Advancements in YARN Resource
Manager

Konstantinos Karanasos, Arun Suresh, and
Chris Douglas
Microsoft, Washington, DC, USA

Synonyms

Cluster scheduling; Job scheduling; Resource
management

Definitions

YARN is currently one of the most popular
frameworks for scheduling jobs and managing
resources in shared clusters. In this entry, we
focus on the new features introduced in YARN
since its initial version.

Overview

Apache Hadoop (2017), one of the most widely
adopted implementations of MapReduce (Dean
and Ghemawat 2004), revolutionized the way that
companies perform analytics over vast amounts
of data. It enables parallel data processing over
clusters comprised of thousands of machines
while alleviating the user from implementing

© Springer International Publishing AG 2018

complex communication patterns and fault
tolerance mechanisms.

With its rise in popularity, came the realization
that Hadoop’s resource model for MapReduce,
albeit flexible, is not suitable for every appli-
cation, especially those relying on low-latency
or iterative computations. This motivated decou-
pling the cluster resource management infrastruc-
ture from specific programming models and led
to the birth of YARN (Vavilapalli et al. 2013).
YARN manages cluster resources and exposes
a generic interface for applications to request
resources. This allows several applications, in-
cluding MapReduce, to be deployed on a single
cluster and share the same resource management
layer.

YARN is a community-driven effort that was
first introduced in Apache Hadoop in November
2011, as part of the 0.23 release. Since then,
the interest of the community has continued un-
abated. Figure 1 shows that more than 100 tickets,
i.e., JIRAs (YARN JIRA 2017), related to YARN
are raised every month. A steady portion of these
JIRASs are resolved, which shows the continuous
community engagement. In the past year alone,
160 individuals have contributed code to YARN.

Moreover, YARN has been widely deployed
across hundreds of companies for production
purposes, including Yahoo! (Oath), Microsoft,
Twitter, LinkedIn, Hortonworks, Cloudera, eBay,
and Alibaba.

Since YARN’s inception, we observe the fol-
lowing trends in modern clusters:

S. Sakr, A. Zomaya (eds.), Encyclopedia of Big Data Technologies,

https://doi.org/10.1007/978-3-319-63962-8_207-1

http://link.springer.com/Cluster scheduling
http://link.springer.com/Job scheduling
http://link.springer.com/Resource management
https://doi.org/10.1007/978-3-319-63962-8_207-1

2 Advancements in YARN Resource Manager
Advancements in YARN DOy ANAY Lo A C RS
Resource Manager, Fig. 1 £ 300 OO ".’ B 'X :\"X 'X "‘.' '\.’ 'X v
Timeline of Apache g
Hadoop releases (on top) € 250 — JIRAsraised
and number of raised and > JIRAs resolved
resolved tickets (JIRAs) é 200 |
per month on YARN = ¢ Hadooprelease

2

& 150 A

N :

&« 100

[5)

g 50

2

S o

Z « T T T T T T T T T T T

N AY AL AL AD A% Al A AD AS A0 AD AT Al

Application variety Users’ interest has ex-
panded from batch analytics applications (e.g.,
MapReduce) to include streaming, iterative
(e.g., machine learning), and interactive
computations.

Large shared clusters Instead of using dedi-
cated clusters for each application, diverse
workloads are consolidated on clusters
of thousands or even tens of thousands
of machines. This consolidation avoids
unnecessary data movement, allows for better
resource utilization, and enables pipelines
with different application classes.

High resource utilization Operating large clus-
ters involves a significant cost of ownership.
Hence, cluster operators rely on resource man-
agers to achieve high cluster utilization and
improve their return on investment.

Predictable execution Production jobs typically
come with Service Level Objectives (SLOs),
such as completion deadlines, which have to
be met in order for the output of the jobs to be
consumed by downstream services. Execution
predictability is often more important than
pure application performance when it comes
to business-critical jobs.

This diverse set of requirements has
introduced new challenges to the resource
management layer. To address these new
demands, YARN has evolved from a platform
for batch analytics workloads to a production-

Time

ready, general-purpose resource manager that
can support a wide range of applications and
user requirements over large shared clusters. In
the remainder of this entry, we first give a brief
overview of YARN’s architecture and dedicate
the rest of the paper to the new functionality that
was added to YARN these last years.

YARN Architecture

YARN follows a centralized architecture in which
a single logical component, the resource manager
(RM), allocates resources to jobs submitted to the
cluster. The resource requests handled by the RM
are intentionally generic, while specific schedul-
ing logic required by each application is encap-
sulated in the application master (AM) that any
framework can implement. This allows YARN
to support a wide range of applications using
the same RM component. YARN’s architecture
is depicted in Fig. 2. Below we describe its main
components. The new features, which appear in
orange, are discussed in the following sections.

Node Manager (NM) The NM is a daemon
running at each of the cluster’s worker nodes.
NMs are responsible for monitoring resource
availability at the host node, reporting faults,
and managing containers’ life cycle (e.g., start,
monitor, pause, and kill containers).

Advancements in YARN Resource Manager

(N
Resource Manager <« — » NM-RM heartbeat
Reservation
job _ <---ene » AM-RM heartbeat
YARN Client Jl o Planner
[0} o] o V] [0}
g 5] Service T 8
2|5 Scheduler ol
Q| |= . S
Dl s Opportunistic 2|
[L2 E Scheduler a Sl _
| < Guaranteed |
| N Scheduler |
~ D,
i) LA
| A . |

Node Manager

AMRM Proxy
Local Scheduler | | g
5

E E launch

container

Node Manager

AMRM Proxy
Local Scheduler

|
AM

Node Manager

AMRM Proxy
b . | Local Scheduler
o)

AM

Advancements in YARN Resource Manager, Fig. 2 YARN architecture and overview of new features (in orange)

Resource Manager (RM) The RM runs on a
dedicated machine, arbitrating resources among
various competing applications. Multiple RMs
can be used for high availability, with one of
them being the master. The NMs periodically
inform the RM of their status, which is stored
at the cluster state. The RM-NM communication
is heartbeat-based for scalability. The RM also
maintains the resource requests of all applica-
tions (application state). Given its global view
of the cluster and based on application demand,
resource availability, scheduling priorities, and
sharing policies (e.g., fairness), the scheduler
performs the matchmaking between application
requests and machines and hands leases, called
containers, to applications. A container is a log-
ical resource bundle (e.g., 2GB RAM, 1 CPU)
bound to a specific node.

YARN includes two scheduler implementa-
tions, namely, the Fair and Capacity Schedulers.
The former imposes fairness between applica-
tions, while the latter dedicates a share of the
cluster resources to groups of users.

Jobs are submitted to the RM via the YARN
Client protocol and go through an admission
control phase, during which security credentials
are validated and various operational and admin-
istrative checks are performed.

Application Master (AM) The AM is the job
orchestrator (one AM is instantiated per sub-
mitted job), managing all its life cycle aspects,
including dynamically increasing and decreasing
resource consumption, managing the execution
flow (e.g., running reducers against the output of
mappers), and handling faults. The AM can run
arbitrary user code, written in any programming
language. By delegating all these functions to
AMs, YARN’s architecture achieves significant
scalability, programming model flexibility, and
improved upgrading/testing.

An AM will typically need to harness re-
sources from multiple nodes to complete a job.
To obtain containers, the AM issues resource
requests to the RM via heartbeats, using the AM
Service interface. When the scheduler assigns a
resource to the AM, the RM generates a lease
for that resource. The AM is then notified and
presents the container lease to the NM for launch-
ing the container at that node. The NM checks
the authenticity of the lease and then initiates the
container execution.

In the following sections, we present the main
advancements made in YARN, in particular with
respect to resource utilization, scalability, support
for services, and execution predictability.

Resource Utilization

In the initial versions of YARN, the RM would
assign containers to a node only if there were
unallocated resources on that node. This guar-
anteed type of allocation ensures that once an
AM dispatches a container to a node, there will
be sufficient resources for its execution to start
immediately.

Despite the predictable access to resources
that this design offers, it has the following short-
comings that can lead to suboptimal resource
utilization:

Feedback delays The heartbeat-based AM-RM
and NM-RM communications can cause idle
node resources from the moment a container
finishes its execution on a node to the moment
an AM gets notified through the RM to launch
a new container on that node.

Underutilized resources The RM assigns con-
tainers based on the allocated resources at
each node, which might be significantly higher
than the actually utilized ones (e.g., a 4GB
container using only 2 GB of its memory).

In a typical YARN cluster, NM-RM heartbeat
intervals are set to 3 s, while AM-RM intervals
vary but are typically up to a few seconds. There-
fore, feedback delays are more pronounced for
workloads with short tasks.

Below we describe the new mechanisms that
were introduced in YARN to improve cluster
resource utilization. These ideas first appeared in
the Mercury and Yaq systems (Karanasos et al.
2015; Rasley et al. 2016) and are part of Apache
Hadoop as of version 2.9 (Opportunistic schedul-
ing 2017; Distributed scheduling 2017).

Opportunistic containers Unlike guaranteed
containers, opportunistic ones are dispatched to
an NM, even if there are no available resources
on that node. In such a case, the opportunistic
containers will be placed in a newly introduced
NM queue (see Fig.2). When resources become
available, an opportunistic container will be
picked from the queue, and its execution will
start immediately, avoiding any feedback delays.

Advancements in YARN Resource Manager

These containers run with lower priority in
YARN and will be preempted in case of resource
contention for guaranteed containers to start their
execution. Hence, opportunistic containers im-
prove cluster resource utilization without impact-
ing the execution of guaranteed containers. More-
over, whereas the original NM passively executes
conflict-free commands from the RM, a modern
NM uses these two-level priorities as inputs to
local scheduling decisions. For instance, low-
priority jobs with non-strict execution guarantees
or tasks off the critical path of a DAG, are good
candidates for opportunistic containers.

The AMs currently determine the execution
type for each container, but the system could
use automated policies instead. The AM can also
request promotion of opportunistic containers to
guarantee to protect them from preemption.

Hybrid scheduling Opportunistic containers
can be allocated centrally by the RM or in a
distributed fashion through a local scheduler that
runs at each NM and leases containers on other
NMs without contacting the RM. Centralized
allocation allows for higher-quality placement
decisions and sharing policies. Distributed
allocation offers lower allocation latencies, which
can be beneficial for short-lived containers.
To prevent conflicts, guaranteed containers are
always assigned by the RM.

To determine the least-loaded nodes for plac-
ing opportunistic containers, the RM periodically
gathers information about the running and queued
containers at each node and propagates this infor-
mation to the local schedulers too. To account for
occasional load imbalance across nodes, YARN
performs dynamic rebalancing of queued con-
tainers.

Resource overcommitment Currently, oppor-
tunistic containers can be employed to avoid
feedback delays. Ongoing development also
focuses on overcommitting resources using
opportunistic ~ containers (Utilization-based
scheduling 2017). In this scenario, opportunistic
containers facilitate reclaiming overcommitted
resources on demand, without affecting the

Advancements in YARN Resource Manager

performance and predictability of jobs that opt
out of overcommitted resources.

Cluster Scalability

A single YARN RM can manage a few thousands
of nodes. However, production analytics clusters
at big cloud companies are often comprised of
tens of thousands of machines, crossing YARN’s
limits (Burd et al. 2017).

YARN’s scalability is constrained by the re-
source manager, as load increases proportionally
to the number of cluster nodes and the appli-
cation demands (e.g., active containers, resource
requests per second). Increasing the heartbeat
intervals could improve scalability in terms of
number of nodes, but would be detrimental to
utilization (Vavilapalli et al. 2013) and would
still pose problems as the number of applications
increases.

Instead, as of Apache Hadoop 2.9 (YARN
Federation 2017), a federation-based approach
scales a single YARN cluster to tens of thousands
of nodes. This approach divides the cluster into
smaller units, called subclusters, each with its
own YARN RM and NMs. The federation system
negotiates with subcluster RMs to give appli-
cations the experience of a single large cluster,
allowing applications to schedule their tasks to
any node of the federated cluster.

The state of the federated cluster is coordi-
nated through the State Store, a central compo-
nent that holds information about (1) subcluster
liveliness and resource availability via heartbeats
sent by each subcluster RM, (2) the YARN sub-
cluster at which each AM is being deployed,
and (3) policies used to impose global cluster
invariants and perform load rebalancing.

To allow jobs to seamlessly span subclusters,
the federated cluster relies on the following com-
ponents:

Router A federated YARN cluster is equipped
with a set of routers, which hide the presence
of multiple RMs from applications. Each ap-
plication gets submitted to a router, which,
based on a policy, determines the subcluster

for the AM to be executed, gets the subcluster
URL from the State Store, and redirects the
application submission request to the appro-
priate subcluster RM.

AMRM Proxy This component runs as a service
at each NM of the cluster and acts as a proxy
for every AM-RM communication. Instead of
directly contacting the RM, applications are
forced by the system to access their local
AMRM Proxy. By dynamically routing the
AM-RM messages, the AMRM Proxy pro-
vides the applications with transparent ac-
cess to multiple YARN RMs. Note that the
AMRM Proxy is also used to implement the
local scheduler for opportunistic containers
and could be used to protect the system against
misbehaving AMs.

This federated design is scalable, as the
number of nodes each RM is responsible for
is bounded. Moreover, through appropriate
policies, the majority of applications will be
executed within a single subcluster; thus the
number of applications that are present at
each RM is also bounded. As the coordination
between subclusters is minimal, the cluster’s size
can be scaled almost linearly by adding more
subclusters. This architecture can provide tight
enforcement of scheduling invariants within a
subcluster, while continuous rebalancing across
subclusters enforces invariants in the whole
cluster.

A similar federated design has been followed
to scale the underlying store (HDFS Federation
2017).

Long-Running Services

As already discussed, YARN’s target applications
were originally batch analytics jobs, such as
MapReduce. However, a significant share of
today’s clusters is dedicated to workloads that
include stream processing, iterative computa-
tions, data-intensive interactive jobs, and latency-
sensitive online applications. Unlike batch
jobs, these applications benefit from long-lived
containers (from hours to months) to amortize

container initialization costs, reduce scheduling
load, or maintain state across computations. Here
we use the term services for all such applications.

Given their long-running nature, these appli-
cations have additional demands, such as sup-
port for restart, in-place upgrade, monitoring, and
discovery of their components. To avoid using
YARN’s low-level API for enabling such opera-
tions, users have so far resorted to AM libraries
such as Slider (Apache Slider 2017). Unfortu-
nately, these external libraries only partially solve
the problem, e.g., due to lack of common stan-
dards for YARN to optimize resource demands
across libraries or version incompatibilities be-
tween the libraries and YARN.

To this end, the upcoming Apache Hadoop 3.1
release adds first-class support for long-running
services in YARN, allowing for both traditional
process-based and Docker-based containers. This
service framework allows users to deploy existing
services on YARN, simply by providing a JSON
file with their service specifications, without hav-
ing to translate those requirements into low-level
resource requests at runtime.

The main component of YARN’s service
framework is the container orchestrator, which
facilitates service deployment. It is an AM that,
based on the service specification, configures the
required requests for the RM and launches the
corresponding containers. It deals with various
service operations, such as starting components
given specified dependencies, monitoring their
health and restarting failed ones, scaling up
and down component resources, upgrading
components, and aggregating logs.

A RESTful API server is developed to allow
users to manage the life cycle of services on
YARN via simple commands, using framework-
independent APIs. Moreover, a DNS server
enables service discovery via standard DNS
lookups and greatly simplifies service failovers.

Scheduling services Apart from the aforemen-
tioned support for service deployment and man-
agement, service owners also demand precise
control of container placement to optimize the
performance and resilience of their applications.
For instance, containers of services are often

Advancements in YARN Resource Manager

required to be collocated (affinity) to reduce net-
work costs or separated (anti-affinity) to mini-
mize resource interference and correlated fail-
ures. For optimal service performance, even more
powerful constraints are useful, such as complex
intra- and inter-application constraints that collo-
cate services with one another or put limits in the
number of specific containers per node or rack.

When placing containers of services, clus-
ter operators have their own, potentially con-
flicting, global optimization objectives. Examples
include minimizing the violation of placement
constraints, the resource fragmentation, the load
imbalance, or the number of machines used. Due
to their long lifetimes, services can tolerate longer
scheduling latencies than batch jobs, but their
placement should not impact the scheduling la-
tencies of the latter.

To enable high-quality placement of services
in YARN, Apache Hadoop 3.1 introduces sup-
port for rich placement constraints (Placement
constraints 2017).

Jobs with SLOs

In production analytics clusters, the majority of
cluster resources is usually consumed by produc-
tion jobs. These jobs must meet strict Service
Level Objectives (SLOs), such as completion
deadlines, for their results to be consumed by
downstream services. At the same time, a large
number of smaller best-effort jobs are submitted
to the same clusters in an ad hoc manner for
exploratory purposes. These jobs lack SLOs, but
they are sensitive to completion latencies.

Resource managers typically allocate
resources to jobs based on instantaneous
enforcement of job priorities and sharing

invariants. Although simpler to implement and
impose, this instantaneous resource provisioning
makes it challenging to meet job SLOs without
sacrificing low latency for best-effort jobs.

To ensure that important production jobs will
have predictable access to resources, YARN was
extended with the notion of reservations, which
provide users with the ability to reserve resources
over (and ahead of) time. The ideas around

Advancements in YARN Resource Manager

reservations first appeared in Rayon (Curino
et al. 2014) and are part of YARN as of Apache
Hadoop 2.6.

Reservations This is a construct that determines
the resource needs and temporal requirements of
a job and translates the job’s completion deadline
into an SLO over predictable resource alloca-
tions. This is done ahead of the job’s execution,
aimed at ensuring a predictable and timely execu-
tion. To this end, YARN introduced a reservation
definition language (RDL) to express a rich class
of time-aware resource requirements, including
deadlines, malleable and gang parallelism, and
inter-job dependencies.

Reservation planning and scheduling RDL
provides a uniform and abstract representation
of jobs’ needs. Reservation requests are received
ahead of a job’s submission by the reservation
planner, which performs online admission
control. It accepts all jobs that can fit in the cluster
agenda over time and rejects those that cannot be
satisfied. Once a reservation is accepted by the
planner, the scheduler is used to dynamically
assign cluster resources to the corresponding job.

Periodic reservations Given that a high per-
centage of production jobs are recurring (e.g.,
hourly, daily, or monthly), YARN allows users to
define periodic reservations, starting with Apache
Hadoop 2.9. A key property of recurring reser-
vations is that once a periodic job is admitted,
each of its instantiations will have a predictable
resource allocation. This isolates periodic pro-
duction jobs from the noisiness of sharing.

Toward predictable execution The idea of re-
curring reservations was first exposed as part of
the Morpheus system (Jyothi et al. 2016). Mor-
pheus analyzes inter-job data dependencies and
ingress/egress operations to automatically derive
SLOs. It uses a resource estimator tool, which is
also part of Apache Hadoop as of version 2.9,
to estimate jobs’ resource requirements based on
historic runs. Based on the derived SLOs and
resource demands, the system generates recur-
ring reservations and submits them for planning.

This guarantees that periodic production jobs will
have guaranteed access to resources and thus
predictable execution.

Further Improvements

In this section, we discuss some additional im-
provements made to YARN.

Generic resources As more heterogeneous ap-
plications with varying resource demands are
deployed to YARN clusters, there is an increasing
need for finer control of resource types other
than memory and CPU. Examples include disk
bandwidth, network I/O, GPUs, and FPGAs.

Adding new resource types in YARN used
to be cumbersome, as it required extensive code
changes. The upcoming Apache Hadoop 3.1 re-
lease (Resource profiles 2017) follows a more
flexible resource model, allowing users to add
new resources with minimal effort. In fact, users
can define their resources in a configuration file,
eliminating the need for code changes or recom-
pilation. The Dominant Resource Fairness (Gh-
odsi et al. 2011) scheduling algorithm at the RM
has also been adapted to account for generic
resource types, while resource profiles can be
used for AMs to request containers specifying
predefined resource sets. Ongoing work focuses
on the isolation of resources such as disk, net-
work, and GPUs.

Node labels Cluster operators can group nodes
with similar characteristics, e.g., nodes with
public IPs or nodes used for development or
testing. Applications can then request containers
on nodes with specific labels. This feature is
supported by YARN’s Capacity Scheduler from
Apache Hadoop 2.6 on (Node labels 2017) and
allows at most one label to be specified per node,
thus creating nonoverlapping node partitions in
the cluster. The cluster administrator can specify
the portion of a partition that a queue of the
scheduler can access, as well as the portion of
a queue’s capacity that is dedicated to a specific
node partition. For instance, queue A might be
restricted to access no more than 30% of the

nodes with public IPs, and 40% of queue A has
to be on dev machines.

Changing queue configuration Several compa-
nies use YARN’s Capacity Scheduler to share
clusters across non-coordinating user groups. A
hierarchy of queues isolates jobs from each de-
partment of the organization. Due to changes in
the resource demands of each department, the
queue hierarchy or the cluster condition, oper-
ators modify the amount of resources assigned
to each organization’s queue and to the sub-
queues used within that department. However,
queue reconfiguration has two main drawbacks:
(1) setting and changing configurations is a te-
dious process that can only be performed by
modifying XML files; (2) queue owners cannot
perform any modifications to their sub-queues;
the cluster admin must do it on their behalf.

To address these shortcomings, Apache
Hadoop 2.9 (OrgQueue 2017) allows configu-
rations to be stored in an in-memory database
instead of XML files. It adds a RESTful API
to programmatically modify the queues. This
has the additional benefit that queues can
be dynamically reconfigured by automated
services, based on the cluster conditions or on
organization-specific criteria. Queue ACLs allow
queue owners to perform modifications on their
part of the queue structure.

Timeline server Information about current and
previous jobs submitted in the cluster is key for
debugging, capacity planning, and performance
tuning. Most importantly, observing historic data
enables us to better understand the cluster and
jobs’ behavior in aggregate to holistically im-
prove the system’s operation.

The first incarnation of this effort was the ap-
plication history server (AHS), which supported
only MapReduce jobs. The AHS was superseded
by the timeline server (TS), which can deal with
generic YARN applications. In its first version,
the TS was limited to a single writer and reader
that resided at the RM. Its applicability was
therefore limited to small clusters.

Advancements in YARN Resource Manager

Apache Hadoop 2.9 includes a major redesign
of TS (YARN TS v2 2017), which separates
the collection (writes) from the serving (reads)
of data, and performs both operations in a dis-
tributed manner. This brings several scalability
and flexibility improvements.

The new TS collects metrics at various
granularities, ranging from flows (i.e., sets of
YARN applications logically grouped together)
to jobs, job attempts, and containers. It also
collects cluster-wide data, such as user and queue
information, as well as configuration data.

The data collection is performed by collectors
that run as services at the RM and at every NM.
The AM of each job publishes data to the col-
lector of the host NM. Similarly, each container
pushes data to its local NM collector, while the
RM publishes data to its dedicated collector. The
readers are separate instances that are dedicated
to serving queries via a REST APIL. By default
Apache HBase (Apache HBase 2017) is used as
the backing storage, which is known to scale to
large amounts of data and read/write operations.

Conclusion

YARN was introduced in Apache Hadoop at the
end of 2011 as an effort to break the strong ties
between Hadoop and MapReduce and to allow
generic applications to be deployed over a com-
mon resource management fabric. Since then,
YARN has evolved to a fully fledged production-
ready resource manager, which has been de-
ployed on shared clusters comprising tens of
thousands of machines. It handles applications
ranging from batch analytics to streaming and
machine learning workloads to low-latency ser-
vices while achieving high resource utilization
and supporting SLOs and predictability for pro-
duction workloads. YARN enjoys a vital commu-
nity with hundreds of monthly contributions.

Advancements in YARN Resource Manager

Cross-References

Hadoop
Scheduling with Space-Time Soft Constraints
in Heterogeneous Cloud Datacenters

Acknowledgements The authors would like to thank
Subru Krishnan and Carlo Curino for their feedback while
preparing this entry. We would also like to thank the
diverse community of developers, operators, and users
that have contributed to Apache Hadoop YARN since its
inception.

References

Apache Hadoop (2017) Apache Hadoop. http://hadoop.
apache.org

Apache HBase (2017) Apache HBase. http://hbase.
apache.org

Apache Slider (2017) Apache Slider (incubating). http://
slider.incubator.apache.org

Burd R, Sharma H, Sakalanaga S (2017) Lessons learned
from scaling YARN to 40K machines in a multi-
tenancy environment. In: DataWorks Summit, San Jose

Curino C, Difallah DE, Douglas C, Krishnan S, Ramakr-
ishnan R, Rao S (2014) Reservation-based scheduling:
if you’re late don’t blame us! In: ACM symposium on
cloud computing (SoCC)

Dean J, Ghemawat S (2004) MapReduce: simplified data
processing on large clusters. In: USENIX sympo-
sium on operating systems design and implementation
(OSDI)

Distributed scheduling (2017) Extend YARN to sup-
port distributed scheduling. https://issues.apache.org/
jira/browse/YARN-2877

Ghodsi A, Zaharia M, Hindman B, Konwinski A, Shenker
S, Stoica I (2011) Dominant resource fairness: fair
allocation of multiple resource types. In: USENIX
symposium on networked systems design and imple-
mentation (NSDI)

HDFS Federation (2017) Router-based HDFS federation.
https://issues.apache.org/jira/browse/HDFS- 10467

Jyothi SA, Curino C, Menache I, Narayanamurthy SM,
Tumanov A, Yaniv J, Mavlyutov R, Goiri I, Krishnan
S, Kulkarni J, Rao S (2016) Morpheus: towards auto-
mated slos for enterprise clusters. In: USENIX sympo-
sium on operating systems design and implementation
(OSDI)

Karanasos K, Rao S, Curino C, Douglas C, Chaliparam-
bil K, Fumarola GM, Heddaya S, Ramakrishnan R,
Sakalanaga S (2015) Mercury: hybrid centralized and
distributed scheduling in large shared clusters. In:
USENIX annual technical conference (USENIX ATC)

Node Labels (2017) Allow for (admin) labels on
nodes and resource-requests. https://issues.apache.org/
jira/browse/YARN-796

Opportunistic Scheduling (2017) Scheduling of oppor-
tunistic containers through YARN RM. https://issues.
apache.org/jira/browse/YARN-5220

OrgQueue (2017) OrgQueue for easy capacitysched-
uler queue configuration management. https://issues.
apache.org/jira/browse/ YARN-5734

Placement Constraints (2017) Rich placement constraints
in YARN. https://issues.apache.org/jira/browse/
YARN-6592

Rasley J, Karanasos K, Kandula S, Fonseca R, Vojnovic
M, Rao S (2016) Efficient queue management for clus-
ter scheduling. In: European conference on computer
systems (EuroSys)

Resource Profiles (2017) Extend the YARN resource
model for easier resource-type management and
profiles. https://issues.apache.org/jira/browse/YARN-
3926

Utilization-Based Scheduling (2017) Schedule containers
based on utilization of currently allocated containers.
https://issues.apache.org/jira/browse/ YARN-1011

Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar
M, Evans R, Graves T, Lowe J, Shah H, Seth S,
Saha B, Curino C, O’Malley O, Radia S, Reed B,
Baldeschwieler E (2013) Apache Hadoop YARN: yet
another resource negotiator. In: ACM symposium on
cloud computing (SoCC)

YARN Federation (2017) Enable YARN RM scale out via
federation using multiple RMs. https://issues.apache.
org/jira/browse/YARN-2915

YARN JIRA (2017) Apache JIRA issue tracker for YARN.
https://issues.apache.org/jira/browse/ YARN

YARN TS v2 (2017) YARN timeline service v.2. https://
issues.apache.org/jira/browse/ YARN-5355

http://link.springer.com/Hadoop
http://link.springer.com/Scheduling with Space-Time Soft Constraints in Heterogeneous Cloud Datacenters
http://hadoop.apache.org
http://hadoop.apache.org
http://hbase.apache.org
http://hbase.apache.org
http://slider.incubator.apache.org
http://slider.incubator.apache.org
https://issues.apache.org/jira/browse/YARN-2877
https://issues.apache.org/jira/browse/YARN-2877
https://issues.apache.org/jira/browse/HDFS-10467
https://issues.apache.org/jira/browse/YARN-796
https://issues.apache.org/jira/browse/YARN-796
https://issues.apache.org/jira/browse/YARN-5220
https://issues.apache.org/jira/browse/YARN-5220
https://issues.apache.org/jira/browse/YARN-5734
https://issues.apache.org/jira/browse/YARN-5734
https://issues.apache.org/jira/browse/YARN-6592
https://issues.apache.org/jira/browse/YARN-6592
https://issues.apache.org/jira/browse/YARN-3926
https://issues.apache.org/jira/browse/YARN-3926
https://issues.apache.org/jira/browse/YARN-1011
https://issues.apache.org/jira/browse/YARN-2915
https://issues.apache.org/jira/browse/YARN-2915
https://issues.apache.org/jira/browse/YARN
https://issues.apache.org/jira/browse/YARN-5355
https://issues.apache.org/jira/browse/YARN-5355

	Advancements in YARN Resource Manager
	Synonyms
	Definitions
	Overview
	YARN Architecture
	Resource Utilization
	Cluster Scalability
	Long-Running Services
	Jobs with SLOs
	Further Improvements
	Conclusion
	Cross-References
	References
	References

