be displayed graphically, using a .NET web ser-
vice. The web service generates an image of the raw or
calibrated data series with the option to overlay the back-
ground weather information: temperature, humidity, rain-
fall, etc. The reports are useful for doing science and are
also useful for managing the sensor system.

In addition to pre-defined tables and graphs, and as a
way to allow arbitrary analysis, the web and web service
interfaces expose the SQL Schema and allow SQL queries
directly to the database: http://lifeunderyourfeet.

org/en/help/browser/browser.asp and http:

//lifeunderyourfeet.org/en/tools/search/sql.asp.
This “guru-interface” has proven invaluable for scientists
using the Sloan Digital Sky Survey and has already been
very useful to us. If there is some question you want to
ask that is not built-in, this interface lets you ask that
question.

4.3 Data Analysis

In addition to examining individual measurements and
looking for unusual cases, scientists want a high level view
of the measured quantities; they want to analyze aggrega-
tions and functions of the sensor data, cross-correlate them
with external measurements, and perform these tasks us-
ing intuitive and easy-to-use tools. Some of the typical
questions we expect these systems to answer are:



Figure 6: Sensor data cube dimension model.

1. Display a physical quantity (average, min, max, stan-
dard deviation) for a particular time or time interval,
for one sensor, for a subset of the sensors, for all sen-
sors at a site, or for all sites. Show the results as
a function of location, time, as well as a function of
sensor subset ID or category.

2. Look for unusual patterns and outliers such as a mote
behaving differently from its neighbors or an unusual
spike in measurements.

3. Look for extreme events, e.g., rainstorms, and show
data in time-after-event coordinates.

4. Correlate measurements with external datasets (e.g.,
with weather data, data from CO2 flux towers, or data
from stream gages).

5. Notify the user in real-time if the data has unexpected
values, indicating that sensors might be damaged and
need to be checked or replaced.

Queries 2-5 are standard relational database queries that
fit the schema in Figure 4 very nicely –indeed the database
was designed for them. However, Query 1 is really the main
application of the data analysis and calls for a specialized
database design, called a data cube, that supports roll-up
and drill-down data queries across many dimensions (Gray
et al., 1996).
Figure 6 shows the unified dimension model for a data

cube we built for the database shown in Figure 4. It is built
and maintained using the Business Intelligence Develop-
ment Studio and OLAP features of SQL Server 2005. The
cube provides access to all sensor measurements including
air and soil temperature, soil water pressure and light flux
averaged over ten-minute measurement intervals, in addi-
tion to daily averages, minima and maxima of weather data
including precipitation, cloud cover and wind.
The cube also defines calculations of average, min, max,

median and standard deviation that can be applied to

Figure 7: Example of datacube analysis. Correlation be-
tween surface temperature and light intensity.

any type of sensor measurement over any selected spatio-
temporal range. Analysis tools querying the cube can dis-
play these aggregates easily and quickly, as well as ap-
ply richer computations such as correlations that are sup-
ported by the multidimensional query language MDX (Mi-
crosoft Corporation, 2005). Users can aggregate and pivot
on a variety of attributes: position on the hillside, depth
in the soil, under the shade vs. in the open, etc.

The cube aggregates the DataSeries fact table
around three dimensions (when, who, where) - Time
(DateTimes), Location/Sensor (Sensor), and Measure-
ment Type (MeasurementType) (see Figure 6.) The Time
dimension includes a hierarchy providing natural aggrega-
tion levels for measurement data at the resolution of year,
season, week, day, hour and minute (to the grain of ten-
minute interval). Not only can data be summarized to any
of these levels (e.g., average temperature by week), but
these summarized data can then also be easily grouped by
recurring cyclic attributes such as hour-of-day and week-
of-year. The Location/Sensor dimension includes a geo-
graphic hierarchy permitting aggregation or slicing by site,
patch, mote or individual sensor, as well as a variety of
positional or device-specific attributes (patch coordinates,
mote position, sensor manufacturer, etc.) This dimension
itself is constructed by joining the relational database ta-
bles representing sensor, site, patch, and mote.

The weather data available in the cube uses these dimen-
sions as well, although at a different time and space grain.
In the Location/Sensor and time dimensions, weather is
available per-site and per-day respectively. By sharing
the same dimensions as the sensor measurements, relation-
ships between weather and measurement information can
be readily analyzed and visualized side-by-side using the
tools.

Data visualization, trending and correlation analysis is
most effective when measurement data is available for ev-



Figure 8: SensorMap User Interface. Our two deployments
are shown at the bottom left and top right portions of the
screen.

ery ten-minute measurement interval of a sensor. While it
is straightforward to handle large contiguous data gaps by
eliminating a gap period from consideration, frequent gaps
can interfere with calculations of daily or hourly averages.
To avoid these problems, we plan to use interpolation tech-
niques to fill any holes in the data prior to populating the
cubes.

Figure 7 displays one example of the type of analysis
enabled by the data cube. It displays the correlation be-
tween surface temperature and light intensity as a function
of sensor ID, indicated by circles with different colors, av-
eraged over the whole duration of the experiment. As day-
light breaks, the temperature of the surface quickly rises
(moving to the right), and reaches its maximum around
2-3 PM, since the deployment site has northern exposure.
Then as dusk sets, temperature starts to decline reaching
its minimum during the early morning hours. This ex-
ample demonstrates the power of visualization to expose
subtle data features and lead to deeper scientific insights as
well as provide a decision tool for how the sensor-based ex-
periment should be modified to better cover the scientists’
needs.

4.4 Web-based User Interface

Sensor-based experiments have inherent spatial dimen-
sions. Thereby, map-based interfaces such as Google Earth
or Microsoft’s Live search offer an intuitive interface for
exploring such experiments. We implemented such an in-
terface in collaboration with Microsoft Research, by in-
tegrating our two soil ecology deployments with MSR’s
SensorMap project. In this collaboration, we publish the
geographic coordinates of each mote’s location to a website

Figure 9: Ten motes with sensors were deployed in a
wooded area behind an academic facility at our univer-
sity. A base station attached to a networked PC hangs in
the window of an office facing the deployment site approx-
imately 35m away.

that displays a global map through a web services interface.
Users are able to navigate through the map and search for
specific locations as well as for sensors with specific capa-
bilities. Once the sensors are identified, the users can click
on their icons and receive current as well as historical mea-
surements collected by these sensors. These measurements
are not stored at the SensorMap web server, rather they
are dynamically delivered by the sensor network’s gateway
per the users’ requests. Figure 8 presents a sample screen-
shot of the SensorMap interface covering the geographic
area of our two deployments.

5 Results

On September 19, 2005, we deployed 10 motes into the ur-
ban forest adjacent to the Olin building of the Johns Hop-
kins University campus. As Figure 9 illustrates, the motes
are configured as a slanted grid with motes approximately
2m apart. A small stream runs through the middle of the
grid; its depth depends on recent rain events. The motes
are positioned along the landscape gradient and above the
stream so that no mote is submerged.
A wireless base station connected to a PC with Internet

access resides in an office window facing the deployment.
Originally this base station was expected to directly collect
samples from the motes. Once the motes were deployed,
however, we quickly determined that the base station could
not reliably and consistently reach some of the motes. Our
temporary solution to this problem was to travel to the
perimeter of the deployment site and collect the measure-
ments using a laptop connected to a mote as a base station.
The duration of this deployment was 320 days.
On March 28, 2006, we deployed 6 motes into the Leakin

Park urban forest, one of the Baltimore Ecosystem Study’s
(BES (1998)) permanent forest plots. Two motes were
placed in the middle of three 10m by 10m soil plots. The
objective of this project was to study the interactive ef-
fects of nitrogen deposition and soil fauna activity on the
decomposition of leaf litter. The total length of this de-
ployment was 514 days. The deployment did not benefit
from a permanent basestation so the data collection was



Figure 10: Air and soil temperature over six weeks. Each
point represents six hour averages. Tsoil: soil temperature
at 10 cm depth; Tsurf: air temperature at soil surface.

performed during regular visits to the site. We visited the
site 13 times in total; the longest interval between two vis-
its was 107 days and the average was 45 days. However,
because the sampling rate for the Leakin Deployment was
much lower (one sample every five minutes vs. 1 sample
per minute for the Olin Deployment), no data were lost
due to a missed download event.

5.1 Ecology Results

During the 320 of days of the Olin deployment, the sen-
sors collected over 16.5M data points, while the Leakin
deployment collected approximately 6M data points dur-
ing its 514 active days. In the interest of space, we report
representative measurements from the Olin deployment in
remainder of this section.

Figures 10 and 11 show a subset of the temperature and
moisture data respectively. Temperature changes in the
study site are in good agreement with the regional trend
verifying our results. An interesting comparison can be
made between air temperature at the soil surface and soil
temperature at 10cm depth. While surface temperature
dropped below 0◦C several times, the soil itself was never
frozen. This might be partially due to the vicinity of the
stream, the insulating effect of the occasional snow cover,
and heat generated by soil metabolic processes. Several
soil invertebrate species are still active even a few degrees
above 0◦C and, thus, this information is helpful for the soil
zoologist in designing a field sampling strategy.

Precipitation events triggered several cycles of quick wet-
ting and slower drying. In the initial installation, satu-
rated Watermark sensors were placed in the soil and the
gaps were filled with slurry. We found that about a week
was necessary for the sensor to equilibrate with its sur-
rounding. Although the curves on Figure 11 reflect typical
wetting and drying cycles, they are unique to our field site.
Even at the same site, the curves varied depending on soil
moisture at the onset of precipitation, and the amount of
rain or snow. It is because the shape of the soil water char-
acteristic curve depends on soil type, primarily on texture
and organic matter content (Munoz-Carpena, 2004).

We deliberately placed the motes on a slope, and our
data reflect the existing moisture gradient. For instance,

Figure 11: Soil moisture readings over six weeks recorded
by five nodes. Each point represents six hour averages.
Bars on the bottom indicate precipitation events in the
Baltimore Metropolitan Area. Highest column (Feb. 5)
corresponds to 25.4 mm rain. The missing data from Node
53 are due to a malfunction of that node’s soil moisture
sensor.

mote 51 (shown in Fig. 11) placed high on the slope showed
greater fluctuations then mote 58, which was closer to
the stream. We occasionally performed synoptic measure-
ments with Dynamax Thetaprobe sensors to verify our re-
sults.
As stated in the introduction the main challenge of soil

science research is the three dimensional spatio-temporal
heterogeneity of the substrate. When WSNs become cheap
and reliable the resolution of the measurements will in-
crease enormously. For example, a WSN will allow scien-
tists to recreate the three-dimensional movement of water
during a rain event and the process of subsequent drying
following precipitation. Such measurements can be then
compared with existing models. Some events are usually
completely missed because at present it is not possible to
continuously collect data. An example of this lack of data,
is related to the production of trace gases such as CH4 and
N2O, both of which are greenhouse gases. When the soil
becomes temporarily anaerobic,N2O production increases.
Even in well drained soil this can happen during and af-
ter heavy rain. The extent of this trace gas production is
not known at an ecosystem level, because data can only be
collected manually, and therefore rain events are missed.
A dense WSN deployment will also enable scientists to
better estimate soil respiration in different microhabitats,
e.g., plant root tips, earthworm burrows, ant nests, etc.
Finally, WSNs have great promise in areas that are diffi-
cult to access, and/or accessible only a certain period of
the year. Examples are some wetlands, high altitude or
latitude ecosystems, and extreme environments where the
scientist is not around most of the year.
More specific to our project, four of our current research

topics will benefit from the data provided by the sensor
system:

1. How do non-native species become established
and spread in urban areas? Urban areas are
“hotspots” for species introduction. The nature and
extent of soil invertebrate invasions and the key phys-
ical and biological factors governing successful estab-
lishment are poorly known (Johnston et al., 2003,
2004). Our hypothesis is that exotic species survive



better in cities because they are less fluctuating en-
vironments. Population data show that both earth-
worm biomass and density are 2-3 times larger in ur-
ban forests (Szlavecz et al., 2005). The sensor system
will provide important data to two questions related
to this topic: (1) Do urban and rural soil abiotic con-
ditions in the same type of habitat differ? (2) Which
elements of the urban landscape act as refuges for soil
organisms during unfavorable periods? For instance
irrigation of lawns and flowerbeds maintains a higher
moisture level. In winter, the organisms can congre-
gate around houses, or compost heaps, where the tem-
perature is locally higher. Both examples promote
both survival and longer periods of activity, which
may result in greater number of offspring.

2. What are the reproductive strategies of inva-
sive species? Although the exact mechanisms lead-
ing to successful invasion are poorly understood, the
species’ reproductive biology is often a key element
in this process. In temperate regions, reproduction
is closely tied to seasonal temperature changes. For
terrestrial isopods the situation is more complicated,
because hormonal changes necessary to initiate re-
production are also influenced by light intensity and
wavelength composition (Juchault et al., 1981; Jassem
et al., 1981). Sensor systems can measure detailed
temperature, light, and spectral flux both at the soil
surface level, and at the strata within the soil where
the organisms live.

3. Are soil biogeochemical cycles in urban areas
unique? Human impact on biogeochemical cycles is
a global environmental issue. The pools and fluxes
of carbon in urban/suburban soil and its contribution
to the global carbon cycle are poorly known. Under-
standing carbon cycle processes in urban habitats is
one of the critical scientific issues recently outlined
by an NSF-AGU Committee report (Johnston et al.,
2003). Given the enormous heterogeneity of the ur-
ban/suburban landscape such assessment is a chal-
lenging task. We plan to add CO2 sensors to the
motes, and later add other gas sensors (e.g., CH4,
N2O). Our measurements will complement data col-
lected at different heights by the Cub Hill carbon
flux tower. Ten CO2 rings are currently operating in
the Cub Hill area. These rings are sampled monthly.
Comparison of different methods will enable us to test
the reliability of the sensors in real field conditions.

4. What is the effect of urbanization on water
pathways and what is the coupling of water and
carbon storage and flux? As mentioned in the Sec-
tion 2, soil is an important water reservoir and thus
input element in terrestrial hydrology models. Cities
have the most heterogeneous landscape due to vari-
ous land cover and land management. Measurements
on soil moisture should reflect this heterogeneity and
sensor systems can achieve this goal. High granularity

and high frequency measurements are also important
in verifying data collected by remote sensing.

These are ambitious research goals. They would be dif-
ficult and expensive to achieve without our current sensor
and data analysis infrastructure. But sensor technology is
improving rapidly, costs are dropping, and our acquisition
and analysis platform is maturing. So, these preliminary
research goals will likely expand and be refined as we get
more data and experience.

5.2 Energy Consumption

We power the motes using AA batteries. Specifically, in
the Olin deployment we used alkaline batteries with an ap-
proximate capacity of 2200mAh. Given the energy budget
provided by the batteries, we can derive a first order ap-
proximation of network lifetime by measuring the energy
consumed by each of the mote’s subsystems. We measure
the mote’s current draw by measuring the voltage differen-
tial across a 10 Ω resistor placed in series with the device.
Radio is the largest among all energy consumers on the

device. Figure 12(a) depicts the voltage drop on the re-
sistor during a reporting interval (i.e., when the radio is
turned on to send the mote’s status reports). This interval
lasts 1.9 seconds and six status reports are sent in total.
Since the radio is turned off during the remaining 118 sec-
onds of the two minute status report interval, the average
current used by the radio is approximately 0.36 mA2.
Figure 12(b) illustrates the power consumed during the

sampling of the sensors connected to the mote. During
this time the mote samples five sensors: soil temperature,
soil moisture, box temperature, photo sensor and battery
voltage. Each sample is taken by turning the TinyOS sen-
sor component on, waiting for 10 msec, obtaining a sam-
ple from the ADC, and then turning the sensor off. The
next sensor is sampled 125 ms later. After all samples have
been collected, the mote writes them in its local flash. The
whole operation finishes in 0.79 seconds and the average
current consumption during this period is 0.64 mA. Since
sensor samples are taken every 60 seconds, the overall av-
erage current used by the sensors is 0.008 mA. Assuming
that current draw is virtually zero when both the radio
and the MCU are powered off, the average current drawn
from the batteries is then 0.368 mA.
As Figure 13 illustrates, the provided battery voltage to

the deployed nodes decreased by approximately 0.4V after
70 days of operation (0.2V per battery). Considering that
the cutoff voltage of a single battery is 0.8V and using the
linear discharge model to approximate remaining battery
capacity, as suggested in (Energizer Holdings Inc., 2007),
the measured decrease corresponds to a consumption of
629mAh. This is very close to the 70 ·24 ·0.368 = 618 mAh
consumption computed using the average current drawn
by the mote. The difference is due to the power consumed

2Current consumed by the rest of the mote’s subsystems is min-
imal compared to that used by the radio. For example, the CPU
consumes 10µA in sleep mode. Therefore, approximating it to zero
does not introduce a large error.
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Figure 12: Current draw measurements for the MicaZ mote.
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Figure 13: Supplied battery voltage for the motes in the
Olin deployment. The supplied voltage is averaged over
one day.

during data downloads, a factor not included in our anal-
ysis. As we will show in the following section, the radio
is turned on for an additional one to two minutes dur-
ing a download transaction. On the other hand, the radio
is active for 22 minutes every day just to send the peri-
odic status reports. This comparison argues that power
consumed during data transfers is not a significant factor
when it comes to predicting network lifetime.

The lifetime calculation holds for even smaller time
scales: the voltage drop during one week is almost 0.02V
(cf. Fig. 14) corresponding to an expense of 62.8 mAh
using the linear battery model. For the same period, our
average current model estimates energy consumption of
61.8 mAh. The high accuracy of this model indicates that
it can be used as a planning tool for estimating the life-
time of a network. At the same time, this approach has
inherent limitations. First, temperature fluctuations af-
fect battery voltage. This effect is presented in Figure 14
in which the daily temperature cycle produces noticeable
“waves” in voltage readings from an mote deployed out-
doors, while an identical node inside a building has a lin-
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Figure 15: Battery voltage over time for the motes in the
Leakin deployment, from March 28, 2006 to November 5,
2007.

ear discharge curve. Second, not all batteries have linear
discharge curves. Specifically, Lithium batteries maintain
relatively flat voltage until they are almost drained. Fig-
ure 15 verifies this fact, using the battery voltage readings
from the motes in the Leakin deployment which use such
batteries.

On the other hand, because Lithium batteries maintain
voltage above 1.4V before being depleted, we can use all
the battery’s energy and use the radio and the external
flash throughout the node’s entire life. Figure 15) also
illustrates some unexpected variations in the nodes’ life-
times. For example node 72 was recording battery voltage
above 3V, even after 587 days of continuous operation. In
contrast, node 73 died after 480 days with a last recorded
battery voltage of 2.34V, while node 75 lived 513 days with
a last recorded battery voltage of 2.5V. Besides the in-
herent differences among battery packs, the other plausi-
ble reason for this significant variation is the non-uniform
damage caused by water leaking into the mote enclosures.
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5.3 Data Download Performance

Our initial plan for the Olin deployment was to collect
measurements from the motes through a PC, located at
the 2nd floor in Olin building next to our deployment site.
The same basestation received the periodic status reports
sent by each of the motes. Using these status reports we
estimated the packet loss rate for each of the motes in the
deployment. Unfortunately, the measured packet loss was
67% or higher and therefore we decided not to use that
basestation to download collected measurements. Doing
so would require an excessive number of retransmissions,
which would deplete motes’ batteries very fast. On the
other hand, even with this high loss rate, we used the pe-
riodic reports to remotely monitor the network’s health.

Between Nov. 28, 2005 and Apr. 20, 2006, we performed
250 downloads, few of them using the fixed basestation
but most using a laptop. Figure 16 presents two exam-
ples of data downloads performed from the fixed bases-
tation: one with low loss rate and another in which more
losses were sustained. The base station download the same
amount of data in both cases. The top row illustrates the
packet sequence numbers over time while the bottom one
shows Link Quality Indicator (LQI) information. During
the Bulk Phase of the transfer (cf. Sec. 3.2) the high-
quality download lost only 6 out of 5438 packets (0.1%)
while the lossy one lost 689 out of 11811 packets (5.8%).
As a result, the Send-and-Wait phase during which all the
lost packets are retransmitted is more pronounced in the
second example, with some packets retransmitted twice.
Note that even though the loss rate in the second case
is only moderate (∼ 6%), the download operation require
3.5 times more time, indicating the profound effect of link
quality to download times and energy consumption. An-
other observation from Figure 16 can be made about the
predictive value of the received LQI. It is evident that the
high quality link has consistently high LQI, while the LQI
of the lossy link displays high variability. This observation
suggests that, as other have proposed (e.g., (Cerpa et al.,
2005)), LQI could be used to select low-loss links.

5.4 Sensor Faults

Field data from WSN deployments are very noisy and
error-prone. Formally, we define a “sensor fault” as any
measurement that does not accurately reflect the underly-
ing physical process measured by the sensor. Such sensor
faults can occur due to a variety of reasons including low
voltage supply to the sensors, loose electrical connections,
mismatches in calibration, and physical perturbations.

Multiple sensor faults were encountered throughout the
deployment periods. We adopt a classification similar to
the one in (Sharma et al., 2007) to divide these faults into
four broad categories: (a) Spike-Noise faults. Spike-noise
is the most common fault type and it occurs when a sen-
sor records a very large change in the measurement from
its previous value. (b) Stuck-at-value faults. Such a fault
occurs when the sensor constantly records the same value
for extended periods of time, before it starts to respond to
the sensing environment. (c) Unresponsive sensor faults.
An unresponsive sensor is one which fails to capture the
changes in the sensing environment. In this case, the sen-
sor does not get stuck at a particular value, but the sen-
sor becomes unresponsive and is unable to keep up with
changes occurring in the environment. (d) Amplitude fluc-
tuation faults. These faults occur when a sensor starts
recording large unexpected fluctuations in the amplitude
before stabilizing. Figure 17 provides examples from each
fault category. We found that soil water pressure sensors
mostly experienced fault types (a) and (b), whereas the air
temperature sensors recorded a higher percentage of types
(c) and (d) faults.

Needless to say, it is crucial to detect these faults in or-
der to remove erroneous data. Moreover, it is desirable
to correct the underlying causes of these faults whenever
possible. Closely related to fault detection is the topic of
event detection. We define “events” as sensor measure-
ments which reflect the true sensing environment, but de-
viate from the expected signal signature. In soil ecology,
rain showers that perturb soil moisture and temperature
patterns are examples of such events. These events can
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Figure 16: Two examples of data downloads. The graphs on the left correspond to a download over a high-quality
wireless link while the ones to the right correspond to a transfer of the same amount of data over a lossy link.

trigger significant biological processes, which makes them
extremely interesting and important to study. In turn, this
means that it is crucial to make the distinction between
fault detection and event detection because misclassifying
events as faults would lead to loss of valuable data.
Figure 18 provides a motivating example: the air tem-

perature during the event day (18/01/06) deviates from
the expected bell-shaped diurnal cycle shown in the two
subsequent non-event days. One can make use of this be-
havior deviation to discriminate event days from non-event
days. We have recently proposed (Gupchup et al., 2007) a
Principal Component Analysis (PCA, (Duda et al., 2001))
based approach that leverages this deviation in the sig-
nal to classify such events. Briefly, we use PCA to derive
a set of orthogonal basis vectors (subspace), and project
the motes’ daily measurements on this subspace. We then
identify events by detecting deviations in this subspace.
Our model uses a number of priors and adjusts for sea-
sonal drift. We maximize recall (ratio of events detected
to total events) over precision (true positive rate). While
our current technique is off-line, in principle one can load
the pre-computed basis vectors on a mote and predict the
onset of a rain event using this light-weight model.

5.5 Clock Reconstruction

Clock synchronization poses a significant challenge for sen-
sor networks and for this reason it has received consider-
able attention from the research community ((Li and Rus,
2006), (PalChaudhuri et al., 2004)). In our application,
the motes do not need to have knowledge of the actual
time (referred in the literature as global clock) and do not
need to be synchronized among themselves. Instead, each
mote keeps track of time using its local clock and uses
its local time to timestamp the measurements it collects
relative to a known start time. We refer to this variable
as the mote’s localclock and a pair of global clock,

localclock values as an anchor point. Anchor points are

collected periodically for each mote during the download
process. By fitting the anchor points to a straight line,
we can reconstruct the global clock values for the collected
samples. This method is very attractive due to its simplic-
ity and the lack of overhead incurred by running a time
synchronization algorithm. Next, we summarize some of
the major challenges we faced in using this scheme for clock
reconstruction.

We use the anchor points the gateway collects for each
mote, to create mote-specific linear fits. A mote’s fit is
then applied to the localclock values to obtain the ac-
tual time (i.e., global clock) corresponding to the collection
of the samples. We validate the accuracy of the clock re-
construction mechanism by comparing the mote’s air tem-
perature data with the air temperature data obtained from
a nearby weather station. The assumption, which we ex-
perimentally validated, is that the temperature recorded
by the mote is close to the temperature recorded by the
weather station

Using this validation mechanism we found one occasion
in which there was a systematic shift in the box temper-
ature data. Upon further investigation, we realized that
some of the anchor points were inaccurate on account of
the gateway’s clock being off by a few hours. This affected
the linear fit resulting in the systematic shifts. Censoring
the bad anchor points and applying the correct shift in the
global clock fixed this problem. Mote reboots are another
source of problems when applying this clock reconstruction
methodology. Specifically, when a mote reboots it resets
its localclock. Furthermore, we do not know how long
the node stays off before it reboots. On a few occasions,
we found that some motes rebooted several times over the
course of a few days and we had no anchor points in be-
tween those reboots, making it very difficult to apply the
reconstruction methodology. We are currently working on
a new methodology specifically designed to be more ro-
bust and tackle all the challenges that we faced during the
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Figure 18: A typical rain event illustrating the deviation in
the box temperature signal from the expected bell-shaped
diurnal cycle.

two deployments described in this paper. Nonetheless, the
most important lesson we took away from this experience
is to collect anchor points at a much higher rate and accu-

racy than we previously did.

6 Discussion

Our primary goal at the beginning of this exercise was to
build a proof-of-concept, end-to-end data collection sys-
tem for soil ecology. Even though we did not attempt to
meet all the high-level requirements outlined in Section 2.1,
building the system proved to be harder than what we ex-
pected.
We learned, as previously reported, that reprogramming

is essential for network deployments. In our case, we dis-
covered two major software faults after the network was
initially deployed. The first fault was related to putting
the MCU to sleep mode, while the second one was related
to occasional errors when writing to the mote’s flash mem-
ory. In both cases, we had to retrieve the motes and repro-
gram them in the lab. Had we used a tool such as Deluge,
we would be able to reprogram the motes in the field, de-
creasing the length of the measurement outage (Hui and
Culler, 2004).
Contrary to the promise of cheap WSNs, sensor nodes

are still expensive. We estimated the cost per mote in-
cluding the main unit, sensor board, custom sensors, en-
closure, and the time required to implement, debug and
maintain the software to be around $1,000! While equip-
ment costs will eventually be reduced through economies
of scale, there is clearly a need for standardized connectors
for external sensors and in general a need to minimize the
amount of custom hardware necessary to deploy a sensor
network. Unfortunately, sensor and mote vendors seem to
want proprietary interfaces to encourage lock-in.
We also found that low-level programming is (still) a

necessary and challenging task when building sensor net-
works for new applications. Not only did we have to write
low-level device drivers for the soil temperature and mois-
ture sensors, but also for power control, as well as for cali-
bration procedures. Moreover, using acquisitional proces-
sors such as TinyDB (Madden et al., 2003) was not an
option in our case given the requirement to collect all the
data.
Finally, we identified a need for network design and de-

ployment tools that instruct scientists where to place gate-
ways and sensor relay points that can help transport col-
lected measurements back to an Internet-connected bases-
tation (Burns et al., 2006). These tools will replace the
current trial-and-error, labor-intensive process of manual
topology adjustments that disturbs the deployment area.

7 Related Work

A number of environmental sensing networks have been
described in the literature, starting with the pioneering
work of (Cerpa et al., 2001) and (Mainwaring et al., 2002).
These early deployments used routing trees to deliver col-
lected measurements to the base station as soon as the



motes collected the data. We follow a different approach,
whereas motes store data locally until they are reliably
extracted by the gateway. This approach consumes less
energy because motes do not incur the overhead of keep-
ing the routing tree up to date. Moreover, unlike previous
approaches that lost up to 30% of collected measurements
due to packet losses (Szewczyk et al., 2004), we implement
an end-to-end reliable delivery protocol that recovers all
the collected data in the presence of noisy and lossy wire-
less links.

More recently, (Tolle et al., 2005) deployed a WSN in a
forest in California. The network used the TinyDB sen-
sor network database (Madden et al., 2003) to retrieve the
collected sensor measurements. Unlike TinyDB that uses
in-network processing to reduce the amount of data re-
covered from the network we retrieve all the data for the
scientific reasons discussed in Section 2. Even when in-
network processing is not used (e.g., by using a select

* query), TinyDB does not guarantee that all the mea-
surements will be collected at the gateway. Moreover, the
motes do not keep a local copy of their measurements after
they forward them over the routing tree that TinyDB uses.
Our data management strategy is very different. Nodes use
their local flash memory to store all the collected measure-
ments (until the flash becomes full) and all the data are
reliably extracted from the network. This design ensures
that intermittent network problems will not result in lost
data.

LUSTER is another WSN architecture for environmen-
tal monitoring (Selavo et al., 2007). LUSTER uses a
TDMA-based protocol to minimize energy consumption
due to radio use and special nodes that store measurements
overheard from radio transmissions. LUSTER nodes that
collect data have must have single-hop connectivity to a
gateway which collects all their data. Deploying a network
that covers a large geographic area thus requires the de-
ployment of multiple gateways. Unlike LUSTER, motes in
our design store their own measurements in flash until they
are reliably recovered by a base station. Furthermore, the
sampling rate necessary by our application is significantly
lower than the one used in LUSTER. Due to the reduced
traffic rates, our motes do not have to use a TDMA-based
protocol or keep their clocks tightly synchronized. These
decisions lead to a simpler system design and lower net-
work overhead.

The Dozer system also uses time synchronization to co-
ordinate the transmission schedules of the network’s nodes,
but removes the single-hop limitation of LUSTER Burri
et al. (2007). More recently, Musaloiu-E. et al. (2008)
showed that the design we propose in this paper can be
extended to support reliable multi-hop communications
while achieving energy efficiency equal to or better than
Dozer Musaloiu-E. et al. (2008). Unlike Dozer, Koala does
not require synchronized sleep schedules, nor does it re-
quire motes to persistently maintain routing trees. This
strategy conserves energy, but on the other hand, the syn-
chronization allows Dozer to continuously inform the gate-
way about the network’s health and also deliver the mea-

surements with a much smaller delay.
Recently a number of proposals attempt to reconstruct

missing data and conserve energy through the use of sta-
tistical models (e.g., Deshpande et al. (2004); Deshpande
and Madden (2006)). All these techniques assume that
the data follows a particular distribution and/or require
training data. However, when we started the deployments
described in this paper, we did not have any historical data
or any knowledge of what the data was supposed to look.
The difficulty of collecting training data is further exacer-
bated by the fact that environmental data (e.g., tempera-
ture) exhibit temporal variability in multiple scales (daily,
weekly, seasonal) and thus require long datasets for proper
training. Nonetheless, because we have now collected a
significant amount of data we are planning to evaluate the
effectiveness of these techniques in reducing energy costs
while at the same time meeting the scientific requirements
we presented in Section 2. Silberstein et al. recently pro-
posed another technique for reducing the amount of data
a data gathering network reports through the use of tem-
poral and spatial suppression Silberstein et al. (2006). As
part of our future work we plan to test the ability of the
proposed techniques to reduce the network’s energy expen-
ditures for the sensor modalities that soil sensing networks
use.
Finally, (Langendoen et al., 2006) discovered many of

the same practical difficulties in deploying environmental
monitoring WSNs that we also had to face.

8 Concluding Remarks

A wireless sensor network is only the first component in an
end-to-end system that transforms raw measurements to
scientifically significant data and results. This end-to-end
system includes calibration, interface with external data
sources (e.g., weather data), databases, Web Services in-
terfaces, analysis, and visualization tools.
The WSN community has focused its attention so far

on routing algorithms, self-organization, and in-network
processing among other things, environmental monitoring
applications –sometimes derided as academically dull ap-
plications– require a different emphasis: reliable delivery
of the majority (if not all) of the data and metadata, high
quality measurements, and reliable operation over long de-
ployment cycles. We believe that focusing on these prob-
lems will lead to interesting new avenues in WSN research.
While the network design we describe does scale to net-

works with many motes that span large areas, the paper
chronicles our initial attempt to deploy a sensor network
for soil science, including the unexpected problems we en-
countered during this process. Despite these problems and
because the collection of soil abiotic parameters was impor-
tant from an environmental science standpoint, we decided
to keep the network deployed in the field and perform pe-
riodic manual downloads. Doing so, not only enabled us to
collect soil data over prolonged periods of time, but also
provided us with insights about the performance of the



system’s other components (e.g., sensor sampling, energy
consumption, overall software reliability) in the field. Fi-
nally, we note that deployments spanning 320 and 514 days
are far greater than any other environmental monitoring
wireless sensor network that we are aware of.
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