
Learning Syntactic Program Transformations
from Examples

Reudismam Rolim∗, Gustavo Soares∗†, Loris D’Antoni‡,
Oleksandr Polozov§, Sumit Gulwani¶, Rohit Gheyi∗, Ryo Suzuki‖, Björn Hartmann†

∗UFCG, Brazil, †UC Berkeley, USA, ‡University of Wisconsin-Madison, USA
§University of Washington, USA, ¶Microsoft, USA, ‖University of Colorado Boulder, USA

reudismam@copin.ufcg.edu.br, gsoares@dsc.ufcg.edu.br, loris@cs.wisc.edu, polozov@cs.washington.edu,
sumitg@microsoft.com, rohit@dsc.ufcg.edu.br, ryo.suzuki@colorado.edu, bjoern@eecs.berkeley.edu

Abstract—Automatic program transformation tools can be
valuable for programmers to help them with refactoring tasks,
and for Computer Science students in the form of tutoring sys-
tems that suggest repairs to programming assignments. However,
manually creating catalogs of transformations is complex and
time-consuming. In this paper, we present REFAZER, a technique
for automatically learning program transformations. REFAZER
builds on the observation that code edits performed by developers
can be used as input-output examples for learning program
transformations. Example edits may share the same structure
but involve different variables and subexpressions, which must
be generalized in a transformation at the right level of abstraction.
To learn transformations, REFAZER leverages state-of-the-art
programming-by-example methodology using the following key
components: (a) a novel domain-specific language (DSL) for de-
scribing program transformations, (b) domain-specific deductive
algorithms for efficiently synthesizing transformations in the DSL,
and (c) functions for ranking the synthesized transformations.

We instantiate and evaluate REFAZER in two domains. First,
given examples of code edits used by students to fix incorrect
programming assignment submissions, we learn program trans-
formations that can fix other students’ submissions with similar
faults. In our evaluation conducted on 4 programming tasks
performed by 720 students, our technique helped to fix incorrect
submissions for 87% of the students. In the second domain, we
use repetitive code edits applied by developers to the same project
to synthesize a program transformation that applies these edits
to other locations in the code. In our evaluation conducted on 56
scenarios of repetitive edits taken from three large C# open-source
projects, REFAZER learns the intended program transformation
in 84% of the cases using only 2.9 examples on average.

Keywords—Program transformation, program synthesis, tutor-
ing systems, refactoring.

I. INTRODUCTION

As software evolves, developers edit program source code
to add features, fix bugs, or refactor it. Many such edits have
already been performed in the past by the same developers in a
different codebase location, or by other developers in a different
program/codebase. For instance, to apply an API update, a
developer needs to locate all references to the old API and
consistently replace them with the new API [1, 2]. As another
example, in programming courses student submissions that

exhibit the same fault often need similar fixes. For large classes
such as massive open online courses (MOOCs), manually
providing feedback to different students is an unfeasible burden
on the teaching staff.

Since applying repetitive edits manually is tedious and
error-prone, developers often strive to automate them. The
space of tools for automation of repetitive code edits contains
Integrated Development Environments (IDEs), static analyzers,
and various domain-specific engines. IDEs, such as Visual
Studio [3] or Eclipse [4], include features that automate some
code transformations, such as adding boilerplate code (e.g.,
equality comparisons) and code refactoring (e.g., Rename,
Extract Method). Static analyzers, such as ReSharper [5],
Coverity [6], ErrorProne [7], and Clang-tidy [8] automate
removal of suspicious code patterns, potential bugs, and verbose
code fragments. In an education context, AutoGrader [9] uses a
set of transformations provided by an instructor to fix common
faults in introductory programming assignments.

All aforementioned tool families rely on predefined catalogs
of recognized transformation classes, which are hard to extend.
These limitations inspire a natural question:

Is it possible to learn program transformations from examples?

Our key observation is that code edits gathered from repositories
and version control history constitute input-output examples
for learning program transformations.

The main challenge of example-based learning lies in
abstracting concrete code edits into classes of transformations
representing these edits. For instance, Fig. 1 shows similar edits
performed by different students to fix the same fault in their
submissions for a programming assignment. Although the edits
share some structure, they involve different expressions and
variables. Therefore, a transformation should partially abstract
these edits as in Fig. 1d.

However, examples are highly ambiguous, and many differ-
ent transformations may satisfy them. For instance, replacing
<name> by <exp> in the transformation will still satisfy
the examples in Fig. 1. In general, learning either the most
specific or the most general transformation is undesirable,

1 def product(n, term):
2 total, k = 1, 1
3 while k<=n:
4 - total = total*k
5 + total = total*term(k)
6 k = k+1
7 return total

(a) An edit applied by a student to fix the program.

1 def product(n, term):
2 if (n==1):
3 return 1
4 - return product(n-1, term)*n
5 + return product(n-1, term)*term(n)

(b) An edit applied by another student fixing the same fault.

(c) Similar tree edits applied in (a) and (b), respectively. Each
edit inserts a concrete subtree to the right-hand side of the ∗
operator. The two edits share the same structure but involve
different variables and expressions.

(d) A rewrite rule that captures the two edits in (a) and (b).

Fig. 1: An example of a common fault made by different
students, two similar edits that can fix different programs, and
a program transformation that captures both edits.

as they are likely to respectively produce false negative or
false positive edits on unseen programs. Thus, we need to
(a) learn and store a set of consistent transformations efficiently,
and (b) rank them with respect to their trade-offs between
over-generalization and over-specialization. To resolve these
challenges, we leverage state-of-the-art software engineering
research to learn such transformations automatically using
Inductive Programming (IP), or Programming-by-Example
(PBE) [10], which has been successfully applied to many
domains, such as text transformation [11], data cleaning [12],
and layout transformation [13].

Our technique In this paper, we propose REFAZER,1 an
IP technique for synthesizing program transformations from
examples. REFAZER is based on the PROSE [14] Inductive Pro-
gramming framework. We specify a domain-specific language
(DSL) that describes a rich space of program transformations
that commonly occur in practice. In our DSL, a program
transformation is defined as a sequence of distinct rewrite rules
applied to the abstract syntax tree (AST). Each rewrite rule
matches some subtrees of the given AST and outputs modified
versions of these subtrees. Additionally, we specify constraints
for our DSL operators based on the input-output examples to
reduce the search space of transformations, allowing PROSE to
efficiently synthesize them. Finally, we define functions to rank
the synthesized transformations based on their DSL structure.

1http://www.dsc.ufcg.edu.br/~spg/refazer/

Evaluation We evaluated REFAZER in two domains: learn-
ing transformations to fix submissions for introductory pro-
gramming assignments and learning transformations to apply
repetitive edits to large codebases.

Our first experiment is motivated by large student enroll-
ments in CS courses, e.g., in MOOCs, where automatically
grading student submissions and providing personalized feed-
back is challenging. In this experiment, we mine submissions to
programming assignments to collect examples of edits applied
by students to fix their code. We then use these examples
to synthesize transformations, and we try using the learned
transformations to fix any new students’ submissions with
similar types of faults. We say that a submission is “fixed”
if it passes the set of tests provided by course instructors.
Synthesized fixes can then be used for grading or turned into
hints to help students locate faults and correct misconceptions.
In our evaluation conducted on 4 programming tasks performed
by 720 students, REFAZER synthesizes transformations that fix
incorrect submissions for 87% of the students.

Our second experiment is motivated by the fact that certain
repetitive tasks occurring during software evolution, such as
complex forms of code refactoring, are beyond the capabilities
of current IDEs and have to be performed manually [15, 16].
In this experiment, we use repetitive code edits applied
by developers to the same project to synthesize a program
transformation that can be applied to other locations in the
code. We performed a study on three popular open-source C#
projects (Roslyn [17], Entity Framework [18], and NuGet [19])
to identify and characterize repetitive code transformations.
In our evaluation conducted on 56 scenarios of repetitive
edits, REFAZER learns the intended program transformation in
84% of the cases using 2.9 examples on average. The learned
transformations are applied to as many as 60 program locations.
Moreover, in 16 cases REFAZER synthesized transformations
on more program locations than the ones present in our dataset,
thus suggesting potentially missed locations to the developers.

Contributions This paper makes the following contributions:

• REFAZER, a novel technique that leverages state-of-the-
art IP methodology to efficiently solve the problem of
synthesizing transformations from examples (Section III);

• An evaluation of REFAZER in the context of learning fixes
for students’ submissions to introductory programming
assignments (Section IV-A);

• An evaluation of REFAZER in the context of learning
transformations to apply repetitive edits in open-source
industrial C# code (Section IV-B).

II. MOTIVATING EXAMPLES

We start by describing two motivating examples of repetitive
program transformations.

A. Fixing programming assignment submissions

Assignments in introductory programming courses are often
graded using a test suite, provided by the instructors. However,
many students struggle to understand the fault in their code
when a test fails. To provide more detailed feedback (e.g., fault
location or its description), teachers typically compile a rubric

- while (receiver.CSharpKind() == SyntaxKind.ParenthesizedExpression)
+ while (receiver.IsKind(SyntaxKind.ParenthesizedExpression))

- foreach (var m in modifiers) {if (m.CSharpKind() == modifier) return true; };
+ foreach (var m in modifiers) {if (m.IsKind(modifier)) return true; };

Fig. 2: Repetitive edits applied to the Roslyn source code to perform a refactoring.

of common types of faults and detect them with simple checks.
With a large variety of possible faults, manually implementing
these checks can be laborious and error-prone.

However, many faults are common and exhibit themselves in
numerous unrelated student submissions. Consider the Python
code in Fig. 1a. It describes two submission attempts to
solve a programming assignment in the course “The Structure
and Interpretation of Computer Programs” (CS61A) at UC
Berkeley,2 an introductory programming class with more than
1,500 enrolled students. In this assignment, the student is asked
to write a program that computes the product of the first n
terms, where term is a function. The original code, which
includes line 4 instead of line 5, is an incorrect submission for
this assignment, and the subsequent student submission fixes it
by replacing line 4 with line 5. Notably, the fault illustrated in
Fig. 1 was a common fault affecting more than 100 students
in the Spring semester of 2016 and Fig. 1b shows a recursive
algorithm proposed by a different student with the same fault.

To alleviate the burden of compiling manual feedback,
we propose to automatically learn the rubric checks from
the student submissions. Existing tools for such automatic
learning [1, 20] cannot generate a transformation that is general
enough to represent both the edits shown in Fig. 1c due to their
limited forms of abstraction. In REFAZER, this transformation
is described as a rewrite rule shown in Fig. 1d. This rewrite
rule pattern matches any subtree of the program’s AST whose
root is a * operation with a variable as the second operand
and inserts a term application on top of that variable. Notice
that the rewrite rule abstracts both the variable name and the
first operand of the * operator.

B. Repetitive codebase edits

We now illustrate how REFAZER automates repetitive
codebase editing. The following example is found in Roslyn,
Microsoft’s library for compilation and code analysis for C# and
VB.NET. Consider the edits shown in Fig. 2, where, for every
comparison instance with an object returned by the method
CSharpKind, the developer replaces the == operator with an
invocation of the new method IsKind, and passes the right-
hand side expression as the method’s argument. Such refactoring
is beyond abilities of IDEs due to its context sensitivity. In
contrast, REFAZER generalizes the two example edits in Fig. 2
to the intended program transformation, which can be applied
to all other matching AST subtrees in the code.

When we analyzed the commit 8c146443 in the Roslyn
repository, we observed that the developer applied this edit to
26 locations in the source code. However, the transformation
generated by REFAZER applied this edit to 718 more locations.
After we presented the results to the Roslyn developers, they
confirmed that the locations discovered by REFAZER should
have been covered in the original commit.

2http://cs61a.org/
3https://github.com/dotnet/roslyn/commit/8c14644

Fig. 3: The workflow of REFAZER. It receives an example-
based specification of edits as input and returns a set of
transformations that satisfy the examples.

III. TECHNIQUE

In this section, we describe our technique for synthesizing
program transformations from input-output examples. REFAZER
builds on PROSE [14], a framework for program synthesis from
examples and under-specifications.

In PROSE, an application designer defines a domain-specific
language (DSL) for the desired tasks. The synthesis problem is
given by a spec ϕ, which contains a set of program inputs and
constraints on the desired program’s outputs on these inputs
(e.g., examples of these outputs). PROSE synthesizes a set
of programs in the DSL that is consistent with ϕ, using a
combination of deduction, search, and ranking:

• Deduction is a top-down walk over the DSL grammar,
which iteratively backpropagates the spec ϕ on the desired
program to necessary specs on the subexpressions of
this program. In other words, it reduces the synthesis
problem to smaller synthesis subproblems using a divide-
and-conquer dynamic programming algorithm over the
desired program’s structure.

• Search is an enumerative algorithm, which iteratively
constructs candidate subexpressions in the grammar and
verifies them for compliance with the spec ϕ [21].
• Ranking consists of picking the most robust program from

synthesized set of programs consistent with ϕ. Because
examples are highly ambiguous, this set may contain up to
1020 programs [14], and quickly eliminating undesirable
candidates is paramount for a user-friendly experience.

REFAZER consists of three main components, which are
illustrated in Fig. 3:

• A DSL for describing program transformations. Its opera-
tors partially abstract the edits provided as examples. The
DSL is expressive enough to capture common transforma-
tions but restrictive enough to allow efficient synthesis.

• Witness functions. In PROSE, a witness function ωF is a
backpropagation procedure, which, given a spec ϕ on a
desired program on kind F (e), deduces a necessary (or
even sufficient) spec ϕe = ωF (ϕ) on its subexpression e.

transformation ::= Transformation(rule1, . . . , rulen)
rule ::= Map(λx→ operation, locations)
locations ::= Filter(λx→ Match(x, match), AllNodes())
match ::= Context(pattern, path)
pattern ::= token | Pattern(token, pattern1, . . . , patternn)

token ::= Concrete(kind, value) | Abstract(kind)
path ::= Absolute(s) | Relative(token, k)
operation ::= Insert(x, ast, k) | Delete(x, ref)

| Update(x, ast) | Prepend(x, ast)
ast ::= const | ref
const ::= ConstNode(kind, value, ast1, . . . , astn)
ref ::= Reference(x, match, k)

Fig. 4: A core DSL LT for describing AST transformations.
kind ranges over possible AST kinds of the underlying
programming language, and value ranges over all possible
ASTs. s and k range over strings and integers, respectively.

Witness functions enable efficient top-down synthesis
algorithms in PROSE. 4

• Ranking functions. Since example-based specifications
are incomplete, the synthesized abstract transformation
may not perform the desired transformation on other
input programs. We specify ranking functions that rank a
transformation based on its robustness (i.e., likelihood of
it being correct in general).

A. A DSL for AST transformations

In this section, we present our DSL for program transforma-
tions, hereinafter denoted LT. It is based on tree edit operators
(e.g., Insert, Delete, Update), list processing operators
(Filter, Map), and pattern-matching operators on trees. The
syntax of LT is formally given in Fig. 4.

A transformation T on an AST is a list of rewrite rules
(or simply “rules”) r1, . . . , rn. Each rule ri specifies an
operation Oi that should be applied to some set of locations in
the input AST. The locations are chosen by filtering all nodes
within the input AST w.r.t. a pattern-matching predicate.

Given an input AST P , each rewrite rule r produces a
list of concrete edits that may be applied to the AST. Each
such edit is a replacement of some node in P with a new
node. This set of edits is typically an overapproximation of the
desired transformation result on the AST; the precise method for
applying the edits is domain-specific (e.g., based on verification
via unit testing). We discuss the application procedures for our
studied domains in Section IV. In the rest of this subsection,
we focus on the semantics of the rules that suggest the edits.

A rewrite rule consists of two parts: a location expres-
sion and an operation. A location expression is a Filter
operator on a set of sub-nodes of a given AST. Its predicate
λx → Match(x, Context(pattern, path)) matches each
sub-node x with a pattern expression.

Patterns A pattern expression Context(pattern, path)
checks the context of the node x against a given pattern.

4Another view on witness functions ωF is that they simply implement
inverse semantics of F , or a generalization of inverse semantics w.r.t. some
constraints on the output of F instead of just its value.

(a) A synthesized AST transformation.

while (receiver.CSharpKind() ==
SyntaxKind.ParenthesizedExpression) {...} ...

foreach (var m in modifiers) {
if (m.CSharpKind() == modifier) {return true;}

}; ...
if (r.Parent.CSharpKind() ==

SyntaxKind.WhileStatement) {...}

(b) A C# program used as an input to the transformation.

(c) A list of edits produced after instantiating (a) to (b).

Fig. 5: An example of a synthesized transformation and its
application to a C# program, which results in a list of edits.

Here pattern is a combination of Concrete tokens (which
match a concrete AST) and Abstract tokens (which match
only the AST kind, such as IfStatement). In addition, a
path expression specifies the expected position of x in the
context that is described by pattern, using a notation similar
to XPath [22]. This allows for a rich variety of possible
pattern-matching expressions, constraining the ancestors or
the descendants of the desired locations in the input AST.

Example 1. Fig. 5 shows a transformation that describes our
running example from Fig. 2. This transformation contains one
rewrite rule. Its location expression is

Filter(λx→ Context(π, Absolute("")))

where

π = Pattern(== ,Pattern(. , te, tm), te)

te = Abstract(<exp>)

tm = Concrete(<call> ,"CSharpKind()")

The path expression Absolute("") specifies that the ex-
pected position of a location x in π should be at the root –
that is, the pattern π should match the node x itself.

Operations Given a list of locations selected by the Filter
operator, a rewrite rule applies an operation to each of them.
An operation O takes as input an AST x and performs one of
the standard tree edit procedures [23, 24] on it:

• Insert some fresh AST as the kth child of x;
• Delete some sub-node from x;
• Update x with some fresh AST;
• Prepend some fresh AST as the preceding sibling of x.

An operation creates fresh ASTs using a combination of
constant ASTs ConstNode and reference ASTs Reference,
extracted from the location node x. Reference extraction
uses the same pattern-matching language, described above. In
particular, it can match over the ancestors or descendants of the
desired reference. Thus, the semantics of reference extraction
Reference(x, Context(pattern, path), k) is:

1) Find all nodes in x s.t. their surrounding context matches
pattern, and they are located at path within that context;

2) Out of all such nodes, extract the kth one.

Example 2. For our running example from Fig. 2, the desired
rewrite rule applies the following operation to all nodes selected
by the location expression from Example 1:

Update(x, ConstNode(<call> , "IsKind", `1, `2))

where

`1 = Reference(x,Context(π1, s1), 1)

`2 = Reference(x,Context(π2, s2), 1)

π1 = Pattern(. , te, tm)

π2 = Pattern(== ,Pattern(. , te, tm), te)

s1 = Absolute("1") s2 = Absolute("2")

and te and tm are defined in Example 1. This operation updates
the selected location x with a fresh call to IsKind, performed
on the extracted receiver AST from x, and with the extracted
right-hand side AST from x as its argument.

B. Synthesis algorithm

We now describe our algorithm for synthesizing AST
transformations from input-output examples. Formally, it solves
the following problem: given an example-based spec ϕ, find
a transformation T ∈ LT that is consistent with all examples
(Pi, Po) ∈ ϕ. We denote this problem as T � ϕ. A transforma-
tion T is consistent with ϕ if and only if applying T to Pi

produces the concrete edits that yield Po from Pi.

Recall that the core methodology of PBE in PROSE is
deductive synthesis, or backpropagation. In it, a problem of
kind F (T1, T2) � ϕ is reduced to several subproblems of kinds
T1 � ϕ1 and T2 � ϕ2, which are then solved recursively. Here
ϕ1 and ϕ2 are fresh specs, which constitute necessary (or even
sufficient) constraints on the subexpressions T1 and T2 in order
for the entire expression F (T1, T2) to satisfy ϕ. In other words,

the examples on an operator F are backpropagated to examples
on the parameters of F .

As discussed previously, the backpropagation algorithm
relies on a number of modular operator-specific annotations
called witness functions. Even though PROSE includes many
generic operators with universal witness functions out of
the box (e.g., list-processing Filter), most operators in
LT are domain-specific, and therefore require non-trivial
domain-specific insight to enable backpropagation. The key
part of this process is the witness function for the top-level
Transformation operator.

The operator Transformation(rule1, . . . , rulen) takes
as input a list of rewrite rules and produces a transformation
that, on a given AST, applies these rewrite rules in all applicable
locations, producing a list of edits. The backpropagation
problem for it is stated in reverse: given examples ϕ of edits
performed on a given AST, find necessary constraints on the
rewrite rules rule1, . . . , rulen in the desired transformation.

The main challenges that lie in backpropagation for
Transformation are:

1) Given an input-output example (Pi, Po), which often rep-
resents the entire codebase/namespace/class, find examples
of individual edits in the AST of Pi;

2) Partition the edits into clusters, deducing which of them
were obtained by applying the same rewrite rule;

3) For each cluster, build a set of operation examples for the
corresponding rewrite rule.

Finding individual edits We resolve challenge 1 by calculating
tree edit distance between Pi and Po. Note that the state-of-the-
art Zhang-Shasha tree edit distance algorithm [24] manipulates
single nodes, whereas our operations (and, consequently,
examples of their behavior) manipulate whole subtrees. Thus,
to construct proper examples for operations in LT, we group
tree edits computed by the distance algorithm into connected
components. A connected component of node edits represents
a single edit operation over a subtree.

Partitioning into rewrite rules To identify subtree edits
that were performed by the same rewrite rule, we use the
DBSCAN [25] clustering algorithm to partition edits by
similarity. Here we conjecture that components with similar
edit distances constitute examples of the same rewrite rule.

Algorithm 1 describes the steps performed by the witness
function for Transformation. Lines 2-6 perform the steps
described above: computing tree edit distance and clustering the
connected components of edits. Then, in lines 7-11, for each
similar component, we extract the topmost operation to create
an example for the corresponding rewrite rule. This example
contains the subtree where the operation was applied in the
input AST and the resulting subtree in the output AST.

C. Ranking

The last component of REFAZER is a ranking function for
transformations synthesized by the backpropagation algorithm.
Since LT typically contains many thousands of ambiguous
programs that are all consistent with a given example-based
spec, we must disambiguate among them. Our ranking function

Algorithm 1 Backpropagation procedure for the DSL operator
Transformation(rule1, . . . , rulen).
Require: Example-based spec ϕ

1: result := a dictionary for storing examples for each input
2: for all (Pi,Po) in ϕ do
3: examples := empty list of refined examples for edits
4: operations := TREEEDITDISTANCE(Pi, Po)
5: components := CONNECTEDCOMPONENTS(operations)
6: connectedOpsByEdits := DBSCAN(components)
7: for all connectedOps ∈ connectedOpsByEdits do
8: ruleExamples := MAP(connectedOps,

λ ops→ create a single concrete operation based on ops)
9: examples += ruleExamples

10: end for
11: result[Pi] += examples
12: end for
13: return result

selects a transformation that is more likely to be robust on
unseen ASTs – that is, avoid false positive and false negative
matches. It is based on the following principles:

• Favor Reference over ConstNode: a transformation
that reuses a node from the input AST is more likely to
satisfy the intent than one that constructs a constant AST.

• Favor patterns with non-root paths, that is patterns that
consider surrounding context of a location. A transforma-
tion that selects its locations based on surrounding context
is less likely to generate false positives.

• Among patterns with non-empty context, favor the shorter
ones. Even though context helps prevent underfitting (i.e.,
false positive matches), over-specializing to large contexts
may lead to overfitting (i.e., false negative matches).

We describe the complete set of witness and ranking
functions on REFAZER’s website.

IV. EVALUATION

In this section, we present two empirical studies to evaluate
REFAZER. First, we present an empirical study on learning trans-
formations for fixing student submissions to introductory Python
programming assignments (Section IV-A). Then, we present an
evaluation of REFAZER on learning transformations to apply
repetitive edits to open-source C# projects (Section IV-B). The
experiments were performed on a PC with a Core i7 processor
and 16GB of RAM, running Windows 10.

A. Fixing introductory programming assignments

In this study, we use REFAZER to learn transformations
that describe how students modify an incorrect program to
obtain a correct one. We then measure how often the learned
transformations can be used to fix other students’ incorrect
submissions. Transformations that apply across students are
valuable because they can be used to generate hints to students
on how to fix bugs in their code; alternatively, they can also help
teaching assistants (TAs) with writing better manual feedback.
We focus our evaluation on the transfer of transformations and
leave the evaluation of hint generation to future work.

Our goal is to investigate both the overall effectiveness of
our technique, and to what extent learned transformations in an

education scenario are problem-specific, or general in nature.
If most transformations are general purpose, instructors might
be able to provide them manually, once. However, if most
transformations are problem-specific, automated techniques
such as REFAZER will be especially valuable. Concretely, we
address the following research questions:

RQ1 How often can transformations learned from student code
edits be used to fix incorrect code of other students in the
same programming assignment?

RQ2 How often can transformations learned from student code
edits be used to fix incorrect code of other students who
are solving a different programming assignment?

Benchmark We collected data from the introductory program-
ming course CS61A at UC Berkeley. As many as 1,500 students
enroll in this course per semester, which has led the instructors
to adopt solutions common to MOOCs such as autograders.
For each homework problem, the teachers provide a black-
box test suite and the students use these tests to check the
correctness of their programs. The system logs a submission
whenever the student runs the provided tests for a homework
assignment. This log thus provides a history of all submissions.
Our benchmark comprises four assigned problems (see Table I).
For each problem, students had to implement a single function
in Python. We filtered the log data to focus on students who
had at least one incorrect submission, which is required to learn
a transformation from incorrect to correct state. We analyzed
21,781 incorrect submissions, from up to 720 students.

Experimental setup For each problem, each student in the data
set submitted one or more incorrect submissions and, eventually,
a correct one. We used the last incorrect submission and the
correct one as input-output examples to synthesize a program
transformation and used the synthesized transformation to
attempt fixing other student submissions. By selecting a pair of
incorrect and correct submissions, we learn a transformation that
changes the state of the program from incorrect to correct, fixing
existing faults in the code. Students may have applied additional
edits, such as refactorings, though. The transformation thus may
contain unnecessary rules to fix the code. By learning from
the last incorrect submission, we increase the likelihood of
learning a transformation that is focused on fixing the existing
faults. We leave for future work the evaluation of learning
larger transformations from earlier incorrect submissions to
correct submissions, and how these transformations can help
to fix larger conceptual faults in the code.

We used the teacher-provided test suites to check whether a
program was fixed. Therefore, our technique relies on test cases
for evaluating the correctness of fixed programs. While reliance
on tests is a fundamental limitation, when fixes are reviewed
in an interactive setting, our technique can be used to discover
the need for more test cases for particular assignments.

For RQ1, we considered two scenarios: Batch and Incremen-
tal. In the Batch scenario, for each assignment, we synthesize
transformations for all but one student in the data set and
use them to fix the incorrect submissions of the remaining
student, in a leave-one-out cross-validation – i.e., we attempt
to fix the submission of a student using only transformations
learned using submissions of other students. This scenario
simulates the situation in which instructors have data from one
or more previous semesters. In the Incremental scenario, we

TABLE I: Our benchmarks and incorrect student submissions.

Assignment Students Incorrect submissions

Product product of the first n terms 549 3,218
Accumulate fold-left of the first n terms 668 6,410

Repeated function composition, depth n 720 9,924
G G(n) =

∑3
i=1 i · G(n − i) 379 2,229

sort our data set by submission time and try to fix a submission
using only transformations learned from earlier timestamps.
This scenario simulates the situation in which instructors lack
previous data. Here the technique effectiveness increases over
time. For RQ2, we use all transformations learned in Batch from
one assignment to attempt to fix the submissions for another
assignment. We selected four combinations of assignments for
this experiment, and we evaluated the submissions of up to
400 students in each assignment.

In general, each synthesized rule in the transformation may
apply to many locations in the code. In our experiments, we
apply each synthesized transformation to at most 500 combina-
tions of locations. If a transformation can be applied to further
locations, we abort and proceed to the next transformation.

Learned transformations are useful within the same program-
ming assignments In the Batch scenario, REFAZER generated
fixes for 87% of the students. While, on average, students took
8.7 submissions to finish the assignment, the transformations
learned using REFAZER fixed the student submissions after
an average of 5.2 submissions. In the Incremental scenario,
REFAZER generated fixes for 44% of the students and required,
on average, 6.8 submissions to find a fix. The results suggest
that the technique can be useful even in the absence of data
from previous semesters but using existing data can double its
effectiveness. Table II summarizes the results for both scenarios.

Although we only used students’ last incorrect submissions
and their corresponding correct submissions as examples for
learning transformations, we could find a transformation to
fix student solutions 3.5 submissions before the last incorrect
submission, on average. This result suggests that REFAZER can
be used to provide feedback to help students before they know
how to arrive at a correct solution themselves. In addition,
providing feedback about mistakes can be more important for
students struggled with their assignments. Fig. 6 shows the
50 students with the highest number of submissions for the
two hardest assignments. Each column shows chronological
submissions for one student, with the earliest submissions at
the top and the eventual correct submission at the bottom.
Red indicates an incorrect submission; blue shows the first
time REFAZER was able to fix the student’s code (we only
show the earliest time and do not re-test subsequent incorrect
submissions). As we can see in the charts, students took dozens
(up to 148) submissions. In many cases, REFAZER provided a
fix after the student attempted half of the submissions.

The transformations learned by REFAZER contain edits
with different granularity, ranging from edits to single nodes in
the AST, e.g., updating a constant, to edits that add multiple
statements, such as adding a base case, a return statement, or
even replacing an iterative solution by a recursive one. On
average, the tree edit distance between the AST of an incorrect
submission and the fixed one was 4.9 (σ = 5.1). However,

TABLE II: Summary of results for RQ1. “Incorrect submis-
sions” = mean (SD) of submissions per student; “Students” = %
of students with solution fixed by REFAZER; “Submissions” =
mean (SD) of submissions required to find the fix.

Assignment Incorrect
submissions

Batch Incremental

Students Submissions Students Submissions

Product 5.3 (8.2) 501 (91%) 3.57 (6.1) 247 (45%) 4.1 (6.7)
Accumulate 8.9 (10.5) 608 (91%) 5.4 (7.9) 253 (38%) 7.5 (9.8)

Repeated 12.7 (15.3) 580 (81%) 8 (10.3) 340 (47%) 9.6 (11.5)
G 5.5 (9.4) 319 (84%) 1.4 (1.7) 174 (46%) 4.1 (7)

Total 8.7 (12) 2,008 (87%) 5.2 (8.1) 1,014 (44%) 6.8 (9.7)

Submissions avoided
Submissions remaining

first submission

final, correct
submission

subm
ission tim

e

-80

-60

-40

-20

0
1 5 9 13 17 21 25 29 33 37 41 45 49

su

bm
is

si
on

s

student

Student #16 had 64 submissions until they solved the problem.
Our technique found a transformation that would have fixed
their code after 24 submissions, or 42 submissions earlier.

(a) Assignment “Accumulate”

first submission

final, correct
submission

subm
ission tim

e

-160

-120

-80

-40

0
1 5 9 13 17 21 25 29 33 37 41 45 49

su

bm
is

si
on

s

student

Student #16 had 64 submissions until they solved the problem.
Our technique found a transformation that would have fixed
their code after 24 submissions, or 42 submissions earlier.

(b) Assignment “Repeated”

Fig. 6: Analysis of the first time REFAZER can fix a student
submission for the 50 students with most attempts for two
benchmark problems. Blue: submissions that might be avoided
by showing feedback from a fix generated by REFAZER.

REFAZER did learn some larger fixes. The maximum tree edit
distance was 45. We also noticed transformations containing
multiple rules that represent multiple mistakes in the code.

Most learned transformations are not useful among different
programming assignments Using transformations learned
from other assignments we fixed submissions for 7-24% of
the students, which suggests that most transformations are
problem-specific and not common among different assignments,
as shown in Table III. Column Original Assignment shows the
assignments where REFAZER learned the transformations, and
Target Assignment shows the assignments where the trans-
formations were applied to. Accumulate was the assignment
with most fixed submissions. The Accumulate function is
a generalization of the Product function, used to learn the
transformations, which may be the reason for the higher number

TABLE III: Summary of results for RQ2.

Original Assignment Target Assignment Helped students

Product G 28 out of 379 (7%)
Product Accumulate 94 out of 400 (24%)
Product Repeated 43 out of 400 (11%)

Accumulate G 33 out of 379 (9%)

of fixed faults. In general, the results suggest that different
assignments exhibit different fault patterns; therefore, problem-
specific training corpora are needed. This finding also suggests
that other automatic grading tools that use a fixed or user-
provided fault rubric (e.g., AutoGrader [9]) are not likely to
work on arbitrary types of assignments.

Qualitative feedback from teaching assistants To validate the
quality of the learned transformations, we built a user interface
that allows one to explore, for each transformation, the incorrect
submissions that can be fixed with it. We asked a TA of the
CS61a course to analyze the fixes found using REFAZER. The
TA confirmed that fixes were generally appropriate, but also
reported some issues. First, a single syntactic transformation
may represent multiple distinct mistakes. For instance, a
transformation that changes a literal to 1 was related to a
bug in the stopping condition of a while loop in one student’s
code; and also to a bug in the initial value of a multiplication
which would always result in 0 in another student’s code.
In this case, the TA found it hard to provide a meaningful
description of the fault beyond “replace 0 with 1”. If fixes are
used to generate feedback, TAs will need additional tools to
merge or split clusters of student submissions. Finally, some
fixed programs passed the tests but the TA noticed some faults
remained due to missing tests.

B. Applying repetitive edits to open-source C# projects

In this study, we use REFAZER to learn transformations
that describe simple edits that have to be applied to many
locations of a C# codebase. We then measure how often the
learned transformation is the intended one and whether it is
correctly applied to all the required code locations. Concretely,
we address the following question:

RQ3 Can REFAZER synthesize transformations with repetitive
edits to large open-source projects?

Benchmark We manually inspected 404 commits from three
open-source projects: Roslyn, Entity Framework, and NuGet.
The projects’ sizes range from 150,000 to 1,500,000 lines
of code. Starting from the most recent commit, the first two
authors inspected commit diff files—i.e., the code before and
after the edits. If similar edits appeared three or more times, we
classified the edit as repetitive. We identified 56 scenarios: 27
in Roslyn, 12 in Entity Framework, and 17 in NuGet.

The number of edited locations in each scenario ranges
from 3 to 60 (median = 5). Each project contains at least one
scenario with more than 19 edited locations. In 14 (25%) out
of the 56 scenarios, there are edited locations in more than one
file, which is harder to handle correctly for developers. Finally,
in 39 (70%) out of the 56 scenarios, the edits are complex
and context-dependent, meaning that a simple search/replace

strategy is not enough to correctly apply the edits to all the
necessary locations. We measured the size of the edits used
as input-output examples by calculating the tree edit distance
between the input AST and the output AST. On average, the
distance was 13.0 (σ = 13.6). The maximum distance was 76.

Experimental setup We selected the examples for REFAZER
as follows. First we randomly sort the edits described in the diff
information. Next we incrementally add them as examples to
REFAZER: after each example, we check whether the learned
transformation correctly applies all subsequent edits. If the
transformation misses an edit or incorrectly applies it according
to the diff information, we take the first discrepancy in the edit
list and provide it as the next example. If the transformation
applies edits not presented in the diff, we manually inspect
them to check whether the developer missed a location or the
locations were incorrectly edited.

Results Table IV summarizes our results. REFAZER synthesized
transformations for 55 out of 56 scenarios. In 40 (71%) sce-
narios, the synthesized transformations applied the same edits
as developers, whereas, in 16 scenarios, the transformations
applied more edits than developers. We manually inspected
these scenarios, and conclude that 7 transformations were
correct (i.e., developers missed some edits). We reported them
to the developers of the respective projects. As of this writing,
they confirmed 3 of these scenarios. In one of them, developers
merged our pull request. In another one, they are not planning
to spend time changing the code because the non-changed
locations did not cause issues in the tests. In the last scenario,
developers confirmed that other locations may need similar
edits, but they did not inform us whether they will apply them.

In 9 scenarios (16%), additional edits were incorrect and
revealed two limitations of the current DSL. First, some edits
require further analysis to identify locations to apply them. For
example, in scenario 18, developers replaced the full name of
a type by its simple name. However, in some classes, this edit
conflicted with another type name. As future work, we plan
to extend our DSL to support type analysis and preconditions
for each transformation. The second limitation relates to our
tree pattern matching. Some examples produced templates that
were too general. For example, if two nodes have different
numbers of children, we can currently only match them based
on their types. To support this kind of pattern, we plan to
include additional predicates in our DSL such as Contains,
which does not consider the entire list of children, but checks
if any of the children match a specific pattern.

Our technique, on average, required 2.9 examples to
synthesize all transformations in a diff. The number of required
examples may vary based on example selection. Additionally,
changes in the ranking functions preferring more general
patterns over more restrictive ones can also influence the number
of examples. We leave a further investigation of example
ordering and of our ranking system to future work.

Threats to validity With respect to construct validity, our
initial baseline is the diff information between commits. Some
repetitive edits may have been performed across multiple
commits, or developers may not have changed all possible
code fragments. Therefore, some similar edits in each scenario
may be unconsidered. To reduce this threat, we manually in-
spect REFAZER’s additional edits. Concerning internal validity,

TABLE IV: Evaluation Summary. Scope = scope of the
transformation; Ex. = examples; Dev. = locations modified
by developers; REFAZER = locations modified by REFAZER.
Outcomes: 3 = it performed the same edits as the developers;
H = it performed more edits than the developers (manually
validated as correct); 7 = it performed incorrect edits; “—” =
it did not synthesize a transformation.

Id Project Scope Ex. Dev. REFAZER Outcome

1 EF Single file 2 13 13 3
2 EF Single file 5 10 10 3
3 EF Multiple files 3 19 20 H
4 EF Single file 3 4 4 3
5 EF Single file 3 3 3 3
6 EF Single file 2 3 3 3
7 EF Single file 2 4 10 H
8 EF Multiple files 2 8 8 3
9 EF Single file 2 3 3 3

10 EF Single file 2 12 12 3
11 EF Multiple files 4 5 5 3
12 EF Single file 2 3 3 3
13 NuGet Single file 2 4 4 3
14 NuGet Multiple files 2 4 16 7
15 NuGet Single file 3 3 3 3
16 NuGet Multiple files 2 31 88 H
17 NuGet Single file 3 3 3 3
18 NuGet Multiple files 4 8 14 7
19 NuGet Single file 4 14 43 7
20 NuGet Single file 2 4 4 3
21 NuGet Multiple files 5 5 13 7
22 NuGet Single file 3 3 3 3
23 NuGet Single file 3 5 5 3
24 NuGet Single file 2 3 3 3
25 NuGet Single file 3 4 4 3
26 NuGet Single file 2 9 32 7
27 NuGet Single file 3 4 4 3
28 NuGet Multiple files 3 4 10 H
29 NuGet Multiple files 4 12 79 7
30 NuGet Single file 2 3 21 H
31 Roslyn Multiple files 5 7 7 3
32 Roslyn Multiple files 3 17 17 3
33 Roslyn Single file 3 6 6 3
34 Roslyn Single file 2 9 9 3
35 Roslyn Multiple files 3 26 744 H
36 Roslyn Single file 2 4 4 3
37 Roslyn Single file 4 4 4 3
38 Roslyn Single file 8 14 14 3
39 Roslyn Single file 2 60 — —
40 Roslyn Single file 3 8 8 3
41 Roslyn Multiple files 3 15 15 3
42 Roslyn Single file 2 7 7 3
43 Roslyn Single file 5 13 14 7
44 Roslyn Single file 2 12 12 3
45 Roslyn Single file 2 4 4 3
46 Roslyn Single file 2 5 5 3
47 Roslyn Single file 2 3 3 3
48 Roslyn Single file 4 11 11 3
49 Roslyn Single file 2 5 5 3
50 Roslyn Single file 2 3 5 H
51 Roslyn Single file 2 5 5 3
52 Roslyn Single file 2 3 3 3
53 Roslyn Single file 4 6 6 3
54 Roslyn Multiple files 2 15 49 7
55 Roslyn Single file 3 4 4 3
56 Roslyn Single file 2 4 4 3

example selection may affect the number of examples needed to
perform the transformation. To avoid bias, we randomly selected
the examples. Additionally, we performed this experiment three
times and did not see significant changes in the required number

of examples. Finally, our corpus of repetitive changes may not
be representative for other kinds of software systems.

V. RELATED WORK

Example-based program transformations Meng et al. [1, 20,
26] propose Lase, a technique for performing repetitive edits
using examples. Lase uses clone detection, isomorphic subgraph
extraction, and dependency analysis to identify methods to
apply the repetitive edits and match context for transformation
concretization. Lase only learns abstractions from differences
in examples, learning the most specific generalization. In
contrast, REFAZER learns abstract transformations even from
one example or non-identical examples. This is possible because
REFAZER learns a set of transformations that satisfy the exam-
ples, not only the most specific one. Currently, both techniques
are complementary with respect to applicability. Lase learns
statement-level edits and cannot learn from repetitive edits that
appear in different statement types (e.g., Fig. 1). Additionally,
some repetitive edits in our benchmarks (e.g., Fig. 2) appear
more than once in the same method, and Lase applies the
learned transformation to at most one location per method.

Furthermore, in Lase’s benchmark, the examples may
diverge in terms of applied edits; that is, one example may
have an update operation and a delete operation, and the other
example may have just an update operation. Lase only uses
common edits between examples, which means it can learn
transformations from inconsistent examples but it does not
learn example-specific edits. Currently, REFAZER cannot handle
these examples, but we plan to extend the DSL operators
to group examples according to their similarities and learn
transformations for each group of examples separately.

Other approaches are semi-automatic using examples in
combination with transformation templates [27, 28]. Unlike
these techniques, our approach is fully automated. Feser et
al. [29] propose a technique for synthesizing data structure
transformations from examples in functional programming
languages. Nguyen et al. [30] present LibSync, a technique
that migrates APIs based on migrated clients. Tansey and
Tilevich [31] present an example-based technique to migrate
APIs that are based on annotations. HelpMeOut [32] learns
transformations to fix compilation and run-time errors from
examples. Asaduzzaman et al. [33] present Parc, a technique
to recommend argument (parameter) for method calls based on
parameter usage history and static type analyses. Unlike these
techniques, REFAZER is not tailored to a specific domain.

Code completion techniques recommend code transforma-
tion while source code is edited. Raychev et al. [34] use data
from large code repositories to learn likely code completions.
Similarly, Foster et al. [35] use a large dataset of common code
completions and recommend them based on the code context.
Ge et al. [36] propose a similar technique for auto-completing
a refactoring started manually. While these techniques are
limited by IDE refactorings and their datasets, REFAZER can
automate unseen transformations. Nguyen et al. [37] present
APIRec, a technique that leverages repetitive edit properties to
recommend API usage. APIRec learns a statistical model based
on the co-occurrence of fine-grained changes and recommends
API calls based on edit context. Slang [38] is a technique that
computes a statistical model based on code fragments from

GitHub repositories. It receives as input a program with missing
fragments to be inserted (a role) and relies on a synthesizer
to fill in these fragments. While these techniques require a
large codebase to learn statistical models, REFAZER can learn
program transformations from one or few examples.

Inductive programming (IP) IP has been an active research
area in the AI and HCI communities for over a decade [39]. IP
techniques have recently been developed for various domains
including interactive synthesis of parsers [40], imperative
data structure manipulations [41], and network policies [42].
Recently, it has been successfully used in industry by FlashFill
and FlashExtract [11, 12, 43]. FlashFill is a feature in Microsoft
Excel 2013 that uses IP methods to automatically synthesize
string transformation macros from input-output examples.
FlashExtract is a tool for data extraction from semi-structured
text files, deployed in Microsoft PowerShell for Windows
10 and as the Custom Field and Custom Log features in
Operations Management Suite (a Microsoft log analytics tool).
The REFAZER DSL is inspired by the DSLs of FlashExtract and
FlashFill. While FlashFill uses the ConstString operator
to create new strings and the SubString operator to get
substrings from the input string, we use ConstNode and
Reference operators to compose the new subtree using new
nodes or nodes from the existing AST. In addition, our DSL
contains specific operators for performing tree edits and tree
pattern matching. FlashFill and FlashExtract motivated research
on PROSE [14]. While PROSE has been primarily used in the
data wrangling domain, our technique shows its applicability to
a novel unrelated domain – learning program transformations.

Synthesis for education Singh et al. [9] propose AutoGrader,
a program synthesis technique for fixing incorrect student
submissions. Given a set of transformations that represent fixes
for student mistakes (error model) and an incorrect submission,
AutoGrader uses symbolic execution to try all combinations of
transformations to fix the student submission. While AutoGrader
requires an error model, REFAZER automatically generates
it from examples of fixes. In the future, we plan to use
the symbolic search of AutoGrader to efficiently explore all
REFAZER transformations. Rivers and Koedinger [44] propose
a data-driven technique for hint generation. The main idea is to
generate concrete edits from the incorrect solution to the closest
correct one. While they focus on comparing the entire AST,
which can have many differences, our technique generalizes
transformations that fix specific mistakes in student submissions.
Kaleeswaran et al. [45] propose a semi-supervised technique
for feedback generation. The technique clusters the solutions
based on the strategies to solve it. Then instructors manually
label one correct submission in each cluster. They formally
validate incorrect solutions against correct one. Although our
technique is completely automatic, we plan to investigate the
use of formal verification to validate the transformations.

Program repair Automated program repair is the task of
automatically changing incorrect programs to make them meet
a desired specification [46]. One of the main challenges is to
efficiently search program space to find one that behaves cor-
rectly. The most prominent search techniques are enumerative or
data-driven. GenProg uses genetic programming to repeatedly
alter the incorrect program aiming to correct it [47]. Data-
driven approaches leverage large code repositories to synthesize
likely changes to the input program [38]. Prophet [48] is a

patch generation system that learns a probabilistic application-
independent model of correct code from a set of successful
human patches. Qlose provides ways to rank possible repairs
based on a cost metric [49]. Unlike these techniques, which use
a global model of possible transformations, REFAZER learns
specific transformations using examples of code modification
— i.e., from both the original and the modified program.

VI. CONCLUSIONS

We presented REFAZER, a technique for synthesizing
syntactic transformations from examples. Given a set of
examples consisting of program edits, REFAZER synthesizes
a transformation that is consistent with the examples. Our
synthesizer builds on the state-of-the-art program synthesis
engine PROSE. To enable it, we develop (i) a novel DSL
for representing program transformations, (ii) domain-specific
constraints for the DSL operators, which reduce the space
of search for transformations, and (iii) ranking functions
for transformation robustness, based on the structure of the
synthesized transformations. We evaluated REFAZER on two
applications: synthesizing transformations that describe how
students “fix” their programming assignments and synthesizing
transformations that apply repetitive edits to large codebases.
Our technique learned transformations that automatically fixed
the program submissions of 87% of the students participating
in a large UC Berkeley class and it learned the transformations
necessary to apply the correct code edits for 84% of the
repetitive tasks we extracted from three large code repositories.

As future work, we plan to increase the expressiveness of
our tree pattern expressions to avoid selecting incorrect locations
due to over-generalization. We aim at investigating the use of
control-flow and data-flow analyses for identifying the context
of the transformation, and the inclusion of negative examples
and operators to specify undesired transformations. Although
REFAZER is capable of fixing student bugs automatically, it
lacks the domain knowledge of a teacher and can therefore
generate functionally correct but stylistically bad fixes. To
address this limitation, we have recently built a mixed-initiative
approach that uses teacher expertise to better leverage the fixes
produced by REFAZER [50]. Teachers can write feedback about
an incorrect submission or a cluster of incorrect submissions.
The system propagates the feedback to all other students who
made the same mistake.

In addition to being a useful tool, REFAZER makes two
novel achievements in PBE. First, it is the first application
of backpropagation-based PBE methodology to a domain
unrelated to data wrangling or string manipulation. Second,
in its domain it takes a step towards development of fully
unsupervised PBE, as it automates extraction of input-output
examples from the datasets (that is, students’ submissions
or developers’ modifications). We hope that with our future
work on incorporating flow analyses into witness functions,
REFAZER will become the first major application of inductive
programming that leverages research developments from the
entire field of software engineering.

ACKNOWLEDGMENT

This research was supported by the NSF Expeditions in
Computing award CCF 1138996, NSF CAREER award IIS
1149799, CNPq/CAPES and a Google CS Capacity Award.

REFERENCES

[1] N. Meng, M. Kim, and K. S. McKinley, “LASE: Locating
and applying systematic edits by learning from examples,”
in Proceedings of the 35th International Conference on
Software Engineering, ser. ICSE ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 502–511.

[2] L. Wasserman, “Scalable, example-based refactorings with
refaster,” in Proceedings of the 2013 ACM Workshop on
Workshop on Refactoring Tools, ser. WRT ’13. New
York, NY, USA: ACM, 2013, pp. 25–28.

[3] Microsoft, “Visual Studio,” 2016, at
https://www.visualstudio.com.

[4] The Eclipse Foundation, “Eclipse,” 2016, at
https://eclipse.org/.

[5] JetBrains, “ReSharper,” 2016, at
https://www.jetbrains.com/resharper/.

[6] Synopsys, Inc., “Coverity,” 2016, at
http://www.coverity.com/.

[7] Google, “Error-prone,” 2016, at http://errorprone.info/.
[8] Google, “Clang-tidy,” 2016, at

http://clang.llvm.org/extra/clang-tidy/.
[9] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated

feedback generation for introductory programming as-
signments,” in Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, ser. PLDI ’13. New York, NY, USA: ACM,
2013, pp. 15–26.

[10] S. Gulwani, J. Hernández-Orallo, E. Kitzelmann,
S. H. Muggleton, U. Schmid, and B. Zorn, “Inductive
programming meets the real world,” Communications of
the ACM, vol. 58, no. 11, pp. 90–99, 2015.

[11] S. Gulwani, “Automating string processing in spreadsheets
using input-output examples,” in Proceedings of the 38th
Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL ’11. New York,
NY, USA: ACM, 2011, pp. 317–330.

[12] V. Le and S. Gulwani, “FlashExtract: A framework for
data extraction by examples,” in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’14, New York,
NY, USA, 2014, pp. 542–553.

[13] D. Edge, S. Gulwani, N. Milic-Frayling, M. Raza, R. Ad-
hitya Saputra, C. Wang, and K. Yatani, “Mixed-initiative
approaches to global editing in slideware,” in Proceedings
of the 33rd Annual ACM Conference on Human Factors
in Computing Systems, ser. CHI ’15. New York, NY,
USA: ACM, 2015, pp. 3503–3512.

[14] O. Polozov and S. Gulwani, “FlashMeta: A framework
for inductive program synthesis,” in Proceedings of
the ACM International Conference on Object-oriented
Programming Systems, Languages, and Applications, ser.
OOPSLA ’15. New York, NY, USA: ACM, 2015, pp.
542–553.

[15] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu,
“On the naturalness of software,” in Proceedings of the
34th International Conference on Software Engineering,
ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press, 2012,
pp. 837–847.

[16] G. Kniesel and H. Koch, “Static composition of refac-
torings,” Science of Computer Programming, vol. 52, no.
1-3, pp. 9–51, 2004.

[17] Microsoft, “Project Roslyn,” 2011, at
https://github.com/dotnet/roslyn.

[18] Microsoft, “Entity Framework 6,” at
http://www.asp.net/entity-framework.

[19] Microsoft, “NuGet 2,” at https://github.com/nuget/nuget2.
[20] N. Meng, M. Kim, and K. S. McKinley, “Systematic

editing: Generating program transformations from an
example,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, ser. PLDI ’11. New York, NY, USA: ACM,
2011, pp. 329–342.

[21] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin,
M. Raghothaman, S. A. Seshia, R. Singh, A. Solar-
Lezama, E. Torlak, and A. Udupa, “Syntax-guided syn-
thesis,” in Proceedings of the 2013 Formal Methods in
Computer-Aided Design, ser. FMCAD ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 1–8.

[22] World Wide Web Consortium, “XPath,” 1999, at
https://www.w3.org/TR/xpath/.

[23] M. Pawlik and N. Augsten, “RTED: A robust algorithm
for the tree edit distance,” Proceedings of the VLDB
Endowment, vol. 5, no. 4, pp. 334–345, Dec. 2011.

[24] K. Zhang and D. Shasha, “Simple fast algorithms for
the editing distance between trees and related problems,”
SIAM Journal on Computing, vol. 18, no. 6, pp. 1245–
1262, 1989.

[25] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-
based algorithm for discovering clusters in large spatial
databases with noise,” in Proceedings of the Second
International Conference on Knowledge Discovery and
Data Mining. AAAI Press, 1996, pp. 226–231.

[26] N. Meng, L. Hua, M. Kim, and K. S. McKinley, “Does
automated refactoring obviate systematic editing?” in Pro-
ceedings of the 37th International Conference on Software
Engineering - Volume 1, ser. ICSE ’15. Piscataway, NJ,
USA: IEEE Press, 2015, pp. 392–402.

[27] R. Robbes and M. Lanza, “Example-based program
transformation,” in Model Driven Engineering Languages
and Systems, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2008, vol. 5301, pp. 174–
188.

[28] M. Boshernitsan, S. L. Graham, and M. A. Hearst,
“Aligning development tools with the way programmers
think about code changes,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
ser. CHI ’07. New York, NY, USA: ACM, 2007, pp.
567–576.

[29] J. K. Feser, S. Chaudhuri, and I. Dillig, “Synthesizing data
structure transformations from input-output examples,” in
Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser.
PLDI ’15. New York, NY, USA: ACM, 2015.

[30] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T.
Nguyen, M. Kim, and T. N. Nguyen, “A graph-based
approach to API usage adaptation,” in Proceedings of
the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, ser.
OOPSLA ’10. New York, NY, USA: ACM, 2010, pp.
302–321.

[31] W. Tansey and E. Tilevich, “Annotation refactoring:
Inferring upgrade transformations for legacy applications,”
in Proceedings of the 23rd ACM SIGPLAN Conference

on Object-oriented Programming Systems Languages and
Applications, ser. OOPSLA ’08. New York, NY, USA:
ACM, 2008, pp. 295–312.

[32] B. Hartmann, D. MacDougall, J. Brandt, and S. R.
Klemmer, “What would other programmers do: Suggesting
solutions to error messages,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’10. New York, USA: ACM, 2010,
pp. 1019–1028.

[33] M. Asaduzzaman, C. K. Roy, S. Monir, and K. A. Schnei-
der, “Exploring API method parameter recommendations,”
in Proceedings of the 31st IEEE International Conference
on Software Maintenance and Evolution (ICSME), ser.
ICSME ’15. Washington, DC, USA: IEEE Computer
Society, 2015, pp. 271–280.

[34] V. Raychev, M. Schäfer, M. Sridharan, and M. Vechev,
“Refactoring with synthesis,” in Proceedings of the 2013
ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Ap-
plications, ser. OOPSLA ’13. New York, NY, USA:
ACM, 2013, pp. 339–354.

[35] S. R. Foster, W. G. Griswold, and S. Lerner, “WitchDoctor:
IDE support for real-time auto-completion of refactorings,”
in Proceedings of the 34th International Conference on
Software Engineering, ser. ICSE ’12. Piscataway, NJ,
USA: IEEE Press, 2012, pp. 222–232.

[36] X. Ge, Q. L. DuBose, and E. Murphy-Hill, “Reconciling
manual and automatic refactoring,” in Proceedings of the
34th International Conference on Software Engineering,
ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press, 2012,
pp. 211–221.

[37] A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen,
L. Mast, E. Rademacher, T. N. Nguyen, and D. Dig, “API
code recommendation using statistical learning from fine-
grained changes,” in Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE 2016. New York, NY,
USA: ACM, 2016, pp. 511–522.

[38] V. Raychev, M. Vechev, and E. Yahav, “Code completion
with statistical language models,” in Proceedings of
the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: ACM, 2014, pp. 419–428.

[39] H. Lieberman, Your wish is my command: Programming
by example. Morgan Kaufmann, 2001.

[40] A. Leung, J. Sarracino, and S. Lerner, “Interactive parser
synthesis by example,” in Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, June 15-17,
2015, pp. 565–574.

[41] J. K. Feser, S. Chaudhuri, and I. Dillig, “Synthesizing data
structure transformations from input-output examples,” in
Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser.
PLDI ’15. New York, NY, USA: ACM, 2015.

[42] Y. Yuan, R. Alur, and B. T. Loo, “NetEgg: Programming
network policies by examples,” in Proceedings of the
13th ACM Workshop on Hot Topics in Networks, 2014,
pp. 20:1–20:7.

[43] M. Mayer, G. Soares, M. Grechkin, V. Le, M. Marron,
O. Polozov, R. Singh, B. Zorn, and S. Gulwani, “User
interaction models for disambiguation in programming
by example,” in Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology,
ser. UIST ’15. New York, NY, USA: ACM, 2015, pp.
291–301.

[44] K. Rivers and K. R. Koedinger, “Data-driven hint gen-
eration in vast solution spaces: a self-improving Python
programming tutor,” International Journal of Artificial
Intelligence in Education, pp. 1–28, 2015.

[45] S. Kaleeswaran, A. Santhiar, A. Kanade, and S. Gulwani,
“Semi-supervised verified feedback generation,” in Pro-
ceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 739–
750.

[46] C. Goues, S. Forrest, and W. Weimer, “Current challenges
in automatic software repair,” Software Quality Journal,
vol. 21, no. 3, pp. 421–443, 2013.

[47] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer,
“A systematic study of automated program repair: Fixing
55 out of 105 bugs for $8 each,” in Proceedings of the
34th International Conference on Software Engineering,
ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press, 2012,
pp. 3–13.

[48] F. Long and M. Rinard, “Automatic patch generation by
learning correct code,” Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, vol. 51, no. 1, pp. 298–312,
2016.

[49] L. D’Antoni, R. Samanta, and R. Singh, Qlose: Program
repair with quantitative objectives. Springer International
Publishing, 2016, pp. 383–401.

[50] A. Head, E. Glassman, G. Soares, R. Suzuki, L. D’Antoni,
and B. Hartmann, “Writing Reusable Code Feedback
at Scale with Mixed-Initiative Program Synthesis,” in
L@S’17: 4th ACM Conference on Learning at Scale,
2017.

