
Guarded Impredicative Polymorphism
Extended Version

Alejandro Serrano
Jurriaan Hage

A.SerranoMena@uu.nl
J.Hage@uu.nl

Utrecht University
Utrecht, The Netherlands

Dimitrios Vytiniotis
Simon Peyton Jones
dimitris@microsoft.com
simonpj@microsoft.com

Microsoft Research
Cambridge, United Kingdom

Abstract
The design space for type systems that support impredica-
tive instantiation is extremely complicated. One needs to
strike a balance between expressiveness, simplicity for both
the end programmer and the type system implementor, and
how easily the system can be integrated with other advanced
type system concepts. In this paper, we propose a new point
in the design space, which we call guarded impredicativity.
Its key idea is that impredicative instantiation in an appli-
cation is allowed for type variables that occur under a type
constructor. The resulting type system has a clean declar-
ative specification — making it easy for programmers to
predict what will type and what will not —, allows for a
smooth integration with GHC’s OutsideIn(X) constraint
solving framework, while giving up very little in terms of
expressiveness compared to systems like HMF, HML, FPH
and MLF. We give a sound and complete inference algorithm,
and prove a principal type property for our system.

CCSConcepts •Theory of computation→Type struc-
tures;

Keywords Type systems, impredicative polymorphism,
constraint-based inference

This is an extended version of Alejandro Serrano, Jurriaan
Hage, Dimitrios Vytiniotis, and Simon Peyton Jones. 2018.
Guarded Impredicative Polymorphism. In PLDI ’18: ACM
SIGPLAN Conference on Programming Language Design and
Implementation, June 18 – 22, 2018, Philadelphia, PA, USA.

1 Introduction
Type inference for impredicative polymorphism is a deep,
deep swamp. There is a dense literature of papers presenting
type systems for impredicative polymorphism [1, 8, 9, 22, 23].
Alas none of them quite worked well enough to be deployed
in a production compiler: either the system was too compli-
cated for users to predict its behaviour, or it was too compli-
cated to implement, or sometimes both.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA
2018. ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00
https://doi.org/10.1145/3192366.3192389

Yet it is tantalising: what is wrong with the type [∀a. a →

a], a list of polymorphic functions? If we have xs :: [∀a. a →

a], why can’t we write (head xs)? Not every programmer
wants such types but, when they do, it is very annoying
that they are disallowed, apparently for obscure technical
reasons. That is why we keep trying.
So what is the problem? The difficulty is that to accept

(head xs) we must instantiate the type variable of head’s
type with a polymorphic type. More precisely, since head ::
∀p. [p] → p, we must instantiate p with (∀a. a → a). This
instantiation seems deceptively simple, but in practice it is
extremely hard to combine with type inference. We respond
to this challenge by making the following contributions:

• Every attempt to combine type inference with impred-
icativity involves a design trade-off between complex-
ity, expressiveness, and annotation burden. Our key
contribution is a new trade-off, which we call guarded
instantiation or GI (Section 2).
GI is simple: simple for the programmer to understand
(Section 2.1-2.3), simple in its declarative specification
and metatheory (Section 3); and simple in its imple-
mentation (Section 4). We do not extend the syntax
of (System F) types in order to provide a specification
of the type system (unlike previous work [1, 9, 23]),
nor do we introduce new forms of annotations [19] or
side-conditions that require principal types [8].

• Despite GI’s relative simplicity, it accepts without an-
notation particularly celebrated and practically impor-
tant examples, such as runST $ e (Figure 2).

• We give a declarative type system for GI for a small
core language, highlighting the key ideas of our sys-
tem (Section 3). Then we show simple extensions to
handle a more full-fledged language, including type
annotations (Section 3.4), let bindings (Section 3.5),
and pattern matching (Appendix A). The system has a
notion of principal type akin to Hindley-Milner type
systems, that is, existence of a monomorphic substitu-
tion mediating between types. In particular, impredica-
tivity is never guessed inGI (Section 3.6). The resulting
system can express any System F program.

https://doi.org/10.1145/3192366.3192389

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA A. Serrano, J. Hage, D. Vytiniotis, and S. Peyton Jones

• We provide a sound and complete inference algorithm
(Section 4) for GI, based on constraints. The type infer-
ence algorithm is a modest extension of the constraint-
based algorithm already used by GHC. Type-correct
programs can readily be elaborated into System FC,
GHC’s intermediate language, without extensions. Our
inference algorithm scales readily to handle GADTs,
type classes, higher kinds, type-level functions and
other type system features.

• We provide a prototype implementation of the whole
system, integrated with Haskell’s type classes.

Type inference for impredicativity is dense with relatedwork,
as we discuss in Section 6. A small but useful contribution to
a dense field is Figure 2, which presents key examples from
the literature and shows how each major system behaves.

2 The key idea: intuition and examples
We begin with an informal introduction to GI, which we
make fully precise in Section 3. In this discussion we make
use of functions defined in Figure 1.

2.1 Exploiting the easy case
What is hard about typing (head ids)? Nothing! In head’s
type the variable p appears under a list type constructor.
Given the type of ids, [∀a. a → a], it is plain as a pikestaff
that we must instantiate p with ∀a. a → a. The difficulty
comeswhenwe have a “naked” or “un-guarded” type variable
in one of the arguments, such as p in single :: ∀p. p → [p].
Now if we examine (single id), it is not clear whether we
should instantiate p with ∀a. a → a, or with Int → Int, or
some other monomorphic type.
In fact, (single id) does not have a most general type. It

has both of these two incomparable types ∀a. [a → a] and
[∀a. a → a]. To make things worse (single id) is a perfectly
typeable Hindley-Milner program (with the former type) so
we must allow this type. But to support impredicativity, we
must also allow the latter. But under which conditions?
Our approach is to exploit the common case. We focus

on n-ary applications (f e1...en). It is more conventional to
deal with binary applications, but in fact n-ary applications
(unencumbered with intervening let or case constructs) are
wildly dominant in practice, and we can get much better
typing by treating the application all at once. Then we adopt
this rule to type such n-ary applications:

The Instantiation Rule. Given a n-argument
call f e1 ... en to a function f :: ∀a1 ... ap . σ1 →

... → σm → ϕ, wherem ⩽ n, a type variable ai
may be instantiated to:
1. A polymorphic type ϕ, if ai appears under a

type constructor in one of the σj (note that we
only take in consideration as many types as
arguments given). In this case we say that ai is
guarded in the type of f .

2. A top-level monomorphic type µ (see Figure 3),
if ai appears in any of the σj at all.

3. A fully monomorphic type τ , otherwise.

This rule is carefully crafted. To illustrate, consider these
examples (consult Figure 1 for the types):

• (map poly) is OK because in the type ofmap::∀a b. (a →

b) → [a] → [b], both type variables appear under the
type constructor (→) in the first argument. We can
instantiate both to (∀a. a → a), by case (1) of the Rule,
as required to match the type of poly.

• (single ids) is OK because we can instantiate single ::
∀a. a → [a] with the top-level-monomorphic type
∀b. [b], using case (2) of the Instantiation Rule.

• ((:) id) is a partial application of (:). So although a ap-
pears guarded in the second argument of (:) :: ∀a. a →

[a] → [a], in this call we can only take advantage of
the first argument (seem ⩽ n in the rule.). Hence a can
only be instantiated by a top-level monomorphic type,
by clause (2) of the rule. If we add a second argument
in the call, such as ((:) id ids), instantiation may be
polymorphic since the second argument is now taken
into consideration.

• (id poly (λx . x)) is a tricky one. Here id is applied to
two arguments although its type, ∀a. a → a, appar-
ently only has one; moreover the type of id’s second
argument must be polymorphic, and the (λx . x) must
be generalised. But the Instantiation Rule says that
this application is OK: the type of poly is (∀a. a →

a) → (Int,Bool), a top-level monomorphic type. Thus
the instantiation of id to that type is allowed by clause
(2) of the Instantiation Rule.

The Instantiation Rule is still informal (which we remedy in
Section 3) but it is very helpful to have a rule of thumb to
explain to a programmer what will and will not work.

2.2 Ignoring the context of a call
Notice that the Instantiation Rule takes no account of the
context of the call. For example, consider ids ++ single id. We
know that the result of (single id) must be [∀a. a → a],
given that ids has the same type, and you might think that
would be enough to fix the instantiation of single. But not in
GI! The swamp beckons, and we stay on dry land.

Moreover, the Instantiation Rule allows the programmer to
understand impredicativity in a simple bottom-up way. For
example, consider the expression (map head (single ids))
(Figure 2). In GI, the types for head and single ids are in-
stantiated independently, so we never need to consider the
interaction between the arguments. This modularity pays off
in the metatheory too.
There is a price to pay, however. As a degenerate case,

a function application without any arguments – that is, a
variable – may only instantiate fully monomorphically – no
polymorphism, even if it appears under a type constructor.

Guarded Impredicative Polymorphism PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

head :: ∀p. [p] → p
tail :: ∀p. [p] → [p]
[] :: ∀p. [p]
(:) :: ∀p. p → [p] → [p]
single :: ∀p. p → [p]
(++) :: ∀p. [p] → [p] → [p]
length :: ∀p. [p] → Int

id :: ∀a. a → a
inc :: Int → Int
choose :: ∀a. a → a → a
poly :: (∀a. a → a) → (Int,Bool)
auto :: (∀a. a → a) → (∀a. a → a)
auto′ :: (∀a. a → a) → b → b

ids :: [∀a. a → a]
map :: ∀p q. (p → q) → [p] → [q]
app :: ∀a b. (a → b) → a → b
revapp :: ∀a b. a → (a → b) → b
flip :: ∀a b c. (a → b → c) → b → a → c
runST :: ∀v. (∀s. ST s v) → v
argST :: ∀s. ST s Int

Figure 1. Type signatures for functions used in the text

Thus, the empty list constructor [] :: ∀a. [a] cannot be as-
signed a type [∀a. a → a]. We describe how to loosen this
restriction in Section 3.3.

2.3 Lambdas
In common with many other approaches to impredicativity,
we take a conservative position on lambda-bound variables.
Consider g (λf . (f ’x’, f True)), where g :: ((∀a. a → a) →
(Char,Bool)) → Int. Since g can only be applied to a function
whose argument is itself polymorphic, you could imagine
that information being propagated to f and so the program
could be accepted. In common with many other systems, we
reject all programs that require a lambda-bound variable to
be polymorphic, unless it is explicitly annotated:

The Lambda Rule. Every lambda abstraction
whose argument is polymorphic must be anno-
tated. Otherwise, the bound variable can only have
a fully monomorphic type.

By a “fully monomorphic type” we mean “no foralls any-
where”. Nothing about guardedness here! In contrast, MLF
requires an annotation only when the argument is used more
than once in the body with different polymorphic types.

While the Lambda Rule deals with the arguments to lamb-
das, it says nothing about the return type. To get a poly-
morphic return type, an annotation needs to be provided.
For example, for λ(x :: ∀a. a → a). x x, GI infers the type
(∀a. a → a) → b → b, and not (∀a. a → a) → (∀a. a → a).
To get the latter type, we have to write λ(x :: ∀ a. a →

a). (x x :: ∀a. a → a) instead.

2.4 Expressiveness
By treating n-ary applications as a whole, and taking guard-
edness from both the function type and the argument types,
we can infer impredicative instantiations in many practically-
useful situations. We summarise a collection of examples
culled from the literature in Figure 2. This table also com-
pares our system with others, but we defer discussion of
related work to Section 6.
A celebrated example is the function ($) :: (a → b) →

a → b. Haskellers use this function all the time to remove
parentheses in their code, as in (runST $ do { ... }) (the type
of runST is given in Figure 2). This call absolutely requires
impredicative instantiation of the variable a in the type of ($).

It is so annoying to reject this program that GHC implements
a special, built-in typing rule for f $ x. Of course, that is
horribly non-modular: if the programmer re-defines another
version of ($), even with the same type, some programs cease
to type check. In GI both type variables appear under the
(→) constructor, so impredicative instantiation is allowed.

The lack of support for impredicative types is painful. For
example, consider the following from Haskell’s lens library:

type Lens s t a b = ∀f . Functor f ⇒ (a → f b) → s → f t

Programmers think of a lens as a first-class value, and are
perplexedwhen they cannot put a lens into a list or other data
structure. With GI, many more lens-manipulating programs
become well-typed.

One might worry about the order of quantifiers. Take:

f :: (∀a b. a → b → b) → Int x :: ∀b a. a → b → b
g :: [∀a b. a → b → b] → Int xs :: [∀b a. a → b → b]

The application (f x) is well-typed in GI, despite the differ-
ing quantifier ordering, because we compare f ’s argument
type and x’s actual type using subsumption; effectively we
instantiate and re-generalise. In contrast, GI does not accept
the application (g xs), because under a list constructor we
compare the types using equality. Happily, while top-level
quantifiers (such as those for x) are invisibly inferred (with
unpredictable ordering), nested quantifiers, such as those in g
and xs’s type, are never inferred but rather declared through
a type signature. This makes accidental incompatibility van-
ishingly rare in practice, as we verify in Section 5.

3 Declarative specification
We first present a systematic description of the declarative
specification of GI. We use the term declarative in the sense
of not syntax-directed. After we have proven soundness
and completeness for the constraint-based variant, the pro-
grammer can take this declarative specification – easier to
understand but without a direct inference algorithm – as a
basis to understand when and why annotations are needed.

3.1 Syntax
The syntax of the language is given in Figure 3. The language
has some distinctive features. First, as discussed in Section 2,
we deal withn-ary applications instead of binary ones. A lone
term variable is treated as nullary application. Because of the

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA A. Serrano, J. Hage, D. Vytiniotis, and S. Peyton Jones

GI MLF HMF FPH HML
[1] [8] [23] [9]

A polymorphic instantiation
A1 const2 = λx y. y ✓ ✓ ✓ ✓ ✓

MLF infers (b ⩾ ∀c. c → c) ⇒ a → b, GI infers a → b → b.
A2 choose id ✓ ✓ ✓ ✓ ✓

MLF and HML infer (a ⩾ ∀b. b → b) ⇒ a → a,
FPH, HMF, and GI infer (a → a) → a → a.

A3 choose [] ids ✓ ✓ ✓ ✓ ✓
A4 λ(x :: ∀a. a → a). x x ✓ ✓ ✓ ✓ ✓

MLF infers (∀a. a → a) → (∀a. a → a),
GI infers (∀a. a → a) → b → b.

A5 id auto ✓ ✓ ✓ ✓ ✓
A6 id auto′ ✓ ✓ ✓ ✓ ✓
A7 choose id auto ✓ ✓ No No ✓
A8 choose id auto′ No ✓ No No ✓
A9 f (choose id) ids No ✓ No ✓ ✓

where f :: ∀a. (a → a) → [a] → a
GI needs an annotation on id :: (∀a. a → a) → (∀a. a → a)
in the previous two examples.

A10 poly id ✓ ✓ ✓ ✓ ✓
A11 poly (λx . x) ✓ ✓ ✓ ✓ ✓
A12 id poly (λx . x) ✓ ✓ ✓ ✓ ✓
B inference of polymorphic arguments
B1 λf . (f 1, f True) No No No No No

All systems require an annotation on f :: ∀a. a → a.
B2 λxs. poly (head xs) No ✓ No No No

All systems except for MLF require annotated xs :: [∀a. a → a].
C functions on polymorphic lists
C1 length ids ✓ ✓ ✓ ✓ ✓
C2 tail ids ✓ ✓ ✓ ✓ ✓
C3 head ids ✓ ✓ ✓ ✓ ✓
C4 single id ✓ ✓ ✓ ✓ ✓
C5 id : ids ✓ ✓ No ✓ ✓
C6 (λx . x) : ids ✓ ✓ No ✓ ✓
C7 single inc ++ single id ✓ ✓ ✓ ✓ ✓
C8 g (single id) ids No ✓ No ✓ ✓
where g :: ∀a. [a] → [a] → a
C9 map poly (single id) No ✓ ✓ ✓ ✓

GI needs an annotation on single id :: [∀a. a → a]
in the previous two examples.

C10 map head (single ids) ✓ ✓ ✓ ✓ ✓
D application functions
D1 app poly id ✓ ✓ ✓ ✓ ✓
D2 revapp id poly ✓ ✓ ✓ ✓ ✓
D3 runST argST ✓ ✓ ✓ ✓ ✓
D4 app runST argST ✓ ✓ ✓ ✓ ✓
D5 revapp argST runST ✓ ✓ ✓ ✓ ✓
E η-expansion
E1 k h lst No No No No No
E2 k (λx . h x) lst ✓ ✓ No ✓ ✓

where h :: Int → ∀a. a → a, k :: ∀a. a → [a] → a,
and lst :: [∀a. Int → a → a]

E3 r (λx y → y) No ✓ No No No
where r :: (∀a. a → ∀b. b → b) → Int

Figure 2. Comparison of type systems

Skolem / rigid variables V ∋ a,b, c, . . .
Free type variables ftv(σ)
Type constructors T ∋ →, T, S, . . .
Fully mono. types τ F a | T τ
Top-level mono. types µ,η F a | T σ
Polymorphic types σ ,ϕ F ∀a. µ

a may be empty, a ⊆ ftv(µ)

Term variables ∋ x ,y
Expressions / terms e F x

| e0 e1 . . . en n⩾ 0

| λx .e
| λ(x :: σ).e
| (e0 e1 . . . en :: σ)
| let x = e1 in e2

Environments Γ F ϵ | Γ,x : σ
Substitutions θ ,φ,π F [a 7→ σ]

Sorts of variables s F u | t | m

Sorts form a lattice, m ⊏ t ⊏ u
Sort assignment ∆ F [a 7→ s]

Bit ω F • | ⋆
Vector of bits ω F ϵ | ω,ω

Figure 3. Syntax of the language

Lambda Rule (Section 2.3), we provide explicitly-annotated
lambda abstractions, λ(x ::σ). e , to support lambdas whose
bound variable must have a polymorphic type. Annotations
and lets are treated in their own sections, we first focus on
the core language with variables, applications, and lambdas.

Types (Figure 3) are classified by three “sorts”, u, t, and m.
Polymorphic types σ ,ϕ, of sort u, have unrestricted polymor-
phism. Top-level monomorphic types, µ,η, of sort t, have no
polymorphism at the top level, but permit arbitrary nested
polymorphic types under a type constructor. Finally, fully-
monomorphic types, τ , of sort m, have no trace of polymor-
phism. Fully monomorphic types correspond to monotypes
in the Hindley-Milner tradition. These are the only types
which can be assigned to un-annotated lambda-bound vari-
ables. We extend this notion to substitutions, and sometimes
speak of fully monomorphic substitution to mean that the
image of the substitution contains only types of that sort.
For a substitution θ , the image of a type variable a is

denoted by θ (a), and similarly for sort assignments.

3.2 Typing rules
The typing judgment Γ ⊢ e : σ is given in Figure 4, along
with some auxiliary judgments.

Rules Abs and AnnAbs concern lambda abstractions, and
are straightforward. AnnAbs deals with a lambda (λ(x ::
ϕ). e) where the user has supplied a type annotation ϕ: we

Guarded Impredicative Polymorphism PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

σ respects s θ respects ∆

σ respects u µ respects t τ respects m
∀a ∈ dom(θ), θ (a) respects ∆(a)

θ respects ∆

σ ▷g ∆

µ ▷g ∆
ArgPoly∀a. µ ▷g ∆\a

ArgGuard
Tϕ ▷g [ftv(ϕ) 7→ u]

ArgTyVar
a ▷g [a 7→ t]

σ ▷sω ∆

ArgsRes
µ ▷sϵ [ftv(µ) 7→ s] ArgsTyVar

a ▷sω,ω [a 7→ m]

µ ▷sω ∆
ArgsPoly∀a. µ ▷sω ∆\a

σ1 ▷g ∆1 σ2 ▷sω ∆2
ArgsArrow

σ1 → σ2 ▷s
•,ω ∆1 ⊔ ∆2

ϕ ⩽sω σ ; µ

InstMono
µ ⩽sϵ ϵ ; µ

ϕ2 ⩽sω σ ; µ
InstArrow

ϕ1 → ϕ2 ⩽sω,ω ϕ1,σ ; µ
µ ▷sω ∆ θ respects ∆ θµ ⩽sω σ ; µ

InstPoly∀a. µ ⩽sω σ ; µ

Γ ⊢fun e : σ Γ ⊢
arg
ω e : σ

x : σ ∈ Γ VarHead
Γ ⊢fun x : σ

Γ ⊢ e : σ ExprHead
Γ ⊢fun e : σ

Γ ⊢ e : ∀a. µ b < Γ
ArgGen

Γ ⊢
arg
• e : ∀b . [a 7→ τ]µ

Γ ⊢ e : σ

Γ,x : τ ⊢ e : σ
Abs

Γ ⊢ λx . e : τ → σ
Γ,x : ϕ ⊢ e : σ

AnnAbs
Γ ⊢ λ(x :: ϕ). e : ϕ → σ

Γ ⊢ e1 : ϕ Γ,x : ϕ ⊢ e2 : σ Let
Γ ⊢ let x = e1 in e2 : σ

n ⩾ 0 Γ ⊢fun e0 : ϕ ϕ ⩽mω1, ...,ωn σ1, . . . ,σn ; µ Γ ⊢
arg
ω1 e1 : σ1 . . . Γ ⊢

arg
ωn en : σn

App
Γ ⊢ e0 e1 . . . en : µ

n ⩾ 0 Γ ⊢fun e0 : ϕ ϕ ⩽uω1, ...,ωn σ1, . . . ,σn ;η Γ ⊢
arg
ω1 e1 : σ1 . . . Γ ⊢

arg
ωn en : σn

AnnApp
Γ ⊢ (e0 e1 . . . en :: ∀b .η) : ∀b .η

Figure 4. Declarative type system

simply bring x into scope with type ϕ. As discussed in Sec-
tion 2.3, where there is no annotation (rule Abs) we insist
that x has a fully-monomorphic type τ .

All the action is in rule App for n-ary applications (e0 e1 ...
en). First, note that a lone variable is treated as a nullary
application. Second, the typing rules allow us to break an
n-ary application in different ways, because e0 could itself be
an application. In practice we always choose e0 not to be an
application, so we get as many arguments as possible, and
thereby maximise the opportunities for guardedness.

The first step in App is typing the head of the applica-
tion e0. The corresponding judgment ⊢fun either looks for a
variable in the environment or uses the normal typing judg-
ment if the head is another kind of term. After typing the
head, rule app instantiates the type of the head with the in-
stantiation judgement ⩽sω , yielding a list of argument types
σ1 . . . σn .App uses ⊢arg to check each argument ei against the
corresponding σi . This argument-checking judgement ⊢arg
can generalise the inferred type of the argument to match
the type σ expected by the function, to support higher-rank
polymorphism. Without such a rule, we would not be able

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA A. Serrano, J. Hage, D. Vytiniotis, and S. Peyton Jones

to type check poly (λx . x), which requires the argument to
be of type ∀a. a → a.
For example, an application of a function to three argu-

ments would give rise to the following instantiation:
∀ab. a → (∀c. [a] → b → c → [b])

⩽mω1,ω2,ω3 σa , [σa],τb ; (τc → [τb])

This example illustrates several points. First, the bit-vector
ω corresponds 1-1 with the arguments in the application. For
now, the bit-values are irrelevant, but we will use them in
Section 3.3. Second, the instantiation judgement returns a
list of argument types that matches the length of the vector
ω (rule InstArrow); in this case, there are three arguments,
and the instantiated argument types are σa , [σa], and τb .
Third, the judgement can instantiate nested foralls.

Fourth, and core to our contribution, each type variable
is instantiated, by rule InstPoly, with a type whose sort
reflects the way the type variable appears in the function
type. This analysis is performed by the judgement σ ▷sω ∆,
which returns a classification ∆ of the free type variables of
σ . This classification directly implements the three cases of
the Instantiation Rule (Section 2.1):

1. If a appears under a type constructor (i.e. guarded) in
any of the first n arguments of σ , then a may be in-
stantiated by an unrestricted type ϕ (rule ArgGuard).

2. If a appears in one of the first n arguments of σ , a may
be instantiated by a top-level monomorphic type µ
(rule ArgTyVar).

3. If a appears only in the result type of σ , after stripping
off n arguments, then a may be instantiated by a type
of sort s (rule ArgsRes). In the invocation of ⩽ in rule
App the sort s is always fully monomorphic m, but we
need the extra generality for annotations (Section 3.4).

Once we have ∆ to classify each type variable rule, InstPoly
instantiates the function type with a ∆-respecting substitu-
tion θ , and recurses. Figure 4 also defines what it means for
a substitution θ to “respect” a classification ∆.

Unlike some other systems (see [13] for a comprehensive
account), all type constructors in GI are invariant, including
functions. This means that neither [∀a. a → a] ⩽̸sω [Int →
Int] nor Int → (∀a. a → a) ⩽̸sω Int → Int → Int. However,
because ⩽ handles foralls nested to the right of arrows (rule
InstPoly), we can often work around the lack of covariance
using η-expansion. For example, suppose we have functions
f :: ∀a. a → (∀b. b → a), and g :: (Int → Int → Int) → Bool.
Then (g f) is ill-typed; but (g (λxy. f x y)) is well typed.

3.3 Single variables
The type system described up to now propagates polymor-
phism between arguments and from the arguments to the
return type of the function – this is the essence of guarded-
ness. Alas, this creates a problem for single variables, which
are treated as nullary applications: since there are no ar-
guments, no type variable is considered guarded, and thus

x : ∀p. τ ∈ Γ b < Γ
VarGen

Γ ⊢
arg
⋆ x : ∀b . [a 7→ σ]τ

∆1 = [ftv(σ1) 7→ m] σ2 ▷sω ∆2
ArgsStar

σ1 → σ2 ▷s
⋆,ω ∆1 ⊔ ∆2

Figure 5. Decl. type system with single variables

impredicativity is forbidden. We can see this by expanding
the derivation of Γ ⊢

arg
• x : σ for the case of a variable x .

b < Γ

x : ϕ ∈ Γ
VarHead

Γ ⊢fun x : ϕ ϕ ⩽mϵ ϵ ; µ
App

Γ ⊢ x : µ
ArgGen

Γ ⊢
arg
• x : ∀b . µ

The highlighted premise, ϕ ⩽mϵ ϵ ; µ, forces instantiation to
use only fully monomorphic types.
That is embarrassing, because we cannot typecheck, say

choose [] ids from Figure 2. From the type of ids it is obvious
that [] should be given a type [∀a. a → a]. But we cannot
do so, because such instantiation is not fully monomorphic.
We get back into swampy waters.

For the case of single variables with a rank-1 polymor-
phic type (quantifiers appear only at top-level) we can get
out of the swamp. The VarGen rule in Figure 5 formalizes
this idea: if a single variable x appears as the argument of
an application – hence the use of the judgement ⊢arg – and
it has a rank-1 type ∀p. τ , we may instantiate impredica-
tively before generalizing. This is enough to cover the case
of choose [] ids, because the type of [] ::∀a. [a] has the right
shape. Note, however, that it is still the case that the justifica-
tion for instantiating the type of the first argument [] with
top-level monomorphic type has to come from the second
argument ids. If such justification is not forthcoming, as it
should be in the case of choose [] [], then both arguments
should be instantiated fully monomorphically.
We manage the bookkeeping to distinguish these situa-

tions by keeping track of a vector of bits ω. Its elements
correspond to the arguments in an application: a ⋆means
that the rule VarGen was applied to type the corresponding
argument; application of ArgGen is represented by •. The
rule ArgsStar ensures that whenever the rule VarGen was
used to type a given argument, we reset the sorts of the free
variables to m so that however these type variables were
instantiated, this information cannot be used to justify the
impredicative instantiation of other arguments.

3.4 Annotations
The VarGen rule makes it possible to accept more programs,
but it is restricted to a very special class of expressions. For
the general case, we provide annotations as part of the syn-
tax. Since annotations fully specify the types, we do not

Guarded Impredicative Polymorphism PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

need to impose guardedness restrictions on those variables
appearing in the result. Take the expression single (λx . x).
Due to the type of single being ∀p. p → [p], the type of the
expression must be [τ → τ] for a monomorphic τ . If we
want instead to obtain [∀a. a → a], we can just annotate the
result, thus single (λx . x) :: [∀a. a → a].
Rule AnnApp is almost identical to App, except for the

choice of parameter to the instantiation judgment, which
is u. This implies that in contrast to non-annotated applica-
tions, variables in the result type of the function might be
substituted by any type, polymorphic or not. This is sensible,
the annotation tells us exactly what the types are that those
variables should be instantiated with.

Annotations also free us from having a different judgment
for declarations and expressions. For every combination f ::
σ ; f = e in the source code, we just need to pose the problem
of checking f = e :: σ for well-typedness.

3.5 let bindings
The simplest way to type let x = e1 in e2 is to see it as a
shorthand for (λx . e2) e1. Alas, such a translation imposes
an important restriction on the type of x: it must be fully
monomorphic even though the type of e1 might be more
general. The reason is that we try to guess the type of e1 by
looking at the way it is used in e2, instead of looking at e1
itself. But there is no need to be so restrictive! The rule Let
in Figure 4 works in the other direction: the type obtained
from typing e1 is put in the environment as the one for x,
allowing the type of x to be fully polymorphic instead.
One difference between let bindings in GI and Hindley-

Milner is that the latter always generalizes the type of a
let-bound identifier before passing it to the body of the let.
Vytiniotis et al. [21] argue however that let-generalisation
is not so important in practice and that in complex type sys-
tems how to generalize is not completely clear. If desired,
generalisation can be obtained by annotating the bound ex-
pression, let x = (e1 :: ϕ) in e2.

3.6 Metatheory
Impredicativity is a great tool, but we do not want to lose
those programs which only require top-level polymorphism.
The following theorem states this fact, except for the different
take on let generalization we discussed in Section 3.5.

Theorem 3.1 (Compatibility with rank-1 polymorphism).
Let e be an expression in the syntax of the lambda-calculus
with predicative rank-1 polymorphism. If Γ ⊢ e : τ in that
type system, then Γ ⊢ e : τ in GI.

One key property of GI is that all impredicative instantia-
tions are settled by the shape of the expression and the types
in the environment, modulo somemonomorphic substitution.
For that reason, we say that impredicative polymorphism is
not guessed in GI.

Theorem 3.2 (Impredicative instantiation is not guessed).
Let Γ be an environment and e an expression. For every pair of
fully monomorphic substitutions θ1 and θ2, if θ1Γ ⊢ e : σ1 and
θ2Γ ⊢ e : σ2, then there exists a polymorphic type σ ∗ and fully
monomorphic substitutions φ1 and φ2 such that σi = φiσ ∗.

Corollary 3.3. Let Γ be a closed environment (that is, no type
in Γ contains a free variable). If Γ ⊢ e : σ1 and Γ ⊢ e : σ2,
then there is a polymorphic type σ ∗ and fully monomorphic
substitutions φ1 and φ2 such that σi = φiσ ∗.

This property suggests a notion of principal type similar
to the one found in Hindley-Milner. A principal type for
an expression e is defined as a type σ ∗ for which any other
type assignment ϕ to e is equal to θσ ∗ for a fully monomor-
phic substitution θ . The fact that we only need to consider
fully monomorphic substitutions here is a direct consequence
of Theorem 3.2. The proof of the principal types property,
however, is a corollary of other properties of the inference
process, which we describe in Section 4.4. Note also that
this theorem only promises that if GI accepts an expression,
there was no guessing involved. But there are expressions
for which only one choice of polymorphism is possible, yet
GI cannot find it and an annotation is required.

In the remainder of this section we look at some properties
of GI concerning derivations and stability under transforma-
tions. We use the notation e1[e2] refers to a context in which
e2 appears. Proofs are given in Appendix D.1.

Theorem 3.4 (Substitution). If Γ ⊢ u : σ and Γ,x : σ ⊢ e[x] :
ϕ, then Γ ⊢ e[u] : ϕ.

The converse result does not holds: we cannot in general
abstract over part of an expression. In practice, that means
that we cannot always introduce a let, as in changing e0 e1 e2
to let x = e0 e1 in x e2. Our App rule is responsible for
propagating information between arguments, if we introduce
a let for part of an expression, this bound is lost.

Theorem3.5. Let app::∀a b. (a → b) → a → b and revapp::
∀ a b. a → (a → b) → b be the application and reverse
application functions, respectively. Given two expressions f
and e such that Γ ⊢fun f : σ0, and σ0 ⩽mϵ ϵ ;σ1 → ϕ then:

Γ ⊢ f e : ϕ ⇐⇒ Γ ⊢ app f e : ϕ ⇐⇒ Γ ⊢ revapp e f : ϕ

The hypothesis σ0 ⩽mϵ ϵ ;σ1 → ϕ means that type variables
in f may only be instantiated with fully monomorphic vari-
ables. Thus, this transformation only respects well-typedness
for the predicative fragment, but not in general when impred-
icative instantiation is allowed. One example of this restric-
tion is the application f ids, where f has type ∀a. [a] → [a],
which cannot be turned into app f ids. The reason is that
in the original application the type variable a in f has to be
instantiated with a polymorphic type ∀b. b → b. However,
this is not allowed in the form with app.
One property which does not hold in GI is full subject

reduction. If Γ ⊢ e : σ and e β-reduces to e ′, it may not hold

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA A. Serrano, J. Hage, D. Vytiniotis, and S. Peyton Jones

that Γ ⊢ e ′ : σ . For example, app auto is typeable, but not its
reduced form λx . auto x, since it requires an annotation on
x. Subject reduction holds in a milder form: if Γ ⊢ e : σ , e
β-reduces to e ′ and Γ ⊢ e ′ : ϕ, then σ and ϕ coincide.

4 Type inference using constraints
In the previous section we described GI from a declarative
perspective and now we turn to describing an efficient type
inference algorithm for it.
Following Pottier and Rémy [15], we first walk over the

syntax tree of the source program and generate typing con-
straints, a process that typically introduces many unification
variables that stand for as-yet-unknown types. Next, we solve
those constraints producing a type substitution for these uni-
fication variables. By separating type inference in two sim-
pler problems, the implementation and conceptual overhead
with new source language and type system features remains
low. For example, earlier work dubbed OutsideIn(X) applies
these ideas to a language like Haskell, with type classes, type-
level functions, GADTs, and the like [21]. Another advantage
is more sophisticated type-error diagnosis [6, 20, 25].

4.1 Constraints
The main challenge of type inference for impredicativity
concern instantiation and generalisation of terms with poly-
morphic type. Consider the call (head ids True), when fully
elaborated we want to generate this System F term:

head (∀a. a → a) ids Bool True

That is, we instantiate head at type (∀a. a → a), then apply
it to ids, to produce a result of type (∀a. a → a). Now we
must in turn instantiate that type with Bool to get a function
of type (Bool → Bool) which we can apply to True. This
second instantiation is problematic because, at constraint
generation time, we do not yet know what type we are going
to instantiate head at; all we know is that (head ids) has type
α for some as-yet-unknown type α . So we want to defer the
instantiation decision.
Sometimes we must defer generalisation decisions too.

Consider the function application ((:) (λx . x) ids). In System
F terms, we want to infer the following elaborated program:

(:) (∀a. a → a) (Λa. λ(x : a). x) ids

in which (:) is instantiated at type (∀a. a → a), and (:)’s first
argument is generalised to have that polymorphic type. Now
consider constraint generation for this expression. We may
instantiate the type of (:) with a fresh unification variable,
α say. Ultimately the type of ids forces α to be ∀a. a → a,
but we don’t know that yet. Moreover, in the final program
we will need to generalise the type of (λx . x), but again at
constraint generation time we don’t know that type either.

When we don’t know something at constraint generation
time, the solution is to defer the choice, by generating a con-
straint that represents that choice. This is the key idea of the

Unif. var. names U ∋ α , β ,γ ,δ , . . .
Unif. var. υ F αs

Free unification variables fuv(σ)

Fully mono. types τ F αm | a | T τ

Top-level mono. types µ,η F α t | a | T σ
Polymorphic types σ ,ϕ F αu | ∀a. µ

a may be empty, a ⊆ ftv(µ)
Types with generalisation g F

A
{υ}.C ⇒ σ

υ may be empty

Constraints C F ⊤

Conjunction | C1 ∧C2
Equality | σ ∼ ϕ

Instantiation | σ ⩽sω ϕ; µ
Generalisation | g ⪯ σ
Quantification | ∀a. ∃υ.C

Figure 6. Extended syntax

constraint solving approach. The game is to develop a con-
straint language that neatly embodies the choices that we
want to defer, and a solver that can subsequently make those
choices. With that in mind, Figure 6 gives the syntax of our
constraint language.

Asmentioned earlier, constraint generation producesmany
unification variables, each of which stands for an as-yet un-
known type. Looking at Figure 6, a key idea is that unification
variables are drawn from three distinct “alphabets”: αs for
each of the threes sorts s. (Sorts were introduced in Figure 3.)
The sort of a unification variable specifies the possible types
that the unification variable can stand for; operationally, a
unification variable of sort s may only be unified with types
belonging to that sort.

The syntax presents several kinds of constraints C . These
constraints do not form part of the source language; they are
internal to the solver. Equality constraints are self explana-
tory. Instantiation constraints arise from the occurrence of
a polymorphic variable, whose type must be instantiated
– but that decision must be deferred (embodied in a con-
straint). Quantification constraints arise from explicit user
type signatures, and pattern matching on data types involv-
ing existentials and GADTs. Both are fairly conventional.
However generalisation constraints are new; they precisely
embody the deferred decision about generalisation that we
mention above.

4.2 Constraint generation
Constraint generation is described in Figure 7 as a four-
element judgment Γ ⊢ e : σ { C . The first two elements are
inputs: the environment Γ and the expression e for which to
generate constraints. The output of the process is a type σ

Guarded Impredicative Polymorphism PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Γ ⊢fun e : σ { C

x : σ ∈ Γ VarHead
Γ ⊢fun x : σ { ϵ

e not var. or app. Γ ⊢ e : σ { C
ExprHead

Γ ⊢fun e : σ { C

Γ ; υ ⊢
arg
ω e : σ { C

x : ∀p. τ ∈ Γ ∀p. τ closed α fresh
VarGen

Γ ; υ ⊢
arg
⋆ x : σ { [p 7→ αu]τ ⪯ σ

Γ ⊢ e : ϕ { C υ ′ = fuv(ϕ,C) − υ
ArgGen

Γ ; υ ⊢
arg
• e : σ {

A
{υ ′}.C ⇒ ϕ ⪯ σ

Γ ⊢ e : σ { C

α fresh Γ,x : αm ⊢ e : σ { C
Abs

Γ ⊢ λx . e : αm → σ { C

Γ,x : ϕ ⊢ e : σ { C
AnnAbs

Γ ⊢ λ(x ::ϕ). e : ϕ → σ { C

α , β fresh Γ ⊢fun e0 : ϕ { C Γ ; fuv(Γ,ϕ,C) ⊢argωi ei : αui { Ci
App

Γ ⊢ e0 e1 . . . en : β t { C ∧ ϕ ⩽mω1, ...,ωn αu1 , . . . ,α
u
n ; β t ∧C1 ∧ · · · ∧Cn

α fresh Γ ⊢fun e0 : ϕ { C υ ′ = fuv(ϕ,C) − fuv(Γ) Γ ; fuv(Γ,ϕ,C) ⊢argωi ei : αui { Ci
AnnApp

Γ ⊢ (e0 e1 . . . en :: ∀b .η) : ∀b .η { ∀b . ∃αu υ ′. (C ∧ ϕ ⩽uω1, ...,ωn αu1 , . . . ,α
u
n ;η ∧C1 ∧ · · · ∧Cn

)
Γ ⊢ e1 : ϕ { C1 Γ,x : ϕ ⊢ e2 : σ { C2 Let

Γ ⊢ let x = e1 in e2 : σ { C1 ∧C2

Figure 7. Constraint generation

assigned to the expression, possibly including some unifica-
tion variables, and the set of extended constraints C that the
types must satisfy.

RulesAbs andAbsAnn are not surprising: they just extend
the environment with a new unification variable or a given
polymorphic type, respectively, and then proceed to generate
constraints for the body of the abstraction. The usage of a
fully monomorphic variable in Abs mimics the restriction
imposed by the declarative specification.

Rule App is where most of the work is done. Just like the
declarative specification (Figure 4), the head of the applica-
tion is typed using an ancillary judgment Γ ⊢fun e : ϕ { C ,
which either looks up a variable in the environment or
threads the information to the normal gathering process.
Another ancillary judgment Γ ; υ ⊢

arg
b e : σ { C is used

to generate constraints on the arguments. In this judgement
we use introduce a completely new constraint form, g ⪯ σ ,
which we call generalisation constraint. These constraints
allow us to defer the generalisation decisions to the solver, as
sketched in Section 4.1. The constraint (

A
{υ}.C ⇒ ϕ) ⪯ σ

should be read “a term of type ϕ with constraints C and uni-
fication variables υ can be instantiated and/or generalised to
have type σ ”. Even looking at the syntax alone, you can see
that the fruits of constraint generation for each argument
ei are wrapped up, along with the expected argument type
αi from the function, into a generalisation constraint for
the solver to deal with later. The reason for the additional

argument υ to the judgement is that we need to forbid gener-
alisation over variables which are visible in the environment
or the whole application.
Rule AnnApp deals with a type-annotated application

(e0 e1 . . . en :: σ). It is similar to App, but it is the first rule to
introduce a quantification constraint ∀b . ∃υ.C . This binds the
Skolem variables b from the type signature, and existentially
quantifies the unification variables free in the constraint but
not used outside it. The other difference with App is the
use u as a parameter to ⩽ , rather than m, as done in the
declarative specification.

4.3 Constraint solving
The solver takes the generated constraintC and its free unifi-
cation variables υ = fuv(C), and repeatedly applies the solver
rules in Figure 8, until no rule applies. The result is a residual
constraint. If the residual constraint is in solved form, then
the program is well typed; if not, the unsolved constraints
(e.g. Int ∼ Bool) represent type errors that can be reported
to the user. We concentrate first on the solver rules that
incrementally solve the constraint.

Each of the rules in Figure 8 rewrites a configuration C ; υ
to another configuration. The unification variables υ are
existentially quantified, so you can think of a configuration
as representing ∃υ.C . Rule conj and forall are structural
rules: the former allows a rule to be applied to one part of a
conjunction, while the latter allows a rule to be applied under
a quantification. To avoid clutter we implicitly assume that

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA A. Serrano, J. Hage, D. Vytiniotis, and S. Peyton Jones

freshensω (σ) =⇒ ⟨υ, µ⟩

µ ▷sω ∆ α fresh υi = α
∆(ai)
i

freshensω (∀a. µ) =⇒ ⟨υ, [a 7→ υ]µ⟩

C ; υ =⇒ C ′ ; υ ′

C1 ; υ =⇒ C ′
1 ; υ

′

[conj] modulo assoc.
and comm. of ∧C1 ∧C2 ; υ =⇒ C ′

1 ∧C2 ; υ ′
C ; υ in =⇒ C ′ ; υ ′in[forall] ∀a. ∃υ in.C ; υ =⇒ ∀a. ∃υ ′in.C ′ ; υ

[⊤ident] ⊤ ∧C ; υ =⇒ C ; υ
[⊤forall] ∀a. ∃υ in.⊤ ; υ =⇒ ⊤ ; υ

[eqrefl] σ ∼ σ ; υ =⇒ ⊤ ; υ
[eqmono] Tσ1 . . . σn ∼ Tϕ1 . . . ϕn ; υ =⇒ (σ1 ∼ ϕ1) ∧ · · · ∧ (σn ∼ ϕn) ; υ
[eqsubst] (αs ∼ σ) ∧C ; υ =⇒ (αs ∼ σ) ∧ [αs 7→ σ]C ; υ if σ respects s, and α < ftv(σ)

[eqvar] αs1 ∼ βs2 ; υ =⇒ βs2 ∼ αs1 ; υ if s1 ⊏ s2
[eqfully] αm ∼ σ ; υ =⇒ {βs ∼ γm | βs ∈ fuv(σ), s , m} ; υ,γm υ,γm disjoint

[instϵ] µ ⩽sϵ ϵ ;η ; υ =⇒ µ ∼ η ; υ
[inst→] µ ⩽sω,ω σ ,ϕ;η ; υ =⇒ (µ ∼ σ → βu) ∧ (βu ⩽sω ϕ;η) ; υ
[inst∀l] (∀a. µ) ⩽sω ϕ;η ; υ =⇒ µ ′ ⩽sω ϕ;η ; υ,υ ′ where freshensω (∀a. µ) =⇒ ⟨υ ′, µ ′⟩

[inst
A
l] (

A
{υ ′}.C ⇒ σ) ⪯ η ; υ =⇒ C ∧

(
σ ⩽mϵ ϵ ;η

)
; υ,υ ′ υ,υ ′ disjoint

[inst∀r] g ⪯ (∀a. µ) ; υ =⇒ ∀a. (g ⪯ µ) ; υ

Figure 8. Solving rules

the rules are read modulo commutativity and associativity
of ∧; that is why conj only has to handle the left conjunct.
The rules ⊤ident and ⊤forall remove ⊤ constraints from
the set, since they are identities for the conjunction.

4.3.1 Basic rules
Rule eqrefl removes trivial equality constraints σ ∼ σ . Rule
eqmono indicates that two types headed by constructors
are equal if and only if their heads coincide and all the argu-
ments are equal. eqsubst is the only rule that involves the
interaction of two constraints. It applies the substitution of a
unification variable to any other constraints conjoined with
it (remember the implicit associativity and commutativity
of ∧), provided sorts are respected and the substitution does
not lead to an infinite type (hence the occurs check). Notice
that the equality constraint is not discarded; it remains in
case it is needed again; indeed, these equality constraints
remain in a solved constraint.
Given the different behaviour embodied by the different

sorts of variables, the solver has to propagate this infor-
mation. eqvar ensures that whenever we have two vari-
ables with different sorts, the least restrictive one is substi-
tuted by the most restrictive. For example, when we have
an unrestricted αu and a top-level monomorphic β t , then αu

should be replaced by β t , and not the other way around. Full
monomorphism goes deeper: eqfully ensures that if a type
σ is equated with a fully monomorphic variable αm , all the
variables in σ become fully monomorphic too.

One difference between these rules and other presenta-
tions is that we do not rewrite an unsatisfiable constraint,
such as Int ∼ Bool, to ⊥. Instead, that constraint is simply
stuck, and we can report it at the end.

Note that two polymorphic types need to be syntactically
equal (modulo α-equality) to match under the eqrefl rule.
This means that (∀a b. a → b → b) ∼ (∀b a. a → b → b)
does not hold in our system. As we discuss in Section 2.4,
this is not problematic, since on application type variables
are instantiated and regeneralized using the ⪯ relation.

4.3.2 Instantiation and generalisation constraints
For instantiation constraints ⩽sω , we follow closely the
judgement with the same name in the declarative specifica-
tion. Rule instϵ encodes the fact that once all arguments
are processed, and thus ω is an empty vector of bits, the
remaining types must be equal. This is a consequence of the
invariance of type constructors. On the other hand, if we
have a top-level monomorphic type µ and the vector of bits

Guarded Impredicative Polymorphism PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

is not empty, the only possibility of for µ to be a function
type. This is the goal of the inst→ rule.
inst∀l instantiates a polytype σ with fresh unification

variables, much as in the usual Damas-Milner algorithm, ex-
cept that we must use a sort-respecting instantiation. This is
done by freshensω , which in turn uses the already-introduced
classification judgment ▷sω (Figure 4). Finally, the new vari-
ables enter the set of existentially quantified variables.

Finally, we come to generalisation constraints, which (re-
call Section 4.1) express a deferred generalisation decision.
Rule inst

A
l is simple: if the right hand side has no top-level

foralls (it is of the form η) then there is no generalisation to
be done, so it suffices to release all the captured constraints
C and existentials υ ′ into the current constraint.

inst∀r is where actual generalisation takes place. In order
to forge some intuition, let us look at the constraint

(
A
{α β}. (α ⩽mϵ ϵ ; β) ⇒ α → β) ⪯ (∀p.p → p)

This generalisation constraint says that by performing some
solving and possibly abstracting over some of the variables
α and β , we should get the polymorphic type ∀p.p → p.
Following standard practice, we skolemise the type on the
right, introducing a fresh skolem or rigid variable p, which
should not be unified.

(α ⩽mϵ ϵ ; β) ∧ (α → β ∼ p → p)

We obtain a solution by making α ∼ β ∼ p. In order for this
solution to remain valid, we must guarantee that the skolem
p does not escape to the outer world. We recall this restriction
by means of a fresh quantification constraint

∀p. ∃α β . (α ⩽mϵ ϵ ; β) ∧ (α → β ∼ a → a)

Rule inst∀r achieves this rather neatly simply by doing
skolemisation and pushing the g inside; then forall and
inst
A
l will do the rest.

The rules applicable to instantiation and generalisation
constraints do not handle every case. In particular, whenever
an unrestricted variable appears in one of the sides of the
constraint, there are good reasons to wait:

1. If we have αu ⩽sϵ ϵ ; µ we cannot turn it directly into
αu ∼ µ, because αu might be unified later to a poly-
morphic type and we need instantiation.

2. Similarly, if we have (
A
{α }.C ⇒ µ) ⪯ αu , and αu is

later substituted by a polytype, we must skolemise.
The guardedness restrictions are carefully crafted to ensure
that the solver is confluent and that it is never completely
stuck, unless the constraint set as a whole is inconsistent. A
single constraint can be stuck for some time, but if the whole
set is consistent, by steps applied to other constraints, it will
eventually become unstuck.

Theorem 4.1. Suppose Γ ⊢ e : σ { C . Then C is either
inconsistent, or can be rewritten to a new setC ′ without instan-
tiation and generalisation constraints which fixes the value of
all unrestricted and top-level monomorphic variables.

Solved⊤
a ; α ; ∅ ⊢ ⊤ solved

σ respects s ftv(σ) ⊆ a ∪ α
SolvedVar

a ; α ; {β} ⊢ βs ∼ σ solved

a ; α ; β1 ⊢ C1 solved a ; α ; β2 ⊢ C2 solved SolvedConj
a ; α ; β1 ⊎ β2 ⊢ C1 ∧C2 solved

υ = γ 1 ⊎ γ 2 a ∪ b ; α ∪ γ 1 ; γ 2 ⊢ C solved
SolvedQuant

a ; α ; ∅ ⊢ ∀b . ∃υ.C solved

Figure 9. Definition of solved set of constraints

Theorem 4.1 tells us that the process of solving can be
divided into two phases. In the first phase all constraints,
including instantiation and generalization constraints, are
turned into a set of equalities, possibly with different quantifi-
cation levels. This is an instance of the problem of first-order
unification under a mixed prefix [3], for which a complete
solving algorithm is described by Pottier and Rémy [15].

4.4 Soundness, principality and completeness
The inference algorithm presented here – gathering the con-
straints from an expression followed by solving them – sat-
isfies the usual properties of soundness, principality, and
completeness with respect to the declarative specification.
In order to state the theorems we need some ancillary

notions. A constraint is in solved form if it consists only
of quantification and equality constraints (υ ∼ σ); and the
equalities constitute a well-sorted idempotent substitution
of its unification variables. For example

∃αm .(αm ∼ Int) ∧ (∀b .∃βu . βu ∼ (b → Int))

is in solved form. Being in solved form is more than a simple
syntactic property; here are two constraints that are not:

∃α .(α ∼ Int) ∧ (α ∼ Bool) ∃α (∀b .α ∼ [b]) . . .

In the first there are two equalities for α (we should apply
eqsubst to make progress); in the second, there is a skolem-
escape problem. However it is OK for a unification variable
to have no equalities; it is simply unconstrained.
Figure 9 defines solved form precisely. We keep a set of

variables β for which we ensure that there is precisely one
equality constraint, and another set α (the unconstrained
variables) for which there are none. Rule SolvedVar expects
precisely one β , checks well-sortedness, and also checks that
σ does not mention any variables other than the skolems
and unconstrained unification variables – the latter check
ensures idempotence. Rule SolvedConj partitions the β be-
tween the two conjunctions. Rule SolvedQuant partitions
the local existentials υ into the unconstrained sets, γ1 and
γ2 resp. Rule Solved⊤ simply states that ⊤ is a solved form
without consuming any variables.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA A. Serrano, J. Hage, D. Vytiniotis, and S. Peyton Jones

A second auxiliary notion which we need to state the
results is substitution induced by a solved form.

Cs = E ∧ R, where E are all the equalities in Cs

Ĉs = [α 7→ σ | α ∼ σ ∈ E]

Theorem 4.2 (Soundness). Let Γ be a closed environment
and e an expression. If Γ ⊢ e : σ { C and Cs is a solution for
C with an induced substitution Ĉs, then we have Γ ⊢ e : Ĉs(σ).

Theorem 4.3 (Principality). Suppose Γ ⊢ e : σ . Then there
exists a typeϕ such that Γ ⊢ e : ϕ, and for every other Γ ⊢ e : σ ′,
there is a fully monomorphic substitution π such that σ ′ = πϕ.

Theorem 4.4 (Completeness). Let Γ be a closed environment
and e an expression. If Γ ⊢ e : σ then Γ ⊢ e : ϕ { C and C
can reach a solved form.

Proofs of these results are given in Appendix D.2.

4.5 Alternative solver for equalities
Unfortunately, once we extend the language of types, by in-
troducing type classes and local assumptions, the approach
by Pottier and Rémy [15] is no longer applicable. With that
in mind, we introduce a different approach to solve the prob-
lem of unification under a mixed prefix, which does scale
to handle these extensions. The approach is rather simple
– a single rule float in Figure 10 – and is directly inspired
by how GHC handles constraints: by floating constraints
out from inside a quantification constraint. When can we do
that? Precisely when the constraint does not mention the
skolems. But what about the existentials? Consider

∃α (∀a.∃β .(α ∼ [β]) ∧C) . . .

We would like to float the constraint (α ∼ [β]) out of the
quantification constraint, but then β would be out of scope.
We can solve this by “promoting” β : producing a fresh β ′
that lives in the outer scope, and making β equal to it, thus:

∃α , β ′. . . . (α ∼ [β ′])) ∧ (∀a.∃β .(β ∼ β ′ ∧C)) . . .

All this is expressed directly by rule float. If we cannot float,
we have a skolem escape error; for example, consider:

∃α (∀a.∃β .(α ∼ [a]) ∧C) . . .

Here we cannot float (α ∼ [a]) because it mentions the
skolem a, so an inner skolem has leaked into an outer scope
(α is bound further out). Floating makes manifest that skolem
escape has not happened, and brings the constraint nearer
to solved form.

Conjecture 4.5. The solver presented in Figure 8 is complete
for unification problems under a mixed prefix.

5 Practical matters
We have implemented a prototype of the type inference pro-
cess described in this paper, including support for Haskell’s
type classes by extendingGI as described in Appendix B. The
expressions in Figure 2 are accepted or rejected as described
by the table, in the GI column.

GI does not support any co- or contra-variance in function
types. For example, the constraint Int → (∀a. a → a) ⩽
Int → Int → Int does not hold. In contrast, GHC with the
RankNTypes extension supports some amount of variance.
Libraries such as Scrap Your Boilerplate use this fact very
often in definitions with a ∀ to the right of an arrow:

f :: ∀a. a → (∀b. b → b)
f x y = y

Other uses of variance can be worked around by η-expansion.
Consider (flip f), where flip’s type is in Figure 1. This is
ill-typed because flip requires an argument of type a →

b → c, but f ’s type, after instantiation, looks like τ →

∀b. b → b. The fix is simple: just η-expand the argument,
thus (flip (λx → f x)). GHC does this automatically at the
moment, but in fact this η-expansion is unsound in general,
since a change in the laziness behavior can be observed.
One might worry that if GI is integrated in GHC many

existing Haskell libraries would need to be modified. To
quantify this impact, we modified GHC to impose those
restrictions and rebuilt all the packages in Stackage which
require the RankNTypes extension. In order to minimize the
annotation burden, we added a simple special case to support
function definition in the style of Scrap Your Boilerplate.

With this done, very few packages required modifications,
andmodifications were alwaysη-expansions. In particular, of
the 2,400 packages in Stackage, 609 use RankNTypes; of these,
only 75 required manual changes, all of which were simple
η-expansions. One (singletons) would require larger changes,
because it uses Template Haskell to generate Haskell code;
so it needs to generate η-expanded code. Two more failed
for reasons we have yet to investigate. Our conclusion is
that the impact of our proposed changes is extremely minor,
especially since GHC’s current covert η-expansion strategy
is unsound in the first place.

6 Related work
Full type inference for System F is undecidable [24] – par-
tial type inference with known generalisation positions but
unknown instantiations can be reduced to higher-order uni-
fication [14]. System F lacks principal types, making modular
type inference and the addition of ML-style let-bindings im-
possible. Higher-rank type inference with predicative instan-
tiation has some successful solutions [4, 13, 17], exploiting a
mix of annotation propagation and unification.
On the other hand, no solution for impredicativity with

a good benefit-to-weight ratio has been presented to-date.

Guarded Impredicative Polymorphism PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

ftv(F) ∩ a = ∅ αs = fuv(F) ∩ υin γ s fresh E =
∧

α s ∈ α α
s ∼ γ s

[float] ∀a. ∃υin. (C ∧ F) ; υ =⇒ [αs 7→ γ s]F ∧ ∀a. ∃υ in. (C ∧ E) ; υ,γ s

Figure 10. Solving rule for quantification constraints

MLF [1, 2, 18] is an extension of System F based on quan-
tification with instance and equality bounds. The resulting
system is powerful, but also quite complex to implement; in
return we get back principal types. There have been several
attempts to simplify the user-facing part of MLF to System F
types. FPH [23] exposes a “box” structure around inferred
types (that would be hidden under a constraint in MLF).
Flexible types [9], also known as HML, avoid quantification
over equality constraints. Implementing these systems in a
working compiler is a significant undertaking, and so is the
integration with features like type classes[10].

For this reason, there are proposals for algorithms simpler
than MLF. Boxy Types [22] is an early attempt to push bidi-
rectional inference to allow impredicativity, but resulted in a
complex specification. HMF [8] imposes universal conditions
on typing derivations to recover principal types. QML [19],
inspired by boxed polymorphism [12, 16], introduces an only-
explicitly-instantiable ∀. Recent work by Eisenberg et al. [5]
also proposes a distinction between an implicitly and an
explicitly instantiable ∀; only the latter is impredicative.

We return now to the table in Figure 2, where we present
a collection of examples appearing in selected related works
on type inference for impredicativity. We have selected those
systems because they all strike a good balance between ex-
pressivity and requiring very few type annotations. The table
shows the flexibility/expressivity price we pay in order to
keep the implementation and specification costs low, and
avoid the introduction of new type system features (such as
types with constraints or boxes) or new forms of annotations
(as in QML). We also show how to recover the typeability of
a program in cases where a valid type exists.

In the table we see that MLF can type all programs that do
not require implicit η-expansion (k h lst) or the use of a poly-
morphic function argument at two types (λf . (f 1, f True)),
but uses constrained types and a unification algorithm that
is not straightforward to integrate in a type inference en-
gine with elaboration to System F. HML – a simplification
of MLF with only “flexible” type bounds in constraints –
is only slightly less powerful than MLF. HML cannot type
λxs. poly (head xs) because xs would have to be assigned
a polymorphic type, even though it’s only used at this one
type. FPH – which is based on System F types – is equally
expressive to these systems for the fragment of System F con-
sisting only of variables and applications. However, the FPH
treatment of λ-abstractions requires the returned type to
be a fully-resolved top-level monomorphic type. Therefore,
FPH fails to type check choose id auto because auto will be

assigned the same type as GI infers ((∀a. a → a) → b → b).
GI – modulo the quirk about not generalizing the bodies
of lambda abstractions that only MLF and HML can tackle
– type checks almost the same programs as those systems.
To determine why a program fails to type check (and how
it should be fixed) it suffices to determine whether some
function has been instantiated to a type with top-level poly-
morphism in its arguments. For example, f (choose id) ids
fails to type check because it requires the instantiation of
choose to (∀a. a → a) → (∀a. a → a) → (∀a. a → a) and no
argument has a type with a top-level constructor.
HMF is based on local decisions about polymorphic in-

stantiations and – without an extension to n-ary applica-
tions – fails to type check programs where the local instan-
tiation has to be delayed to take more arguments into ac-
count (e.g. fails to type check id : ids), though it does gener-
alize in argument positions (e.g. snoc id ids is accepted, for
snoc :: ∀a. [a] → a → [a]). Leijen [8] proposes an extension
of the basic algorithm to n-ary applications that makes these
examples type check: after the function type is instantiated
enough to cover all the arguments, we proceed to type check
the arguments in a computed order, instead of left-to-right.
The arguments that must be type checked against a naked
type variable coming from the instantiated function type are
postponed and checked last, in the hope that the rest of the
arguments will by that time determine any impredicative in-
stantiations. The procedure is iterated, possibly uncovering
impredicative instantiations in each round. Under that exten-
sion id : ids is accepted. Alas, the new algorithm is not accom-
panied with a declarative specification. Our system achieves
a similar effect (and we conjecture is equally expressive),
thanks to the delaying we get from the use of constraints. In
the end, the main important difference of HMF with GI is
that GI provides a declarative specification and an algorithm
that easily integrates in a pre-existing constraint-based type
inference engine.

7 Further work
GI seeks a sweet spot that balances simplicity with expres-
siveness. We are also exploring some nearby variants. For
example, extending VARGEN to handle larger expressions
would allow us to accept examples A9, C8, C9 in Figure 2;
and by improving skolemisation we could accept E3. It re-
mains to be seen whether the extra expressiveness justifies
the extra complexity, but GI seems to be an encouragingly
robust base camp.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA A. Serrano, J. Hage, D. Vytiniotis, and S. Peyton Jones

References
[1] Didier Le Botlan and Didier Rémy. 2003. MLF: raising ML to the power

of system F. In Proceedings of the Eighth ACM SIGPLAN International
Conference on Functional Programming, ICFP 2003, Uppsala, Sweden,
August 25-29, 2003, Colin Runciman and Olin Shivers (Eds.). ACM,
27–38. https://doi.org/10.1145/944705.944709

[2] Didier Le Botlan and Didier Rémy. 2009. Recasting MLF. Inf. Comput.
207, 6 (2009), 726–785.

[3] Hubert Comon and Pierre Lescanne. 1988. Equational problems and
disunification. Research Report RR-0904. INRIA. https://hal.inria.fr/
inria-00075652

[4] Joshua Dunfield and Neelakantan R. Krishnaswami. 2013. Complete
and easy bidirectional typechecking for higher-rank polymorphism.
In ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA - September 25 - 27, 2013, Greg Morrisett and
Tarmo Uustalu (Eds.). ACM, 429–442. https://doi.org/10.1145/2500365.
2500582

[5] Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed.
2016. Visible Type Application. In Proceedings of the 25th European
Symposium on Programming Languages and Systems - Volume 9632.
Springer-Verlag New York, Inc., New York, NY, USA, 229–254. https:
//doi.org/10.1007/978-3-662-49498-1_10

[6] Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. 2003. Script-
ing the type inference process. SIGPLAN Notices 38, 9 (2003), 3–13.
https://doi.org/10.1145/944746.944707

[7] James Hook and Peter Thiemann (Eds.). 2008. Proceeding of the 13th
ACM SIGPLAN international conference on Functional programming,
ICFP 2008, Victoria, BC, Canada, September 20-28, 2008. ACM.

[8] Daan Leijen. 2008. HMF: simple type inference for first-class polymor-
phism, See [7], 283–294. https://doi.org/10.1145/1411204.1411245

[9] Daan Leijen. 2009. Flexible types: robust type inference for first-class
polymorphism. In Proceedings of the 36th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2009, Savannah,
GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce
(Eds.). ACM, 66–77. https://doi.org/10.1145/1480881.1480891

[10] Daan Leijen and Andres Löh. 2005. Qualified types for MLF. In
Proceedings of the 10th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2005, Tallinn, Estonia, September 26-28,
2005, Olivier Danvy and Benjamin C. Pierce (Eds.). ACM, 144–155.
https://doi.org/10.1145/1086365.1086385

[11] Alberto Martelli and Ugo Montanari. 1982. An Efficient Unification
Algorithm. ACM Trans. Program. Lang. Syst. 4, 2 (1982), 258–282.
https://doi.org/10.1145/357162.357169

[12] J. W. O’Toole, Jr. and D. K. Gifford. 1989. Type Reconstruction with
First-class Polymorphic Values. In Proceedings of the ACM SIGPLAN
1989 Conference on Programming Language Design and Implementation
(PLDI ’89). ACM, New York, NY, USA, 207–217. https://doi.org/10.1145/
73141.74836

[13] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. 2007. Practical type inference for arbitrary-rank types.
Journal of Functional Programming 17, 1 (2007), 1–82.

[14] Frank Pfenning. 1988. Partial Polymorphic Type Inference and Higher-
order Unification. In Proceedings of the 1988 ACM Conference on LISP
and Functional Programming (LFP ’88). ACM, New York, NY, USA,
153–163. https://doi.org/10.1145/62678.62697

[15] François Pottier and Didier Rémy. 2005. The Essence of ML Type
Inference. In Advanced Topics in Types and Programming Languages,
Benjamin C. Pierce (Ed.). MIT Press, Chapter 10, 389–489. http://cristal.
inria.fr/attapl/

[16] Didier Rémy. 1994. Programming Objects with ML-ART, an Ex-
tension to ML with Abstract and Record Types. In Proceedings of
the International Conference on Theoretical Aspects of Computer Soft-
ware (TACS ’94). Springer-Verlag, London, UK, UK, 321–346. http:
//dl.acm.org/citation.cfm?id=645868.668492

[17] Didier Rémy. 2005. Simple, Partial Type-inference for System F Based
on Type-containment. In Proceedings of the Tenth ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP ’05). ACM, New
York, NY, USA, 130–143. https://doi.org/10.1145/1086365.1086383

[18] Didier Rémy and Boris Yakobowski. 2008. From ML to MLF: graphic
type constraints with efficient type inference, See [7], 63–74. https:
//doi.org/10.1145/1411204.1411216

[19] Claudio V. Russo and Dimitrios Vytiniotis. 2009. QML: Explicit First-
class Polymorphism for ML. In Proceedings of the 2009 ACM SIGPLAN
Workshop on ML (ML ’09). ACM, New York, NY, USA, 3–14. https:
//doi.org/10.1145/1596627.1596630

[20] Alejandro Serrano and Jurriaan Hage. 2016. Type Error Diagnosis
for Embedded DSLs by Two-Stage Specialized Type Rules. In Pro-
gramming Languages and Systems - 25th European Symposium on
Programming, ESOP 2016, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings (Lecture Notes in Com-
puter Science), Peter Thiemann (Ed.), Vol. 9632. Springer, 672–698.
https://doi.org/10.1007/978-3-662-49498-1_26

[21] Dimitrios Vytiniotis, Simon L. Peyton Jones, Tom Schrijvers, and
Martin Sulzmann. 2011. OutsideIn(X): Modular type inference
with local assumptions. J. Funct. Program. 21, 4-5 (2011), 333–412.
https://doi.org/10.1017/S0956796811000098

[22] Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones.
2006. Boxy types: inference for higher-rank types and impredicativity.
In Proceedings of the 11th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2006, Portland, Oregon, USA, September
16-21, 2006, John H. Reppy and Julia L. Lawall (Eds.). ACM, 251–262.
https://doi.org/10.1145/1159803.1159838

[23] Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones.
2008. FPH: first-class polymorphism for Haskell, See [7], 295–306.
https://doi.org/10.1145/1411204.1411246

[24] J. B. Wells. 1993. Typability and Type Checking in the Second-Order
Lambda-Calculus Are Equivalent and Undecidable. Technical Report.
Boston, MA, USA.

[25] Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Simon
L. Peyton Jones. 2015. Diagnosing type errors with class. In Pro-
ceedings of the 36th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, Portland, OR, USA, June 15-17,
2015, David Grove and Steve Blackburn (Eds.). ACM, 12–21. https:
//doi.org/10.1145/2737924.2738009

https://doi.org/10.1145/944705.944709
https://hal.inria.fr/inria-00075652
https://hal.inria.fr/inria-00075652
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1007/978-3-662-49498-1_10
https://doi.org/10.1007/978-3-662-49498-1_10
https://doi.org/10.1145/944746.944707
https://doi.org/10.1145/1411204.1411245
https://doi.org/10.1145/1480881.1480891
https://doi.org/10.1145/1086365.1086385
https://doi.org/10.1145/357162.357169
https://doi.org/10.1145/73141.74836
https://doi.org/10.1145/73141.74836
https://doi.org/10.1145/62678.62697
http://cristal.inria.fr/attapl/
http://cristal.inria.fr/attapl/
http://dl.acm.org/citation.cfm?id=645868.668492
http://dl.acm.org/citation.cfm?id=645868.668492
https://doi.org/10.1145/1086365.1086383
https://doi.org/10.1145/1411204.1411216
https://doi.org/10.1145/1411204.1411216
https://doi.org/10.1145/1596627.1596630
https://doi.org/10.1145/1596627.1596630
https://doi.org/10.1007/978-3-662-49498-1_26
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1145/1159803.1159838
https://doi.org/10.1145/1411204.1411246
https://doi.org/10.1145/2737924.2738009
https://doi.org/10.1145/2737924.2738009

Guarded Impredicative Polymorphism PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Data constructor ∋ K

Expressions / terms e F . . . | case e0 of{K x → e}

Γ ⊢ e : σ

Γ ⊢ e0 : σ0 σ0 ⩽mϵ ϵ ; Tϕ0
for each branch Ki xi → ei with
Ki : ∀a b . σi → Ta ∈ Γ

Γ,xi : [a 7→ ϕ0]σi ⊢ ei : ϕ⋆
Case

Γ ⊢ case e0 of{K x → e} : ϕ⋆

Figure 11. Decl. type system with pattern matching

A Pattern matching
Introducing pattern matching in the language gives no sur-
prises, as witnessed by the rule Case in Figure 11. We first
need to check that the scrutinized expression e0 can be given
a type compatible with the indicated data constructor. It is
important to note that the mere presence of the data con-
structors is enough to know the type constructor T, there
is no inference at that point. Then we introduce new term
variables in each branch, whose type is obtained by combin-
ing the type of the constructor with the inferred values for
the type variables in T, namely ϕ0. The return type of every
branch should be equal, ϕ⋆ (note that we do not allow the
types of the branches to be instantiated).
The corresponding Case rule for constraint gathering is

given in Figure 12. In this case we need a quantification
constraint to introduce new skolem constants, for the exis-
tentially quantified type variables bi in the data constructor.

B Integration with other language features
One of the main advantages of organising a type checker
around the concept of constraints is that extensions to the
type system can be accommodated for quite easily. Indeed,
this is one of the main advantages of our system over existing
work. In this section we describe how to deal with other
forms of constraint beyond the standard equality constraints
we now support.

For example, Haskell supports type classes, which restrict
the scope of a polymorphic abstraction to a subset of types.
The archetypal example is Eq, which describes the types with
support for decidable equality. Such a type class constraint is
visible in the type of the equality operator (≡) :: ∀a. Eq a ⇒

a → a → Bool. Similarly, languages like OCaml and Pure-
Script feature row (or record) types like {x :: Point, y :: Point }
in addition to usual ADTs.
The good news is that a constraint-based formulation of

typing makes it easy to cope with new concepts if they can
also be described in terms of constraints. Several examples
in the literature, like HM(X) [15] and OutsideIn(X) [21], are

actually frameworks which can be parametrized by different
constraint systems, hence the X in their names.

The modifications needed to accommodate the new kinds
of constraints in GI are given in Figure 13. First, we split up
the syntax of constraints into so-called simple and extended
constraints. The former consists of constraints that can be
used by programmers in their programs, while the second
category consists of additional constraints that are internal
to the solver. Syntax for any new kind of constraints can
be added to the syntax of simple constraints Q ; we have in
fact done so for the specific example of type classes. We also
modify the syntax of polymorphic types so that they may
contain a number of simple constraints.
Now, suppose that we need to check that ∀ a.Ord a ⇒

a → Bool is an instance of ∀a. Eq a ⇒ a → Bool, in other
words (

A
{α }. Eq α ⇒ α → Bool) ⪯ (∀ a.Ord a ⇒ a →

Bool). During this process we are allowed to assume that
Ord a holds in order to discharge Eq α . To be able to store
this information in our extended constraints, we modify the
syntax of quantification constraints to include the assumed
information as part of an implication, in this case

∀a. (Ord a ⊃
A
{α }. Eq α ⇒ α → Bool ⪯ a → Bool)

Implication constraints are also introduced by the updated
rules for constraint gathering. An annotated application –
rule AnnApp – may also mention constraints, which are
assumed while checking the enclosed expression. Rule Case
allows some constraints to be locally valid, which means
that the system gains support for generalized algebraic data
types (GADTs).
Figure 14 presents the updates needed for the solver to

cope with this new form of constraints. The solver now re-
lates two sets of constraints: the assumptions and the wanted
constraints. Whenever we go under an implication, we in-
troduce the constraints that are part of the antecedent as
additional assumptions. The solver is allowed to rewrite in
both sets, and more importantly, to use an assumed con-
straint to rewrite a wanted one. The modifications to the
rules are very much in line with Vytiniotis et al. [21].

The rules that dealt with polymorphic types, namely inst∀l
and inst∀r need to be updated. In the former case, a con-
straint in the type becomes an obligation to prove that it
holds. In the latter case the constraints become assumptions
that we are allowed to use while solving; these are stored in
an implication constraint. Note that the guardedness restric-
tions do not change by the introduction of constraints.
Floating of constraints and promotion of variables also

require changes, as described in rule float. In particular, we
are only allowed to float equality constraints, which in the
vanilla system were the only kind of simple constraints. The
reason is that other kinds of constraints may incorporate
information of the assumptions while they are solved, and
these assumptions only hold in their respective branches.
Equality constraints do not pose this problem.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA A. Serrano, J. Hage, D. Vytiniotis, and S. Peyton Jones

Γ ⊢ e : σ { C

Γ ⊢ e0 : σ0 { C0 α , β fresh

for each branch Ki xi → ei
Ki : ∀a bi . σi → Ta ∈ Γ

Γ,xi : [a 7→ αu]σi ⊢ ei : ϕi { Ci
υi = fuv(ϕi ,Ci) − fuv(Γ) − α

Case
Γ ⊢ case e0 of{K x → e} : βu { C0 ∧ (σ0 ⩽mϵ ϵ ; Tαu) ∧ ∀bi . ∃υi . (Ci ∧ βu ∼ ϕi)

Figure 12. Constraint generation for pattern matching

Polymorphic types σ ,ϕ F αu | ∀a. Q ⇒ µ

Simple constraints Q F ⊤ | Q1 ∧Q2
| σ ∼ ϕ Equality
| . . . Open for extension
| C σ1 ... σn Type classes, for example

Extended constraints C F Q | C1 ∧Q2
Instantiation | σ ⩽sω ϕ; µ
Generalisation | g ⪯ σ

Quantification and implication | ∀a. ∃υ. (Q ⊃ C)

Γ ⊢ e : σ { C

...
... AnnApp

Γ ⊢ (h e1 . . . en :: ∀b .Q ⇒ η) : ∀b .Q ⇒ η { ∀b . ∃υ. (Q ⊃ C ∧ . . .)

Γ ⊢ e0 : σ0 { C0 α , β fresh

for each branch Ki xi → ei
Ki : ∀a bi . Qi ⇒ σi → Ta ∈ Γ

Γ,xi : [a 7→ αu]σi ⊢ ei : ϕi { Ci
υi = fuv(ϕi ,Ci) − fuv(Γ) − α

Case
Γ ⊢ case e0 of{K x → e} : βu { C0 ∧ (σ0 ⩽mϵ ϵ ; Tαu) ∧ ∀bi . ∃υi . (Qi ⊃ Ci ∧ βu ∼ ϕi)

Figure 13. Extensions for integration with other constraints

The C ; υ =⇒ C ′ ; υ ′ relation only deals with one set
of constraints. But as implications enter the game, we need
to consider the interaction between two sets: the assumed
and the wanted ones. For that matter we introduce a new
rewriting judgment Qa ; C ; υ =⇒ Q ′

a ; C ′ ; υ ′, where
assumed constraints Qa are rewritten to Q ′

a and wanted
constraints C to C ′. Note that set of assumed constraints
consists only of simple constraints.
Rules assumed and wanted allow us to apply any rule

to any of the two sets involved in solving. Rule interact
deals with the interaction of an assumption and a wanted
constraint; the result is put on the wanted set. For example,
if you have α ∼ Int ; β ∼ [α] ; α , β , the rule moves to
α ∼ Int ; β ∼ [Int] ; α , β . Rule dupl is a simple case
of interaction, in which a constraint in the wanted set is
“crossed out” if it is already in the assumed set. Note that

information may only flow from assumptions to wanted
constraints, and never the other way around.

The last rule, an updated version of forall, is responsible
for dealing with implication constraints. The constraints C
inside of the implication are rewritten in an environment
where the set of assumed constraints is enlarged with the
antecedent Q from the implication.

C From and to System F
Our system is as expressive as System F, the gold standard
for a fully-expressive impredicative type system. We show so
by describing a translation from every System F expression
to GI in Figure 15. We also give the converse translation from
GI terms to System F terms in Figure 16 (as usual, ϵ denotes
an empty list). In particular, this proves that GI is sound as a
type system. For the sake of conciseness we do not include
the translations of pattern matching.

Guarded Impredicative Polymorphism PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

C ; υ =⇒ C ′ ; υ ′

[inst∀l] (∀a. Q ⇒ µ) ⩽sω ϕ;η ; υ =⇒ [a 7→ υ ′]Q ∧ (µ ′ ⩽sω ϕ;η) ; υ,υ ′

where freshensω (∀a. µ) =⇒ ⟨υ ′, µ ′⟩

[inst∀r] g ⪯ (∀a. Q ⇒ µ) ; υ =⇒ ∀a.(Q ⊃ g ⪯ µ) ; υ

F is an equality ftv(F) ∩ a = ∅

αs = fuv(F) ∩ υin γ s fresh E =
∧

α s ∈ α α
s ∼ γ s

[float] ∀a. ∃υ in. (Q ⊃ C ∧ F) ; υ =⇒ [αs 7→ γ s]F ∧ ∀a. ∃υ in. (Q ⊃ C ∧ E) ; υ,γ s

Qa ; C ; υ =⇒ Q ′
a ; C ′ ; υ

Qa ; υ =⇒ Q ′
a ; υforget[assumed]

Qa ; C ; υ =⇒ Q ′
a ; C ; υ

C ; υ =⇒ C ′ ; υ ′[wanted]
Qa ; C ; υ =⇒ Qa ; C ′ ; υ ′

Q ∧C∗ ; υ =⇒ C ′ ; υ ′
[interact]

Qa ∧Q ; C ∧C∗ ; υ =⇒ Qa ∧Q ; C ∧C ′ ; υ ′

[dupl]
Qa ∧Q ; C ∧Q ; υ =⇒ Qa ∧Q ; C ; υ

Qa ∧Q ; C ; υ in =⇒ Q ′ ; C ′ ; υ ′in[forall]
Qa ; ∀a. ∃υ in. (Q ⊃ C) ; υ =⇒ Qa ; ∀a. ∃υ ′in. (Q ⊃ C ′) ; υ

Figure 14. Solving rules for implication constraints

Theorem C.1 (Embedding of System F). Let e be a System
F expression. If Γ ⊢F eF : σ { e ′, as defined in Figure 15, then
Γ ⊢ e ′ : σ in GI.

The main difference between GI and System F is that in
the former impredicative instantiation is restricted by guard-
edness. The presented translation relies on annotations to
work around them.

• Following GI we present n-ary application – which in
the case of System F also includes type application. The
given application rule only works if the guardedness
restrictions are satisfied, otherwise an annotation on
e0 needs to be added before applying the rule.

• In GI the result of a non-annotated application always
gets a top-level monomorphic type. This is not the case
in System F, and thus an annotation may be required
to further generalize.

• Completely unrestricted instantiation is only available
via annotations. In order to apply this translation, we
need to split applications so that guardedness guaran-
tees are always met. Every time we split, we introduce
a new annotation guiding the type checking process.

Proof. By induction on the typing derivation in System F,
Γ ⊢F e : σ .

Variable. We need to derive Γ ⊢ x : σ , for a general σ =
∀a. µ. We recall that single variables are treated like 0-ary
application, so some amount of instantiation must take place.

x : σ ∈ Γ VarHead
Γ ⊢fun x : σ σ ⩽mϵ ϵ ; µ

App
Γ ⊢ x : µ

If the set of quantified variables a is empty, then this deriva-
tion is all we need. If it is not, we need an annotation to
re-generalise those.

x : σ ∈ Γ VarHead
Γ ⊢fun x : σ σ ⩽uϵ ϵ ; µ

AnnApp
Γ ⊢ (x :: ∀a. µ) : ∀a. µ

We could get a smaller translation in some cases by using the
VarGen rule, but the simpler type system with annotations
is enough for our goals.

Abstraction. By induction hypothesis we are able to type
check the body of the abstraction. The distinction between
fully monomorphic and unrestricted types in the translation
ensures that we can use the right Abs or AnnAbs rule from
the declarative specification.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA A. Serrano, J. Hage, D. Vytiniotis, and S. Peyton Jones

System F terms eF F x | λ(x :: σ). eF | Λa. eF | eF eF | eF σ

Γ ⊢F eF : σ { e ′

x : µ ∈ Γ

Γ ⊢F x : µ { x

x : σ ∈ Γ

Γ ⊢F x : σ { (x :: σ)

Γ,x : τ ⊢F eF : ϕ { e ′

Γ ⊢F λ(x :: τ). eF : τ → ϕ { λx . e′
Γ,x : σ ⊢F eF : ϕ { e ′

Γ ⊢F λ(x :: σ). eF : σ → ϕ { λ(x :: σ). e′

Γ ⊢F eF : ϕ[a1, . . . ,an] { e ′

Γ ⊢F Λa1. . . .Λan . eF : ∀a1. . . . ∀an .ϕ { (⌊e ′⌋ :: ∀a1 . . . an .ϕ)
Γ ⊢F e0 : σ { e ′0 σ0 = ∀a1. σ1 → ∀a2. σ2 → . . . ∀an . σn → ∀ar ap . µr

σ0 ⩽u•, . . . , •︸ ︷︷ ︸
n times

[a1 7→ ϕ1]σ1, [a1 7→ ϕ1,a2 7→ ϕ2]σ2, . . . , [a1 7→ ϕ1, . . . ,an 7→ ϕn ;ar 7→ ϕr]µr

Γ ⊢F e1 : [a1 7→ ϕ1]σ1 { e ′1 . . . Γ ⊢F en : [a1 7→ ϕ1, . . . ,an 7→ ϕn]σn { e ′n

Γ ⊢F e0 ϕ1 e1 ϕ2 e2 . . . ϕn en ϕr : ∀ar . µr {

e ′0 e

′
1 . . . e

′
n if ap is empty

and ϕr fully mono.
(e ′0 e

′
1 . . . e

′
n :: ∀ar . µr) otherwise

where

{
⌊e :: σ ⌋ = ⌊e⌋

⌊e⌋ = e otherwise

Figure 15. Translation from System F

Type abstraction. There are two cases to consider:
• ⌊e ′⌋ is not an application. In this case the annotation
is treated as an annotated application with zero ar-
guments. By induction hypothesis, we know that Γ ⊢

e ′ : ϕ[a]. We assume without loss of generality that
ϕ = ∀b . µ, and thus Γ ⊢ e ′ : ∀b . µ[a]. Nowwe can build
the following derivation:

Γ ⊢ e ′ : ∀b . µ[a]
Γ ⊢fun e ′ : ∀b . µ[a] ∀b . µ[a] ⩽uϵ ϵ ; µ[a]

AnnApp
Γ ⊢ (e ′ :: ∀a b . µ) : ∀a b . µ

• ⌊e ′⌋ is an application. In this case e ′ results from the
application of either App or AnnApp in the declarative
specification. By inspection of the rule AnnApp, we
can see that we can always choose to quantify over
more variables via an annotation.

(Type) application. The premises about guardedness en-
sure that we can apply the rule App or AnnApp in the declar-
ative specification. As discussed in the main text, if at a
certain application we cannot apply this rule, we can always
split the application, annotate the head and then use the
application rule again. □

D Proofs
D.1 Declarative specification
Lemma D.1. Let Γ be an environment and e an expression.
For every pair of fully monomorphic substitutions θ1 and θ2,
if θ1Γ ⊢fun e : σ1 and θ2Γ ⊢fun e : σ2, then there exists a
polymorphic type σ ∗ and fully monomorphic substitutions φ1
and φ2 such that σi = φiσ ∗.

Theorem 3.2 (Impredicative instantiation is not guessed).
Let Γ be an environment and e an expression. For every pair of
fully monomorphic substitutions θ1 and θ2, if θ1Γ ⊢ e : σ1 and
θ2Γ ⊢ e : σ2, then there exists a polymorphic type σ ∗ and fully
monomorphic substitutions φ1 and φ2 such that σi = φiσ ∗.

Proof. We prove Lemma D.1 and Theorem 3.2 by mutual
induction over the typing derivation of e .

Proof of Lemma D.1. We distinguish two cases:
• Case VarHead. The two derivations to consider are:

x : θ1σ ∈ θ1Γ

θ1Γ ⊢fun x : θ1σ
x : θ2σ ∈ θ2Γ

θ2Γ ⊢fun x : θ2σ
Thus we can take σ ∗ = σ and as substitutions those
applied to Γ, which are fully monomorphic by our
assumptions.

• Case ExprHead. Follows by induction over the premise.

Guarded Impredicative Polymorphism PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

σ ⩽sω ϕ; µ { ψ1, . . . ,ψn ,ψr

InstMono
µ ⩽sϵ ϵ ; µ { ϵ

ϕ2 ⩽sω σ2, . . . ,σn ; µ { ψ2, . . . ,ψn ,ψr
InstArrow

ϕ1 → ϕ2 ⩽sω,ω ϕ1,σ2, . . . ,σn ; µ { ϵ,ψ2, . . . ,ψn ,ψr

∀a. µ ▷sω ∆ θ respects ∆ θµ ⩽sω σ1, . . . ,σn ;η { ϵ,ψ2, . . . ,ψn ,ψr
InstPoly∀a. µ ⩽sω σ1, . . . ,σn ;η { θ (a),ψ2, . . . ,ψn ,ψr

Γ ⊢fun e : σ { eF

x : σ ∈ Γ VarHead
Γ ⊢fun x : σ { x

Γ ⊢ e : σ { eF ExprHead
Γ ⊢fun e : σ { eF

Γ ⊢
arg
ω e : σ { eF

Γ ⊢ e : ∀a. µ { eF b < Γ
ArgGen

Γ ⊢
arg
• e : ∀b . [a 7→ τ]µ { Λb . eF τ

x : ∀p. τ ∈ Γ b < Γ
VarGen

Γ ⊢
arg
⋆ x : ∀b . [a 7→ σ]τ { Λb . x σ

Γ ⊢ e : σ { eF

Γ,x : τ ⊢ e : σ { eF Abs
Γ ⊢ λx . e : τ → σ { λ(x :: τ). eF

Γ,x : ϕ ⊢ e : σ { eF AnnAbs
Γ ⊢ λ(x :: ϕ). e : ϕ → σ { λ(x :: σ). eF

Γ ⊢fun e0 : ϕ { e0,F ϕ ⩽mω1, ...,ωn σ1, . . . ,σn ; µ { ψ1, . . . ,ψn ,ψr

Γ ⊢
arg
ω1 e1 : σ1 { eF,1 . . . Γ ⊢

arg
ωn en : σn { eF,n

App
Γ ⊢ e0 e1 . . . en : µ { e0,Fψ1 eF,1 . . . ψn eF,n ψr

Γ ⊢fun e0 : ϕ { e0,F ϕ ⩽uω1, ...,ωn σ1, . . . ,σn ;η { ψ1, . . . ,ψn ,ψr

Γ ⊢
arg
ω1 e1 : σ1 { eF,1 . . . Γ ⊢

arg
ωn en : σn { eF,n

AnnApp
Γ ⊢ (e0 e1 . . . en :: ∀b .η) : ∀b .η { Λb .hFψ1 eF,1 . . . ψn eF,n ψr

Γ ⊢ e1 : ϕ { eF,1 Γ,x : ϕ ⊢ e2 : σ { eF,2 Let
Γ ⊢ let x = e1 in e2 : σ { (λ(x :: ϕ). eF,2) eF,1

Figure 16. Translation to System F

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA A. Serrano, J. Hage, D. Vytiniotis, and S. Peyton Jones

Proof of Theorem 3.2. We distinguish seven cases:
• Case Abs. The derivations look like:

θ1Γ,x : τ1 ⊢ e : σ1
θ1Γ ⊢ λx .e : τ1 → σ1

θ2Γ,x : τ2 ⊢ e : σ2
θ2Γ ⊢ λx .e : τ2 → σ2

We cannot apply the induction hypothesis yet, since
the environments in the premises are not of the right
shape. Consider instead the environment Γ′ = Γ,x : α
for a fresh α , and the substitutions

θ ′1 = [α 7→ τ1] ◦ θ1 θ ′2 = [α 7→ τ2] ◦ θ2

These substitutions are fully monomorphic, since all
of θi and τi (1 ⩽ i ⩽ 2) are fully monomorphic by
hypothesis. We have then the following equalities over
the environments

θ1Γ,x : τ1 = θ ′1Γ
′ θ2Γ,x : τ2 = θ ′2Γ

′

and thus we can apply the induction hypothesis to e
to obtain σ ∗, φ1 and φ2 such that σi = φiσ ∗. Consider
now the extended substitutions:

φ ′
1 = [α 7→ τ1] ◦ φ φ ′

2 = [α 7→ τ2] ◦ φ2

Since τ1 and τ2 are fully monomorphic types, φ ′
i are

fully monomorphic substitutions. Take σ ′ = α → σ ∗.
We have, for each derivation, that

φ ′
iσ

′ = φ ′
i (α → σ ∗) = φ ′

iα → φ ′
iσ

∗ = τi → σi

And we are done: σ ′, φ ′
1 and φ

′
2 are the desired outputs

of the theorem.
• Case AnnAbs. Similar to Abs.
• Case App. In this case the derivations have the follow-
ing shape for each i ∈ {1, 2}.

θiΓ ⊢fun e0 : θiϕ

ϕ ⩽mω σi,1, . . . ,σi,n ; µi θiΓ ⊢
arg
ωj ej : σi, j

θiΓ ⊢ e0 e1 . . . en : µi
We have two choices: either ϕ is a top-level monomor-
phic type η, or θiϕ = ∀a. θiη. This shall remain true
during the derivation of ⩽mω . Intuitively, the substitu-
tions do not alter the “polymorphism structure” of the
type. In particular, as result type of the instantiation,
we get µ1 and µ2 for which we know that there exists
a common µ∗ such that:

µ1 = φ
m
1 φ

r
1θ1µ

∗ µ2 = φ
m
2 φ

r
2θ2µ

∗

where φmi correspond to the fully monomorphic sub-
stitutions applied to those type variables which do not
appear in any of the arguments. But we should be care-
ful here: φri are unrestricted, and for those we do not
directly obtain the conclusion of the theorem.
Let us first consider the case in which ωj = • for all
j. In other words, all arguments are typed using the
ArgGen rule for ⊢arg. By the definition of the respects
relation for substitutions, for each quantified type vari-
able a in ϕ we have at least one σi, j for which φri θiσi, j

is of the form ∀a. Tψ for both derivations. We can
see this by distinguishing between unrestricted vari-
ables , for which we already have the type constructor
in ϕ; and top-level monomorphic variables for which
the corresponding substitution must map to top-level
monomorphic types.
Take the expression corresponding to this type variable
a – let us call it ea – and the derivations θ1Γ ⊢ ea :
φr1θ1σ1,a and θ2Γ ⊢ ea : φr2θ2σ2,a . By the induction
hypothesis there exists a σ ∗

j and fully monomorphic
substitutions ξi,a such that φri θiσi,a = ξi,aσ

∗
a .

We know that for each type variable a appearing in
some argument of the application we have at least one
ξa so that a is in its domain. It does not matter which
one we choose: they all have to agree or otherwise
the derivation is ill-formed. Take now the following
substitutions:

ξi = ⃝a∈argsn(ϕ)[a 7→ ξi,a(a)] ,

where ⃝ denotes substitution composition. By con-
struction, we know that φri = ξi : they have the same
domain and they map to the same outputs. But now
we are sure that ξi are fully monomorphic, since arise
from a composition of fully monomorphic substitu-
tions. In conclusion, we have that

µ1 = φ
m
1 ξ1θ1µ

∗ µ2 = φ
m
2 ξ2θ2µ

∗

and all of φmi , ξi and θi are fully monomorphic.
When we use VarGen we need to work a bit more. If
for each type variable there is one ea where ArgGen
has been applied, the proof still works. On the other
hand, if for a type variable a all expressions where it
appears make use of VarGen, we cannot guarantee
the existence of the σ ∗

j and fully monomorphic substi-
tutions ξi,a by induction hypothesis. However, in that
case the definition of ▷sω ensures that the substitution
for the type variable a is fully monomorphic, giving
us the desired result.

• Case AnnApp. This case is trivial, since the annotation
ensures that both derivations yield the same type.

• Case Let. In this case the derivations are:

θiΓ ⊢ e1 : ϕi θiΓ,x : ϕi ⊢ e2 : σi for i ∈ {1, 2}
θiΓ ⊢ let x = e1 in e2 : σi

We cannot readily apply the induction hypothesis to
the second premise – which would give us the desired
conclusion –, since the environment may not be in the
right shape. By the induction hypothesis on the first
premise, there exists a type ϕ∗ and fully monomorphic
substitutions φ1 and φ2 such that ϕi = φiϕ∗. We can
build a new version of ϕ∗, ϕ ′, where all the free vari-
ables are fresh – and thus disjoint from those in Γ –
and corresponding φ ′

i where the domain is replaced

Guarded Impredicative Polymorphism PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

by these free variables. Consider θ ′i = θi ◦ φ
′
i :

θ ′i (Γ,x : ϕ ′) = θ ′i (Γ),x : θ ′iϕ
′

= (substitutions have disjoint domains)
θiΓ,x : φ ′

iϕ
′

= (by definition of φ ′i)
θiΓ,x : ϕi

This means that we have found a fully monomorphic
substitution θ ′i for the environment, which allows us
to apply induction on the second premise and reach
the desired conclusion.

• Case Case. By induction on the first premise of Case,
we get σ ∗

0 and two substitutions φ1 and φ2 such that
σ0,i = φiσ

∗
0 for each of the two derivations. Without

loss of generality, we can assume that σ ∗
0 = ∀a. µ∗0 .

Then σ0,i = ∀a.φiµ∗0 .
The next step is to notice that the instantiation judg-
ment is nullary. As a result, all the type variables in a
must be substituted by fully monomorphic types. Let
πi be the substitution for each of the derivations. Then
we know that Tϕ0,i = πiφiµ∗0 = Tπiφiϕ∗0 . Playing the
same game we did for Let, we can build substitutions
θ ′i such that,

θ ′i (Γ,xi : [a 7→ ϕ0,i]σj) = θiΓ,xi : [a 7→ πiφiϕ
∗
0]σj

The last step is applying induction hypothesis to one
of the branches and obtain the desired common poly-
morphic type and fully monomorphic instantiations.
The branch we choose does not matter, since they all
give the same type as result.

□

Theorem 3.4 (Substitution). If Γ ⊢ u : σ and Γ,x : σ ⊢ e[x] :
ϕ, then Γ ⊢ e[u] : ϕ.

Proof. By induction over the expression e[x]. The only inter-
esting case is when x is the head of an application, that is,
e = x e1 . . . en and u is also an application, u = u0 u1 . . . un .
Note that in that case the assigned types are always top-level
monomorphic, so σ = µ and ϕ = η.

The derivations involved look like:

Γ ⊢fun u0 : σu

σu ⩽mω1, ...,ωm σ1, . . . ,σm ; µ Γ ⊢
arg
ωi ui : σi

Γ ⊢ u0 u1 . . . um : µ

Γ ⊢fun x : µ

µ ⩽mω′
1, ...,ω

′
n
ϕ1, . . . ,ϕn ;η Γ ⊢

arg
ω′
j
ej : ϕ j

Γ ⊢ x e1 . . . en : η

and the question is whether we can derive:

Γ ⊢fun u0 : σu
σu ⩽mω1, ...,ωm,ω′

1, ...,ω
′
n
σ1, . . . ,σm ,ϕ1, . . . ,ϕn ;η

Γ ⊢
arg
ωi ui : σi Γ ⊢

arg
ω′
j
ej : ϕ j

Γ ⊢ u0 u1 . . . um e1 . . . en : η

All the premises on this last rule come directly from those
in the hypotheses, except for the instantiation

σu ⩽mω σ1, . . . ,σm ,ϕ1, . . . ,ϕn ;η

For the n last components we can reuse the derivation in the
second hypothesis. For the firstm components, inspection
on the rules of guardedness show that any instantiation with
m arguments is admissible whenm + n are considered. □

Theorem3.5. Let app::∀a b. (a → b) → a → b and revapp::
∀ a b. a → (a → b) → b be the application and reverse
application functions, respectively. Given two expressions f
and e such that Γ ⊢fun f : σ0, and σ0 ⩽mϵ ϵ ;σ1 → ϕ then:

Γ ⊢ f e : ϕ ⇐⇒ Γ ⊢ app f e : ϕ ⇐⇒ Γ ⊢ revapp e f : ϕ

Proof. Let us compare the derivations of the first two.

Γ ⊢fun f : σ0 σ0 ⩽mωe σ1; µ Γ ⊢
arg
ωe e : σ1

Γ ⊢ f e : µ

Γ ⊢fun app : ∀a b. (a → b) → a → b

Γ ⊢
arg
ωf f : σ1 → µ Γ ⊢

arg
ωe e : σ1

∀a b. (a → b) → a → b ⩽mωf ,ωe (σ1 → µ),σ1; µ

Γ ⊢ f e : µ

The application of app can be instantiated with any type,
given that both variables a and b are guarded. We need to
consider the two different ways in which Γ ⊢

arg
ωf f : σ1 → µ

can be derived. If it is derived using ArgGen, then we have:

Γ ⊢ f : σ0 σ0 ⩽mϵ ϵ ;σ1 → ϕ

Γ ⊢
arg
• f : σ1 → ϕ

Then the premises for the whole derivation are the same,
except for the highlighted one. We know that if σ0 ⩽mϵ
ϵ ;σ1 → ϕ, then σ0 ⩽m• σ1;ϕ, by inspection of the rule
relating instantiation and function types.

The other possibility is that f is a variable and the rule for
single variables, VarGen, applies:

f : ∀p. τ ∈ Γ ∀p. τ ⩽uϵ ϵ ;σ1 → ϕ

Γ ⊢
arg
⋆ f : σ1 → ϕ

In this case VarGen does not rule our polymorphic instanti-
ation. However, the ⩽ judgment applied to app will ignore
this argument for guardedness purposed. That means that
we can only instantiate impredicative those type variables
coming for e , exactly the same as we could with f e.
The proof for revapp is similar to the one for app. □

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA A. Serrano, J. Hage, D. Vytiniotis, and S. Peyton Jones

D.2 Constraint-based formulation
Theorem 4.1. Suppose Γ ⊢ e : σ { C . Then C is either
inconsistent, or can be rewritten to a new setC ′ without instan-
tiation and generalisation constraints which fixes the value of
all unrestricted and top-level monomorphic variables.

Lemma D.2. Suppose Γ ⊢fun e : σ { C . Then C is either
inconsistent, or can be rewritten to a new set C ′ without in-
stantiation or generalisation constraints which fixes the value
of all unrestricted and top-level monomorphic variables.

Proof. We prove both theorems by mutual induction. Note
that Lemma D.2 follows simply from Theorem 4.1, as the
head typing judgment either produces no constraints with
the rule VarHead or refers to the normal typing judgment
as a premise with the rule ExprHead.
For Theorem 4.1, we proceed by induction on the con-

straint generation judgment Γ ⊢ e : σ { C .

Case Abs and AnnAbs. Follows directly from induction
hypothesis, since the constraints from the body are copied
as the output.

Case App. We need to consider three sets of constraints:
the set C coming from generating constraints for the head,
the set of instantiation constraints C⩽ which extract the
expected types of arguments from the function types, and
the set of generalisation constraintsC⪯ which check that the
actual arguments fit into those expected types. The third set
is obtained from the ancillary judgdement ⊢arg.
The desired properties for the first set of constraints, C ,

follow by induction. SinceC fixes all the unrestricted and top-
level monomorphic variables, this implies that ϕ is fixed up
to fully monomorphic variables. As a result, we can rewrite
all the constraints in C⩽ into equalities – but note that in-
stantiations may introduce new variables to be fixed.
First consider the case in which all applications of ⊢arg

use the ArgGen rule. In that case, the newly-introduced
variables can be divided between unrestricted u, top-level
monomorphic t , and fullymonomorphicm. Only the first two
interact with arguments, by definition. For the first set we
know that for each variable α there is at least one argument
of the form ∀a. Tϕ, where α ∈ ftv(ϕ). For that argument
there is a corresponding expression ej and a generalisation
constraint,

(
A
{γj }.Cj ⇒ σj) ⪯ (∀a. Tϕ)

Rule inst∀r and inst
A
l apply, rewriting this constraint

to Cj ∧ σj ⩽mϵ ϵ ; Tϕ, possibly under an universal quanti-
fier ∀b. Now we can apply the induction hypothesis to Cj ,
which means that we can rewrite these constraints to a set
of type equalities which fixes the unrestricted and top-level
monomorphic variables.

We still have a remaining constraint σj ⩽mϵ ϵ ; Tϕ and we
have not proven yet that the variable α ∈ ftv(ϕ) is fixed. But

since σj is fixed up to fully monomorphic components, we
can decide which instantiation rule to apply; in either case
a type equality is produced. In turn, this equality fixes the
value for α . As a result, the generalisation constraint can be
completely turned into equalities, as desired. Furthermore,
this value of α is floated out of the universal quantification –
if it was ever introduced – up to the point where the variable
was introduced.

Once the value of α is fixed — because of its appearance
under a type constructor —, we can deal with those cases in
which the variable appears alone as an argument,

(
A
{γk }.Ck ⇒ σk) ⪯ α

But now we already know the type for α up to its fully
monomorphic components! Thus, we are able to decide
which rule in the solver to apply, and then apply the induc-
tion hypothesis. The end result is again a set of equalities,
maybe under a universal quantifier.
Arguments which feature a top-level monomorphic vari-

able β ∈ t are dealt with in the same way; the fact that the
variable is top-level monomorphic is enough to unwrap the
generalisation constraint. Then, the solving proceeds as with
α unrestricted.

Finally, no constraints are generated over the set of fully
monomorphic types m. This is OK, since these variables
are already fixed up to fully monomorphic components, by
definition. This case also applies when all the expressions
featuring a variable α result from the application of VarGen.

Case AnnApp. This case is almost identical to App. The
only difference is that now there is a set of variables u ′

which would have been classified as either top-level or fully
monomorphic which are now classified as unrestricted.

As in the case of App, we apply the induction hypothesis
over the head to guarantee that the set of constraints C can
be turned into a set of equalities under a mixed prefix. Since
these equalities fix σ up to fully monomorphic components,
we can still apply the same reasoning to the set of instantia-
tion constraints C⩽. In particular, the constraint βn ⩽uϵ ϵ ;η
is turned into an equality, too, and fixes the value of all those
u ′ variables – those are the ones appearing in the assignment
to βn and η is completely known since it is explicitly given
by the programmer.

For the remaining variables we apply the same reasoning
as before, distinguishing between unrestricted and top-level
monomorphic variables and going through each of the argu-
ments. □

D.2.1 Solved form and solutions
In Section 4.4 we introduced the notion of a solved form. In
the following results we also need the notiong of when a
solved form Cs is a solution for a set of constraints C . We
give the corresponding judgment Cs |= C in Figure 17.

Guarded Impredicative Polymorphism PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Cs |= C Cs |=
′ C

Cs |=
′ Ĉs(C)

Cs |= C

Cs |=
′ σ ∼ σ

Cs |=
′ C1 Cs |=

′ C2

Cs |=
′ C1 ∧C2

∀b .C ′
s ∈ Cs C ′

s |= C

Cs |=
′ ∀b .C

Cs |= µ ∼ η

Cs |=
′⩽sϵ ϵ ;η

Cs |= µ ∼ σ → σ ′ Cs |= σ
′ ⩽sω ϕ;η

Cs |=
′ µ ⩽sω,ω σ ,ϕ;η

a were instantiated to α Cs |= [a 7→ α]µ ⩽sω ϕ;η

Cs |=
′ ∀a. µ ⩽sω ϕ;η

Cs |= C Cs |= σ ⩽mϵ ϵ ;η
Cs |=

′ (
A
{α }.C ⇒ σ) ⪯ η

Cs |=
′ ∀b . (A{α }.C ⇒ σ ⪯ η)

Cs |=
′ (
A
{α }.C ⇒ σ) ⪯ (∀b .η)

Figure 17. Definition of solution

Given two solutions Cs and Ds which range over the same
set of variables, we say that Cs is more general than Ds if
there exists a fully monomorphic substitution π such that
for every pair of assignments α ∼ σ in Cs, and α ∼ ϕ in Ds,
ϕ = πσ .

The solver described in [15] returnsmost general solutions
for a given set of equalities under a mixed prefix. This is a
consequence of the fact that they reuse the first-order solver
in [11], which always returns most general substitutions.

D.2.2 Soundness and principality
In the proofs of the following results we focus on the core
language without let, do and pattern matching. Neverthe-
less, the results still hold when the language is extended: no
surprises there.

Lemma D.3. Suppose that Cs is a solution for the constraint:

σ ⩽sω αu1 , . . . ,α
u
n ;δ
t

Then we have a derivation for:

Ĉs(σ) ⩽sω Ĉs(α
u
1), . . . , Ĉs(α

u
n); Ĉs(δ)

(as defined in the declarative specification)

Proof. The definition for |= correspond one to one to the
rules for ⩽ in the declarative specification. □

Theorem D.4 (Soundness, solution version). Let Γ be an
environment and e an expression. Then, for every set of con-
straints C ′,

1. If Γ ⊢fun e : σ { C , andCs |= C ∧C ′, then we can build
a derivation for Ĉs(Γ) ⊢

fun e : Ĉs(σ).
2. If Γ ⊢ e : σ { C and Cs |= C ∧C ′, then we can build a

derivation for Ĉs(Γ) ⊢ e : Ĉs(σ).
3. If Γ ; υ ⊢

arg
ω e : σ { C and Cs |= C ∧C ′, then we have

a derivation for Ĉs(Γ) ⊢
arg
ω e : Ĉs(ϕ).

Proof. We prove this theorem by mutual induction over the
expression e .

Proof of (1). We distinguish two cases by inversion:
• Case VarHead. We have in this case that Γ ⊢fun x :
σ { ϵ if x : σ ∈ Γ. In this case Cs is a solution of C ′.
By applying the substitution Ĉs to the environment we
get that x : Ĉs(σ) ∈ Ĉs(Γ), which allows us to conclude
that Ĉs(Γ) ⊢

fun x : Ĉs(σ).
• Case ExprHead. Follows directly from the induction
hypothesis and (2).

Proof of (2). We distinguish four cases by inversion:
• Case Abs. In this case the constraint gathering is:

Γ,x : αm ⊢ e : µ { C

Γ ⊢ λx .e : αm → µ { C

By induction hypothesis we know that for every C ′, if
C ∧C ′ is solved toCs, then we have Ĉs(Γ),x : Ĉs(α

m) ⊢

e : Ĉs(σ). From this we can apply the corresponding
rule from the declarative specification.

Ĉs(Γ),x : Ĉs(α) ⊢ e : Ĉs(σ) App
Ĉs(Γ) ⊢ λx .e : Ĉs(α) → Ĉs(σ)

Now we just need to notice that Ĉs(α) → Ĉs(σ) ∼

Ĉs(α → σ) and we are done.
• Case AnnAbs. Similar to the Abs case.
• Case App. Suppose that the shape of the expression is
e0 e1 . . . en . By applying (1) on e0 we know that a so-
lution Cs determines a derivation Ĉs(Γ) ⊢

fun e0 : Ĉs(σ).
By Lemma D.3, a solution for the ⩽ constraint deter-
mines a derivation for Ĉs(σ) ⩽m... Ĉs(α

u
1), . . . , Ĉs(α

u
n); Ĉs(δ

t).
Finally, by applying (3) to each argument, we get the
corresponding derivations for Ĉs(Γ) ⊢

arg
bi

ei : Ĉs(α
u
i).

As a result, we can apply the App rule from the declar-
ative specification.

• Case AnnApp. Similar to the App case.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA A. Serrano, J. Hage, D. Vytiniotis, and S. Peyton Jones

Proof of (3). We distinguish two cases by inversion:

• Case ArgGen.We can assume, without loss of gener-
ality, that the generalisation constraint has the form
(
A
{υ}.C ⇒ σ) ⪯ (∀b .η) for a possibly empty set of

variables b.
Let us first consider the simple case in which the set
of quantified variables b is empty. By the definition of
solution, this implies that we have

Cs |= C and Cs |= σ ⩽mϵ ϵ ;η

Now we can apply (2) to Cs |= C and derive that
Ĉs(Γ) ⊢ Ĉs(σ). By inspection of the rules, we know that
a solution of the second constraint, σ ⩽mϵ ϵ ;η, defines
a fully monomorphic substitution in the declarative
specification. As a result, we can apply rule ArgGen
and obtain the desired result. The case for a not empty
set of constraints is similar, one just has to realize that
the rule for |=′ for generalization constraints introduce
the Skolem variables required by ArgGen.

• Case VarGen. In this case the generated constraint is
[p 7→ αu]τ ⪯ (b .η). As in the last case of ArgGen, the
definition of solution tells us that there is a ∀b .C ′

s ∈ Cs
such that

C ′
s |= Cs(C) and C ′

s |= Cs([p 7→ αu]τ) ⩽uϵ ϵ ;Cs(η)

The second application of |=′ is trivially equal to C ′
s |=

Cs([p 7→ αu]τ) ∼ Cs(η), since the type in the left-hand
side is by construction a top-level monomorphic one.
This is enough to apply rule VarGen from the declar-
ative specification.

□

Theorem 4.2 (Soundness). Let Γ be a closed environment
and e an expression. If Γ ⊢ e : σ { C and Cs is a solution for
C with an induced substitution Ĉs, then we have Γ ⊢ e : Ĉs(σ).

Proof. By Theorem D.4 we know that the existence of such
a solution Cs implies that Ĉs(Γ) ⊢ e : Ĉs(σ). Since Γ is closed,
Ĉs(Γ) = Γ, as desired. □

Theorem D.5 (Derivations provide solutions). Let Γ be an
environment and e an expression.

1. If θΓ ⊢fun e : σ and Γ ⊢fun e : ϕ { C , then there exists
a solution Cs for C such that Ĉs is fully monomorphic
and Ĉs(θϕ) ∼ σ .

2. If θΓ ⊢ e : σ and Γ ⊢ e : ϕ { C , then there exists a
solutionCs forC such that Ĉs is fully monomorphic and
Ĉs(θϕ) ∼ σ .

Proof. We prove this theorem by mutual induction over the
expression e .

Proof of (1). We distinguish two cases by inversion:
• Case VarHead. In this case the generated set of con-
straints C it empty, so we can just take an empty
solved form as solution Cs. The corresponding sub-
stitution Ĉs is the identity function, which is trivially
fully monomorphic.
Now, we just need to prove that Ĉs(θϕ) ∼ θϕ ∼ σ .
By inversion of the rule VarHead in the constraint-
based formulation we know that ϕ must come from
an element x : ϕ ∈ Γ. On the other hand, we know
that in the declarative specification σ must come from
x : σ ∈ θΓ. Since Γ is the same in both derivations, it
must be the case that σ ∼ θϕ.

• Case ExprHead. Follows by induction on the premise.

Proof of (2). We distinguish four cases:
• Case Abs. The derivation in the declarative specifica-
tion looks like:

θΓ,x : τ ⊢ e : σ
θΓ ⊢ λx .e : τ → σ

Let us first rewrite the premise as θ ′(Γ,x : α), where
θ ′ = [a 7→ τ] ◦ θ . Now we can apply the induction
hypothesis to obtain a solutionC ′

s such that Ĉs
′
(θ ′ϕ) ∼

σ , where ϕ is the type assigned to the abstraction body
during constraint gathering.
Now consider the problemC ′

s ∧α ∼ τ . We know that a
solution Cs exists, or otherwise the expression would
be ill-typed. Furthermore, Ĉs

′
◦ θ ′ = Ĉs ◦ θ – we are

just moving the α assignment from one place to the
other. In conclusion, we have that:

Cs(θ (α → ϕ)) ∼ C ′
s(θ

′(α → ϕ)) ∼ τ → σ

• Case AnnAbs. Similar to the Abs case.
• Case App. The derivation in the specification is:

θΓ ⊢fun e0 : σ0
σ0 ⩽mω σ1, . . . ,σn ; µ θΓ ⊢

arg
ωi ei : σi

App
θΓ ⊢ e0 e1 . . . en : ϕ

The constraints generated by this sequence of App
rules are:

C0 ∧ (ϕ0 ⩽mω αu1 , . . . ,α
u
n ;δ
t) ∧C1 ∧ · · · ∧Cn

By (1) applied to e0 there exists a solutionC0
s such that

Ĉs
0
θϕ0 ∼ σ0. From the derivation ofσ0 ⩽mω σ1, . . . ,σn ; µ

in the declarative specification we obtain a list of equal-
ities C inst

s , in particular αui ∼ σi and δ t ∼ µ.
Let us call C ′

s = Ch
s ∧ C inst

s and consider for each ar-
gument the derivation Ĉs

′
(θΓ) ⊢

arg
ωi ei : Ĉs

′
(σi); which

holds by substitutivity in the typing judgment. In the
case σi is polymorphic, the rules for ⊢arg perform the
job required to obtain a solution, namely introducing
rigid variables. We are thus left with Ĉs

′
(θΓ) ⊢ ei :

Ĉs
′
(ηi), where we can apply induction hypothesis to

Guarded Impredicative Polymorphism PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

obtain C
argi
s . Define Ci

s to be exactly Cargi
s if no rigid

variables where introduced and ∀b .Cargi
s otherwise.

The final solution is the conjunction:

Ch
s ∧C inst

s ∧C1
s ∧ . . .C

n
s

• Case AnnApp. Similar to the App case.
□

Corollary D.6. Suppose Γ ⊢ e : σ and let Γ ⊢ e : ϕ { C .
Then there exists a solution Cs for C such that Ĉs is monomor-
phic and Ĉs(ϕ) ∼ σ .

Corollary D.7. Suppose Γ ⊢ e : σ { C . Then C is either
inconsistent, or can be rewritten to a solved form.

Proof. By Theorem 4.1 every consistent set of constraints
can be turned into an instance of the problem of first-order
unification under a mixed prefix. The solver in Pottier and
Rémy [15] describes a complete algorithm for this problem,
from which we obtain the desired solved form. □

Corollary D.8 (Principality, solution version). Let Γ ⊢ e : σ
and let Γ ⊢ e : ϕ { C . If C is solved to Cs, then Γ ⊢ e :
Ĉs(ϕ) and there exists a monomorphic substitution π such that
πĈs(ϕ) ∼ σ .

Proof. By soundness we know that if C is solved to Cs, then
Γ ⊢ e : Cs(ϕ). From the derivation of Γ ⊢ e : σ we obtain
another solution C ′

s such that C ′
s(ϕ) ∼ σ . Since the solver

produces most general solutions we know in particular that
there exists a fully monomorphic substitution π such that
π ◦ Ĉs = Ĉs

′
. This gives the desired result. □

Theorem 4.3 (Principality). Suppose Γ ⊢ e : σ . Then there
exists a typeϕ such that Γ ⊢ e : ϕ, and for every other Γ ⊢ e : σ ′,
there is a fully monomorphic substitution π such that σ ′ = πϕ.

Proof. Take Γ ⊢ e : ϕ { C . Given that the derivation Γ ⊢

e : σ exists, by Corollary D.7 we are guaranteed to obtain a
solutionCs forC . Then by Corollary D.8 we know that Γ ⊢ e :
Ĉs(ϕ) and σ ∼ πĈs(ϕ) for where π is a fully monomorphic
substitution. Take σ⋆ = Ĉs(ϕ) and we are done. □

Theorem 4.4 (Completeness). Let Γ be a closed environment
and e an expression. If Γ ⊢ e : σ then Γ ⊢ e : ϕ { C and C
can reach a solved form.

Proof. Consider a closed environment Γ and an expression e .
By Corollary D.6 we know that if we generate constraints
Γ ⊢ e : ϕ { C , then there exists a solution for C . In partic-
ular, since there exists a solution the constraint set C is not
inconsistent.
Corollary D.7 states that every constraint set is either

inconsistent or can be rewritten to a solved form. Given that
our constraint set C is not inconsistent, this implies that it
can be rewritten to a solved form, as desired. □

	Abstract
	1 Introduction
	2 The key idea: intuition and examples
	2.1 Exploiting the easy case
	2.2 Ignoring the context of a call
	2.3 Lambdas
	2.4 Expressiveness

	3 Declarative specification
	3.1 Syntax
	3.2 Typing rules
	3.3 Single variables
	3.4 Annotations
	3.5 let bindings
	3.6 Metatheory

	4 Type inference using constraints
	4.1 Constraints
	4.2 Constraint generation
	4.3 Constraint solving
	4.4 Soundness, principality and completeness
	4.5 Alternative solver for equalities

	5 Practical matters
	6 Related work
	7 Further work
	References
	A Pattern matching
	B Integration with other language features
	C From and to System F
	D Proofs
	D.1 Declarative specification
	D.2 Constraint-based formulation

